Other features and advantages of the present invention will become apparent in the following detailed description of the preferred embodiments with reference to the accompanying drawings, of which:
Referring to
The conductive housing 50 defines a chamber 53, and includes a first casing part 51, and a second casing part 52. The first casing part 51 is made of a conductive material, and includes a bottom wall 511, a surrounding wall 512 extending upwardly from a peripheral end of the bottom wall 511, a shoulder 513 formed in an inner surface of the surrounding wall 512 opposite to the bottom wall 511, and a second electrode 516 projecting from an outer surface of the bottom wall 511.
The second casing part 52 is fitted to the surrounding wall 512 of the first casing part 51, and includes a non-conductive sealing part 521 and a conductive cover part 522. The conductive cover part 522 covers a top end of the surrounding wall 512, is partially inserted into the surrounding wall 512, and has a through hole 5221, and an annular protrusion 5222 projecting downwardly from a bottom end of the conductive cover part 522. The non-conductive sealing part 521 is formed at least partially in the through hole 5221. In an alternative embodiment, the second casing part 52 may be entirely made of an insulating material.
In this embodiment, the conductive cover part 522 and the first electrode 70 are first placed in a mold (not shown), after which the non-conductive sealing part 521 is formed through an injection molding process. As such, the conductive cover part 522, the non-conductive sealing part 521, and the first electrode 70 are connected tightly to each other. The non-conductive sealing part 521 is formed surrounding part of the first electrode 70 through the injection molding process. After the moving element 60 and the resilient conductive member 80 have been placed in the first casing part, the second casing part 52 is coupled to a top end of the surrounding wall 512 of the first casing part 51.
In order to realize a tight connection among the conductive cover part 522, the first electrode 70, and the non-conductive sealing part 521, the conductive cover part 522 may be provided with a knurled inner peripheral surface 525, and the first electrode 70 may be provided with a knurled outer peripheral surface 72.
The first electrode 70, in this embodiment, is a conductive rod, and has a first end 73 projecting outwardly of the housing 50 through the sealing part 521, and a second end 71 projecting into the chamber 53. The first electrode 70 is opposite to the second electrode 516.
The moving element 60 is disposed movably in the chamber 53, and is spaced apart from the second end 71 of the first electrode 70 when no external force is received by the vibration switch. In this embodiment, the moving element 60 is configured as a cylindrical element that has tapered top and bottom ends 601, 602 and that is made of an insulating material. The moving element 60 is guided by the surrounding wall 512 to move within the chamber 53, and has a mass sufficient to produce a pushing force during vibration. The moving element 60 need not be limited to an insulating material, and it may be made of a conductive material, such as metal.
The resilient conductive member 80 is disposed within the chamber 53 between the first electrode 70 and the moving element 60. In this embodiment, the resilient conductive member 80 is made by punching a thin metal plate so as to form a thin spring plate 801 having a plurality of substantially C-shaped slits 802 that are substantially concentric to each other, and a peripheral edge 803 seated on the shoulder 513. A contact portion 804 is provided at a central part of the thin spring plate 801.
When the second casing part 52 is fitted to the first casing part 51, the annular protrusion 5222 of the conductive cover part 522 projects into the top end of the surrounding wall 512, and presses the peripheral edge 803 of the thin spring plate 801 against the shoulder 513, so that the resilient conductive member 80 is connected electrically and constantly to the first casing part 51. Normally, the resilient conductive member 80 is spaced apart from the second end 71 of the first electrode 70.
With reference to
With reference to
From the aforementioned description, it is apparent that the vibration switch of the present invention can operate reliably and simply to achieve electrical connection between the first and second electrodes 70, 516. This is made possible as a result of the resilient conductive member 80 being in constant electrical contact with the first casing part 51 and by virtue of the fact that electrical contact is made only at one contact point, i.e., between the second end 71 of the first electrode 70 and the contact portion 804 of the resilient conductive member 80. Therefore, the vibration switch of the present invention has high sensitivity, and can generate stable and accurate switching signals.
While the present invention has been described in connection with what is considered the most practical and preferred embodiment, it is understood that this invention is not limited to the disclosed embodiment but is intended to cover various arrangements included within the spirit and scope of the broadest interpretation so as to encompass all such modifications and equivalent arrangements.