The present invention relates to methods and devices for performing surgical procedures, and in particular to methods and devices for maintaining visibility during surgical procedures.
During laparoscopic surgery, one or more small incisions are formed in the abdomen and a trocar is inserted through the incision to form a pathway that provides access to the abdominal cavity. The trocar is used to introduce various instruments and tools into the abdominal cavity, as well as to provide insufflation to elevate the abdominal wall above the organs. During such procedures, a scoping device, such as an endoscope or laparoscope, is inserted through one of the trocars to allow a surgeon to view the operative field on an external monitor coupled to the scoping device.
Scoping devices are often inserted and removed through a trocar multiple times during a single surgical procedure, and during each insertion and each removal they can encounter fluid that can adhere to the scope's lens and fully or partially impede visibility through the lens. Furthermore, a scope can draw fluid from inside or outside a patients body into the trocar, where the fluid can be deposited within the trocar until the scope or other instrument is reinserted through the trocar. Upon reinsertion, fluid can adhere to the scope's lens. The scope's lens thus needs to be cleaned to restore visibility, often multiple times during a single surgical procedure. With limited access to a scope in a body, each lens cleaning can require removing the scope from the body, cleaning the scope lens of fluid, and reintroducing the scope into the body. Such lens cleaning is a time-consuming procedure that also increases the chances of complications and contamination through repeated scope insertion and removal.
Accordingly, there is a need for methods and devices for maintaining clear visibility through a lens of a scoping device during a surgical procedure.
The systems and methods disclosed herein can be useful to maintain surgical viewing devices, and the trocars through which they are inserted, free of fluid that might otherwise impair visibility through the viewing device. In one embodiment, a method for removing fluid from a trocar is provided. The method can include positioning a trocar to extend into a body cavity and vibrating the trocar to prevent fluid in the trocar from being deposited on surgical instruments, such as surgical viewing devices (e.g., endoscopes and laparoscopes), passed therethrough.
In certain exemplary embodiments, vibrating the trocar can cause fluid deposited on at least one seal disposed within the trocar to be dislodged from the seal. Vibrating the trocar can further cause the dislodged fluid to pass into a cannula of the trocar. The trocar can be vibrated after an instrument is removed from the trocar, and/or while an instrument is passed through the trocar. Vibration can also be sensor activated. For example, the trocar can be selectively vibrated according to an output of a sensor that detects the presence of an instrument in the trocar. A sensor can also or alternatively detect the presence of fluid at a location within the trocar and an indicator can be selectively activated according to an output of the sensor. An output of a sensor that detects the presence of fluid at a location within the trocar can also be used to selectively vibrate the trocar. The trocar can be vibrated in a variety of ways. For example, the trocar can be vibrated by activating a transducer or by activating a mechanical vibrator. In one embodiment, the transducer can be activated by activating a foot pedal coupled to the transducer or by a remote control.
In another embodiment, a method for removing fluid from a trocar is provided that can include activating a transducer coupled to a trocar inserted into a body cavity to vibrate the trocar and remove fluid deposited on at least one seal in the trocar by an instrument passed therethrough. Vibration can cause fluid to pass from the at least one seal into a cannula of the trocar.
In yet another embodiment, a method for removing fluid from an endoscope is provided. The method can include inserting a trocar through tissue to form a working channel extending through the trocar into a body cavity. The method can further include passing an endoscope through the trocar and vibrating the trocar to remove any fluid deposited within the trocar by the endoscope. The trocar can be vibrated, for example, ultrasonically or mechanically.
The invention will be more fully understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
Certain exemplary embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those skilled in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments and that the scope of the present invention is defined solely by the claims. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present invention.
A person skilled in the art will appreciate that, while the methods and devices are described in connection with minimally invasive procedures, such as endoscopic and laparoscopic procedures, the methods and devices disclosed herein can be used in numerous surgical procedures. By way of non-limiting example, the devices can be used in laparoscopic procedures, in which the device is introduced percutaneously, and more preferably through an introducer, such as a cannula or trocar. The methods and devices can also be used in open surgical procedures.
In general, devices and methods are provided for removing fluid from a trocar and/or from surgical instruments passed therethrough, and for preventing such fluid from accumulating. For example, in one exemplary embodiment, fluid can be removed from a trocar by positioning a trocar to extend into a body cavity and vibrating the trocar to prevent fluid in the trocar, or fluid on instruments disposed in the trocar, from being deposited on surgical instruments passed therethrough. This will allow instruments, such as viewing devices, to be repeatedly passed through the trocar without fluid being deposited on a lens of the viewing instrument.
A person skilled in the art will appreciate that the term fluid as used herein is intended to include any substance that, when on a surgical instrument, can adversely affect the functioning of the instrument or a surgeon's ability to use it. Fluids include any kind of bodily fluid, such as blood, and any kind of fluid introduced during a surgical procedure, such as saline. Fluids also include fluid/solid mixtures or fluids with particles (such as pieces of tissue) suspended or located therein, as well as viscous materials and gases.
While the techniques for removing fluid disclosed herein can be used with various devices known in the art, in certain exemplary embodiments a trocar is provided having one or more vibrator elements disposed therein or thereon for removing fluid from portions of the trocar and/or from an instrument, such as a scoping device, inserted therethrough.
In use, the distal cannula 8 can be inserted through a skin incision and through tissue to position a distal-most end within a body cavity. The proximal housing 6 can remain external to the body cavity, and various instruments can be inserted through the working channel 4 and into the body cavity. Typically, during surgical procedures in a body cavity, such as the abdomen, insufflation is provided through the vibratory trocar device 2 to expand the body cavity to facilitate the surgical procedure. Thus, in order to maintain insufflation within the body cavity, most trocars include at least one seal disposed therein to prevent air from escaping. Various seal configurations are known in the art, but typically the vibratory trocar device 2 includes an instrument seal that forms a seal around an instrument inserted therethrough, but otherwise does not form a seal when no instrument is inserted therethrough; a trocar seal or zero-closure seal that seals the working channel 4 when no instrument is inserted therethrough; or a combination instrument seal and trocar seal that is effective to both form a seal around an instrument inserted therethrough and to form a seal in the working channel 4 when no instrument is inserted therethrough. In the embodiment shown in
The instrument seal 14 is shown in more detail in
When fully assembled, the instrument seal 14 can be disposed at various locations within the vibratory trocar device 2. In the embodiment illustrated in
The trocar or zero-closure seal in the illustrated embodiment is shown in more detail in
In accordance with the present disclosure the general structure of the seals as well as the trocar do not generally form part of the present invention. As such, a person skilled in the art will certainly appreciate that various seal configurations, as well as various trocars or other surgical access devices, can be used without departing from the spirit of the invention disclosed herein.
As previously indicated, the vibratory trocar device 2 can also be configured to remove fluid from the trocar, or certain portions thereof, and/or from instruments inserted therethrough. Any device effective to vibrate the trocar device 2 or an instrument therein can be used, such as ultrasonic or mechanical vibration devices. For example, in one embodiment, a small DC motor can be mounted within a housing that is disposed in or coupled to the vibratory trocar device 2. When activated, the motor can rotate a gear attached to the motor's drive shaft. A small weight can be coupled to the gear in an off-center fashion such that the rotating assembly is unbalanced. When the motor is activated to rotate the gear/weight combination, the unbalanced rotation generates a mechanical vibration that, when applied to the vibratory trocar device 2, is effective to remove fluid therefrom. In an exemplary embodiment, the motor rotates at 100 to 150 rotations per minute and the weight has a mass of approximately 25 grams.
Alternatively, or in addition, a transducer can be used to vibrate the vibratory trocar device 2. In the embodiment shown in
Referring to
The transducer 102 can be coupled to the vibratory trocar device 2 in a variety of ways. For example, the transducer 102 can be permanently affixed to the vibratory trocar device 2 or it can be removably attached thereto. The transducer can be manually held against the vibratory trocar device 2 or it can be welded, molded, or glued thereto. Alternatively, or in addition, screws, bolts, clips, tape or other fastening techniques known in the art can also be employed. In one embodiment, the transducer 102 can be formed integrally with the vibratory trocar device 2.
The transducer control circuitry 104 can have a variety of configurations, but in one embodiment, the control circuitry 104 can be configured to selectively produce an alternating voltage across one or more piezoelectric crystals in the transducer 102, causing the crystals to resonate and produce very high frequency sound waves. In certain embodiments, the frequency of the sound waves is in the ultrasonic range. The emission of high frequency sound waves from the transducer 102 causes the vibratory trocar device 2, or at least portions thereof, to vibrate or otherwise agitate. As will be discussed in more detail below, vibration of the vibratory trocar device 2 can cause fluid deposited on the seals 14, 24 and/or elsewhere inside the housing 6, the cannula 8, and/or on instruments disposed in the trocar, to dislodge. Once dislodged, gravitational forces can cause the fluid to move towards the distal end of the cannula 8, thereby providing a clear pathway for instruments to be passed through the vibratory trocar device 2.
As will be discussed further below, the transducer can be selectively activated in any number of ways, including by one or more switches, foot pedals, remote controls, computers, sensors, or any other activation mechanisms known in the art.
As further shown in
As shown, a proximal fluid sensor 202 is mounted inside the housing 6 near the proximal multi-layer instrument seal 14, and a distal fluid sensor 204 is mounted near the distal duck-bill trocar seal 24. The proximal and distal fluid sensors 202, 204 can detect the presence of fluid within the working channel 4 in the vicinity of the seals 14, 24, respectively. The vibratory trocar device 2 can also include proximal and/or distal instrument sensors 206, 208. The instrument sensors 206, 208 can detect the presence of an instrument or other object in the working channel 4. In other embodiments, different sensor configurations can be employed. For example, multiple sensors can be positioned to detect fluid in the vicinity of the same seal and some seals can have many sensors nearby, while others can have none. The sensors 202, 204, 206, 208 can be mounted within the vibratory trocar device 2 using a variety of techniques known in the art.
The sensors 202, 204, 206, 208 can also be chosen from wide array of sensor types. For example, optical, mechanical, electromagnetic, or thermal sensors can be used. In an exemplary embodiment, the sensors 202, 204, 206, 208 are proximity sensors specifically tailored to detect the presence of nearby objects (i.e. fluid or surgical instruments). The sensors 202, 204, 206, 208 can emit an electromagnetic field, an electrostatic field, or a beam of electromagnetic radiation. As an instrument is introduced into or removed from the working channel 4, or as fluid accumulates near or moves away from the sensors 202, 204, 206, 208, changes in the field or return signal can be measured by the sensor. Upon measuring such an alteration, an output of the sensor can be changed. In embodiments where the sensor includes an analog output, the voltage on the sensor's output wire, pin, and/or terminal can be increased or decreased in a manner commensurate with the change in field or return signal. In embodiments where the sensor includes a digital output, the output can be asserted, cleared, and/or toggled. One skilled in the art will recognize that some sensor types are better suited than others for detecting objects of a given size or material. Accordingly, the sensors 202, 204, 206, 208 can be of different types, sizes, and/or tolerances depending on whether they are used for detecting fluid and/or for detecting the presence of instruments. Additionally, fluid, as defined herein, can have a broad range of properties and compositions, so in some embodiments, multiple sensors of varying types can be used to better detect the presence of fluid.
Referring still to
In use, outputs from the sensors 202, 204, 206, 208 can be electrically coupled or otherwise communicated to the transducer control circuitry 104 which can include a printed circuit board and various logic components or integrated circuits. The transducer control circuitry 104 can condition and interpret the outputs from the sensors 202, 204, 206, 208 and based thereon, selectively activate the transducer 102 or each individual LED within the LED indicator bank 212. In another embodiment, shown in
Referring back to
In another embodiment, if the output of the instrument sensors 206, 208 indicates that an object is being passed (i.e. inserted or removed) through the working channel 4, the transducer control circuitry 104 can selectively activate the transducer 102 to ensure that the instrument is not contaminated with fluid. For example, if a viewing device or scope is passed into the working channel 4, the presence of the scope can be detected by the sensor 206 just before the scope is inserted through the proximal seal 14. The sensor 206 can then change its output to indicate that an instrument is being introduced into the channel, which can in turn cause the transducer control circuitry 104 to activate the transducer 102. In this case, the transducer 102 can be activated briefly (e.g. for a predetermined period of time) to dislodge any fluid that might exist within the working channel 4 before the scope is passed through the seal 14, thereby providing a clear entry path for the scope.
When the auto/manual switch 216 is in the “manual” position, the transducer control circuitry 104 can only activate the transducer 102 to vibrate the device 2 whenever a user activates the vibration switch 218. If the sensors 202, 204, 206, 208 indicate that fluid is present or that an object is being passed through the device, the controller unit will only illuminate the LEDs in the LED indicator bank 212 to alert the user to this condition. Once alerted, the user can decide when activation of the transducer 102 is desired and can use the vibration switch 218 to selectively activate the transducer 102. Accordingly, the “manual” setting can be desirable when non-viewing devices are present in the device or when performing critical steps in a surgical operation since in these circumstances, unplanned vibration can be undesirable or even harmful to the instruments or the patient.
In another embodiment, the transducer housing 100 can also include a communications port for interfacing with a computer. The communications port can be electrically coupled to a computer using wires or can communicate wirelessly with a computer. The communications port can be electrically coupled to the transducer control circuitry 104 and can permit a software application running on the computer to monitor and log the activity of the transducer control circuitry 104 and/or the vibratory trocar device 2. Identifying information, such as a serial number, can be communicated from the device 2 to the computer using the communications port. Based on the identifying information, the computer can keep a log or provide the user with information such as how often the vibratory trocar device 2 has been used, how long it has been used, when it was first used, when it was last used, how many times it has been vibrated, etc. The communications port can utilize a USB, RS232, TCP/IP, I2C, or any other communications standard known in the art.
In other embodiments, a foot pedal, remote control, or other device can be employed to manually activate the vibratory trocar device 2. A foot pedal can be desirable where the user wishes to keep both hands free for performing other surgical tasks, yet still be capable of manually activating the transducer 102. A remote control can be desirable if the user wishes to activate the transducer 102 without being close enough to the vibratory trocar device 2 to reach the switches on the transducer housing 100, for example where the user is a surgical assistant working from a far side of the operating room.
Alternatively, the pedal position sensor 610 can be more sophisticated. For example, the output of the sensor 610 can be capable of communicating a multitude of pedal positions to the transducer control circuitry 104. The pedal position can be transmitted as an analog signal, or it can be transmitted digitally using a parallel or serial bus. When such a sensor is employed, the transducer control circuitry 104 can cause the transducer 102 to vibrate at different frequencies or amplitudes based on the position of the pedal 604. For example, as the pedal 604 is depressed towards the base 602 by the user, the vibrational frequency or vibrational amplitude of the transducer 102 can increase. As the user removes pressure from the pedal 604, the spring 608 begins to move the pedal 604 away from the base 602 and the frequency or amplitude of vibration of the transducer 102 can decrease. These embodiments can be desirable in applications where certain types of fluid are more easily dislodged using a higher frequency or amplitude of vibration while others are more easily removed using a lower frequency or amplitude.
In another embodiment, shown in
In use, the trocar can be positioned to extend into a body cavity and can be vibrated to remove fluid from an instrument disposed therethrough, to prevent fluid in the trocar from being deposited on surgical instruments passed therethrough, and/or to prevent fluid from accumulating inside the trocar. For example, in a typical procedure, an incision can be formed in the patient and the distal end of a cannula 8 of the trocar can be advanced (e.g., using an obturator disposed through the trocar) through the incision and underlying tissue into a body cavity. Carbon dioxide gas can be introduced into the body cavity through the trocar to insufflate the body cavity. Surgical instruments and viewing devices such as endoscopes or laparoscopes can be passed through the trocar and into the body cavity to allow various procedures in or around the body cavity to be viewed on an external monitor. To prevent fluid from being deposited on the viewing instruments, and in particular to prevent fluid from contaminating the lenses of the viewing devices and thereby obstructing the image obtained by the viewing device, the trocar can be vibrated or otherwise agitated by activating the transducer 102.
Typically, during laparoscopic procedures, a viewing device or scope, such as a laparoscope or endoscope, is inserted through the working channel of a trocar to position a viewing element on the distal end of the scope within a body cavity. Upon removal of the scope, fluid from the body cavity can be dragged into the working channel of the trocar where it is deposited on the seals as they contact an outer surface of the scope. Thus, in an exemplary embodiment, in order to prevent the fluid on the seals from being re-deposited onto the scope or any other surgical instrument upon re-insertion through the trocar, the trocar can be vibrated to cause the fluid disposed within the trocar to be dislodged and to pass into the cannula of the trocar where it can drip, fall, or otherwise pass back into the body cavity. A person skilled in the art will appreciate that the trocar can be vibrated before passing the instruments therethrough to ensure that any fluid inside the trocar is cleared out of the way ahead of time. Alternatively, or in addition, the trocar can be vibrated while instruments are passed therethrough to remove fluid from the trocar and/or the instruments themselves. The trocar can also be vibrated after a surgical instrument is removed so that any fluid deposited within the trocar will be removed, thereby clearing the working channel of fluid before any other instruments are inserted.
As shown in
There are several ways in which the transducer can be activated to vibrate the trocar. For example, a user can manually activate the trocar by depressing a foot pedal that is electrically coupled to the transducer or by pressing a button on a remote control or a switch mounted on the trocar itself. The transducer can also be automatically activated when a sensor detects the presence of fluid on or near one or more seals located within the trocar or when a sensor detects fluid elsewhere within the working channel of the trocar or on instruments disposed therein. A sensor can also automatically activate the transducer when it detects that an instrument is about to be inserted into the trocar or is in the process of being inserted into the trocar.
A user can also vibrate the trocar manually, for example by pressing a separate, hand-held vibrator device against it. For example, a user could manually press a standalone transducer against the outer surface of any trocar to cause it to vibrate and thereby remove fluid deposited in the working channel of the trocar.
When vibrating the trocar, several different techniques may be employed. In particular, various vibration parameters can be altered or adjusted by a user in order to optimize the fluid removal process. For example, where a user finds that the scope or viewing instrument is still being contaminated with fluid despite having activated the transducer to vibrate the trocar, the user can try altering various vibration parameters. The user could adjust the frequency and amplitude of the transducer vibration or could activate the transducer for a longer or shorter duration. Additionally, the transducer can be rapidly activated and deactivated to create a series of bursts of vibration. Where a “burst” technique is used, various duty cycles can be employed and/or each burst can have a different amplitude or frequency of vibration. Alternatively, or in addition, the transducer can be activated continuously while sweeping various vibration parameters from one extreme to another. For example, a user can activate the transducer for a fixed duration, during which time the user can gradually ramp the frequency of vibration from a lower frequency to a higher frequency by adjusting a knob or other control operatively coupled to the transducer.
While the methods discussed above involve vibrating an access device to remove fluid deposited therein during the course of a surgical procedure, that need not always be the case. Rather, the methods disclosed herein for removing fluid from a trocar can be performed any time a cleaning is desired, including before initiating a surgical procedure or after the surgery has been completed, just prior to storing the trocar for future use.
Further, the methods disclosed herein can be applied in fields beyond the medical industry. In fact, any application where instruments are passed through an access device can benefit from such methods. In the plumbing industry for example, viewing devices can be passed through an access device for the purpose of viewing the interior of a drain or other pipe to locate blockages or deterioration. Similarly, in the course of repairing or inspecting engines or other complex machines, a viewing device can be passed through an access device to provide visibility into the interior of the machine without completely disassembling it. It is understood that in procedures like these, the methods disclosed herein for removing fluid from an access device can be readily applied.
The devices disclosed herein can be designed to be disposed of after a single use, or can be designed to be used multiple times. In either case, however, the device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces and subsequent reassembly. In particular, the device can be disassembled, and any number of the particular pieces or parts of the device can be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the device can be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
Preferably, the invention described herein will be processed before surgery. First, a new or used tool is obtained and if necessary cleaned. The tool can then be sterilized. In one sterilization technique, the tool is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and tool are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation kills bacteria on the instrument and in the container. The sterilized instrument can then be stored in the sterile container. The sealed container keeps the instrument sterile until it is opened in the medical facility. It is preferred that the device is sterilized. This can be done by any number of ways known to those skilled in the art including beta or gamma radiation, ethylene oxide, or steam.
One skilled in the art will appreciate further features and advantages of the invention based on the above-described embodiments. Accordingly, the invention is not to be limited by what has been particularly shown and described, except as indicated by the appended claims. All publications and references cited herein are expressly incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3315663 | Goldfarb | Apr 1967 | A |
3900022 | Widran | Aug 1975 | A |
3903877 | Terada et al. | Sep 1975 | A |
3924608 | Mitsui et al. | Dec 1975 | A |
3980078 | Tominaga et al. | Sep 1976 | A |
3981276 | Ernest | Sep 1976 | A |
4204563 | Pyle | May 1980 | A |
4279246 | Chikama et al. | Jul 1981 | A |
4687033 | Furrow et al. | Aug 1987 | A |
4690140 | Mecca | Sep 1987 | A |
4722000 | Chatenever | Jan 1988 | A |
4836187 | Iwakoshi et al. | Jun 1989 | A |
4874364 | Morris et al. | Oct 1989 | A |
4877016 | Kantor et al. | Oct 1989 | A |
4919305 | Podgers | Apr 1990 | A |
4943280 | Lander | Jul 1990 | A |
5084057 | Green et al. | Jan 1992 | A |
5104383 | Shichman | Apr 1992 | A |
5112308 | Olsen et al. | May 1992 | A |
5127909 | Shichman | Jul 1992 | A |
5167220 | Brown | Dec 1992 | A |
5180373 | Green et al. | Jan 1993 | A |
5191878 | Iida et al. | Mar 1993 | A |
5197955 | Stephens et al. | Mar 1993 | A |
5201714 | Gentelia et al. | Apr 1993 | A |
5207213 | Auhll et al. | May 1993 | A |
5209737 | Ritchart et al. | May 1993 | A |
5226891 | Bushatz et al. | Jul 1993 | A |
5237984 | Williams, III et al. | Aug 1993 | A |
5279542 | Wilk | Jan 1994 | A |
5312351 | Gerrone | May 1994 | A |
5312363 | Ryan et al. | May 1994 | A |
5312397 | Cosmescu | May 1994 | A |
5313934 | Wiita et al. | May 1994 | A |
5320608 | Gerrone | Jun 1994 | A |
5320610 | Yoon | Jun 1994 | A |
5326013 | Green et al. | Jul 1994 | A |
5330437 | Durman | Jul 1994 | A |
5334164 | Guy et al. | Aug 1994 | A |
5337730 | Maguire | Aug 1994 | A |
5339800 | Wiita et al. | Aug 1994 | A |
5342315 | Rowe et al. | Aug 1994 | A |
5347988 | Hori | Sep 1994 | A |
5354302 | Ko | Oct 1994 | A |
5364002 | Green et al. | Nov 1994 | A |
5369525 | Bala et al. | Nov 1994 | A |
5382297 | Valentine et al. | Jan 1995 | A |
5389081 | Castro | Feb 1995 | A |
5391154 | Young | Feb 1995 | A |
5392766 | Masterson et al. | Feb 1995 | A |
5395342 | Yoon | Mar 1995 | A |
5400767 | Murdoch et al. | Mar 1995 | A |
5419309 | Biehl | May 1995 | A |
5441513 | Roth | Aug 1995 | A |
5443452 | Hart et al. | Aug 1995 | A |
5448990 | De Faria-Correa et al. | Sep 1995 | A |
5449370 | Vaitekunas | Sep 1995 | A |
5458633 | Bailey | Oct 1995 | A |
5458640 | Gerrone | Oct 1995 | A |
5462100 | Covert et al. | Oct 1995 | A |
5464008 | Kim | Nov 1995 | A |
5476475 | Gadberry | Dec 1995 | A |
5486154 | Kelleher | Jan 1996 | A |
5492304 | Smith et al. | Feb 1996 | A |
5496280 | Vandenbroek et al. | Mar 1996 | A |
5496345 | Kieturakis et al. | Mar 1996 | A |
5496411 | Candy et al. | Mar 1996 | A |
5514084 | Fisher | May 1996 | A |
5514153 | Bonutti | May 1996 | A |
5518026 | Benjey | May 1996 | A |
5518502 | Kaplan et al. | May 1996 | A |
5533496 | De Faria-Correa et al. | Jul 1996 | A |
5535759 | Wilk | Jul 1996 | A |
5536234 | Newman | Jul 1996 | A |
5542931 | Gravener et al. | Aug 1996 | A |
5545142 | Stephens et al. | Aug 1996 | A |
5545179 | Williamson, IV | Aug 1996 | A |
5549543 | Kim | Aug 1996 | A |
5551448 | Matula et al. | Sep 1996 | A |
5554151 | Hinchliffe | Sep 1996 | A |
5568828 | Harris | Oct 1996 | A |
5569183 | Kieturakis | Oct 1996 | A |
5569205 | Hart et al. | Oct 1996 | A |
5575756 | Karasawa et al. | Nov 1996 | A |
5584850 | Hart et al. | Dec 1996 | A |
5590697 | Benjey et al. | Jan 1997 | A |
5603702 | Smith et al. | Feb 1997 | A |
5605175 | Bergsma et al. | Feb 1997 | A |
5628732 | Antoon, Jr. et al. | May 1997 | A |
5630795 | Kuramoto et al. | May 1997 | A |
5634911 | Hermann et al. | Jun 1997 | A |
5643227 | Stevens | Jul 1997 | A |
5643301 | Mollenauer | Jul 1997 | A |
5647372 | Tovey et al. | Jul 1997 | A |
5647840 | D'Amelio et al. | Jul 1997 | A |
5651757 | Meckstroth | Jul 1997 | A |
5658273 | Long | Aug 1997 | A |
5662614 | Edoga | Sep 1997 | A |
5685823 | Ito et al. | Nov 1997 | A |
5688222 | Hluchy et al. | Nov 1997 | A |
5709664 | Vandenbroek et al. | Jan 1998 | A |
5720756 | Green et al. | Feb 1998 | A |
5720759 | Green et al. | Feb 1998 | A |
5725477 | Yasui et al. | Mar 1998 | A |
5725478 | Saad | Mar 1998 | A |
5743884 | Hasson et al. | Apr 1998 | A |
5752938 | Flatland et al. | May 1998 | A |
5755252 | Bergsma et al. | May 1998 | A |
5755732 | Green et al. | May 1998 | A |
5782859 | Nicholas et al. | Jul 1998 | A |
5788676 | Yoon | Aug 1998 | A |
5792044 | Foley et al. | Aug 1998 | A |
5792113 | Kramer et al. | Aug 1998 | A |
5797434 | Benjey et al. | Aug 1998 | A |
5807338 | Smith et al. | Sep 1998 | A |
5814026 | Yoon | Sep 1998 | A |
5817061 | Goodwin et al. | Oct 1998 | A |
5848992 | Hart et al. | Dec 1998 | A |
5860458 | Benjey et al. | Jan 1999 | A |
5871440 | Okada et al. | Feb 1999 | A |
5882345 | Yoon | Mar 1999 | A |
5902231 | Foley et al. | May 1999 | A |
5902264 | Toso et al. | May 1999 | A |
5906595 | Powell et al. | May 1999 | A |
5954635 | Foley et al. | Sep 1999 | A |
5957888 | Hinchliffe | Sep 1999 | A |
5964781 | Mollenauer et al. | Oct 1999 | A |
5983958 | Bergsma et al. | Nov 1999 | A |
5989224 | Exline et al. | Nov 1999 | A |
6004326 | Castro et al. | Dec 1999 | A |
6007487 | Foley et al. | Dec 1999 | A |
6017333 | Bailey | Jan 2000 | A |
6062276 | Benjey et al. | May 2000 | A |
6063050 | Manna et al. | May 2000 | A |
6110103 | Donofrio | Aug 2000 | A |
6126592 | Proch et al. | Oct 2000 | A |
6152871 | Foley et al. | Nov 2000 | A |
6159182 | Davis et al. | Dec 2000 | A |
6162170 | Foley et al. | Dec 2000 | A |
6167920 | Enge | Jan 2001 | B1 |
6176823 | Foley et al. | Jan 2001 | B1 |
6176825 | Chin et al. | Jan 2001 | B1 |
6206057 | Benjey et al. | Mar 2001 | B1 |
6206822 | Foley et al. | Mar 2001 | B1 |
6216661 | Pickens et al. | Apr 2001 | B1 |
6217509 | Foley et al. | Apr 2001 | B1 |
6253802 | Enge | Jul 2001 | B1 |
6258065 | Dennis et al. | Jul 2001 | B1 |
6264604 | Kieturakis et al. | Jul 2001 | B1 |
6287313 | Sasso | Sep 2001 | B1 |
6354992 | Kato | Mar 2002 | B1 |
6371909 | Hoeg et al. | Apr 2002 | B1 |
6409657 | Kawano | Jun 2002 | B1 |
6423266 | Choperena et al. | Jul 2002 | B1 |
6425535 | Akiba et al. | Jul 2002 | B1 |
6425859 | Foley et al. | Jul 2002 | B1 |
6428491 | Weiss | Aug 2002 | B1 |
6443190 | Enge | Sep 2002 | B1 |
6447446 | Smith et al. | Sep 2002 | B1 |
6482181 | Racenet et al. | Nov 2002 | B1 |
6494893 | Dubrul et al. | Dec 2002 | B2 |
6497687 | Blanco | Dec 2002 | B1 |
6516835 | Enge | Feb 2003 | B2 |
6520907 | Foley et al. | Feb 2003 | B1 |
6534002 | Lin et al. | Mar 2003 | B1 |
6551282 | Exline et al. | Apr 2003 | B1 |
6562046 | Sasso | May 2003 | B2 |
6569120 | Green et al. | May 2003 | B1 |
6595915 | Akiba et al. | Jul 2003 | B2 |
6595946 | Pasqualucci | Jul 2003 | B1 |
6601617 | Enge | Aug 2003 | B2 |
6605098 | Nobis et al. | Aug 2003 | B2 |
6638214 | Akiba et al. | Oct 2003 | B2 |
6648906 | Lasheras et al. | Nov 2003 | B2 |
6679833 | Smith et al. | Jan 2004 | B2 |
6679834 | Stahl et al. | Jan 2004 | B2 |
6679837 | Daikuzono | Jan 2004 | B2 |
6685665 | Booth et al. | Feb 2004 | B2 |
6699185 | Gminder et al. | Mar 2004 | B2 |
6702787 | Racenet et al. | Mar 2004 | B2 |
6712757 | Becker et al. | Mar 2004 | B2 |
6726663 | Dennis | Apr 2004 | B1 |
6755782 | Ogawa et al. | Jun 2004 | B2 |
6860869 | Dennis | Mar 2005 | B2 |
6860892 | Tanaka et al. | Mar 2005 | B1 |
6918924 | Lasheras et al. | Jul 2005 | B2 |
6923759 | Kasahara et al. | Aug 2005 | B2 |
6942671 | Smith | Sep 2005 | B1 |
6981966 | Green et al. | Jan 2006 | B2 |
6989003 | Wing et al. | Jan 2006 | B2 |
7008416 | Sakaguchi et al. | Mar 2006 | B2 |
7025747 | Smith | Apr 2006 | B2 |
7052454 | Taylor | May 2006 | B2 |
7056303 | Dennis et al. | Jun 2006 | B2 |
7056321 | Pagliuca et al. | Jun 2006 | B2 |
7077803 | Kasahara et al. | Jul 2006 | B2 |
7083626 | Hart et al. | Aug 2006 | B2 |
7104657 | Sherwin et al. | Sep 2006 | B2 |
7105009 | Johnson et al. | Sep 2006 | B2 |
7112185 | Hart et al. | Sep 2006 | B2 |
7163525 | Franer | Jan 2007 | B2 |
7169130 | Exline et al. | Jan 2007 | B2 |
7198598 | Smith et al. | Apr 2007 | B2 |
7207347 | Olshanetsky et al. | Apr 2007 | B2 |
7244244 | Racenet et al. | Jul 2007 | B2 |
7344519 | Wing et al. | Mar 2008 | B2 |
7473243 | Dennis et al. | Jan 2009 | B2 |
7563268 | Ishikawa | Jul 2009 | B2 |
7591802 | Johnson et al. | Sep 2009 | B2 |
20020022762 | Beane et al. | Feb 2002 | A1 |
20020065450 | Ogawa | May 2002 | A1 |
20020068923 | Caldwell et al. | Jun 2002 | A1 |
20020103420 | Coleman et al. | Aug 2002 | A1 |
20020107484 | Dennis et al. | Aug 2002 | A1 |
20020161387 | Blanco | Oct 2002 | A1 |
20030004529 | Tsonton et al. | Jan 2003 | A1 |
20030060770 | Wing et al. | Mar 2003 | A1 |
20030130674 | Kasahara et al. | Jul 2003 | A1 |
20030139756 | Brustad | Jul 2003 | A1 |
20030195472 | Green et al. | Oct 2003 | A1 |
20040034339 | Stoller et al. | Feb 2004 | A1 |
20040106942 | Taylor et al. | Jun 2004 | A1 |
20040167559 | Taylor et al. | Aug 2004 | A1 |
20040171990 | Dennis et al. | Sep 2004 | A1 |
20040220452 | Shalman | Nov 2004 | A1 |
20040230161 | Zeiner | Nov 2004 | A1 |
20040256004 | Kessell et al. | Dec 2004 | A1 |
20040260244 | Piechowicz et al. | Dec 2004 | A1 |
20050004512 | Campbell et al. | Jan 2005 | A1 |
20050033342 | Hart et al. | Feb 2005 | A1 |
20050043683 | Ravo | Feb 2005 | A1 |
20050059865 | Kahle et al. | Mar 2005 | A1 |
20050059934 | Wenchell et al. | Mar 2005 | A1 |
20050070850 | Albrecht | Mar 2005 | A1 |
20050070946 | Franer et al. | Mar 2005 | A1 |
20050070947 | Franer et al. | Mar 2005 | A1 |
20050077688 | Voegele et al. | Apr 2005 | A1 |
20050077689 | Hueil | Apr 2005 | A1 |
20050096605 | Green et al. | May 2005 | A1 |
20050131349 | Albrecht et al. | Jun 2005 | A1 |
20050203543 | Hilal et al. | Sep 2005 | A1 |
20050216028 | Hart et al. | Sep 2005 | A1 |
20050241647 | Nguyen et al. | Nov 2005 | A1 |
20050288622 | Albrecht et al. | Dec 2005 | A1 |
20060020165 | Adams | Jan 2006 | A1 |
20060047240 | Kumar et al. | Mar 2006 | A1 |
20060052666 | Kumar et al. | Mar 2006 | A1 |
20060068360 | Boulais | Mar 2006 | A1 |
20060069312 | O'Connor | Mar 2006 | A1 |
20060100485 | Arai et al. | May 2006 | A1 |
20060122556 | Kumar et al. | Jun 2006 | A1 |
20060122557 | Kumar et al. | Jun 2006 | A1 |
20060129098 | Hart et al. | Jun 2006 | A1 |
20060135972 | Zeiner | Jun 2006 | A1 |
20060135977 | Thompson et al. | Jun 2006 | A1 |
20060135978 | Franer | Jun 2006 | A1 |
20060149137 | Pingleton et al. | Jul 2006 | A1 |
20060199998 | Akui et al. | Sep 2006 | A1 |
20060211916 | Kasahara et al. | Sep 2006 | A1 |
20060224121 | Hart et al. | Oct 2006 | A1 |
20060224164 | Hart et al. | Oct 2006 | A1 |
20060229565 | Dennis et al. | Oct 2006 | A1 |
20060235455 | Oshida | Oct 2006 | A1 |
20060276688 | Surti | Dec 2006 | A1 |
20060293559 | Grice et al. | Dec 2006 | A1 |
20070005087 | Smith et al. | Jan 2007 | A1 |
20070021713 | Kumar et al. | Jan 2007 | A1 |
20070027453 | Hart et al. | Feb 2007 | A1 |
20070088275 | Stearns et al. | Apr 2007 | A1 |
20070088277 | McGinley et al. | Apr 2007 | A1 |
20070129719 | Kendale et al. | Jun 2007 | A1 |
20070142709 | Martone et al. | Jun 2007 | A1 |
20070149931 | Cannon et al. | Jun 2007 | A1 |
20070149993 | Kasahara et al. | Jun 2007 | A1 |
20070185453 | Michael et al. | Aug 2007 | A1 |
20070191759 | Stoller et al. | Aug 2007 | A1 |
20070204890 | Torii | Sep 2007 | A1 |
20070225566 | Kawanishi | Sep 2007 | A1 |
20070244361 | Ikeda et al. | Oct 2007 | A1 |
20080009797 | Stellon et al. | Jan 2008 | A1 |
20080249475 | Albrecht et al. | Oct 2008 | A1 |
20080269696 | Exline et al. | Oct 2008 | A1 |
20090005799 | Franer et al. | Jan 2009 | A1 |
20090093682 | Izzo et al. | Apr 2009 | A1 |
20090137943 | Stearns et al. | May 2009 | A1 |
20090192444 | Albrecht et al. | Jul 2009 | A1 |
20090221960 | Albrecht et al. | Sep 2009 | A1 |
20090234293 | Albrecht et al. | Sep 2009 | A1 |
20090240204 | Taylor et al. | Sep 2009 | A1 |
20090264703 | Pribanic | Oct 2009 | A1 |
20090270681 | Moreno et al. | Oct 2009 | A1 |
20090270685 | Moreno et al. | Oct 2009 | A1 |
20090270813 | Moreno, Jr. et al. | Oct 2009 | A1 |
20090270817 | Moreno et al. | Oct 2009 | A1 |
20090281478 | Duke | Nov 2009 | A1 |
20090314422 | Racenet et al. | Dec 2009 | A1 |
20100022958 | Moreno, Jr. et al. | Jan 2010 | A1 |
Number | Date | Country |
---|---|---|
2060930-AA | Oct 1992 | CA |
2661238 | Oct 2009 | CA |
3238832 | Feb 1984 | DE |
19619065 | Nov 1997 | DE |
10330518 | Feb 2005 | DE |
0517248 | Dec 1992 | EP |
0567142 | Oct 1993 | EP |
568383 | Nov 1993 | EP |
570802 | Nov 1993 | EP |
664101 | Jul 1995 | EP |
0696459 | Feb 1996 | EP |
731718 | Sep 1996 | EP |
845960 | Jun 1998 | EP |
875256 | Nov 1998 | EP |
890342 | Jan 1999 | EP |
898971 | Mar 1999 | EP |
0972493 | Jan 2000 | EP |
1210904 | Jun 2002 | EP |
1284664 | Feb 2003 | EP |
1312318 | May 2003 | EP |
1323373 | Jul 2003 | EP |
1348386 | Oct 2003 | EP |
1459688 | Sep 2004 | EP |
1629787 | Mar 2006 | EP |
1679043 | Jul 2006 | EP |
1698291 | Sep 2006 | EP |
1707133 | Oct 2006 | EP |
1709918 | Oct 2006 | EP |
1834571 | Sep 2007 | EP |
1834573 | Sep 2007 | EP |
2298906 | Sep 1996 | GB |
61036718 | Feb 1986 | JP |
3106329 | May 1991 | JP |
4020324 | Jan 1992 | JP |
4158825 | Jun 1992 | JP |
4170929 | Jun 1992 | JP |
4329510 | Nov 1992 | JP |
519997 | Aug 1993 | JP |
5192294 | Aug 1993 | JP |
5207962 | Aug 1993 | JP |
6133927 | May 1994 | JP |
6169879 | Jun 1994 | JP |
6304121 | Nov 1994 | JP |
7178039 | Jul 1995 | JP |
7246187 | Sep 1995 | JP |
7289501 | Nov 1995 | JP |
7313442 | Dec 1995 | JP |
8154888 | Jun 1996 | JP |
8173372 | Jul 1996 | JP |
10043128 | Feb 1998 | JP |
11146882 | Jun 1999 | JP |
2002224014 | Aug 2002 | JP |
2002238906 | Aug 2002 | JP |
2003284686 | Oct 2003 | JP |
2004016455 | Jan 2004 | JP |
2004267583 | Sep 2004 | JP |
2005253543 | Sep 2005 | JP |
2005319101 | Nov 2005 | JP |
2009261923 | Nov 2009 | JP |
WO-9407552 | Apr 1994 | WO |
WO-9604946 | Feb 1996 | WO |
WO-9740759 | Nov 1997 | WO |
9809673 | Mar 1998 | WO |
WO-0189371 | Nov 2001 | WO |
WO-02078527 | Oct 2002 | WO |
WO-02096307 | Dec 2002 | WO |
WO-03011154 | Feb 2003 | WO |
WO-2004043275 | May 2004 | WO |
WO-2005016133 | Feb 2005 | WO |
2005030293 | Apr 2005 | WO |
WO-2005097019 | Oct 2005 | WO |
WO-2005097234 | Oct 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20090281478 A1 | Nov 2009 | US |