The present invention relates generally to pumps, and more specifically to pumps utilizing vibration to move the fluid through the pump.
A variety of fields of industry and science it is necessary to move a fluid from one location to another. A wide range of pumping devices are available for accomplishing this task. In particular, one type of pump that is especially useful for this task are those pumps disclosed in U.S. Pat. Nos. 6,315,533; 6,364,622; 6,428,289; 6,604,920; 7,354,255B1; and 7,731,105B2, as well as in Published US Patent Application No. US2009/0116979, each of which is expressly incorporated by reference herein.
However, certain design features of these vibratory piston pumps do not allow effective pumping of liquids of higher viscosities, such as, for example, liquid soap, lubricating oils and similar high viscosity liquids. When liquids or fluids of this type are pumped utilizing the piston vibratory pump disclosed in the incorporated references, while the fluid can be pumped, the overall productivity or volume of the fluid pumped/minute decreases and consequent increase in energy consumption the pump drive mechanism occurs.
Therefore, it is desirable to develop a pump capable of utilizing the effective vibratory drive system as described in the cited references with a pump construction that enables fluids having high viscosities to be pumped by the device as effectively as lower viscosity fluids or liquids.
According to one aspect of the present disclosure, a pump including a vibrating mechanism is provided that is capable of effectively pumping a variety of fluids, including fluids having a high viscosity. In vibratory pump of the present disclosure, this result is achieved by change in the design of the internal working bodies of the pump which effectively causes the various liquids to temporarily decrease the viscosity of the fluid to enable the fluid to be pumped through the device. The vibratory mechanism in the pump includes a piston, an activator, and an apertured disk disposed within a working cylinder, which optionally is included within an external cylinder, a target valve and a drive mechanism connected to a rod extending into the working cylinder on which the piston, activator and disk are mounted. The piston and disk are secured to the rod, while the activator is slidable with regard to the rod, and is held on the rod based on its positioning between the piston and the disk and the sizes of the piston and disk, each of which have a diameter less than external diameter of the activator, but greater than diameter of an internal channel of the activator through which the rod extends.
In operation, as the drive mechanism oscillates or vibrates the rod within the working cylinder, and fluid is drawn upwardly into the working cylinder along an inlet due to the vacuum created within the working cylinder as a result of the movement of the rod, as described in the US patents and applications cited previously. When the fluid reaches the working cylinder, the activator interacts with the fluid as the activator slides between the piston and the disk to create cavitation within the fluid. By creating air bubbles or pockets in the fluid, the cavitation reduces the viscosity of the fluid, enabling it to be efficiently discharged from the pump. In other words, the influence of cavitation on the liquid raises pressure of the liquid in the working cylinder, thereby reducing the kinematic viscosity of the liquid, enabling it to be pumped more effectively.
In certain embodiments or uses, the pump can be utilized to assist in facilitating chemical reactions due to the ability of the pump to break down the material being pumped to increase its chemical activation for use in various chemical reaction processes using the pumped materials as reactants. The energy of the mechanical impact of cavitation on various compounds in liquid solutions happens to be enough for breaking chemical bonds in molecules. Even at comparatively soft conditions, the stress level imparted to the material by the cavitation created in the pump is significantly higher than strengths of chemical bonds (˜4.8−5.5×1042 erg). Mechanical destruction of the materials due to the cavitation in the pump results in formation of free radicals capable of g chemical reactions. This mechanical destruction of the material result in significant change of physic-chemical properties of materials, formation of new functional groups, change of solubility and viscosity, formation of network systems.
A manageable process of cavitation within the pump to achieve these results on the material being pumped can be realized at certain values of amplitudes and frequency of vibration and, with a suitable geometry or cross-section of the chamber in which the material being pumped is subjected to the cavitation forces, or “reactor”, which may have rectangular or cylinder shapes. In the case of a rectangular reactor, the cavitation interaction happens directly between the liquid material and parts of the device as they interact. Alternatively, in the case of a cylindrical reactor, the cavitation creates vortices and streams of liquid, and inside the streams spinning and oscillation of particles and other interactions occurs between the liquids and/or solid particles which may be present. Vibration and vortex interaction consequently reduces the friction of outer layers of the vortex that interact with walls of the chamber or other structure, and reduces liquid's viscosity, increasing the ease of pumping the fluid.
According to another aspect of the present invention, the working cylinder includes an external cylinder disposed around the working cylinder. The external cylinder is in fluid communication with the working cylinder via apertures in the working cylinder, and includes an integral annular ring disposed about the circumference of the external cylinder. The ring is attached to a pipe that is oriented at a tangent to the ring and is inserted into the reservoir of the fluid being pumped in order to draw the fluid into the ring. Upon entering the ring, the orientation of the ring causes the fluid to move circumferentially around the ring prior to flowing into the external cylinder, where the fluid continues to flow circumferentially around the working cylinder prior to entering the working cylinder. The motion imparted to the fluid by the ring enables the fluid to co-operate with the piston, the activator and the disk in creating the cavitation within the fluid, thereby raising the efficiency of the flow of the liquid into the vibratory cavitation pump. Further, the high frequency of oscillation of the rod with the piston, the activator and the disk allows a high flow rate stream of a liquid (e.g., more than 5 mL/sec) to enter and be acted upon by the pump, which creates steady process cavitation within the pump. The influence of cavitation on the liquid raises pressure in the internal cavity of the working cylinder, reduces kinematic viscosity of the liquid and increases the destruction and chemical activation of the liquid.
Additional aspects, features and advantages of the present disclosure will be made apparent from the following detailed description taken together with the drawing figures.
The drawings illustrate the best way of practicing the present disclosure.
In the drawings:
With reference now to the drawing figures in which like reference numbers identify like parts throughout the disclosure, in
The liquid 4 in the bottle 3 is in contact with a pump mechanism 5 disposed within the housing 1 that can effectively displace the fluid 4. In one embodiment shown in
The motor 7 is operably connected to a suitable power source, such as a number of batteries 13 or via a cord and plug (not shown) connectable to a building power grid. The operation of the motor 7 can be controlled through the use of a switch 11, which is used to turn the motor 7 on and off, and a modulating device 12, which is utilized to control the speed of operation of the motor 7, and thus control the frequency of oscillation of the rod 10.
Also connected to the frame 6 is an arm 14 from which extend a pair of flanges 15 affixed to a securing member 16 disposed on a working cylinder 17 of the pumping mechanism 5. The working cylinder 17 is formed as a cylindrical member having a sealed aperture 102 at one end through which the rod 10 extends, and an outlet end 22. The cylinder 17 can also have a number of alternative configurations, such as a rectangular cross-sectional shape. The working cylinder 17 also includes a number of openings 21 extending through the cylinder 17 that are disposed between the aperture 102 and the outlet end 22.
Within the working cylinder 17 and on the rod 10 are disposed a piston 18, a disk 19 and an activator 20. The piston 18 and disk 19 are secured to the rod 10 a specified distance from each other, while the activator 20 include a central passage 36 through which the rod 10 extends, such that the activator 20 is slidably mounted on the rod 10 between the piston 18 and the disk 19. In one embodiment, the piston 18 and disk 19 have generally circular shapes, with the disk 19 having a number of apertures 34 formed therein, as shown in
The exhaust outlet 22 is defined by a narrowing of the working cylinder 17 and includes a valve 23 which restricts the flow of fluid through the outlet 22 and through a nozzle 24 disposed adjacent the valve 23 opposite the outlet 22.
In the embodiment shown in
In operation, when the switch 11 is activated to direct electric current from the battery 13 through the modulator 12 to the motor 7, the motor 7 operates the mechanism 9. The mechanism 9 longitudinally moves rod 10 with the piston 18, a disk 19 and the activator 20 within the internal cavity 31/33 of the working cylinder 17. With the movement of the piston 18 and disk 19 out of the cylinder 17, the piston 18 moves towards and engages the activator 20, closing the channel 36 within the activator 20 and urging the activator 20 to move with the piston 18. This movement of the rod 10, piston 18 and activator 20 towards the left cavity portion 33 creates a zone of lowered pressure, i.e., vacuum, in the right cavity portion 31 of the working cylinder 17 that functions to draw the liquid 4 out of the container 3 through the pipe 30, as described one or more of U.S. Pat. Nos. 6,315,533; 6,364,622; 6,428,289; 6,604,920; 7,354,255B1; and 7,731,105B2, as well as in Published US Patent Application No. US2009/0116979, each of which is expressly incorporated by reference herein. As the fluid 4 reaches the pumping mechanism 5, it enters the ring cavity 27 and is accelerated in a circular path within the cavity 27, in order to fill the internal cavity 32 of the external cylinder 25. The accelerated liquid 4 subsequently is directed through the apertures 21 into the right cavity portion 31 defined within the working cylinder 17.
Subsequently, as the rod 10 begins to move in the opposite direction out of the left cavity portion 33 towards the right cavity portion 31 due to the oscillating movement of the mechanism 9, the disk 19 contacts the activator 20, closes the channel 36 in the activator 20 and together with the activator 20 urges the liquid 4 out of the right cavity portion 31 through the outlet 22. In passing through the outlet 22, the pressure of the fluid 4 is sufficient to open the valve 23 such that the fluid 4 can be discharged in a pressurized manner through the nozzle 24.
As the rod 10 moves towards the right cavity portion 31, the liquid 4 is drawn into the left cavity portion 33 of the working cylinder 17 in order to replacement the liquid 4 expelled from the right cavity portion 31 through the valve 23 and nozzle 24. This process of operation of the pump mechanism 9 is repeated at a frequency which is defined by speed of operation the motor 7.
Further, as a result of the oscillating movement of the rod 10 in the cylinder 17, the activator 20, the piston 18 and the disk 19 regularly and alternately collide with the lateral surfaces of the activator 20. In the course of these collisions, kinetic energy is created which affects the liquid 4 in the working cylinder 17 by promoting cavitation of the liquid 4 in the working cylinder 17, which results in actively mixing the liquid 4, consequently reducing forces of intermolecular coupling in the liquid 4, thereby reducing the viscosity of the liquid 4 and increasing the pumpability of the fluid 4.
In addition, in conjunction with the oscillatory movement of the rod 10, piston 18, disk 19 and activator 20, cavitation of the fluid 4 in the working cavity 17 is created by the shape of the ring cavity 27. As the fluid 4 is drawn into the ring cavity 27 via the pipe 30, the cavity 27 causes an accelerated rotary movement of the stream of fluid 4 in the cavity 27 around the working cylinder 17. As more fluid 4 is drawn into the ring cavity 27, the accelerated fluid 4 is displaced into the working cylinder 17 through the apertures 21 and distributed into the left and right portions 31 and 33 of the cavity 32 of the working cylinder 17. The entrance of the accelerated fluid 4 creates zones of active compression and variable pressure in the working cylinder 17, thus providing an alternative and steady source of cavitation of the fluid 4. This cavitation of the fluid 4 is accompanied by a sharp increase of pressure in the working cylinder 17 and as a consequence the fluid being pumped is altered in into a microdrop form, comparable in quality to fog, that provides the best molecular interaction potential.
The pump mechanism 9 can be operated over a wide frequency range to create the cavitation of the fluid 4 within the working cylinder 17, with a minimum oscillation frequency being about 1-5 Hz. This minimum operating mode of the pump mechanism 9 corresponds to the best conditions for pumping highly viscous liquids which produces an effective discharge fluid stream in absence cavitation.
Referring now to
The pump 300 is formed similarly to the pump 100, with the main differences being the orientation of the working cylinder 17 in a vertical direction on the frame 6, the removal of the external cylinder 25 and apertures 21 in the working cylinder 17, and the switching of the placement of the pipe 30 and outlet 22 relative to the working cylinder 17.
In operation, the movement of the rod in the working cylinder 17 draws the fluid 4 up the pipe 30 into the cavity 32, where it is acted upon by piston 18, disk 19 and activator 20 in the manner described previously, prior to the fluid being discharged through the outlet 22.
Looking now at
In addition to the above description, the following are some of the advantages of the pump of this present disclosure:
Technical and Economical Advantages of Pump
Numerous alternative embodiments of the present disclosure are contemplated as being within the scope of the following claims which particularly point out and distinctly claims the subject matter regarded as the present invention.
Number | Name | Date | Kind |
---|---|---|---|
1414808 | Fiese | May 1922 | A |
2918879 | Cervo | Dec 1959 | A |
2985359 | Hanje | May 1961 | A |
3867072 | Brenneman | Feb 1975 | A |
4288326 | Keefer | Sep 1981 | A |
5634780 | Chen | Jun 1997 | A |
6315533 | Lishanski et al. | Nov 2001 | B1 |
6364622 | Lishanski et al. | Apr 2002 | B1 |
6428289 | Lishanski et al. | Aug 2002 | B1 |
6604920 | Lishanski et al. | Aug 2003 | B1 |
7018089 | Wenz et al. | Mar 2006 | B2 |
7354255 | Lishanski et al. | Apr 2008 | B1 |
7544048 | Lishanski et al. | Jun 2009 | B2 |
7731105 | Lishanski et al. | Jun 2010 | B2 |
20090116979 | Lishanski | May 2009 | A1 |
20100038448 | Ghavami-Nasr et al. | Feb 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20120251338 A1 | Oct 2012 | US |