The present invention relates to human tissue stimulation and in particular to noninvasive vibration on the neck overlying the larynx to excite the laryngeal nerve to augment or reestablish swallowing control during rehabilitation of patients with dysphagia, and to treat voice disorders affecting the function of the laryngeal system, such as spasmodic dysphonia, and to treat chronic cough.
Dysphagia is a major swallowing disorder that effects the central nervous system, and the peripheral nervous system, thereby weakening neuromuscular control and effectively reducing the ability to properly swallow. Dysphagia may occur at any time across the lifespan. This impairment has many potential causes, including but not limited to neurologic disorders, degenerative disease processes, and anatomical changes. Dysphagia is characterized by difficulty swallowing, impaired ability to protect the airway during swallowing (penetration and aspiration), and impaired ability to transport a bolus of food or liquid from the mouth to the stomach. These difficulties may contribute to a risk for respiratory complications (pneumonia), dehydration, malnutrition, and may restrict social eating. Because of these negative impacts, it also may significantly impact quality of life for an individual.
An occasional cough is normal in that it helps to clear irritants and secretions from the lungs; however, when a cough lasts longer than eight weeks in adults and begins to interfere with daily functions, such as sleep and bladder control, then it may be diagnosed as a chronic cough. In children, this diagnosis may occur after four weeks of coughing. Chronic cough occurs in the upper airway of the respiratory system, and the condition may be caused by co-morbidities, such as asthma, post-nasal drip, or reflux. However, the mechanism is unknown. The cough reflex may be impaired by a disease condition that weakens the cough which could lead to muscle weakness or paralysis, or it may be secondary to laryngeal nerve involvement.
Spasmodic dysphonia is a disorder that may occur with neurological disorders or disease processes that impact laryngeal function and muscles of the voice. This disorder of the laryngeal system causes the muscles involved in voicing to periodically spasm, triggering increased tension and a distortion of the voice. The spasms cause interruptions and breaks in the voice. Causes of spasmodic dysphonia are unknown but may relate to such processes as anxiety, infection, or direct injury to the larynx. It is more common in women and occurs most often between the ages of 30-50 years.
Any neurologic disease or process that impacts laryngeal function may negatively impact swallowing, voicing, and airway functions such as cough and throat clear, or any function that originates within or requires function of the laryngeal system. Various functions within the laryngeal system occur due to stimulation of the afferent pathways which transmit impulses to the brain and are then interpreted for communication with the efferent system for movement. Current treatment for an impairment or changes of laryngeal function that is caused by various neurological disorders or laryngeal injury are typically long-term behavioral therapy or invasive treatment with the injection of foreign materials or medications into the muscles, nerves, or tissues of the larynx. However, various disorders, such as dysphagia, chronic cough, and voicing disorders, may be improved by innervation of the afferent system within the larynx including the branches of the vagus nerve, such as the recurrent laryngeal, superior laryngeal, and pharyngeal branches, and vibration is known to relax muscles and to provide stimulation to tissues being innervated offering an alternative treatment.
U.S. Pat. No. 8,388,561 describes a vibrotactile stimulator having a band 101 worn around a patient's neck and including a vibrator 102 positionable over the larynx to provide stimulation generally centered on the patient's neck. The vibrator 102 is an electric motor spinning an offset weight. While the '561 patent provides a potential method for addressing dysphagia, there remains a need for improved dysphagia therapy devices.
The present invention addresses the above and other needs by providing a vibrating laryngeal nerve exciting device which includes a collar holding a bridge, or a neckband, pressing soft tissue nerve exciters against a patient's neck providing a source of vibrations to stimulate the branches of the vagus nerve, such as the recurrent laryngeal, superior laryngeal, and pharyngeal branches. At least one exciter, and preferably two exciters, provide vibrations preferably adjustable between 30 Hz and 200 Hz and more preferably between 70 and 110 Hz and sufficiently strong to penetrate to the laryngeal nerve, for example, a pressure of 2-4 kpa or a vibration amplitude of 0.15 mm to 0.25 mm. The exciters may be held by the collar circling the neck, or by the neck band partially circling the neck. The therapy system includes a Personal Digital Assistant (PDA) device and software which wirelessly connects, monitors, and triggers the device. The system may be used to treat dysphagia, chronic cough, and spasmodic dysphonia.
In accordance with one aspect of the invention, there is provided software (e.g., a smartphone application) which wirelessly connects and triggers the device, for example, through a Bluetooth® protocol. The software sets the frequency of the device, intensity, therapy time, vibration time, duration of rest period between vibration, and allows for patients to provide feedback about the therapy. A general state of health section allows the patient to diary how the patient is feeling before and after the therapy. The software allows clinicians to monitor the patient's progress. The clinician can see the device settings (frequency of the device, intensity, therapy time, vibration time, duration of rest period between vibration), number of uses, whether therapy was completed, and the patient's feedback diary.
The above and other aspects, features and advantages of the present invention will be more apparent from the following more particular description thereof, presented in conjunction with the following drawings.
Corresponding reference characters indicate corresponding components throughout the several views of the drawings.
The following description is of the best mode presently contemplated for carrying out the invention. This description is not to be taken in a limiting sense, but is made merely for the purpose of describing one or more preferred embodiments of the invention. The scope of the invention should be determined with reference to the claims.
Where the terms “about” or “generally” are associated with an element of the invention, it is intended to describe a feature's appearance to the human eye or human perception, and not a precise measurement.
A front view of a laryngeal nerve exciter 10 according to the present invention is shown in
The end effector 18 of the laryngeal nerve exciter 10 is shown in
A top view of a second embodiment of a laryngeal nerve exciter 30 is shown in
A laryngeal nerve exciter system 60 is shown in
The PDA 64 may communicate with a secure server 68 through the Internet or any other suitable connection including wireless or wired connections 66 providing signals include frequency, intensity, therapy time, vibration time, duration of rest period between vibration, clinician calibration, and allows for patients to provide feedback about the therapy.
The secure server 68 may communicate with a work station 72 over the Internet or any other suitable connection including wireless or wired connections 70 providing signals include frequency, intensity, therapy time, vibration time, duration of rest period between vibration, and clinician calibration, and allows for patients to provide feedback about the therapy to the clinician.
The App may set the frequency of the neckband trainer 42, intensity, therapy time, vibration time, duration of rest period between vibration, and allows for patients to provide feedback about the therapy. Measurements made by the neckband trainer 42 (e.g., force measured by the exciters) may be provided to the PDA 46 via the Bluetooth® connection. Further, the system 60 may allow clinicians to monitor the patient's progress. The clinician will be able to see the device settings, frequency of the device, intensity, therapy time, vibration time, duration of rest period between vibration, number of uses, whether therapy was completed, and the patient feedback. A general state of health section for the patient may be provided to indicate how the patient is feeling before and after the therapy. The PDA 64 may be a smart phone.
While the invention herein disclosed has been described by means of specific embodiments and applications thereof, numerous modifications and variations could be made thereto by those skilled in the art without departing from the scope of the invention set forth in the claims.
The application is a continuation of U.S. patent application Ser. No. 16/853,477, filed Apr. 20, 2020, which claims the priority of U.S. Provisional Patent Application No. 62/836,195, filed Apr. 19, 2019, the disclosures of each of which is incorporated in its entirety herein by reference.
Number | Date | Country | |
---|---|---|---|
62836195 | Apr 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16853477 | Apr 2020 | US |
Child | 17305268 | US |