The present invention relates generally to medical devices and methods. More specifically, the present invention relates to vibrational catheter devices and methods for treating occlusive intravascular lesions.
Catheters employing various types of vibration transmitting members have been successfully used to ablate or otherwise disrupt obstructions in blood vessels. Specifically, ablation of atherosclerotic plaque or thromboembolic obstructions from peripheral blood vessels such as the femoral arteries has been particularly successful. Various vibrational catheter devices have been developed for use in ablating or otherwise removing obstructive material from blood vessels. For example, U.S. Pat. Nos. 5,267,954 and 5,380,274, issued to an inventor of the present invention and hereby incorporated by reference, describe ultrasound catheter devices for removing occlusions. Other examples of ultrasonic ablation devices for removing obstructions from blood vessels include those described in U.S. Pat. No. 3,433,226 (Boyd), U.S. Pat. No. 3,823,717 (Pohlman, et al.), U.S. Pat. No. 4,808,153 (Parisi), 4,920,954 (Alliger, et al.), as well as other patent publications WO87-05739 (Cooper), WO89-06515 (Bernstein, et al.), WO90-0130 (Sonic Needle Corp.), EP316789 (Don Michael, et al.), DE3,821,836 (Schubert) and DE2438648 (Pohlman). While many vibrational catheters have been developed, however, improvements are still being pursued.
Typically, a vibrational catheter system for ablating occlusive material includes three basic components: an vibration energy generator, a transducer, and a vibrational catheter. The generator converts line power into a high frequency current that is delivered to the transducer. The transducer contains piezoelectric crystals which, when excited by the high frequency current, expand and contract at high frequency. These small, high-frequency expansions (relative to an axis of the transducer and the catheter) are amplified by the transducer horn into vibrational energy. The vibrations are then transmitted from the transducer through the vibrational catheter via a vibrational transmission member (or wire). The transmission member transmits the vibrational energy to the distal end of the catheter where the energy is used to ablate or otherwise disrupt a vascular obstruction.
To effectively reach various sites for treatment of intravascular occlusions, vibrational catheters of the type described above typically have lengths of about 150 cm or longer. To permit the advancement of such vibrational catheters through small and/or tortuous blood vessels such as the aortic arch, coronary vessels, and peripheral vasculature of the lower extremities, the catheters (and their respective ultrasound transmission wires) must typically be sufficiently small and flexible. Also, due to attenuation of ultrasound energy along the long, thin, ultrasound transmission wire, a sufficient amount of vibrational energy must be applied at the proximal end of the wire to provide a desired amount of energy at the distal end.
One continuing challenge in developing vibrational catheters for treating vascular occlusions is to provide adequate vibrational energy at the distal end of a catheter device while simultaneously minimizing stress on the vibrational transmission wire in the area where it connects with the transducer. Typically, the vibrational transmission wire is coupled with the transducer via some kind of connector. A portion of the transmission wire immediately adjacent the connector is often put under great stress and strain when sufficient vibrational energy is applied to provide the desired vibration at the distal end of the catheter. This stress and strain can cause overheating and unwanted wear and tear of the transmission member, thus leading to wire breakage and a shortened useful life of the catheter device.
Some vibrational catheter devices include one or more absorption members where the proximal end of the vibrational transmission wire attaches to a transducer connector. For example, one such absorption member is described in U.S. Pat. No. 5,382,228. Such absorption members, however, may have drawbacks, in that they may be prone to coming loose and disconnecting from the transducer connector, and would thus become a loosely moving body within the catheter, disrupting vibrational energy transmission and reducing the catheter's efficacy.
Therefore, a need exists for improved vibrational catheter devices and methods that provide ablation and/or disruption of obstructions in lumens, such as vascular lumens. Ideally, such vibrational catheters would provide a desired level of power at a distal end of the device while also preventing or reducing stress and strain placed on the proximal end of the vibrational transmission member. Also ideally, such devices would be easily manufactured and have as few moving parts as possible in the area of connection of the transmission member with the transducer connector. At least some of these objectives will be met by the present invention.
In one aspect of the present invention, a vibrational catheter for disrupting obstructions in lumens such as blood vessels includes an elongate flexible catheter body having a proximal end, a distal end and at least one lumen extending longitudinally therethrough, a vibrational transmission member extending longitudinally through the lumen of the catheter body and having a proximal end and a distal end, and a transition connector attached to the proximal end of the vibrational transmission member for coupling the transmission member with a vibrational energy source. The transition connector includes a bore into which the proximal end of the vibrational transmission member extends. The proximal end of the vibrational transmission member is attached within the bore of the transition connector with variable attachment forces such that the transition connector exerts a lowest amount of attachment force on an attached distal-most portion of the vibrational transmission member housed within the bore.
In some embodiments, the vibrational energy source comprises a transducer, such as but not limited to an ultrasound transducer. In some embodiments, the transition connector may comprise multiple pieces attached together, while in other embodiments the transition connector comprises a one-piece extrusion. In one embodiment, the proximal connection member of the transition connector comprises threads, which are complementary to threads on the vibrational energy source. Alternatively, any other suitable connection device may be used.
In some embodiments, the transition connector comprises a distal portion tapered proximally to distally, the distal portion extending from a proximal terminus of the bore to the opening of the bore. In such embodiments, the vibrational transmission member may be attached within the bore by crimping the tapered distal portion of the transition connector so as to apply greater crimping force to a wider, proximal portion of the distal portion than to a narrower, distal portion of the distal portion. In alternative embodiments, the transition connector comprises a distal portion including a first stepped portion having a first radius and extending distally from a proximal terminus of the bore and a second stepped portion having a second radius smaller than the first radius and extending from a distal end of the first stepped portion to the distal opening of the bore. In these latter embodiments, the vibrational transmission member may be attached within the bore by crimping the first stepped portion, thus applying greater crimping force to the first stepped portion than the second stepped portion.
In another alternative embodiment, the bore comprises a first stepped portion having a first radius and extending distally from a proximal terminus of the bore and a second stepped portion having a second radius greater than the first radius and extending from a distal end of the first stepped portion to the distal opening of the bore. Optionally, in such an embodiment, the vibrational transmission member may be attached within the bore by crimping the transition connector, thus applying greater crimping force to the first stepped portion than the second stepped portion. In some cases, a space exists between the transmission member and the second stepped portion of the bore before crimping, and the space closes during crimping.
In another aspect of the present invention, a vibrational catheter for disrupting obstructions in lumens such as blood vessels includes an elongate flexible catheter body having a proximal end, a distal end and at least one lumen extending longitudinally therethrough, a vibrational transmission member extending longitudinally through the lumen of the catheter body and having a proximal end and a distal end, and a transition connector. The transition connector includes a proximal connection member for attaching the transition connector to a vibrational energy source and a bore having an opening in a distal end of, and extending into, the transition connector, for accepting the proximal end of the vibrational transmission member. The proximal end of the vibrational transmission member extends into and is attached within the distal bore of the transition connector such that the transition connector exerts a greater amount of attachment force on an attached proximal-most portion of the transmission member than on an adjacent portion of the transmission member immediately distal to the proximal-most portion. Various embodiments of this catheter may include any of the features described above.
In another aspect of the present invention, a method for making a vibrational catheter for disrupting obstructions in lumens such as blood vessels includes inserting a proximal end of a vibrational transmission member into a bore in a transition connector and crimping at least part of the transition connector to attach the proximal end of the vibrational transmission member within the bore. In this method, a variable amount of crimping force is applied to attach the vibrational transmission member within the bore, so that the transition connector exerts a lowest amount of attachment force on an attached distal-most portion of the vibrational transmission member housed within the bore.
In some embodiments, crimping is performed with a crimping tool having a contact surface parallel with the vibrational transmission member, and the greater amount of crimping force is applied via a shaped portion of the transition connector overlying the bore. In alternative embodiments, crimping is performed with a crimping tool having a contact surface parallel with the vibrational transmission member, and the greater amount of crimping force is applied via a shaped bore. In another alternative embodiment, crimping is performed with a tapered crimping tool having a contact surface that contacts a proximal portion of the transition connector overlying the bore before contacting a more distal portion of the transition connector overlying the bore. Alternatively, crimping may performed with two crimping members, a more proximal crimping member applying greater force than a more distal crimping member. In another alternative embodiment, crimping involves crimping a first portion of the transition connector overlying the proximal-most portion of the transmission member with a crimping tool, moving the crimping tool distally along the transition connector, and crimping a second portion of the transition connector overlying the adjacent portion of the transmission member.
These and other aspects and embodiments of the present invention are described in further detail below, in reference to the attached drawing figures.
Vibrational catheter devices and methods of the present invention provide for disruption of occlusions in blood vessels. The vibrational catheter devices generally include a catheter body, a vibrational energy transmission member disposed within the catheter body, and a distal head coupled with the vibrational transmission member and disposed at or near the distal end of the catheter body. The vibrational transmission member transmits vibrational energy, such as ultrasound energy, from a proximal vibrational energy source, such as an ultrasound transducer, to the distal head, causing the head to vibrate and, thus, disrupt vascular occlusions. A number of features of such vibrational catheter devices are described more fully below.
Referring now to
In addition to proximal knob 12, vibrational catheter device 10 may include one or more other various components, such as a Y-connector 11 including a fluid inlet port 17 (or aperture) for passage of irrigation fluid. Inlet port 17 may be removably coupled with an irrigation tube 24, which in one embodiment may be coupled with a fluid refrigeration (or “fluid cooling”) device 30. Refrigeration device 30 may, in turn, be coupled with a fluid container 32 via a connector tube 34. This irrigation apparatus may be used for introducing one or more fluids into catheter device 10. Fluid may be used to cool any part of the device, such as the vibrational transmission member, thus helping reduce wear and tear of device 10. In some embodiments, fluid inlet port 17 is located farther proximally on proximal knob 12, to allow fluid to be applied within knob 12. In some embodiments, refrigerated fluid is used, while in other embodiments irrigation fluid may be kept at room temperature. In various embodiments, oxygen supersaturated fluid, lubricious fluid, or any other suitable fluid or combination of fluids may be used, and again, such fluids may be refrigerated or kept room temperature. In an alternative embodiment to that shown in
Generally, catheter device 10 may include any suitable number of side-arms or ports for passage of a guidewire, application of suction, infusing and/or withdrawing irrigation fluid, dye and/or the like, or any other suitable ports or connections. Also, vibrational catheters 10 of the present invention may be used with any suitable proximal devices, such as any suitable transducer 14, generator 16, coupling device(s) and/or the like. Therefore, the exemplary embodiment shown in
Referring now to
Features of the present invention may be applied to any of a number of vibrational catheter devices. For more detailed description of exemplary vibrational catheter devices, reference may be made to U.S. patent application Ser. Nos. 10/229,371, 10/345,078, 10/375,903, 10/410,617, 10/722,209 and 0/927,966, which were all previously incorporated by reference. In various alternative embodiments, aspects of the present invention may be applied to any other suitable catheter devices.
Referring now to
In various embodiments, knob 112 may suitably include one or more surface features 142 for increasing the overall surface area of the outer surface of knob 112. Increased surface area enhances the ability of knob 112 to dissipate heat generated by vibrational transmission member 140 out of catheter device 110. Surface features 142 may have any suitable size or shape, such as ridges, jags, undulations, grooves or the like, and any suitable number of surface features 142 may be used. Additionally, knob 112 may be made of one or more heat dissipating materials, such as aluminum, stainless steel, any other conductive metal(s), or any suitable non-metallic conductive material(s).
In most embodiments, vibrational transmission member 140, wire, or wave guide extends longitudinally through a lumen of catheter body 127 to transmit vibrational energy from a transducer (not shown), connected to the proximal end of proximal knob 112, to the distal end of catheter device 110. Vibrational transmission member 140 may be formed of any material capable of effectively transmitting vibrational energy from the transducer, such as an ultrasound transducer, to the distal end of catheter body 127, including but not limited to metals such as pure titanium or aluminum, or titanium or aluminum alloys. Again, additional details of vibrational transmission members 140 may be found in the patent applications incorporated by reference above. Similarly, reference may be made to the incorporated patent applications for descriptions of knob 112, transition connector 152, vibration absorption members 150, Y-connector 111 and the like. For example, knob 112 and other features are described in detail in U.S. patent application Ser. No. 10/722,209, which was previously incorporated by reference.
Vibrational transmission member 140 typically passes from transition connector 152, through bore 144 and Y-connector 111, and then through catheter body 127. Fluid inlet port 117 is in fluid communication with a lumen in Y-connector, which is in fluid communication with a lumen extending through catheter body 127. Thus, fluid introduced into fluid inlet port 117 is typically free to flow into and through catheter body 127 to contact vibrational transmission member 140. Fluid may flow out of catheter body 127 through apertures in the distal head (not shown) or through any other suitable apertures or openings, such as apertures located in catheter body 127 itself. Any suitable fluid may be passed through fluid inlet port 117 and catheter body 127, such as refrigerated fluid, lubricious fluid, super-saturated saline or contrast/saline mixture, or the like. Cooling and/or lubricating vibrational transmission member 140 may reduce friction and/or wear and tear of vibrational transmission member 140, thus prolonging the useful life of vibrational catheter device 110 and enhancing its performance.
Additionally, the temperature and flow rate of a coolant liquid may be specifically controlled to maintain the temperature of vibrational transmission member 140 at a desired temperature within its optimal working range. In particular, in embodiments of the invention where vibrational transmission member 140 is formed of a metal alloy which exhibits optimal physical properties (e.g. super elasticity) within a specific range of temperatures, the temperature and flow rate of coolant liquid infused through fluid inlet port 117 may be specifically controlled to maintain the temperature of vibrational transmission member 140 within a range of temperatures at which it demonstrates its most desirable physical properties. For example, in embodiments of the invention where vibrational transmission member 140 is formed of a shape memory alloy which exhibits super-elasticity when in its martensite state, but which loses super-elasticity as it transitions to an austenite state, it will be desirable to adjust the temperature and flow rate of the coolant liquid infused through fluid inlet port 117 to maintain the shape memory alloy of vibrational transmission member 140 within a temperature range at which the alloy will remain in its martensite state and will not transition to an austenite state. The temperature at which such shape memory alloys transition from a martensite state to an austenite state is known as the “martensite transition temperature” of the material. Thus, in these embodiments, the fluid infused through port 117 will be at such temperature, and will be infused at such rate, as to maintain the shape memory alloy of vibrational transmission member 140 below its martensite transition temperature.
As mentioned above, in one embodiment, a super-saturated fluid may be used. Use of such fluids may enhance cavitation of an occlusion, help prevent unwanted tissue damage and/or the like. Such fluids are described, for example, in U.S. Pat. Nos. 6,676,900, 6,622,542, 6,613,280, 6,607,698, 6,605,217, 6,602,468, 6,602,467, 6,596,235, 6,582,387, 6,576,807, 6,558,502, 6,555,059, 6,533,766, 6,454,997, 6,387,324, 6,346,192, 6,315,754, 6,248,087, 6,235,007, 6,180,059, 6,142,971, 6,123,698, 6,030,357, 5,976,119, 5,957,889, 5,893,838 and 5,797,876, which are hereby incorporated by reference. In another embodiment, a mixture of contrast dye and saline may be used to achieve the same or similar results.
With reference now to
By crimping distal portion 212 using the technique just described, and referring now to
With reference now to
Referring now to
Referring now to
With reference now to
As shown in
Although the invention has been described above with specific reference to various embodiments and examples, it should be understood that various additions, modifications, deletions and alterations may be made to such embodiments without departing from the spirit or scope of the invention. Accordingly, it is intended that all reasonably foreseeable additions, deletions, alterations and modifications be included within the scope of the invention as defined in the following claims.
This application is a divisional of U.S. patent application Ser. No. 11/040,524, filed Jan. 20, 2005. This application is related to the following: U.S. patent application Ser. No. 10/229,371, filed Aug. 26, 2002, entitled “Ultrasound Catheter for Disrupting Blood Vessel Obstructions;” U.S. patent application Ser. No. 10/345,078, filed Jan. 14, 2003, entitled “Ultrasound Catheter and Methods for Making and Using Same;” U.S. patent application Ser. No. 10/375,903, filed Feb. 26, 2003, entitled “Ultrasound Catheter Apparatus;” U.S. patent application Ser. No. 10/410,617, filed Apr. 8, 2003, entitled “Improved Ultrasound Catheter Devices and Methods;” U.S. patent application Ser. No. 10/722,209, filed Nov. 24, 2003, entitled “Steerable Ultrasound Catheter;” and U.S. patent application Ser. No. 10/927,966, filed Aug. 26, 2004, entitled “Improved Ultrasound Catheter Devices and Methods.” The full disclosures of all of the above-listed patent applications are all hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3296620 | Rodda | Jan 1967 | A |
3433226 | Boyd | Mar 1969 | A |
3565062 | Kuris | Feb 1971 | A |
3612038 | Halligan et al. | Oct 1971 | A |
3631848 | Muller | Jan 1972 | A |
3719737 | Vaillancourt et al. | Mar 1973 | A |
3739460 | Addis | Jun 1973 | A |
3823717 | Pohlman | Jul 1974 | A |
3835690 | Leonhardt | Sep 1974 | A |
3839841 | Amplatz | Oct 1974 | A |
3896811 | Storz | Jul 1975 | A |
4016882 | Broadwin et al. | Apr 1977 | A |
4033331 | Guss et al. | Jul 1977 | A |
4136700 | Broadwin et al. | Jan 1979 | A |
4337090 | Harrison | Jun 1982 | A |
4368410 | Hance | Jan 1983 | A |
4412115 | Okuno | Oct 1983 | A |
4417578 | Banko | Nov 1983 | A |
4425115 | Wuchinich | Jan 1984 | A |
4453875 | Johnson, Sr. | Jun 1984 | A |
4486680 | Bonnet | Dec 1984 | A |
4505767 | Quin | Mar 1985 | A |
4545767 | Suzuki | Oct 1985 | A |
4565589 | Harrison | Jan 1986 | A |
4565787 | Bossle et al. | Jan 1986 | A |
4572184 | Stohl | Feb 1986 | A |
4664112 | Kensey et al. | May 1987 | A |
4665906 | Jervis | May 1987 | A |
4679558 | Kensey et al. | Jul 1987 | A |
4700705 | Kensey et al. | Oct 1987 | A |
4721117 | Mar et al. | Jan 1988 | A |
4750902 | Wuchinich et al. | Jun 1988 | A |
4808153 | Parisi | Feb 1989 | A |
4811743 | Stevens | Mar 1989 | A |
4827911 | Broadwin et al. | May 1989 | A |
4838853 | Parisi | Jun 1989 | A |
4854325 | Stevens | Aug 1989 | A |
4870953 | Donmicheal | Oct 1989 | A |
4886060 | Wiksell | Dec 1989 | A |
4920954 | Alliger | May 1990 | A |
4923462 | Stevens | May 1990 | A |
4924863 | Sterzer | May 1990 | A |
4931047 | Broadwin et al. | Jun 1990 | A |
4936281 | Stasz | Jun 1990 | A |
4936845 | Stevens | Jun 1990 | A |
5000185 | Yock | Mar 1991 | A |
5015227 | Broadwin et al. | May 1991 | A |
5026384 | Farr | Jun 1991 | A |
5030357 | Lowe | Jul 1991 | A |
5046503 | Schneiderman | Sep 1991 | A |
5053008 | Bajaj | Oct 1991 | A |
5058570 | Idemoto et al. | Oct 1991 | A |
5076276 | Sakurai | Dec 1991 | A |
5091205 | Fan | Feb 1992 | A |
5100423 | Fearnot | Mar 1992 | A |
5109859 | Jenkins | May 1992 | A |
5114414 | Buchbinder | May 1992 | A |
5116350 | Stevens | May 1992 | A |
5127917 | Niederhauser et al. | Jul 1992 | A |
5151105 | Kwan-Gett | Sep 1992 | A |
5156143 | Bocquet et al. | Oct 1992 | A |
5163421 | Bernstein | Nov 1992 | A |
5171216 | Dasse et al. | Dec 1992 | A |
5180363 | Idemoto et al. | Jan 1993 | A |
5183470 | Wettermann | Feb 1993 | A |
5195955 | Don Michael | Mar 1993 | A |
5215614 | Wijkamp et al. | Jun 1993 | A |
5221255 | Mahurkar | Jun 1993 | A |
5226421 | Frisbie et al. | Jul 1993 | A |
5234416 | Macaulay et al. | Aug 1993 | A |
5238004 | Sahatjian et al. | Aug 1993 | A |
5242385 | Strukel | Sep 1993 | A |
5243997 | Uflacker et al. | Sep 1993 | A |
5248296 | Alliger | Sep 1993 | A |
5255669 | Kubota et al. | Oct 1993 | A |
5267954 | Nita | Dec 1993 | A |
5269291 | Carter | Dec 1993 | A |
5269297 | Weng et al. | Dec 1993 | A |
5269793 | Simpson | Dec 1993 | A |
5287858 | Hammerslag et al. | Feb 1994 | A |
5290229 | Paskar | Mar 1994 | A |
5304115 | Pflueger | Apr 1994 | A |
5304131 | Paskar | Apr 1994 | A |
5312328 | Nita et al. | May 1994 | A |
5318014 | Carter | Jun 1994 | A |
5318570 | Hood et al. | Jun 1994 | A |
5324255 | Passafaro et al. | Jun 1994 | A |
5324260 | O'neill et al. | Jun 1994 | A |
5325860 | Seward | Jul 1994 | A |
5326342 | Pflueger et al. | Jul 1994 | A |
5328004 | Fannin et al. | Jul 1994 | A |
5329927 | Gardineer et al. | Jul 1994 | A |
5341818 | Abrams et al. | Aug 1994 | A |
5342292 | Nita et al. | Aug 1994 | A |
5344395 | Whalen et al. | Sep 1994 | A |
5346502 | Estabrook et al. | Sep 1994 | A |
5362309 | Carter | Nov 1994 | A |
5368557 | Nita | Nov 1994 | A |
5368558 | Nita | Nov 1994 | A |
5376084 | Bacich et al. | Dec 1994 | A |
5378234 | Hammerslag et al. | Jan 1995 | A |
5380274 | Nita | Jan 1995 | A |
5380316 | Aita et al. | Jan 1995 | A |
5382228 | Nita et al. | Jan 1995 | A |
5383460 | Jang | Jan 1995 | A |
5389096 | Aita et al. | Feb 1995 | A |
5391144 | Sakurai et al. | Feb 1995 | A |
5397293 | Alliger | Mar 1995 | A |
5397301 | Pflueger et al. | Mar 1995 | A |
5405318 | Nita | Apr 1995 | A |
5409483 | Campbell et al. | Apr 1995 | A |
5417672 | Nita et al. | May 1995 | A |
5417703 | Brown et al. | May 1995 | A |
5421923 | Clarke et al. | Jun 1995 | A |
5427118 | Nita et al. | Jun 1995 | A |
5431168 | Webster, Jr. | Jul 1995 | A |
5431663 | Carter | Jul 1995 | A |
5443078 | Uflacker | Aug 1995 | A |
5447509 | Mills et al. | Sep 1995 | A |
5449369 | Imran | Sep 1995 | A |
5451209 | Ainsworth et al. | Sep 1995 | A |
5465733 | Hinohara | Nov 1995 | A |
5474531 | Carter | Dec 1995 | A |
5480379 | La Rosa | Jan 1996 | A |
5484398 | Stoddard | Jan 1996 | A |
5487757 | Truckai et al. | Jan 1996 | A |
5507738 | Ciervo | Apr 1996 | A |
5516043 | Manna et al. | May 1996 | A |
5527273 | Manna | Jun 1996 | A |
5540656 | Pflueger et al. | Jul 1996 | A |
5542917 | Nita et al. | Aug 1996 | A |
5562726 | Chuter | Oct 1996 | A |
5597497 | Dean et al. | Jan 1997 | A |
5597882 | Schiller et al. | Jan 1997 | A |
5607421 | Jeevanandam | Mar 1997 | A |
5611807 | O'Boyle | Mar 1997 | A |
5618266 | Liprie | Apr 1997 | A |
5626593 | Imran | May 1997 | A |
5627365 | Chiba et al. | May 1997 | A |
5649935 | Kremer | Jul 1997 | A |
5653748 | Strecker | Aug 1997 | A |
5658282 | Daw et al. | Aug 1997 | A |
5685841 | Mackool | Nov 1997 | A |
5695460 | Siegel et al. | Dec 1997 | A |
5695507 | Auth et al. | Dec 1997 | A |
5715825 | Crowley | Feb 1998 | A |
5720724 | Ressemann et al. | Feb 1998 | A |
5728062 | Brisken | Mar 1998 | A |
5738100 | Yagami et al. | Apr 1998 | A |
5797876 | Spears et al. | Aug 1998 | A |
5816923 | Milo et al. | Oct 1998 | A |
5827203 | Nita | Oct 1998 | A |
5827971 | Hale et al. | Oct 1998 | A |
5830222 | Makower | Nov 1998 | A |
5846218 | Brisken et al. | Dec 1998 | A |
5893838 | Daoud et al. | Apr 1999 | A |
5895397 | Jang | Apr 1999 | A |
5902287 | Martin | May 1999 | A |
5904667 | Falwell | May 1999 | A |
5916192 | Nita et al. | Jun 1999 | A |
5916912 | Ames et al. | Jun 1999 | A |
5935142 | Hood | Aug 1999 | A |
5935144 | Estabrook | Aug 1999 | A |
5937301 | Gardner et al. | Aug 1999 | A |
5944737 | Tsonton | Aug 1999 | A |
5957882 | Nita et al. | Sep 1999 | A |
5957899 | Spears et al. | Sep 1999 | A |
5964223 | Baran | Oct 1999 | A |
5967984 | Chu et al. | Oct 1999 | A |
5971949 | Levin et al. | Oct 1999 | A |
5976119 | Spears et al. | Nov 1999 | A |
5989208 | Nita | Nov 1999 | A |
5989275 | Estabrook et al. | Nov 1999 | A |
5997497 | Nita et al. | Dec 1999 | A |
6004280 | Buck | Dec 1999 | A |
6007499 | Martin et al. | Dec 1999 | A |
6007514 | Nita | Dec 1999 | A |
6015431 | Thornton et al. | Jan 2000 | A |
6019785 | Strecker | Feb 2000 | A |
6022309 | Celliers et al. | Feb 2000 | A |
6024764 | Schroeppel | Feb 2000 | A |
6029671 | Stevens et al. | Feb 2000 | A |
6030357 | Daoud et al. | Feb 2000 | A |
6042605 | Martin et al. | Mar 2000 | A |
6051010 | DiMatteo | Apr 2000 | A |
6113558 | Rosenschein et al. | Sep 2000 | A |
6123698 | Spears et al. | Sep 2000 | A |
6142971 | Daoud et al. | Nov 2000 | A |
6149596 | Bancroft | Nov 2000 | A |
6159176 | Broadwin et al. | Dec 2000 | A |
6165127 | Crowley | Dec 2000 | A |
6165188 | Saadat et al. | Dec 2000 | A |
6179809 | Khairkhahan et al. | Jan 2001 | B1 |
6180059 | Divino, Jr. et al. | Jan 2001 | B1 |
6190353 | Makower et al. | Feb 2001 | B1 |
6206842 | Tu | Mar 2001 | B1 |
6210356 | Anderson et al. | Apr 2001 | B1 |
6217543 | Anis et al. | Apr 2001 | B1 |
6217565 | Cohen | Apr 2001 | B1 |
6217588 | Jerger | Apr 2001 | B1 |
6221015 | Yock | Apr 2001 | B1 |
6231546 | Milo et al. | May 2001 | B1 |
6231587 | Makower | May 2001 | B1 |
6235007 | Divinio, Jr. et al. | May 2001 | B1 |
6241692 | Tu et al. | Jun 2001 | B1 |
6241703 | Levin et al. | Jun 2001 | B1 |
6248087 | Spears et al. | Jun 2001 | B1 |
6277084 | Abele et al. | Aug 2001 | B1 |
6283983 | Makower et al. | Sep 2001 | B1 |
6287271 | Dubrul et al. | Sep 2001 | B1 |
6287285 | Michal et al. | Sep 2001 | B1 |
6287317 | Makower et al. | Sep 2001 | B1 |
6296620 | Gesswein | Oct 2001 | B1 |
6302875 | Makower et al. | Oct 2001 | B1 |
6302891 | Nadal | Oct 2001 | B1 |
6309358 | Okubo | Oct 2001 | B1 |
6315741 | Martin et al. | Nov 2001 | B1 |
6315754 | Daoud et al. | Nov 2001 | B1 |
6346192 | Buhr et al. | Feb 2002 | B2 |
6352561 | Leopold et al. | Mar 2002 | B1 |
6379378 | Werneth et al. | Apr 2002 | B1 |
6387109 | Davison | May 2002 | B1 |
6387324 | Patterson et al. | May 2002 | B1 |
6394956 | Chandrasekaran et al. | May 2002 | B1 |
6398736 | Seward | Jun 2002 | B1 |
6409673 | Yock | Jun 2002 | B2 |
6416533 | Gobin et al. | Jul 2002 | B1 |
6423026 | Gesswein et al. | Jul 2002 | B1 |
6427118 | Suzuki | Jul 2002 | B1 |
6433464 | Jones | Aug 2002 | B2 |
6434418 | Neal et al. | Aug 2002 | B1 |
6450975 | Brennan et al. | Sep 2002 | B1 |
6454757 | Nita | Sep 2002 | B1 |
6454997 | Divino, Jr. et al. | Sep 2002 | B1 |
6484052 | Visuri et al. | Nov 2002 | B1 |
6491707 | Makower | Dec 2002 | B2 |
6494891 | Cornish et al. | Dec 2002 | B1 |
6494894 | Mirarchi | Dec 2002 | B2 |
6500141 | Irion et al. | Dec 2002 | B1 |
6508781 | Brennan | Jan 2003 | B1 |
6508784 | Shu | Jan 2003 | B1 |
6511458 | Milo et al. | Jan 2003 | B2 |
6524251 | Rabiner et al. | Feb 2003 | B2 |
6533766 | Patterson et al. | Mar 2003 | B1 |
6544215 | Bencini et al. | Apr 2003 | B1 |
6547754 | Evans et al. | Apr 2003 | B1 |
6551337 | Rabiner et al. | Apr 2003 | B1 |
6554846 | Hamilton et al. | Apr 2003 | B2 |
6555059 | Myrick et al. | Apr 2003 | B1 |
6558502 | Divino, Jr. et al. | May 2003 | B2 |
6562031 | Chandrasekaran et al. | May 2003 | B2 |
6573470 | Brown et al. | Jun 2003 | B1 |
6576807 | Brunelot et al. | Jun 2003 | B1 |
6582387 | Derek et al. | Jun 2003 | B2 |
6589253 | Cornish et al. | Jul 2003 | B1 |
6595989 | Schaer | Jul 2003 | B1 |
6596235 | Divino, Jr. et al. | Jul 2003 | B2 |
6602467 | Divino, Jr. et al. | Aug 2003 | B1 |
6602468 | Patterson et al. | Aug 2003 | B2 |
6605217 | Buhr et al. | Aug 2003 | B2 |
6607698 | Spears et al. | Aug 2003 | B1 |
6613072 | Lau et al. | Sep 2003 | B2 |
6613280 | Myrick et al. | Sep 2003 | B2 |
6615062 | Ryan et al. | Sep 2003 | B2 |
6616617 | Ferrera et al. | Sep 2003 | B1 |
6622542 | Derek et al. | Sep 2003 | B2 |
6623448 | Slater | Sep 2003 | B2 |
6635017 | Moehring et al. | Oct 2003 | B1 |
6650923 | Lesh et al. | Nov 2003 | B1 |
6652547 | Rabiner et al. | Nov 2003 | B2 |
6660013 | Rabiner | Dec 2003 | B2 |
6676900 | Divino, Jr. et al. | Jan 2004 | B1 |
6682502 | Bond et al. | Jan 2004 | B2 |
6685657 | Jones | Feb 2004 | B2 |
6689086 | Nita et al. | Feb 2004 | B1 |
6695781 | Rabiner et al. | Feb 2004 | B2 |
6695782 | Ranucci et al. | Feb 2004 | B2 |
6695810 | Peacock, III et al. | Feb 2004 | B2 |
6702748 | Nita et al. | Mar 2004 | B1 |
6702750 | Yock | Mar 2004 | B2 |
6719715 | Newman et al. | Apr 2004 | B2 |
6719725 | Milo et al. | Apr 2004 | B2 |
6729334 | Baran | May 2004 | B1 |
6733451 | Rabiner et al. | May 2004 | B2 |
6758846 | Goble et al. | Jul 2004 | B2 |
6761698 | Shibata et al. | Jul 2004 | B2 |
6855123 | Nita | Feb 2005 | B2 |
6866670 | Rabiner et al. | Mar 2005 | B2 |
6936025 | Evans et al. | Aug 2005 | B1 |
6936056 | Nash et al. | Aug 2005 | B2 |
6942620 | Nita et al. | Sep 2005 | B2 |
6942677 | Nita et al. | Sep 2005 | B2 |
6955680 | Satou et al. | Oct 2005 | B2 |
7004173 | Sparks et al. | Feb 2006 | B2 |
7004176 | Lau | Feb 2006 | B2 |
7056294 | Khairkhahan et al. | Jun 2006 | B2 |
7131983 | Murakami | Nov 2006 | B2 |
7137963 | Nita et al. | Nov 2006 | B2 |
7150853 | Lee et al. | Dec 2006 | B2 |
7166098 | Steward et al. | Jan 2007 | B1 |
7220233 | Nita et al. | May 2007 | B2 |
7267650 | Chow et al. | Sep 2007 | B2 |
7297131 | Nita | Nov 2007 | B2 |
7335180 | Nita et al. | Feb 2008 | B2 |
7384407 | Rodriguez et al. | Jun 2008 | B2 |
7393338 | Nita | Jul 2008 | B2 |
7421900 | Karasawa et al. | Sep 2008 | B2 |
7425198 | Moehring et al. | Sep 2008 | B2 |
7494468 | Rabiner et al. | Feb 2009 | B2 |
7503895 | Rabiner et al. | Mar 2009 | B2 |
7540852 | Nita et al. | Jun 2009 | B2 |
7594926 | Linder et al. | Sep 2009 | B2 |
7604608 | Nita et al. | Oct 2009 | B2 |
7621902 | Nita et al. | Nov 2009 | B2 |
7621929 | Nita et al. | Nov 2009 | B2 |
7686783 | Jenson et al. | Mar 2010 | B2 |
7771358 | Moehring et al. | Aug 2010 | B2 |
7775994 | Lockhart | Aug 2010 | B2 |
7776025 | Bobo, Jr. | Aug 2010 | B2 |
7819013 | Chan et al. | Oct 2010 | B2 |
7850623 | Griffin et al. | Dec 2010 | B2 |
7896183 | Mckenzie | Mar 2011 | B2 |
7935108 | Baxter et al. | May 2011 | B2 |
7938819 | Kugler et al. | May 2011 | B2 |
7955293 | Nita et al. | Jun 2011 | B2 |
8043251 | Nita et al. | Oct 2011 | B2 |
8083727 | Kugler et al. | Dec 2011 | B2 |
8092513 | Khosravi et al. | Jan 2012 | B2 |
8133236 | Nita | Mar 2012 | B2 |
8221343 | Nita et al. | Jul 2012 | B2 |
8226566 | Nita | Jul 2012 | B2 |
8226701 | Glynn | Jul 2012 | B2 |
8246643 | Nita | Aug 2012 | B2 |
8506519 | Nita | Aug 2013 | B2 |
8608677 | Motyer | Dec 2013 | B2 |
8617096 | Nita et al. | Dec 2013 | B2 |
8632560 | Pal et al. | Jan 2014 | B2 |
8647296 | Moberg et al. | Feb 2014 | B2 |
8690819 | Nita et al. | Apr 2014 | B2 |
8790291 | Nita et al. | Jul 2014 | B2 |
8974446 | Nguyen et al. | Mar 2015 | B2 |
9060894 | Wubbeling | Jun 2015 | B2 |
9107590 | Hansmann et al. | Aug 2015 | B2 |
9265520 | Nita | Feb 2016 | B2 |
9282984 | Nita | Mar 2016 | B2 |
9314258 | Nita et al. | Apr 2016 | B2 |
9757260 | Greenan | Sep 2017 | B2 |
9770250 | Nita et al. | Sep 2017 | B2 |
20020077643 | Rabiner | Jun 2002 | A1 |
20030009153 | Brisken et al. | Jan 2003 | A1 |
20030036705 | Hare et al. | Feb 2003 | A1 |
20030125620 | Satou et al. | Jul 2003 | A1 |
20030199817 | Thompson et al. | Oct 2003 | A1 |
20030216732 | Truckai et al. | Nov 2003 | A1 |
20030225332 | Okada | Dec 2003 | A1 |
20040138570 | Nita et al. | Jul 2004 | A1 |
20040167507 | Nita et al. | Aug 2004 | A1 |
20040204670 | Nita et al. | Oct 2004 | A1 |
20050033311 | Guldfeldt et al. | Feb 2005 | A1 |
20050113688 | Nita et al. | May 2005 | A1 |
20050215946 | Hansmann et al. | Sep 2005 | A1 |
20050222557 | Baxter et al. | Oct 2005 | A1 |
20050228286 | Messerly et al. | Oct 2005 | A1 |
20060206039 | Wilson et al. | Sep 2006 | A1 |
20060264759 | Moehring et al. | Nov 2006 | A1 |
20060264809 | Hansmann et al. | Nov 2006 | A1 |
20070037119 | Pal et al. | Feb 2007 | A1 |
20070260172 | Nita | Nov 2007 | A1 |
20080071343 | Mayberry et al. | Mar 2008 | A1 |
20080108937 | Nita | May 2008 | A1 |
20080208084 | Horzewski et al. | Aug 2008 | A1 |
20080221506 | Rodriguez et al. | Sep 2008 | A1 |
20080228111 | Nita | Sep 2008 | A1 |
20080287804 | Nita | Nov 2008 | A1 |
20100023037 | Nita et al. | Jan 2010 | A1 |
20110105960 | Wallace | May 2011 | A1 |
20110130834 | Wilson et al. | Jun 2011 | A1 |
20110237982 | Wallace | Sep 2011 | A1 |
20110313328 | Nita | Dec 2011 | A1 |
20120130475 | Shaw | May 2012 | A1 |
20120330196 | Nita | Dec 2012 | A1 |
20140243712 | Humayun et al. | Aug 2014 | A1 |
20160128717 | Nita | May 2016 | A1 |
20160271362 | Van Liere | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
2256127 | May 1974 | DE |
2438648 | Feb 1976 | DE |
3821836 | Jan 1990 | DE |
8910040 | Jan 1990 | DE |
4042435 | Aug 1991 | DE |
0005719 | Dec 1979 | EP |
0316789 | May 1989 | EP |
0376562 | Jul 1990 | EP |
0379156 | Jul 1990 | EP |
0394583 | Oct 1990 | EP |
0443256 | Aug 1991 | EP |
0541249 | May 1993 | EP |
0316796 | Nov 1995 | EP |
0820728 | Jan 1998 | EP |
1323481 | Jul 2003 | EP |
1106957 | Mar 1968 | GB |
61-272045 | Dec 1986 | JP |
SHO61-272045 | Dec 1986 | JP |
01099547 | Apr 1989 | JP |
2-71510 | May 1990 | JP |
U03067608 | Jul 1991 | JP |
7-500752 | Jan 1995 | JP |
2007116260 | May 1995 | JP |
10216140 | Aug 1998 | JP |
2000-291543 | Oct 2000 | JP |
2001104356 | Apr 2001 | JP |
2001321388 | Nov 2001 | JP |
2002186627 | Jul 2002 | JP |
2005-253874 | Sep 2005 | JP |
2006086822 | Mar 2006 | JP |
2006-522644 | Oct 2006 | JP |
2007520255 | Jul 2007 | JP |
WO8705793 | Oct 1987 | WO |
WO89006515 | Jul 1989 | WO |
9001300 | Feb 1990 | WO |
WO09001300 | Feb 1990 | WO |
WO9004362 | May 1990 | WO |
WO9107917 | Jun 1991 | WO |
WO92011815 | Jul 1992 | WO |
WO93008750 | May 1993 | WO |
WO93016646 | Sep 1993 | WO |
WO94012140 | Jun 1994 | WO |
WO94014382 | Jul 1994 | WO |
WO95008954 | Apr 1995 | WO |
WO95009571 | Apr 1995 | WO |
WO 9515192 | Jun 1995 | WO |
WO96035469 | Nov 1996 | WO |
9705739 | Feb 1997 | WO |
WO 9721462 | Jun 1997 | WO |
WO97045078 | Dec 1997 | WO |
9827874 | Jul 1998 | WO |
9827895 | Jul 1998 | WO |
9835721 | Aug 1998 | WO |
WO98052637 | Nov 1998 | WO |
WO9851224 | Nov 1998 | WO |
WO99025412 | May 1999 | WO |
WO0053341 | Sep 2000 | WO |
WO0067830 | Nov 2000 | WO |
WO03039381 | May 2003 | WO |
WO04012609 | Feb 2004 | WO |
2004093736 | Nov 2004 | WO |
WO04112888 | Dec 2004 | WO |
2005053769 | Jun 2005 | WO |
WO 2006049593 | May 2006 | WO |
2007084762 | Jul 2007 | WO |
2008140796 | Nov 2008 | WO |
2009083904 | Jul 2009 | WO |
2010063795 | Jun 2010 | WO |
2012068046 | May 2012 | WO |
2014022716 | Feb 2014 | WO |
Entry |
---|
Chandra Sehgal et al., Ultrasound-Assisted Thrombolysis, Investigative Radiology, 1993, vol. 28, Issue 10, pp. 939-943. |
http://www.merriam-webster.com/dictionary/couple, definition of the term coupled retrieved on, May 18, 2013. |
Margaret Fyfe et al., Mast cell degranulation and increased vascular permeability induced by ‘therapeutic’ ultrasound in the rate ankle joint, Br. J. exp. Path., 1984, vol. 65, pp. 671-676. |
Extended European Search Report for Patent Application No. 06718204.8, dated May 30, 2012. |
Health Care Without Harm [report], Non-Incineration Medical Waste Treatment Technologies, “Irradiation, biological, and other technologies: E-beam, biological, and sharps treatment systems”, Chapter 9., Aug. 2001, pp. 69-74. |
Siegel et al., In Vivo Ultrasound Arterial Recanalization Atherosclerotic Total Occlusions, Journal of the American College of Cardiology, Feb. 1990, vol. 15, Issue 2, pp. 345-351. |
Calhoun et al., “Electron-Beam Systems for Medical Device Sterilization”, downloaded from web on Oct. 8, 2002 <http://www.devicelink.com/mpb/archive/97/07/002.html> 7 pages total. |
“E-Beam Theory” RDI-IBA Technology Group, downloaded from web on Oct. 8, 2002 <http://www.e-beamrdi/EbeamTheory.htm> 2 pages total. |
“What is Electron Beam Curing?” downloaded from web on Nov. 14, 2002, 4 pages total. <http://www.ms.oml.gov/researchgroups/composites/new%20orccmt%20pages/pages/ebwha>. |
“Irradiation, Biological, and Other Technologies: E-beam, Biological, and Sharps Treatment Systems”, Non-Incineration Medical Waste Treatment Technologies, Aug. 2001, Chapter 9, pp. 69-74, Health Care Without Harm, Washington, DC. |
Noone, D.: Experimental and Numerical Investigation of Wire Waveguides for Therapeutic Ultrasound Angioplasty. M.Eng. Dublin City University. 2008. |
Extended European Search Report dated Mar. 5, 2012 for European Application No. 12153606.4-1269. |
Japanese Office Action for Japanese Application No. 2010-134566, dated Mar. 2, 2012. |
Supplemental European Search Report dated Nov. 5, 2009 for European Application No. EP03766931. |
International Search Report dated Oct. 28, 2003 for PCT Application No. PCT/US2003/023468. |
Extended European Search Report dated Mar. 22, 2012 for European Application No. EP11188799. |
International Search Report dated Dec. 23, 2005 for PCT Application No. PCT/US2004/019378. |
Number | Date | Country | |
---|---|---|---|
20120311844 A1 | Dec 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11040524 | Jan 2005 | US |
Child | 13526358 | US |