The present invention relates to a vibronic sensor and a measuring assembly for monitoring a flowable medium. In process installations, flowable media are often monitored with the aid of vibronic sensors which are used as limit-level switches or density or viscosity sensors. A limit-level switch comprises an oscillator, e.g., in the form of a rod or an oscillating fork, and detects the presence of a medium via a change in the resonance frequency of the oscillator due to the density of the surrounding medium. Furthermore, the density of the medium may be determined via measurement of the resonance frequency of the oscillator, or the viscosity of the medium may be determined via the attenuation. Such vibronic sensors are distributed by the applicant under the designation, Liquiphant.
The patent application DE 33 36 991A1 discloses such a vibronic sensor for the monitoring of a fill-level, wherein the oscillator of the sensor has two vibrating rods projecting into the medium that are excited with a piezo-stack to bending vibrations.
The patent application DE 100 57 974 A1 discloses a vibronic sensor and an operating method therefor for monitoring the fill-level of a medium, or for determining the density of the medium. The influence of disturbance variables on the vibration frequency of the vibronic sensor is determined and compensated accordingly.
The patent application DE 100 50 299 A1 discloses a vibronic sensor for determining the viscosity of a medium in a container with an excited oscillator, wherein the viscosity of the medium is determined using a frequency/phase curve of the oscillator.
The patent application DE 10 2006 033 819 A1 discloses a vibronic sensor for determining the density of a medium, with an excitation/reception unit which excites an oscillator to mechanical vibration and which receives the mechanical vibrations, with an electronic unit which charges the excitation/reception unit with an electrical excitation signal, and which receives an electrical reception signal from the excitation/reception unit, wherein the electronic unit generates the excitation signal such that a phase difference equal to a nominal value of a phase difference results between the reception signal and the excitation signal, in which nominal value of a phase difference effects of changes in the viscosity of the medium on the mechanical vibrations of the unit capable of mechanical vibrations are negligible, and the nominal value of the phase difference is provided as a function of the ratio of the impedance of the excitation/reception unit to the input impedance of the electronic unit.
The above vibronic sensors and the evaluation methods used have previously assumed a medium at rest. In any event, a relative movement between the medium and the sensor has previously not been taken to be a degree of freedom that is considered by the sensor.
The present invention is based upon the aim of providing a vibronic sensor and a measuring assembly with such a sensor that are suitable for detecting a flowing medium. The aim is achieved by the vibronic sensor according to the independent claim 1 and the measuring assembly according to the independent claim.
The vibronic sensor according to the invention for the monitoring of a flowable medium comprises:
The invention is based upon the idea that the oscillator forms a flow obstruction at which, in a flowing medium, eddies, due to which the vibration response of the oscillator is influenced, separate. The phenomenon is already used in vortex meters which, at a first approximation, detect velocity-proportional separation frequency of the of eddies at a flow obstruction by means of a passive paddle that is deflected by the eddies. A vortex meter is, for example, described in DE 10 2006 047 815 A1. For fluids, the vortex frequency amounts to up to, for example, approximately 200 Hz, depending upon flow velocity and geometric conditions. The amplitude of the pressure fluctuations due to the eddies is, at a first approximation, proportional to the square of the flow velocity. Therefore, a measurable superposition of the resonator vibrations of the oscillator with forced vibrations due to the eddies is to be expected with increasing flow rate.
In one development of the invention, the oscillator has an oscillating fork, a paddle, or a rod.
In one development of the invention, the time-variable modifications of the transducer signals are periodic, given a constant flow velocity of the medium above the limit value.
In one development of the invention, the oscillator has a resonance frequency which depends upon the density of the medium in the pipe, wherein the limit value for the flow velocity is selected so that the frequency of the periodic modifications, for a flow velocity that corresponds to the limit value, is not more than one-fourth—in particular, not more than one-eighth—of the resonance frequency of the oscillator.
In one development of the invention, the operating and evaluating unit is set up to determine values for at least one characteristic quantity of the vibrations of the oscillator, using the transducer signals of multiple vibration periods of the oscillator, and to perform a statistical analysis of the values of the at least one characteristic quantity, in order to detect the modifications of the transducer signals, wherein the characteristic quantity is selected from the frequency of the transducer signals, a period of the transducer signals, an amplitude of the transducer signals, or a phase relationship between the driver signals and the transducer signals.
In one development of the invention, the statistical analysis includes determining the range of a distribution of the values of the characteristic quantity.
In one development of the invention, the statistical analysis includes determining the mean deviation between successive values of the characteristic quantity.
In one development of the invention, the operating and evaluating unit comprises a microprocessor which is, in particular, set up to perform the above statistical analyses on digitized transducer signals, to establish and signal, a flow rate, and, if applicable, to determine and output an associated flow-rate measurement value.
The measuring assembly according to the invention comprises a vibronic sensor according to the invention and a pipe, wherein the vibronic sensor—in particular, the oscillator of the vibronic sensor—protrudes into the pipe.
In one development of the invention, the pipe has a pipe wall, wherein the vibronic sensor protrudes through a segment of the pipe wall, and, essentially orthogonal to said pipe wall, into the pipe.
In one development of the invention, the oscillator can be excited essentially at right angles to the segment of the pipe wall.
In one development of the invention, the oscillator can be excited to vibration essentially at right angles to the longitudinal axis of the measurement pipe. In an alternative development of the invention, the oscillator can be excited to vibration essentially parallel to the longitudinal axis of the measurement pipe. The excitement in different directions leads to different sensitivities with respect to the flow rate.
In one development of the invention, the operating and evaluating unit has a data storage in which is stored a model that describes a link, specific to the measuring assembly, between the flow rate and the time-variable modifications of the transducer signals for at least one medium.
The invention is explained in the following in further detail on the basis of the exemplary embodiments shown in the figures. These show:
The exemplary embodiment 1 of a measuring assembly according to the invention as depicted in
The second exemplary embodiment 101 of a measuring assembly according to the invention, as depicted in
The procedure for detecting or measuring flow rate is now explained using
For a given vibronic sensor, the precise relationship between half-width and flow rate depends, on the one hand, upon the media properties and, on the other hand, upon geometric conditions of the respective measuring assembly. Specific corresponding modelings, which describe the correlation between half-width of the distribution of the period duration of the oscillator vibrations and the flow rate of a medium.
Number | Date | Country | Kind |
---|---|---|---|
10 2015 122 124.1 | Dec 2015 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2016/079523 | 12/2/2016 | WO | 00 |