1. Technical Field
The present disclosure relates generally to a non-invasive medical treatment apparatus. More particularly, the present disclosure relates to a dynamic motion therapy apparatus for performing vibrational therapy.
2. Description of the Prior Art
Vibrational treatment, produced from vibration and impact devices, is known to stimulate tissue growth in the human body. For example, U.S. Pat. No. 5,273,028 to McLeod et al. discloses an apparatus for stimulating bone growth in a living organism such as a human by transmitting vertical vibrations through a plate upon which the person stands. U.S. Pat. Nos. 5,103,806, 5,376,065, and 5,191,880, also to McLeod et al., claim methods for preventing osteopenia, and promoting growth, ingrowth, and healing of bone tissue, including bone fractures, through the step of subjecting bone to a mechanical load. U.S. Pat. No. 5,046,484 to Bassett et al. describes a method of providing passive exercise treatment to increase the size and strength of bone by transmitting vertical impact loads to the heel of a patient. U.S. Pat. No. 4,858,599 to Halpern claims a similar method for the prevention or alleviation of osteoporosis.
More recently, U.S. Pat. No. 6,620,117 to Johnson et al. discloses an apparatus utilizing horizontal vibration and the concept of independent control of vertical and horizontal motion. U.S. Pat. No. 6,607,497 to McLeod et al. discloses a method of using resonant vibrations for treating postural instability. U.S. patent application Ser. No. 11/207,335 to Talish, describes an apparatus and method for treatment of internal organs using resonant vibrations or vibrational stimulus.
Deep venous thrombosis (DVT) is the occlusion of a deep vein by a blood clot, i.e., thrombus. DVT generally affects the leg veins, such as, for example, the femoral vein or the popliteal vein, and occurs when the blood clot either partially blocks or completely blocks the flow of blood in the vein. A major risk associated with DVT is the development of pulmonary embolism, which occurs when a blood clot breaks loose from the walls of a vein and travels to the lungs, blocking the pulmonary artery or one of its branches.
Although there are several medical factors, such as injury, immobility and clotting disorders, which cause DVT other non-medical factors are also often culprits. For example, prolonged periods of sitting or lying, such as, for example, during an airline flight and a prolonged hospital stay which includes a prolonged period of immobility.
Various treatments have been developed to alleviate the effects of DVT. For example, intermittent pneumatic compression machines are used to improve blood circulation and prevent the formation of thrombi in the limbs of the patient. These devices typically include a pair of compression garments or sleeves which wrap around the patient's limbs, generally the legs. Each sleeve has a plurality of separate inflatable chambers which are connected via conduits to a source of compressed fluid, typically air. The chambers are sequentially inflated to provide a compressive pulse to the limb, thereby increasing blood circulation and minimizing the formation of thrombi. The compressive pulses begin around the portion of the limb farthest from the heart and progress sequentially towards the heart. For example, for a three-chambered leg sleeve, the ankle chamber is inflated first followed by the calf chamber, and then the thigh chamber. Typical compression devices are described in U.S. Pat. Nos. 4,013,069 and 6,610,021. Other methods of treatment for treating DVT include surgical procedures as well as medications, such as, anticoagulants.
However, because a patient may be susceptible to DVT and its effects with little or no warning, the best method against DVT and its effects is preventing the onset of DVT. For example, early and regular ambulation, i.e. walking, is a treatment that is recognized and recommended. Walking enhances blood flow by activating the body's muscle pumps, increasing venous velocity and preventing stasis. Nonetheless, walking is not a viable option for many people, such as elderly and/or infirm individuals. Moreover, walking is not always possible or safe, such as in an aircraft experiencing turbulence.
In one embodiment, the present disclosure relates to a vibrational therapy apparatus that includes at least one platform member including at least one vibrating plate assembly for providing vibrational energy. The at least one platform member is configured for mounting to a patient support structure. The vibrational therapy apparatus includes also a mounting apparatus configured to and adapted to support the at least one vibrating plate assembly for mounting the at least one platform member to the patient support structure. The mounting apparatus may be configured to and adapted to support the at least one vibrating plate assembly for removably mounting the at least one platform member to a patient support structure. The vibrational therapy apparatus may further include at least one positioner operatively associated with the at least one platform member for guiding patient tissue adjacent to the at least one vibrating plate assembly.
In one embodiment, the at least one vibrating plate assembly may provide vibrational energy in at least two configurations of the at least one positioner. In one embodiment, in one configuration of the at least two configurations, the at least one positioner may be substantially perpendicular to the at least one platform member. In yet another embodiment, in one configuration of the at least two configurations, the at least one positioner is in juxtaposed relation to the at least one platform member. The at least one positioner may be moveable between a first position and a second position.
In one embodiment, in a first configuration of the at least two configurations, the patient tissue contacts the at least one vibrating plate assembly, and, in a second configuration of the at least two configurations, the patient tissue does not contact the at least one vibrating plate assembly. The vibrational therapy apparatus may further include at least one locating member operatively associated with one of the at least one platform member and the at least one positioner.
The present disclosure relates also to a mounting apparatus configured to support at least one apparatus capable of producing resonant vibrations, wherein the mounting apparatus is configured for and adapted for mounting the at least one apparatus capable of producing resonant vibrations to a patient support structure. The mounting apparatus may be configured for and adapted for removably mounting the at least one apparatus capable of producing resonant vibrations to a patient support structure.
In one embodiment, the apparatus capable of producing resonant vibrations is a vibrational therapy apparatus that includes at least one platform member including at least one vibrating plate assembly for providing vibrational energy. The at least one platform member is configured for mounting to the patient support structure and the mounting apparatus is configured to and adapted to support said at least one vibrating plate assembly to mount said at least one platform member to the patient support structure.
The mounting apparatus may mount the at least one vibrating plate assembly substantially orthogonally with respect to the patient support structure. The mounting apparatus may include a support structure configured to and adapted to support the at least one apparatus capable of producing resonant vibrations to the patient support structure.
In one embodiment, the at least one apparatus capable of producing resonant vibrations is at least one of (a) a vibrational therapy assembly; (b) a vibrational therapy apparatus; (c) a vibrating plate assembly; and (d) an oscillating platform apparatus.
The present disclosure relates also to a vibrational therapy assembly that includes a first vibrational therapy apparatus. The first vibrational therapy apparatus has a first platform member including at least one vibrating plate assembly for providing vibrational energy. The first platform member is configured for and adapted for mounting to a patient support structure. The vibrational therapy assembly includes also a second vibrational therapy apparatus that has a second platform member including at least one vibrating plate assembly for providing vibrational energy. The second platform member is configured for and adapted for mounting to a patient support structure. The vibrational therapy assembly includes also connecting means for removably connecting the first and second vibrational therapy apparatus, and a mounting apparatus configured to and adapted to support the first vibrational therapy apparatus for mounting the first platform member to a patient support structure, and the mounting apparatus is further configured to and adapted to support the second vibrational therapy apparatus for mounting the second platform member to a patient support structure.
The vibrational therapy assembly may further include a first positioner operatively associated with the first platform member for guiding patient tissue adjacent the at least one vibrating plate assembly; and a second positioner operatively associated with the second platform member for guiding patient tissue adjacent the at least one vibrating plate assembly. In one embodiment, the at least one vibrating plate assembly of the first positioner provides vibrational energy in at least two configurations of the first positioner, and the at least one vibrating plate assembly of the second positioner provides vibrational energy in at least two configurations of the second positioner. In one embodiment, the means for removably connecting engages and disengages the first vibrational therapy apparatus from the second vibrational therapy apparatus. In one embodiment, the vibrational therapy assembly further includes a first locating member operatively associated with the first vibrational therapy apparatus; and a second locating member operatively associated with the second vibrational therapy apparatus.
In one embodiment, the first and second positioners are in juxtaposed relation to the first and second platform members, and the first vibrational therapy apparatus is in juxtaposed relation to the second vibrational therapy apparatus.
The present disclosure relates also to a vibrational therapy system that includes a patient support structure; a vibrational therapy apparatus that includes at least one platform member including at least one vibrating plate assembly for providing vibrational energy, wherein the at least one platform member is configured for mounting to the patient support structure; and a mounting apparatus configured to and adapted to mount the at least one platform member to the patient support structure.
In one embodiment, the patient support structure includes a receptacle member, and the mounting apparatus mounts the at least one platform member to the patient support structure via a restraining member configured with at least one engagement member fixedly secured to the receptacle member. In one embodiment, the restraining member may be a belt and the at least one engagement member may be a velcro pad at an end of the belt, and the receptacle member may be a velcro patch engaged by the pad.
In one embodiment, the mounting apparatus includes at least a first pair of joining members that are configured for interfacing therebetween and a second pair of joining members. At least one of the second pair is mounted to the patient support structure. The second pair of joining members are also configured for interfacing therebetween to mount the at least one platform member to the patient support structure.
The present disclosure relates also to a method for providing vibrational therapy. The method includes the steps of providing at least one apparatus capable of producing resonant vibrations; providing a patient support structure; mounting the at least one apparatus capable of producing resonant vibrations to the patient support structure; contacting patient tissue to the at least one apparatus capable of producing resonant vibrations; and actuating the at least one apparatus capable of producing resonant vibrations to produce resonant vibrations.
In one embodiment, the at least one apparatus capable of producing resonant vibrations is at least one vibrating plate assembly, and the method further includes the steps of: providing a platform member having the at least one vibrating plate assembly; providing a patient support structure; mounting the platform member to the patient support structure; guiding patient tissue over the at least one vibrating plate assembly using a positioner operatively associated with the platform member; and actuating the at least one vibrating plate assembly. The method may further include the step of adjusting the positioner relative to the platform member. The step of guiding patient tissue may include the step of having the patient stand on the positioner. The step of guiding patient tissue may include the step of placing at least a portion of a patient's leg onto the platform member.
The foregoing features of the present disclosure will become more readily apparent and will be better understood by referring to the following detailed description of preferred embodiments, which are described hereinbelow with reference to the drawings wherein:
It is known to use vibrational treatment to treat conditions, such as postural instability, osteoporosis, etc., as described in U.S. Pat. Nos. 6,234,975; 6,561,991; and 6,607,497, the entire contents of which are incorporated herein by reference. The present disclosure provides for a dynamic motion therapy (DMT) vibrational therapy assembly for providing vibrational treatment for treating and preventing the onset of deep venous thrombosis (DVT), as described herein below with reference to
Exemplary embodiments of the presently disclosed vibrational therapy assembly and apparatus will now be described in detail with reference to the drawing figures in which like reference numerals identify identical or corresponding elements.
With initial reference to
Positioner 18 is operatively associated with platform member 12. In
Positioner 18 may guide positioning of patient tissue adjacent to at least a portion of platform member 12, such as, for example, guiding or positioning of a patient tissue adjacent the vibrating plate assembly 100. Patient tissue, such as, for example, a leg and/or foot, is oriented such that vibrational energy generated by the vibrating plate assembly 100 is transferred to patient tissue. Patient tissue may receive vibration energy by direct contact with vibrating plate assembly 100. Patient tissue may also receive vibrational energy indirectly from vibration plate assembly 100, wherein vibrational energy is transferred through another portion of assembly 10b. For example, patient tissue may contact the positioner 18 or the pad 24 and vibrational energy is transferred from the vibrating plate assembly 100 through the positioner or the pad and to patient tissue.
Positioner 18 may lock in one or more angular positions relative to platform member 12. Hinge section may include a locking mechanism for locking positioner 18 into one or more of the angular positions relative to platform member 12.
The angular positions of the positioner 18 relative to the platform member 12 may be determined by the clinician, the type of medical therapy delivered to patient or the orientation of the patient receiving the vibrational therapy. Positioner 18, as shown in
In yet another embodiment of the present disclosure, pivoting mechanism may limit the angular movement of positioner 18, relative to the platform member 12, such that the angular condition of the positioner 18 in an open condition is optimal for a particular medical therapy. For example, for the treatment of DVT the pivoting mechanism may limit the angular movement of positioner 18, such that the maximum angular condition of the positioner 18 is substantially perpendicular to platform member 12.
Apparatus 10b may be repositioned or carried by grasping the handle 16 defined by the platform member 12.
Platform member 12 further includes at least one removable or fixed pad 24. Pad 24 supports the leg of a patient receiving vibrational treatment. The condition of pad 24 on platform member 12, relative to positioner 18, may be adjustable in order to provide proper support or positioning of the leg. Pad 24 may be placed against positioner 18 or spaced-apart from positioner 18.
Pad 24 may attach to platform member 12 to prevent movement during vibrational treatment. Various means of attachment may be used (i.e. velcro, snaps, buttons, clips, gel, adhesive or any combination thereof).
Apparatus 10b includes at least one locating member 26 for locating the apparatus 10b during use. Locating member 26 may locate or position apparatus 10b relative to a structure, such as, for example, a floor, a bed, examination couch, patient stretch, patient trolley, patient recovery trolley, patient pallet, a chair, a wheelchair, an airline seat, a car seat, a bus seat, a sofa, a recliner, a scooter, etc.
Apparatus 10b may be positioned at the foot of a bed, or similar structure, with locating member 26 extending downward along the mattress at the foot of a bed thus preventing the apparatus 10b from moving toward the head of the bed during use. Similarly, locating member 26 may be positioned between the mattress and a bed's footboard thus securing the apparatus 10b to the foot of a bed.
Locating member 26 may position or secure apparatus 10b to a location approximate to a seat, such as a wheelchair, an airline seat, car seat, bus seat, recliner or scooter. For example, locating member 26 may be adapted to interface with a wheelchair footrest such that a patient sitting in a wheelchair may receive vibrational therapy. Locating member may be adapted to locate apparatus 10b in close proximity to patient's seat, such as a seat in an airplane, car or bus such that patient may receive vibrational therapy while traveling. Locating member 26 may be adapted to locate or position apparatus 10b relative to a sofa or recliner by extending into or under the sofa or recliner such that patient may receive vibrational therapy in the comfort of their home.
Locating member 26 may deploy from a first condition to a second condition. In the first condition, as illustrated in
It is further envisioned to integrate the apparatus 10 with structure, such as to integrate the apparatus 10 with a bed, examination couch, patient stretch, patient trolley, patient recovery trolley, patient pallet, a chair, a wheelchair, an airline seat, a car seat, a bus seat, a sofa, a recliner, a scooter, etc.
Vibrational therapy apparatus 10b includes a low profile vibrating plate assembly 100 similar in structure and operation as the low profile vibrating plate system disclosed and described in U.S. Utility application Ser. No. 11/369,467 filed on Mar. 7, 2006 and in U.S. Provisional Application filed on Jul. 11, 2006.
Platform member 12 includes a low profile vibrating plate assembly 100 adapted for transmitting vibrational energy, as described in detail hereinbelow. Platform member 12 may further include a control panel 22 for controlling the operation of the vibrating plate assembly 100. Control panel 22 may include a user interface for programming the apparatus 10. Control panel 22 can be removed from platform member 12 and configured to operate as a remote control device in operative communication with vibrating plate assembly 100. Control panel 22, configured to operate as a remote control device, communicates via wired or wireless means with the apparatus 10b.
Apparatus 10b can also be provided with touch sensitive technology for sensing when the patient's foot is positioned to receive vibrational therapy. Vibrating plate assembly 100 may be configured to activate or actuate when it senses that the patient's foot is positioned to receive vibrational therapy, i.e. placed over the vibrating plate assembly 100 or in contact therewith or with pad 24.
Apparatus 10b may be powered by at least one battery for enabling the apparatus 10b to be mobile. Apparatus 10b may also include a power cord for plugging the apparatus 10b to an electrical outlet, when feasible, for charging or conserving battery power.
Referring now to
Each vibrational apparatus 10a, 10b includes a platform member 12a, 12b and a positioner 18a, 18b operatively associated with each respective platform member 12a, 12b. Positioner 18a, 18b and the respective platform member 12a, 12b may be hingedly attached along one side with pivot pin 20a, 20b. Other means of forming a pivotal connection may be used, such as, for example, a plurality of hinges, one or more ball and socket joints, one or more living hinges or other means of operatively associating two members suitable for the application.
Platform members 12a, 12b may define handles 16a, 16b, and include control pads 22a, 22b and at least one vibrating plate assembly 100a, 100b. Handles 16a, 16b are disposed at respective sides of platform members 12a, 12b which are advantageously configured to enable one to grasp and transport the apparatus 10 when in the portable configuration as illustrated in
Locating members 26a (26b not shown) may be used to locate or position assembly 10 relative to a structure. Other configurations for the locating member 26a other than the configuration shown by the figures are envisioned. It is further envisioned to integrate the assembly 10 with structure, such as to integrate the assembly 10 with wheelchair, a bed, a chair, a scooter, patient pallet, examination couch, patient stretch, patient trolley, patient recovery trolley, etc.
Referring again to
Pad 24 may be reusable or may be used one or more times before being removable and disposed. Reusable pad may be used for several treatments prior to disposal or may be designed to be used for the life of the apparatus 10. Disposable pad may be used for a single treatment or may be used for two or more treatments before being discarded.
In yet another embodiment of the present disclosure, pad 24 may be formed of a moldable material such as foam, memory foam, clay, plaster, paste, gel, etc. In
With reference to
By varying the field intensity and/or alternating the polarity of the base magnets 106b a vertical vibration of platform 104 may be induced. The vibrational frequency is determined by the rate of change of the magnetic properties, while the amplitude of the vibration is determined by the magnetic field intensity. Additionally, the magnetic field intensity may be increased or decreased as needed, depending on a patient's weight, to properly condition and vibrate platform 104. In accordance with the present disclosure, a patient or user is permitted to stimulate and enhance blood flow in the limbs, in a manner described in detail hereinbelow.
When used, assembly 10 is first switched from a portable configuration, as illustrated in
As illustrated in
As shown in
As illustrated in
As illustrated in
In yet another embodiment of the present disclosure, positioner 18 includes at least one vibrational plate assembly, such as vibrating plate assembly 100, adapted to provide vibrational energy to patient tissue. In a closed configuration, vibrational plate assembly, of positioner, may deliver vibrational energy to patient tissue independent of the vibrational plate assembly 100 of platform member 12. For example, in the closed configuration, energy may be delivered from the vibrational plate assembly of positioner 18, and, in the open configuration, vibration energy may be delivered from the vibrational plate assembly 100 of platform member 12.
Alternatively, the first vibrational plate assembly 100 of platform member 12 and the vibrational plate assembly of positioner 18 may deliver vibrational energy simultaneously or may alternate delivery of vibrational energy.
The two or more vibrating plate assemblies may simultaneous deliver energy having the same frequency or may deliver vibrational energy having different frequencies.
Use of vibrational therapy assembly 10 is illustrated in
With reference to
With reference to
In yet another embodiment of the present disclosure, positioner can act as a platform or base for the apparatus for enabling the vibrating plates 100 to be positioned vertically with respect to the positioner. In this configuration, a user is able to rest his legs within the removable pads 24 while seated.
With reference to
It is envisioned to provide a processor, with memory capable of executing a set of instruction stored in the processor's memory, for enabling the apparatus 10a, 10b to be programmable via either by the user through the user interface on the control pad 22a, 22b or by a remote connection via communications circuitry provided within the apparatus 10a, 10b and in operative communication with the processor as described in a U.S. patent application Ser. No. 11/487,677 filed on Jul. 17, 2006 titled “Dynamic Motion Therapy Apparatus Having a Treatment Feedback Indicator”, the entire contents of which are incorporated herein by reference. The processor can be programmed to sound an alarm when a treatment session should be started and to automatically shut-off the vibrating plate assembly 100a, 100b when the treatment time has lapsed. A memory within the processor can store patient treatment-related data and other information, such as name of patient, age, prescription medications being taken by patient, etc. The treatment related data can be transmitted to a remote monitoring station as described in the above-referenced U.S. patent application Ser. No. 11/487,677.
Referring to
More particularly, the platform members 12a and 12b of the vibrational therapy assembly 10 of
The bed 300 includes a receptacle member 250 disposed thereon and more particularly, the receptacle member 250 is disposed at an end 301 of the bed 300. The receptacle member 250 may be a velour-crochet, i.e., Velcro® (hereinafter referred to as “velcro”), strip disposed along the end 301 of the bed 300 (see
The mounting apparatus 200 includes a restraining member 202 configured with at least one engagement member 204 that enables securely and reversibly fixing to the receptacle member 250 disposed on the end 301 of the bed 300. Alternatively, the receptacle member 250 may extend entirely around perimeter 304 of the bed 300.
The restraining member 202 may be a belt or strap having as the at least one engagement member 204, with at least first, second and third engagement member portions 204a, 204b and 204c, respectively, illustrated in
The housing 1102 includes an upper plate 1104, a lower plate (not shown), and side walls 1108. Note that the upper plate 1104 is generally rectangular or square-shaped, but can otherwise be geometrically configured for supporting a patient's body in an upright position on top of the upper plate 1104, or in a position otherwise relative to the platform 1100. Other configurations or structures can be also used to support a body in an upright position, above, or otherwise relative to, the platform 1100. The top plate 1104 is operated via an internal mechanism or oscillating mechanism (not shown). Such an exemplary oscillating platform is described in U.S. patent application Ser. No. 11/388,286 filed on Mar. 24, 2006 and Publication No. 2006/0217640 entitled “Apparatus and Method for Monitoring and Controlling the Transmissibility of Mechanical Vibration Energy During Dynamic Motion Therapy”.
In the vertical position as shown in
Thus, the mounting apparatus 200 and mounting apparatus 250′ are configured for and adapted for removably mounting the at least one apparatus capable of producing resonant vibrations, as defined above, to a patient support structure, as defined above, such as a bed 300.
Referring to
The patient table 1010 includes a generally C-shaped lower base 1012 having opposing laterally extending end portions 1014 connected by a longitudinally extending central portion 1016, and wherein the longitudinally extending portion is offset laterally from a longitudinally extending center line of the table. The table 1010 also includes an upper base 1018, front and rear lift arms 1020 extending upwardly from the central portion 1016 of the lower base 1012 and holding the upper base 1018 vertically above the lower base, and an elongated patient support pallet 1022 secured on one longitudinally extending side 1024 to the upper base 1018 and having an opposite longitudinally extending side 1026 substantially overhanging the laterally extending end portions 1014 of the lower base 1012. The patient support pallet 1022 also has opposing ends 1025, 1027 extending laterally between the sides 1024, 1026. The patient support pallet 1022 also includes an upper surface 1022a and a lower surface 1022b. The upper surface 1022a is generally planar so that the patient can be made to lie on the upper surface 1022a. The elongated pallet 1022 is shaped and sized for a patient to lie thereon, and, for the purposes of vibrational therapy, may be made from a material such as carbon fiber, plastic, steel or other suitable material.
As illustrated in
The upper base 1018 is also made from a strong and rigid material, such as steel. In the exemplary pallet 1010 shown, the lift arms comprise telescoping hydraulic cylinders 1020. The hydraulic cylinders 1020 are spaced wide apart to provide room for maneuvering the C-Arm 1100. The hydraulic cylinders 1020 adjust the vertical position of the upper base 1018 between a fully lowered position to facilitate patient egress and ingress, and a fully raised position, as shown in
As shown in
The overall height of the patient table 1010 in a fully lowered position may be selected to be about 50.4 centimeters (about 20 inches), for example, such that no footstool is required for a patient to get on or off the pallet of the patient table. The overall height of the patient table 1000 in a fully raised position may be selected to be about 81.3 centimeters (about 32 inches), for example. In the fully raised position, there is at least 50.4 centimeters (20 inches) of vertical clearance between the lower base 1012 and the pallet 1022. The pallet 1022 may be provided with a length of about 2.0 meters (about 80 inches), for example, and a width of about 66.8 to 81.3 centimeters (about 26 to 32 inches), for example. There may be provided a lateral clearance below the pallet 1022 of at least 50.4 centimeters (20 inches) between the side 1026 of the pallet and the lower base 1014.
Referring to
The pallet 1022 is configured to receive at least one apparatus capable of producing resonant vibrations, such as at least one vibrating plate assembly 100 for securely positioning the platform members 12a and/or 12b with respect to the surfaces 1022a and/or 1022b of the pallet 1022. More particularly, as illustrated in
Referring to
The other end 226a of the belt or strap portion 225a may be fastened to at least a second pair of joining members, e.g, joining members 230a, the second pair of joining members being configured for interfacing therebetween, at least one of the second pair being mounted to the patient support structure, e.g., the patient pallet 1022. More particularly, the first pair of joining members 230a includes a male insertion member 232a and a female receptacle member 234a in interfacing relationship therewith. The female receptacle member 234a includes a hollow interior region 235a configured to receive the male insertion member 232a. Either the male member 232a or the female member 234a may include a semi-circular movable ring 236a circumferentially disposed to straddle the circumference of the particular member 232a or 234a, with the ring 236a being disposed in proximity to an end 238a of the male insertion member 232a as particularly illustrated in
In a similar manner, the other end 226b of the belt or strap portion 225b may be fastened to a third pair of joining members, e.g., joining members 230b, the third pair of joining members being configured for interfacing therebetween, at least one of the third pair being mounted to the patient support structure, e.g., the patient pallet 1022. More particularly, the third pair of joining members 230b includes a male insertion member 232b and a female receptacle member 234b in interfacing relationship therewith. The female receptacle member 234b includes a hollow interior region 235b configured to receive the male insertion member 232b. Either the male member 232b or the female member 234b may include a semi-circular movable ring 236b circumferentially disposed to straddle the circumference of the particular member 232b or 234b, with the ring 236b being disposed in proximity to an end 238b of the male insertion member 232b as particularly illustrated in
As also illustrated in
Referring again to
In view of the foregoing, and as discussed above, the mounting apparatus 225 now is securely attached to the lower surface 1022b of the patient pallet 1022 and the vibrational therapy assembly 100 or 400 may be movably positioned in the first channel 504, that may be configured as a rail, for movably supporting and substantially orthogonally positioning the platform 104 of the vibrational therapy assembly 100 or the upper plate 1104 of the vibrational therapy assembly 1100 with respect to the upper surface 1022a of the patient pallet 1022. The base 102 of the vibrational therapy assembly 100 or the lower plate or base 1106 of the vibrational therapy assembly 1100 may further include one or more locking devices 550 that are disposed thereupon to enable locking the position of the vibrational therapy assembly 100 or 1100 with the first wall. In addition, as discussed above with respect to
In other positions, such as illustrated in
Referring to
As can be appreciated from the foregoing description, the present disclosure relates to at least one apparatus capable of producing resonant vibrations, such as at least one vibrational therapy apparatus that includes at least one platform member having at least one vibrating plate assembly for providing vibrational energy. The platform member is configured for mounting to a patient support structure such as a bed or a surface of a pallet. The vibrational therapy apparatus includes a mounting apparatus configured to receive the at least one vibrating plate assembly for securely positioning and removably mounting the at least one platform member to the patient support structure, such as with respect to a surface of the bed or of the pallet.
While several embodiments of the disclosure have been shown in the drawings and/or discussed herein, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
The present application is a Continuation-In-Part patent application of U.S. patent application Ser. No. 11/488,227 filed on Jul. 18, 2006 titled “Vibrational Therapy Assembly for Treating and Preventing the Onset of Deep Venous Thrombosis,” and which claims priority to a United States Provisional Application filed on Jul. 18, 2005 and assigned U.S. Provisional Application Ser. No. 60/700,092; the entire contents of both applications being incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60700092 | Jul 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11488227 | Jul 2006 | US |
Child | 11950357 | US |