1. Field of Invention
The present disclosure relates generally to vibration isolation, such as vibration isolation for vehicles with structures mounted external to the vehicle body.
2. Background
Mechanical vibration in a vehicle may have a number of unwanted side effects, ranging from passenger discomfort to early mechanical failure. Vibration may be particularly problematic for vehicles having one or more relatively heavy structures mounted externally to the vehicle body.
One example is a fuel tank mounted external to a helicopter fuselage. Vibrational energy generated by the rotor may be coupled to the fuel tank system. Frequencies at or close to resonant frequencies of harmonic modes of the aircraft system may be particularly problematic, since they can lead to large-amplitude oscillation. Additionally, since the mass of the fuel tank system changes during aircraft operation, the resonant frequencies also change.
In order to reduce the amount of vibration caused by this effect, a number of existing vibration isolation systems may be used. In a first example of a vibration isolation system for an externally mounted fuel tank of a helicopter, an isolated fuel cell floor is included inside the fuel tank structure. A large number of small isolators are positioned throughout the floor. The assembly of small vibration isolators acts to isolate the fuel mass from the airframe and prevents the resonance of airframe natural frequencies with rotor harmonics as the fuel weight changes.
This configuration may not be optimal. First, the vibration isolation system is incorporated on the inside of the fuel tank, reducing the available fuel storage volume. Second, the system may be heavy, complex, and difficult to install, maintain, and repair. For example, such a system may use hundreds of small isolators positioned inside the fuel tank. Replacing the small isolators requires accessing the fuel cell floor, removing it, determining the position of the isolator(s) to be replaced, and positioning replacements accurately.
Another configuration uses vibration isolation fittings between a mounting beam and the fuselage. The vibration isolation fittings each comprise a machined arm with weights and springs positioned to substantially minimize vibratory shears imparted to the beam and the fuselage, regardless of fuel weight. One such system is described in U.S. Pat. No. 4,311,213, which is hereby incorporated by reference herein. Although this system may provide good vibration isolation, it is expensive, complex, and heavy.
In general, in one aspect a vehicle may include a vehicle body and a structure mounted to the vehicle body exterior to the vehicle body. In operation, the structure may have a first weight at a first time and a second different weight at a second different time. The vehicle may further include a plurality of vibration isolator attachment assemblies coupling the structure to the vehicle body at a plurality of pre-selected coupling locations exterior to the structure. The plurality of vibration isolator attachment assemblies each comprising at least one isolator comprising an elastomer material.
The vibration isolator attachment assemblies may comprise a vehicle body attachment, a structure attachment, and an associated at least one isolator non-rigidly coupling the vehicle body attachment and the structure attachment. The at least one isolator may comprise an elastomer material. In some aspects, the at least one isolator may be a single isolator, which may have a single elastomer material, or multiple elastomer materials. The at least one isolator may be multiple isolators that may each be the same or at least one may be different.
In general, in another aspect, a vehicle may comprise a vehicle body and a structure mounted to the vehicle body exterior to the vehicle body. The vehicle may further comprise a mounting system comprising a plurality of vibration reduction mounts, each comprising mounting hardware associated with the vehicle body and mounting hardware associated with the structure. The vibration reduction mounts may each further include at least associated one vibration isolator non-rigidly connecting the mounting hardware associated with the vehicle body and the mounting hardware associated with the structure. The plurality of vibration reduction mounts may be configured and positioned to substantially isolate vibrations of the structure from the vehicle body in operation.
In general, in another aspect, an aircraft may comprise a fuselage and a fuel tank mounted externally to the fuselage using a plurality of attachment mechanisms positioned at an associated plurality of locations. A first attachment mechanism may include a fuselage fitting, a fuel tank fitting, and at least one elastomer vibration isolator non-rigidly coupling the fuselage fitting to the fuel tank fitting.
These and other features and advantages of the present invention will be more readily apparent from the detailed description of the exemplary implementations set forth below taken in conjunction with the accompanying drawings.
Like reference symbols in the various drawings indicate like elements.
As noted above, existing vibration isolation systems may not be optimal in some circumstances.
For example, in a vehicle having an external structure, existing systems may be costly, complex, and heavy.
As noted above, a system such as that shown in
Systems and techniques provided herein may allow for vibration isolation tailored to the vehicle system and its particular vibrational modes, in a simpler, less costly, and less complex way than some available systems.
The systems and techniques described herein may be particularly beneficial for a helicopter system such as a Chinook helicopter. With little fuel in the fuel tanks, the natural frequencies of the airframe are placed properly relative to the rotor excitation frequency. As a result, the airframe vibrations are acceptable. However, for a Chinook without fuel isolation, additional fuel mass causes the frequencies of certain airframe modes to move closer to the rotor excitation frequency, thereby causing high airframe vibrations. By implementing the systems and techniques described herein, the fuel may be sufficiently isolated from the airframe. As a result, the airframe mode frequencies may be substantially insensitive to increased fuel mass.
A mass of the structure may be said to be substantially isolated when vehicle mode frequencies closest to the driving frequency (e.g. airframe mode frequencies closest to the rotor frequency) are at least as far from the driving frequency as the best frequency separation without isolation. For example, as noted above, some helicopters are designed so that the frequencies are properly placed when the fuel tanks are substantially empty. For the un-isolated case, increasing the fuel mass brings some airframe modes closer to the rotor frequency. In this example, the mass of the structure may be said to be substantially isolated when the airframe modes for a full fuel tank are separated from the driving frequency by an amount that is equal to or greater than the frequency separation corresponding to an empty fuel tank without isolation.
External structures 420 are coupled to vehicle body 410 using a plurality of vibration isolation attachment assemblies 430. The configuration and location of attachment assemblies 430 is selected to isolate the mass of external structures 420 (e.g., one or more fuel tanks external to a helicopter fuselage) from the vehicle body 410 (e.g., a helicopter fuselage).
In some embodiments, vehicle body 410 may be an aircraft fuselage, such as a helicopter fuselage. In other embodiments, vehicle body 410 may be a truck body, train body, military vehicle body, or other vehicle body. In some embodiments, external structure 420 may be a fuel tank. In other embodiments, external structure 420 may be a different type of sponson, such as one or more sponsons for weapons, stores, cargo, avionics, etc. Some types of external structures have a mass that changes with time (such as a fuel tank or a sponson including ammunition to be used during vehicle operation), while others have a substantially constant mass.
As illustrated in
Attachment elements 431 and/or 432 may be integrated with the vehicle body 410 and external structure 420, respectively (e.g., one or both may comprise a through hole or a tapped hole), or may comprise an additional element attached to the vehicle body 420 and/or external structure 420 (e.g., a mounting plate).
Vibration isolator 433 comprises one or more elastomer materials shaped and positioned to isolate the mass of the external structure 420. For example, for a helicopter, the shape of vibration isolator 433 may be selected to maintain frequency placement of the fuel mass relative to rotor harmonics, independent of the fuel mass. Vibration isolator 433 may be made of a single durometer (hardness) elastomer material, or may include multiple elastomer materials of different durometers. In some embodiments, the one or more elastomer materials of different durometers may be bonded together to form an integrated vibration isolator 433.
The number of attachment locations may be selected for a particular application, or may be dependent on the system configuration (for example, it may be difficult to design a large number of attachment points for a particular vehicle body configuration and/or external structure configuration). For a helicopter/fuel tank system, a range from four attachment locations to twelve attachment locations (inclusive) may be used, in some embodiments. In other embodiments, more or fewer attachment locations may be used.
For a particular location configuration, the size, shape, and material(s) for each of the isolators may be selected to decouple vibration of the vehicle body from the external structure. For a particular location, one isolator may be used, or multiple isolators may be used. For each isolator, a single elastomer material may be used, or different elastomer materials with different durometers may be used.
As noted above, the systems and techniques herein may be particularly well suited to aircraft, such as helicopters, with external structures. For example, a Chinook helicopter such as the helicopter shown in
Although eight attach fittings 510 are illustrated in
Assembly 600 includes a tank fitting 610 attached to the fuel tank. Tank fitting 610 may be a single lug fitting with two flanged bushings 630. Assembly 600 further includes a fuselage fitting 620, which may include a clevis fitting. During installation, a sleeve 621 may be inserted through one side of fuselage fitting 620. A bolt 622 may be inserted through a first washer 623 and through sleeve 621. Bolt 622 may be secured using a second washer 624 and a locking nut 625.
Two vibration isolators 640 may be included in assembly 600. Isolators 640 may include grooves to mount to complementary rings in fitting 620. Isolators 640 comprise one or more elastomer materials to decouple the fuel tank from the airframe.
A number of shapes and materials may be used for isolators 640.
As noted above, vibration isolating attachment assemblies may be located to isolate particular frequency ranges for particular loads.
A number of implementations have been described. Although only a few implementations have been disclosed in detail above, other modifications are possible, and this disclosure is intended to cover all such modifications, and most particularly, any modification which might be predictable to a person having ordinary skill in the art. For example, many different designs for individual vibration isolators may be used, as may their location and the mechanisms and configurations used to mount external structures to vehicle bodies. Additionally, many attachment configurations may be used.
Also, only those claims which use the words “means for” are intended to be interpreted under 35 USC 112, sixth paragraph. Moreover, no limitations from the specification are intended to be read into any claims, unless those limitations are expressly included in the claims. Accordingly, other embodiments are within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
1483282 | Coston | Feb 1924 | A |
2689698 | Agnew | Sep 1954 | A |
2869811 | Boschi | Jan 1959 | A |
2937040 | Hutton | May 1960 | A |
3966147 | Wittko et al. | Jun 1976 | A |
4088042 | Desjardins et al. | May 1978 | A |
4214738 | Casper | Jul 1980 | A |
4311213 | Desjardins et al. | Jan 1982 | A |
4362281 | Cresap et al. | Dec 1982 | A |
4684280 | Dirkin et al. | Aug 1987 | A |
4781363 | Braun | Nov 1988 | A |
4860972 | Lannerd et al. | Aug 1989 | A |
5110081 | Lang, Jr. | May 1992 | A |
5529295 | Leibach et al. | Jun 1996 | A |
5906254 | Schmidt et al. | May 1999 | A |
6149102 | Marasco et al. | Nov 2000 | A |
6397988 | Ptak | Jun 2002 | B1 |
6669393 | Schilling | Dec 2003 | B2 |
6676116 | Edberg et al. | Jan 2004 | B2 |
6715746 | Bachmeyer et al. | Apr 2004 | B2 |
7461815 | Almeras et al. | Dec 2008 | B2 |
20080136071 | Weisbeck et al. | Jun 2008 | A1 |
20090077785 | Kaneyasu et al. | Mar 2009 | A1 |
Number | Date | Country |
---|---|---|
2298260 | Aug 1996 | GB |
2355780 | May 2001 | GB |
2415479 | Dec 2005 | GB |
Number | Date | Country | |
---|---|---|---|
20070108340 A1 | May 2007 | US |