The present disclosure relates to vibration motors, more particularly to a vibration motor having a vibration unit vibrating along a horizontal direction.
With the development of electronic technologies, portable consumable electronic products are increasingly popular, such as mobile phone, handheld game console, navigation device or handheld multimedia entertainment equipment, in which a vibration motor is generally used for system feedback, such as call reminder, message reminder, navigation reminder of mobile phone, vibration feedback of game console. To meet the demand of such a wide application, the vibration motor shall have high performance and long life.
The vibration motor usually comprises a housing with accommodating space, a vibration unit accommodated in the accommodating space, and an elastic member connecting the housing and the vibration unit respectively. The elastic member supports the vibration unit to move reciprocally inside the housing to produce vibration. The elastic member of the art is usually two springs provided around the vibration unit on both sides of the vibration unit, which have its middle position welded on the housing and two ends extending to the opposite side of the vibration unit respectively and fixed together with the vibration unit, however, in installation of such structure, the welding tooling of the second spring shall pass through the first spring, thus usually requiring to provide an envision hole for welding on the spring, which is complex to operate and hard to process.
Therefore it is necessary to provide an improved vibration motor for overcoming the above-mentioned disadvantages.
Many aspects of the exemplary embodiment can be better understood with reference to the following drawing. The components in the drawing are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present disclosure.
The present disclosure will hereinafter be described in detail with reference to an exemplary embodiment. To make the technical problems to be solved, technical solutions and beneficial effects of the present disclosure more apparent, the present disclosure is described in further detail together with the figure and the embodiment. It should be understood the specific embodiment described hereby is only to explain the disclosure, not intended to limit the disclosure.
Referring to
The housing 1 comprises a cover plate 11 with a side wall 111 and a bottom plate 12 connecting to the cover plate 11, and forms an accommodating space. The driving device 4 is fixed on the bottom plate 12, and the elastic member 3 is fixed on the side wall 111 of the cover plate 11. In this embodiment, the driving device 4 is a coil.
The vibration unit 2 comprises a weight 21 and a magnet 22 provided on the weight 21. Specifically, a through hole 210 is provided in the weight 21, and the through hole 210 penetrates through the weight 21 along a direction perpendicular to a vibration direction of the vibration unit 2. The magnet 22 is positioned in the through hole 210. The magnet 22 is arranged to be opposite to the coil. The cooperation between the magnet and the coil drives the vibration unit 2 to vibrate along a direction parallel to the bottom plate 12.
The magnet 22 may be a piece of permanent magnet or a combination of multiple permanent magnets, specifically in this embodiment, the magnet 22 comprises three permanent magnets located in the through hole 210. Further, the vibration unit 2 comprises a magnetic conductive piece 23 provided on the weight 21 and the magnet 22 for increasing magnetic induction strength.
The weight 21 comprises a first surface 211 and a second surface 212 opposite to the side wall 111, wherein the first surface 211 is provided along the vibration direction of the vibration unit 2, the second surface 212 is perpendicular to the vibration direction of the vibration unit 2.
Referring to
The first fixed sections 301 of the first elastic member 31 and the second elastic member 32 are fixed on the two first surface 211 on both sides of the vibration unit 2, the extension sections 303 of the first elastic member 31 and the second elastic member 32 are provided across each other. The bending and extension directions of the first elastic member 31 and the second elastic member 32 are opposite to each other. And on the side wall 111, a distance between the two second fixed sections 302 is greater than a width of the first fixed section 301, so as to avoid collision between the second fixed section 302 and the vibration unit.
In this embodiment, the extension section 303 comprises two first extension sections 3031 extending from the first fixed section 301 to both sides respectively, two second extension sections 3032 extending from the first extension section 3031 in a bending way and provided spaced from the second surface 212, and two third extension sections 3033 extending from the second extension section 3032 toward the side wall 111.
Further, a fixed step 213 is provided on the first surface 211 protruding toward the side wall 111 and matches the first fixed section 301. The first fixed section 301 is fixed on the fixed step 213. Specifically in this embodiment, it is fixed by welding. The second fixed section 302 is also fixed on the side wall 111 of the housing 1 by welding.
Further, an avoiding section 214 is provided on both sides of the fixed step 213, respectively, and is concave away from the side wall to avoid the first extension section and the third extension for avoiding the collision between the elastic section 3 and the vibration unit 2 during vibration. Referring to
Furthermore, a first buffer piece 5 is provided on the first fixed section 301, a second buffer piece 6 is provided on the second fixed section 302. Wherein, the first buffer piece 5 is provided on one side of the first fixed section 301 opposite to the side wall 111 to prevent the collision between the first fixed section and the sidewall, the second buffer piece 6 is provided on one side of the second fixed section 302 opposite to the vibration unit 2 to prevent the collision between the elastic member and the vibration unit or among the elastic members.
In the assembly process of the vibration unit, firstly the first fixed section 301 of the two elastic members 3 are welded with the two fixed steps 213 of the weight 21 respectively, then the second fixed section 302 is welded on the corresponding side wall 111, thereby the position to be welded is unblock, thus avoiding the defect that it's required to pass through one mounted spring to do welding tooling after the one elastic member is mounted. It is easy for operation and can be fixed firmly with improved vibration performance of products.
The present disclosure provides a new vibration motor with the first fixed part of the first elastic member and the second elastic member fixed on the two first surfaces on the two sides of the vibration unit respectively, without mutual distraction and shield in installation, thus facilitating the installation of vibration unit and elastic member, easy for operation and can be fixed firmly with high reliability.
It is to be understood, however, that even though numerous characteristics and advantages of the present exemplary embodiments have been set forth in the foregoing description, together with details of the structures and functions of the embodiments, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms where the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
2017 2 0398018 U | Apr 2017 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
8253282 | Park | Aug 2012 | B2 |
8648502 | Park | Feb 2014 | B2 |
8766494 | Park | Jul 2014 | B2 |
9024489 | Akanuma | May 2015 | B2 |
9306429 | Akanuma | Apr 2016 | B2 |
9312744 | Akanuma | Apr 2016 | B2 |
9774236 | Xu | Sep 2017 | B2 |
9871432 | Mao | Jan 2018 | B2 |
10008894 | Mao | Jun 2018 | B2 |
10170967 | Chai | Jan 2019 | B2 |
10220412 | Mao | Mar 2019 | B2 |
10236761 | Wang | Mar 2019 | B2 |
10307791 | Xu | Jun 2019 | B2 |
10328461 | Xu | Jun 2019 | B2 |
20120169148 | Kim | Jul 2012 | A1 |
20130229070 | Akanuma | Sep 2013 | A1 |
20170117788 | Hou | Apr 2017 | A1 |
20180297061 | Mao | Oct 2018 | A1 |
20180297063 | Mao | Oct 2018 | A1 |
20180297064 | Mao | Oct 2018 | A1 |
20180297070 | Xu | Oct 2018 | A1 |
20180297071 | Xu | Oct 2018 | A1 |
20180297077 | Chai | Oct 2018 | A1 |
Number | Date | Country | |
---|---|---|---|
20180297066 A1 | Oct 2018 | US |