The present document relates to the display of video from user-selected viewpoints for use in virtual reality, augmented reality, free-viewpoint video, omnidirectional video, and/or the like.
Display of a volume of captured video or positional tracking video may enable a viewer to perceive a captured scene from any location and at any viewing angle within a viewing volume. Using the data provided by such a video system, a viewpoint can be reconstructed to provide the view of a scene from any location within the viewing volume. When viewing this video with a virtual reality head-mounted display, the user may enjoy an immersive virtual presence within an environment. Such a virtual reality experience may be enhanced by providing viewer motion with six degrees of freedom, stereoscopic perception at any interpupillary distance, full motion parallax, and/or correct view-dependent lighting.
One key challenge to virtual reality (VR) and augmented reality (AR) video with full motion parallax and view-independent lighting is its immense data volume, which may be more than one hundred times larger than conventional 2D video. The large data requirement becomes prohibitive for viewers to store the content in consumer-grade devices, and also poses a challenge for distributors who wish to transmit the content over a network.
Virtual reality and augmented reality video may include depth cues such as stereopsis, binocular occlusions, vergence, motion parallax and view-dependent lighting, which may enhance the viewer's sense of immersion. Many existing lossy video compression techniques, such as chroma subsampling, transform coding, and quantization reduce the bit-rate of the video stream by discarding imperceptible information. However, such known techniques generally do not generally exploit additional aspects of the virtual reality or augmented reality video stream, and therefore do not provide compression ratios sufficient for use with virtual reality or augmented reality video with full motion parallax and view-dependent lighting.
In order to leverage the compression opportunities presented by additional data in a virtual reality or augmented reality video stream, a video compression scheme may adaptively compress and/or remove such additional data. In some embodiments, view-dependent lighting may be adaptively removed without degrading the level of immersion provided by the virtual reality or augmented reality experience.
According to one embodiment, one or more image capture devices may capture a video stream of a scene. The video stream may be stored in a data store. Vantage data may be iteratively retrieved from the data store for compression. This vantage data may include base vantage data including base vantage color data depicting the scene from a base vantage location, and target vantage data including target vantage color data depicting the scene from a target vantage location. A processor may be used to reproject the base vantage data to the target vantage location to obtain reprojected target vantage data, compare the reprojected target vantage data with the target vantage data to obtain residual data, and compress the residual data. Compression of the residual data may include removal of a subset of the residual data that is likely to be less viewer-perceptible than a remainder of the residual data. The compressed video stream may then be stored, including the base vantage data and the compressed residual data.
In some embodiments, removing the subset of the residual data may include applying quantization to the residual data. Further, in some embodiments, removing the subset of the residual data may include applying entropy encoding to the residual data. Yet further, removing the subset of the residual data may include identifying an occluded region of the residual data, that is indicative of disocclusion between the base vantage location and the target vantage location, and selecting the subset from outside the occluded region.
Removing the subset of the residual data may further include generating a mask that delineates the occluded region and a non-occluded region (i.e., an “outside region”) outside the occluded region. Removing the subset of the residual data may further include removing all of the residual data in the outside region, or removing only a portion of the residual data in the outside region. In some embodiments, a Gaussian smoothing kernel may be applied to blend the occluded region with the outside region to generate a blended occluded region, and all of the residual data that lies outside the blended occluded region may be removed. The compressed video stream may be decoded by using the mask to apply only the occluded region of the residual data to the base vantage to reproject the base vantage data to the target vantage location.
Removing the subset of the residual data may include removing reprojection errors from the residual data and/or removing view-dependent lighting from the residual data. In some embodiments, all view-dependent lighting may be removed from the residual data. In alternative embodiments, a subset of the view-dependent lighting that is likely to be user-imperceptible is identified and removed, without removing the remainder of the view-dependent lighting.
The compressed video stream may be decoded by applying the remainder of the residual data to the base vantage data to reproject the base vantage data to the target vantage location. This may be iteratively done to decode the entire video stream, or at least the portion that is needed in the virtual reality or augmented reality experience.
The accompanying drawings illustrate several embodiments. Together with the description, they serve to explain the principles of the embodiments. One skilled in the art will recognize that the particular embodiments illustrated in the drawings are merely exemplary, and are not intended to limit scope.
Multiple methods for capturing image and/or video data in a light-field volume and creating virtual views from such data are described. The described embodiments may provide for capturing continuous or nearly continuous light-field data from many or all directions facing away from the capture system, which may enable the generation of virtual views that are more accurate and/or allow viewers greater viewing freedom.
For purposes of the description provided herein, the following definitions are used:
In addition, for ease of nomenclature, the term “camera” is used herein to refer to an image capture device or other data acquisition device. Such a data acquisition device can be any device or system for acquiring, recording, measuring, estimating, determining and/or computing data representative of a scene, including but not limited to two-dimensional image data, three-dimensional image data, and/or light-field data. Such a data acquisition device may include optics, sensors, and image processing electronics for acquiring data representative of a scene, using techniques that are well known in the art. One skilled in the art will recognize that many types of data acquisition devices can be used in connection with the present disclosure, and that the disclosure is not limited to cameras. Thus, the use of the term “camera” herein is intended to be illustrative and exemplary, but should not be considered to limit the scope of the disclosure. Specifically, any use of such term herein should be considered to refer to any suitable device for acquiring image data.
In the following description, several techniques and methods for processing light-field images are described. One skilled in the art will recognize that these various techniques and methods can be performed singly and/or in any suitable combination with one another.
Problem Description
Virtual reality is intended to be a fully immersive experience for users, often having the goal of creating an experience that is as close as possible to “being there.” Users typically use headsets with immersive, wide-angle stereo viewing, multidirectional sound, and onboard sensors that can measure orientation, accelerations, and/or position. As an example,
The virtual reality headset 2700 may also have additional components not shown in
Virtual reality content may be roughly divided into two segments: synthetic content and real world content. Synthetic content may include applications like video games or computer-animated movies that are generated by the computer. Real world content may include panoramic imagery and/or live action video that is captured from real places or events.
Synthetic content may contain and/or be generated from a 3-dimensional model of the environment, which may be also used to provide views that are matched to the actions of the viewer. This may include changing the views to account for head orientation and/or position, and may even include adjusting for differing distances between the eyes.
Real world content is more difficult to fully capture with known systems and methods, and is fundamentally limited by the hardware setup used to capture the content.
When viewing real world content captured using these types of systems, a viewer may only be viewing the captured scene with accuracy when virtually looking out from one of the camera viewpoints that has been captured. If the viewer views from a position that is between cameras, an intermediate viewpoint must be generated in some manner. There are many approaches that may be taken in order to generate these intermediate viewpoints, but all have significant limitations.
One method of generating intermediate viewpoints is to generate two 360° spherically mapped environments—one for each eye. As the viewer turns his or her head, each eye sees a window into these environments. Image and/or video data from the cameras in the array are stitched onto the spherical surfaces. However, this approach is geometrically flawed, as the center of perspective for each eye changes as the user moves his or her head, and the spherical mapping assumes a single point of view. As a result, stitching artifacts and/or geometric distortions cannot be fully avoided. In addition, the approach can only reasonably accommodate viewers changing their viewing direction, and does not perform well when the user moves his or her head laterally, forward, or backward.
Another method to generate intermediate viewpoints is to attempt to generate a 3D model from the captured data, and interpolate between viewpoints based at least partially on the generated model. This model may be used to allow for greater freedom of movement, but is fundamentally limited by the quality of the generated three-dimensional model. Certain optical aspects, like specular reflections, partially transparent surfaces, very thin features, and occluded imagery are extremely difficult to correctly model. Further, the visual success of this type of approach is highly dependent on the amount of interpolation that is required. If the distances are very small, this type of interpolation may work acceptably well for some content. As the magnitude of the interpolation grows (for example, as the physical distance between cameras increases), any errors will become more visually obvious.
Another method of generating intermediate viewpoints involves including manual correction and/or artistry in the postproduction workflow. While manual processes may be used to create or correct many types of issues, they are time intensive and costly.
A capture system that is able to capture a continuous or nearly continuous set of viewpoints may remove or greatly reduce the interpolation required to generate arbitrary viewpoints. Thus, the viewer may have greater freedom of motion within a volume of space.
Tiled Array of Light-Field Cameras
The present document describes several arrangements and architectures that allow for capturing light-field volume data from continuous or nearly continuous viewpoints. The viewpoints may be arranged to cover a surface or a volume using tiled arrays of light-field cameras. Such systems may be referred to as “capture systems” in this document. A tiled array of light-field cameras may be joined and arranged in order to create a continuous or nearly continuous light-field capture surface. This continuous capture surface may capture a light-field volume. The tiled array may be used to create a capture surface of any suitable shape and size.
In
Referring to
For each of the light-field cameras 910, there is attached control and readout circuitry 930. This control and readout circuitry 930 may control the operation of the attached light-field camera 910, and can read captured image and/or video data from the light-field camera 910.
The capture system 900 may also have a user interface 940 for controlling the entire array. The user interface 940 may be physically attached to the remainder of the capture system 900 and/or may be remotely connected to the remainder of the capture system 900. The user interface 940 may include a graphical user interface, displays, digital controls, analog controls, and/or any other controls or feedback devices by which a user can provide input to control the operation of the capture system 900.
The capture system 900 may also have a primary controller 950 that communicates with and controls all the light-field cameras 910. The primary controller 950 may act to synchronize the light-field cameras 910 and/or control the individual light-field cameras 910 in a systematic manner.
The capture system 900 may also include data storage 960, which may include onboard and/or remote components for recording the captured video and/or image data generated by the light-field cameras 910. The data storage 960 may be physically part of the capture system 900 (for example, in hard drives, flash memory and/or RAM), removable storage (for example, arrays of SD cards and/or other removable flash storage), and/or remotely connected storage (for example, RAID storage connected wirelessly or via a wired connection).
The capture system 900 may also include data processing circuitry 970, which may process the image and/or video data as part of the capture system 900. The data processing circuitry 970 may include any type of processing circuitry, including but not limited to one or more microprocessors, ASICs, FPGA's, and/or the like. In alternative embodiments, the capture system 900 may simply collect and store raw data, which may be processed by a separate device such as a computing device with microprocessors and/or other data processing circuitry.
In at least one embodiment, the tiled light-field cameras 910 form an outward-facing ring. One arrangement of a tiled light-field camera array 2300 is shown in
Another arrangement of a tiled light-field camera array 2400, with 2 layers, is shown in
In
In at least one embodiment, the tiled light-field cameras are arranged on the outward facing surface of a sphere or other volume.
Notably, the tiles displayed in the tiling pattern 1100, the tiling pattern 1120, and the tiling pattern 1140 represent the maximum extent of the light-field capturing surface for a single light-field camera in the tiled array. In some embodiments, the physical capture surface may closely match the tile size. In other embodiments, the physical capture surface may be substantially smaller than the tile size.
Size and Field-of-View of the Tiled Array
For many virtual reality and/or augmented reality viewing experiences, “human natural” viewing parameters are desired. In this context, “human natural” viewing parameters refer specifically to providing approximately human fields-of-view and inter-ocular distances (spacing between the eyes). Further, it is desirable that accurate image and/or video data can be generated for any viewpoint as the viewer moves his or her head.
The physical size of the capture surface of the tiled array may be determined by the output requirements and fields-of-view of the objective lenses in the capture system.
In one embodiment, the tiled array is of sufficient size and captures a sufficient field-of-view to enable generation of viewpoints that allow VR viewers to freely move their heads within a normal range of neck motion. This motion may include tilting, rotating, and/or translational motion of the head. As an example, the desired radius of such a volume may be 100 mm.
In addition, the field-of-view of the capture surface may be determined by other desired optical properties of the capture system (discussed later). As an example, the capture surface may be tiled with lenses arranged in a double Gauss or other known lens arrangement. Each lens may have an approximately 20° field-of-view half angle.
Referring now to
r_complete=r_surface*sin(surface_half_fov)
To complete the example, in at least one embodiment, the physical capture surface, or capture surface 400, may be designed to be at least 300 mm in radius in order to accommodate the system design parameters.
In another embodiment, the capture system is of sufficient size to allow users a nearly full range of motion while maintaining a sitting position. As an example, the desired radius of the fully sampled light-field volume 420 may be 500 mm. If the selected lens has a 45° field-of-view half angle, the capture surface 400 may be designed to be at least 700 mm in radius.
In one embodiment, the tiled array of light-field cameras is of sufficient size and captures sufficient field-of-view to allow viewers to look in any direction, without any consideration for translational motion. In that case, the diameter of the fully sampled light-field volume 420 may be just large enough to generate virtual views with separations large enough to accommodate normal human viewing. In one embodiment, the diameter of the fully sampled light-field volume 420 is 60 mm, providing a radius of 30 mm. In that case, using the lenses listed in the example above, the radius of the capture surface 400 may be at least 90 mm.
In other embodiments, a different limited set of freedoms may be provided to VR viewers. For example, rotation and tilt with stereo viewing may be supported, but not translational motion. In such an embodiment, it may be desirable for the radius of the capture surface to approximately match the radius of the arc travelled by an eye as a viewer turns his or her head. In addition, it may be desirable for the field-of-view on the surface of the capture system to match the field-of-view presented to each eye in the VR headset. In one embodiment, the radius of the capture surface 400 is between 75 mm and 150 mm, and the field-of-view on the surface is between 90° and 120°. This embodiment may be implemented using a tiled array of light-field cameras in which each objective lens in the objective lens array is a wide-angle lens.
Tiled Array of Plenoptic Light-Field Cameras
Many different types of cameras may be used as part of a tiled array of cameras, as described herein. In at least one embodiment, the light-field cameras in the tiled array are plenoptic light-field cameras.
Referring to
In order to generate physically accurate virtual views from any location on a physical capture surface such as the capture surface 400 of
In
The plenoptic light-field camera 100 is approximately optically equivalent to a virtual camera array of N×N cameras 2530 with the same angular field-of-view 2510, with the vertex of each camera 2530 located on the surface of the entrance pupil. The size of each entrance pupil in the virtual camera array 2500 is approximately 1/Nth the size (in one dimension) of the entrance pupil of the objective lens 110. Notably, the term approximately is used in the description above, as optical aberrations and other systemic variations may result in deviations from the ideal virtual system described.
In order to come as close as possible to a continuous light-field capture surface when spanning multiple cameras, the entrance pupil from one light-field camera may come as near as possible to adjoining the entrance pupil(s) from neighboring camera(s).
In order for the entrance pupils 1010 from neighboring objective lenses 1020 to create a nearly continuous surface, the entrance pupil 1010 may be large relative to the physical size of each light-field camera 1030 in the tiled array 1000, as shown in
In one embodiment, a tiled array may have plenoptic light-field cameras in which the entrance pupil and aperture stop are rectangular and the entrance pupils of the objective lenses create a continuous or nearly continuous surface on the capture system. The aperture stop may be shaped to allow for gap-free tessellation. For example, with reference to
In one embodiment, a lens with a relatively wide field-of-view and relatively large entrance pupil is selected as the objective lens, and the lenses are spaced as closely as possible while maintaining the traditional round shape. Again, a double Gauss type lens with a large aperture may be a good choice for the objective lens.
A tiled array 1500 in a ring configuration using round lenses is shown in
In one embodiment, one or more top and/or bottom facing cameras may be used in addition to a tiled array in a ring configuration.
Notably, the upward and/or downward facing light-field camera(s) 1220 may be standard two-dimensional camera(s), light-field camera(s) or a combination thereof. Embodiments of this type may capture highly incomplete light-field volume data directly above and below the tiled array 1200, but may offer significant savings in total system cost and/or complexity. In some circumstances, the views directly above and below the tiled array 1200 may be considered less important than other directions. For example, a viewer may not require as much detail and/or accuracy when looking up or down as when viewing images at his or her elevation.
Changing Rotational Position of the Tiled Array
In at least one embodiment, the surface of a capture system may be made to change its rotational position and capture different sets of viewpoints at different times. By changing the rotational position between frames, each successive frame may be used to capture portions of the light-field volume that may not have been captured in the previous frame.
Referring to
Specifically, at time A, a portion of the light-field volume is captured. The sensor array 1600 is then rotated to the position shown at time B by rotating the ring, and another portion of the light-field volume is captured. The sensor array 1600 is rotated again, by once again rotating the ring, with another capture at time C.
This embodiment may allow for finer sampling of the light-field volume, more complete sampling of the light-field volume, and/or sampling with less physical hardware. For clarity, the embodiments with changing rotational position are displayed in a ring configuration. However, it should be recognized that the principle may be applied to any tiled configuration. Rotation may be carried out about one axis, as in
In one embodiment, the camera array rotates in the same direction between each capture, as in
For video capture, the overall frame rate of the system may be very high so that every rotational position is captured at a sufficient frame rate. As an example, if output video at 60 frames per second is desired, and the capture system uses three distinct and repeating capture positions, the overall frame capture rate, including time for positions changes, may be greater than or equal to 180 frames per second. This may enable samples to be taken at each rotational position in synchronization with the desired frame rate.
In at least one embodiment, the entire sensor array 1600 may be attached to a rotary joint, which allows the tiled array to rotate independently of the rest of the system and surroundings. The electrical connections may go through a slip ring, or rotary electrical interface, to connect rotating components in the system to non-rotating components. The rotation and/or oscillation may be driven by a motor 1620, which may be a stepper motor, DC motor, or any other suitable motor system.
Changing Rotational Position of the Light-Field Sensors
In at least one embodiment, the light-field sensors within the capture system may be rotated to capture different sets of viewpoints at different times, while the objective lenses may stay in a fixed position. By changing the rotational position of the sensors between frames, each successive frame may be used to capture portions of the light-field volume that were not captured in the previous frame.
Referring to
At time A, a portion of the light-field volume is captured that corresponds to the objective lenses 1710 that are actively used at that time (i.e., the objective lenses 1710 that are in alignment with one of the light-field sensors 1720). The light-field sensors 1720 are then rotated to the position shown at time B, and another portion of the light-field volume is captured, this time corresponding with the different set of objective lenses 1710 that are in alignment with the light-field sensors 1720. The light-field sensors 1720 are rotated again, with another capture at time C.
This embodiment may allow for finer sampling of the light-field volume, more complete sampling of the light-field volume, and/or sampling with less physical hardware. For clarity, the embodiments with changing rotational position are displayed in a ring configuration. However, it should be recognized that the principle may be applied to any tiled configuration. Rotation may be carried out about one axis, as in
In one embodiment, the light-field sensor array rotates in the same direction between each capture, as in
In at least one embodiment, the array of light-field sensors 1720 and/or the array of light-field sensors 1820 may be attached to a rotary joint, which allows the array of light-field sensors 1720 or the array of tiled light-field sensors 1820 to rotate independently of the rest of the capture system and surroundings. The electrical connections may go through a slip ring, or rotary electrical interface, to connect rotating components in the system to non-rotating components. The rotation and/or oscillation may be driven by a stepper motor, DC motor, or any other suitable motor system.
Tiled Array of Array Light-Field Cameras
A wide variety of cameras may be used in a tiled array according to the present disclosure. In at least one embodiment, the light-field cameras in the tiled array are array light-field cameras. One example is shown in
The objective lenses 620 may cooperate to capture M×N virtual viewpoints, with each virtual viewpoint corresponding to one of the objective lenses 620 in the array. Each viewpoint may be captured as a separate image. As each objective lens 620 is located at a slightly different position than the other objective lenses 620 in the array, each objective lens 620 may capture approximately the same image, but from a different point of view from those of the other objective lenses 620. Many variations of the basic design are possible, and any variation may be applied to the embodiments described below.
In one embodiment, the resolution and field-of-view of each captured subview is approximately equivalent to the desired field-of-view and resolution for later viewing. For example, if the content captured is desired to be displayed on VR headsets with resolution up to 1920×1080 pixels per eye and an angular field-of-view of 90°, each subview may capture image and/or video data using a lens with a field-of-view greater than or equal to 90° and may have a resolution greater than or equal to 1920×1080.
Changing Rotational Position of a Tiled Array of Array Light-Field Cameras
Array light-field cameras and/or components thereof may be rotated to provide more complete capture of a light-field than would be possible with stationary components. The systems and methods of
In at least one embodiment, the surface of a capture system having array light-field cameras may be made to change its rotational position and capture different sets of viewpoints at different times. By changing the rotational position between frames, each successive frame may be used to capture portions of the light-field volume that may not have been captured in the previous frame, as in
Referring to
Specifically, at time A, a portion of the light-field volume is captured. The sensor array 3200 is then rotated to the position shown at time B by rotating the ring, and another portion of the light-field volume is captured. The sensor array 3200 is rotated again, by once again rotating the ring, with another capture at time C.
This embodiment may allow for finer sampling of the light-field volume, more complete sampling of the light-field volume, and/or sampling with less physical hardware. Further, the benefits of the use array light-field cameras may be obtained. For clarity, the embodiments with changing rotational position are displayed in a ring configuration. However, it should be recognized that the principle may be applied to any tiled configuration. Rotation may be carried out about one axis, as in
In one embodiment, the array light-field camera array rotates in the same direction between each capture, as in
For video capture, the overall frame rate of the system may be very high so that every rotational position is captured at a sufficient frame rate. As an example, if output video at 60 frames per second is desired, and the capture system uses three distinct and repeating capture positions, the overall frame capture rate, including time for positions changes, may be greater than or equal to 180 frames per second. This may enable samples to be taken at each rotational position in synchronization with the desired frame rate.
In at least one embodiment, the entire sensor array 3200 may be attached to a rotary joint, which allows the tiled array to rotate independently of the rest of the system and surroundings. The electrical connections may go through a slip ring, or rotary electrical interface, to connect rotating components in the system to non-rotating components. The rotation and/or oscillation may be driven by a stepper motor, DC motor, or any other suitable motor system.
Changing Rotational Position of the Photosensors of Array Light-Field Cameras
In at least one embodiment, the light-field sensors of array light-field cameras within the capture system may be rotated to capture different sets of viewpoints at different times, while the arrays of objective lenses may stay in a fixed position. By changing the rotational position of the sensors between frames, each successive frame may be used to capture portions of the light-field volume that were not captured in the previous frame.
Referring to
At time A, a portion of the light-field volume is captured that corresponds to the arrays of objective lenses 2010 that are actively used at that time (i.e., the arrays of objective lenses 2010 that are in alignment with one of the light-field sensors 2020). The light-field sensors 2020 are then rotated to the position shown at time B, and another portion of the light-field volume is captured, this time corresponding with the different set of arrays of objective lenses 2010 that are in alignment with the light-field sensors 2020. The light-field sensors 2020 are rotated again to once again reach the position shown at Time A, and capture may continue to oscillate between the configuration at Time A and that at time B. This may be accomplished via continuous, unidirectional rotation (as in
This embodiment may allow for finer sampling of the light-field volume, more complete sampling of the light-field volume, and/or sampling with less physical hardware. Further, the benefits of the use array light-field cameras may be obtained. For clarity, the embodiments with changing rotational position are displayed in a ring configuration. However, it should be recognized that the principle may be applied to any tiled configuration. Rotation may be carried out about one axis, as in
In at least one embodiment, the array of light-field sensors 2020 may be attached to a rotary joint, which allows the array of light-field sensors 2020 to rotate independently of the rest of the capture system and surroundings. The electrical connections may go through a slip ring, or rotary electrical interface, to connect rotating components in the system to non-rotating components. The rotation and/or oscillation may be driven by a stepper motor, DC motor, or any other suitable motor system.
Using Fiber Optic Tapers to Reduce Gaps in Coverage
In practice, it may be difficult to tile photosensors very close to one another.
In one embodiment, tapered fiber optic bundles may be used to magnify the active surface of a photosensor such as the photosensor 3300 of
A schematic illustration is shown in
Array light-field cameras using tapered fiber optic bundles may be used to create capture surfaces that may otherwise be extremely impractical. Photosensors are generally rectangular, and customization to specific shapes and/or sizes can be extremely time and cost-intensive. In addition, tiling options using rectangles can be limited, especially when a goal is to minimize gaps in coverage. In one embodiment, the large ends of the tapered fiber optic bundles used in the tiled array are cut into a mix of precisely sized and shaped hexagons and pentagons. These tapered fiber optic bundles may then be attached to photosensors and tiled into a geodesic dome as shown in
Focus, Resolution and Aperture Size
Ultimately, the resolution and maximum depth-of-field of virtual views generated from light-field volume data may be limited to the resolution and depth-of-field of the captured subviews. In typical practice, subviews in the light-field camera systems described herein have a large depth-of-field. However, as each subview captures light through an aperture with a physical size, the depth-of-field and of the subview is at least partially determined by the focus of the lens system and the size of the aperture. Additionally, the resolution of each subview is limited by the resolution of the photosensor pixels used when capturing that subview as well as the achievable resolution given the optics of the system. It may be desirable to maximize both the depth-of-field and the resolution of the subviews. In practice, the resolution and depth-of-field of the subviews may need to be balanced against the limitations of the sensor, the limitations of the available optics, the desirability of maximizing the continuity of the capture surface, and/or the desired number of physical subviews.
In at least one embodiment, the focus of the objective lenses in the capture system may be set to the hyperfocal position of the subviews given the optical system and sensor resolution. This may allow for the creation of virtual views that have sharp focus from a near distance to optical infinity.
In one embodiment of an array light-field camera, the aperture of each objective lens in the objective lens array may be reduced to increase the depth-of-field of the subviews. In one embodiment, the aperture size may be set so that a desired close focus distance is achievable when the objective lenses have focus set to their respective hyperfocal distances.
Virtual View Generation from the Captured Light-Field Data
Once image and/or video data has been captured by the tiled array of light-field cameras, images for different virtual viewpoints may be generated. In some embodiments, two images may be generated: one for each eye. The images may be generated from viewpoints that are displaced from each other by the ordinary displacement that exists between two human eyes. This may enable the images to present the viewer with the impression of depth. Image generation may be continuous, and may occur at any frame rate, such as, for example, 24 frames per second (FPS), 30 FPS, or 60 FPS, so that the images, in sequence, define a video feed for each eye. The video feed may be generated in real time as the viewer moves his or her head. Accelerometers, position sensors, and/or other sensors may be used to detect the motion and/or position of the viewer's head; the resulting position data may be used to move the viewpoints used to generate the images in general synchronization with the viewer's movements to present the impression of immersion in the captured environment.
Coordinate Conversion from Capture to Light-Field Volume
In at least one embodiment, all pixels in all the light-field cameras in the tiled array may be mapped to light-field volume coordinates. This mapping may facilitate the generation of images for different viewpoints within the light-field volume.
Light-field volume coordinates are shown conceptually in
This coordinate system 500 may be relative to the entire tiled light-field capture system. A ray 530 intersects the inner sphere 510 at (rho1, theta1) and the outer sphere 520 at (rho2, theta2). This ray 530 is considered to have the 4D coordinate (rho1, theta1, rho2, theta2).
Notably, any coordinate system may be used as long as the location and direction of all rays of interest can be assigned valid coordinates. The coordinate system 500 of
The coordinate system 500 for a light-field volume may be considered to exist in a 3-dimensional Cartesian space, and the origin of the coordinate system 500 may be located at the center of the inner sphere 510 and the outer sphere 520. Coordinates may be converted from light-field volume coordinates to Cartesian coordinates by additionally taking into account the radii of the inner sphere 510 and the outer sphere 520. Notably, many rays that may be defined in Cartesian coordinates may not be able to be represented in the coordinate system 500, including all rays that do not intersect the inner sphere 510.
Conceptually, a mapping from a pixel position, indexed in a 2D array by x and y, on a camera, camera, to a light-field volume coordinate in the coordinate system 500 is a mapping function:
f(camera,x,y)→(rho1,theta1,rho2,theta2)
In practice, each pixel, microlens, and subaperture may have a physical size; as a result, each pixel may integrate light not from a single ray, but rather a “ray bundle” consisting of a narrow volume of rays. For clarity, the simplified one-pixel-to-one-ray relationship described above will be used herein. However, one skilled in the art will recognize that this mapping may be naturally extended to cover “ray bundles.”
In one embodiment, the mapping function may be determined by the design of the capture system. Using a ray tracer or other optical software, a mapping from pixel coordinates to camera-centric world coordinates may be created. In one embodiment, the ray tracer traces a single, representative ray, from the center of each pixel, through the optical system, and out into the world. That representative ray may be parameterized by its intersection with the entrance pupil and direction of travel.
In another embodiment, many rays may be traced for each pixel, intersecting with the pixel in many locations and from many directions. The rays that are successfully traced from the pixel and out through the objective lens may be aggregated in some manner (for example, by averaging or fitting a ray using least squares error regression), and a representative ray may be generated. The camera-centric world coordinates may then be transformed based on the camera's location within the tiled array, into world coordinates that are consistent to all cameras in the array. Finally, each transformed ray in the consistent world coordinate space may be traced and intersections calculated for the inner and outer spheres that define the light-field volume coordinates.
In one embodiment, a calibration process may determine the mapping function after the camera is constructed. The calibration process may be used to fine-tune a previously calculated mapping function, or it may be used to fully define the mapping function.
In at least one embodiment, the capture system 2630 may be calibrated as follows:
Notably, the size and shapes of the chart 2610 and the chart 2620 may be varied to include spherical charts, cubic charts, or any other type of surface or combination thereof. Different chart types may be more readily adapted to different coordinate systems.
Virtual View Generation from Light-Field Volume Data
Images for virtual reality viewing may be generated from the light-field volume data. These images will be referred to as “virtual views.” To create a virtual view, a virtual lens, virtual focus position, virtual field-of-view and virtual sensor may be used.
In at least one embodiment, a virtual lens may be centered at the location of the desired virtual viewpoint. The virtual lens may contain a virtual aperture that may have any shape or size, and these characteristics may partially determine the depth-of-field and bokeh of the virtual view. The virtual focus position and virtual field-of-view of the lens may jointly define a region that will be visible and “in focus” after reconstruction. Notably, the focus and resolution are ultimately limited by the focus and resolution of the capture system, so it is possible to reconstruct an image on a virtual focal plane where nothing is really in focus. The virtual sensor may have the same resolution as the desired output resolution for the virtual view.
In one embodiment, a virtual camera system may be used to generate the virtual view. This embodiment is conceptually shown in
In one embodiment, an ideal lens is assumed, and the virtual setup may be simplified. This embodiment is conceptually shown in
Specifically, the lens may be geometrically simplified to a surface (for example, a circular disc) to define a virtual lens 2930 in three-dimensional Cartesian space. The virtual lens 2930 may represent the aperture of the ideal lens. The virtual field-of-view and virtual focus distance, when taken together, define an “in focus” surface in three-dimensional Cartesian space with the same aspect ratio as the virtual sensor. A virtual sensor 2940 may be mapped to the “in focus” surface.
The following example assumes a set of captured rays parameterized in light-field volume coordinates, rays, a circular virtual aperture, va, a rectangular virtual sensor with width w and height h, and rectangular “in focus” surface, fs. An algorithm to create the virtual view may then be the following:
In another embodiment, the virtual lens and/or the virtual sensor may be fully modeled as a more complete optical system. This embodiment is conceptually shown in
The virtual sensor 3040 may consist of virtual optical components, including one or more virtual lenses, virtual reflectors, a virtual aperture stop, and/or additional components or aspects for modeling. In this embodiment, rays that intersect with the entrance to the virtual lens 3030 may be optically traced through the virtual lens 3030 and onto the surface of the virtual sensor 3040.
The following example assumes a set of captured rays parameterized in light-field volume coordinates, rays, a virtual lens, vl, that contains a virtual entrance pupil, vep, and a rectangular virtual sensor, vs, with width w and height h. An algorithm to create the virtual view may then be the following:
Notably, optical ray tracers (for example, commercial applications such as ZEMAX) may function with varying levels of complexity as the behavior of light in the physical world is extremely complex. The above examples assume that one ray of light from the world equates to a single ray of light after passing through an optical system. Many optical modeling programs will model additional complexities such as chromatic dispersion, diffraction, reflections, and absorption.
Synthetic Ray Generation
In some embodiments of the capture system, certain areas of the light-field volume may not be adequately sampled. For example,
In one embodiment, rays are synthetically generated using simple interpolation between the closest available samples based on their light-field volume coordinates. Simple interpolation may work well when the difference between the location of the available samples and the desired sample is small. Notably, small is a relative term, and dependent on many factors, including the resolution of the virtual view, the location of physical subjects in the world at the time of capture, the application's tolerance for errors, and a host of other factors. The simple interpolation may generate a new sample value based on a weighted average of the neighboring rays. The weighting function may use nearest neighbor interpolation, linear interpolation, cubic interpolation, median filtering or any other approach now known or later developed.
In another embodiment, rays are synthetically generated based on a three-dimensional model and/or a depth map of the world at the time of capture. Notably, in a system that is well-calibrated relative to the world, a depth map and a three-dimensional model may be easily interchangeable. For the duration of the description, the term depth map will be used. In this embodiment, a depth map may be generated algorithmically from the captured light-field volume.
Depth map generation from light-field data and/or multiple overlapping images is a complicated problem, but there are many existing algorithms that attempt to solve the problem. See, for example, the above-cited U.S. patent application Ser. No. 14/302,826 for “Depth Determination for Light Field Images”, filed Jun. 12, 2014 and issued as U.S. Pat. No. 8,988,317 on Mar. 24, 2015, the disclosure of which is incorporated herein by reference.
Once a depth map has been generated, a virtual synthetic ray may be traced until it reaches an intersection with the depth map. In this embodiment, the closest available samples from the captured light-field volume may be the rays in the light-field that intersect with the depth map closest to the intersection point of the synthetic ray. In one embodiment, the value assigned to the synthetic ray may be a new sample value based on a weighted average of the neighboring rays. The weighting function may use nearest neighbor interpolation, linear interpolation, cubic interpolation, median filtering, and/or any other approach now known or later developed.
In another embodiment, a pixel infill algorithm may be used if insufficient neighboring rays are found within an acceptable distance. This situation may occur in cases of occlusion. For example, a foreground object may block the view of the background from the perspective of the physical cameras in the capture system. However, the synthetic ray may intersect with the background object in the occluded region. As no color information is available at that location on the background object, the value for the color of the synthetic ray may be guessed or estimated using an infill algorithm. Any suitable pixel infill algorithms may be used. One exemplary pixel infill algorithm is “PatchMatch,” with details as described in C. Barnes et al., PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing ACM Transactions on Graphics (Proc. SIGGRAPH), August 2009.
Virtual View Generation Acceleration Structures
In some cases, the algorithms for virtual view generation cited above may not execute efficiently enough, may not execute quickly enough, and/or may require too much data or bandwidth to properly enable viewing applications. To better enable efficient processing and/or viewing, the captured data may be reorganized or resampled as appropriate.
In one embodiment, the captured data may be resampled into a regularized format. In one specific embodiment, the light-field is resampled into a four-dimensional table, with separate dimensions for rho1, theta1, rho2 and theta2. The size of the resampled table will depend on many factors, including but not limited to the intended output resolution of the virtual views and the number of discrete viewpoints from which virtual views may be generated. In one embodiment, the intended linear output resolution of a virtual view may be 1000 pixels, and the field-of-view may be 100°. This may result in a total sampling of 3600 pixels for 360°. In the same embodiment, it may be desired that 100 discrete viewpoints can be generated in a single dimension. In this case, the size of the four-dimensional table may be 100×100×3600×3600. Notably, large sections of the table may be empty of data, and the table may be dramatically compressed relative to its nominal size. The resampled, regularized data structure may be generated through the use of “splatting” algorithms, “gathering” algorithms, or any other algorithm or technique.
In an embodiment using a “splatting” algorithm, the resampling process may begin with a four-dimensional table initialized with empty values. The values corresponding to each ray in the captured data set may then be added into the table at the data index(es) that best match the four-dimensional coordinates of the ray. The adding may use any interpolation algorithm to accumulate the values, including but not limited to a nearest neighbor algorithm, a quadlinear algorithm, a quadcubic algorithm, and/or combinations or variations thereof.
In an embodiment using a “gathering” algorithm, the value for each data index in the 4D table is calculated by interpolating from the nearest rays in the captured light-field data set. In one specific embodiment, the value at each index is a weighted sum of all rays that have coordinates within a four-dimensional hypercube centered at the coordinates corresponding to the data index. The weighting function may use nearest neighbor interpolation, linear interpolation, cubic interpolation, median filtering or any other approach now known or later developed.
After the captured light-field data set has been resampled into the four-dimensional table, there may be locations in the table with values that remain uninitialized or that have accumulated very little data. These locations may be referred to as “holes”. In some cases, it may be desirable that the “holes” are filled in prior to the performance of additional processing like virtual view generation. In one embodiment, holes may be filled in using four-dimensional interpolation techniques in which values for the holes are interpolated based on the values of their neighbors in the four-dimensional table. The interpolation may use any type of filter kernel function, including but limited to linear functions, median filter functions, cubic functions, and/or sync functions. The filter kernel may be of any size.
In another embodiment, “hole” data may be filled in using pixel infill algorithms. In a specific example, to fill hole data for the index with coordinates (rho1, theta1, rho2, theta2), a two-dimensional slice of data may be generated by keeping rho1 and theta1 fixed. A pixel infill algorithm (for example, PatchMatch) may be applied to fill in the missing data in the two-dimensional slice, and the generated data values may then be added into the four-dimensional table.
In one embodiment, the resampled four-dimensional table may be divided and stored in pieces. In some embodiments, each piece may correspond with a file stored in a file system. As an example, the full four-dimensional table may be broken up by evenly in four pieces by storing ¼×¼×¼×¼ of the full table in each piece. One advantage of this type of approach may be that entire pieces may be completely empty, and may thus be discarded. Another advantage may be that less information may need to be loaded in order to generate a virtual view.
In one embodiment, a set of virtual views is precomputed and stored. In some embodiments, a sufficient number of virtual views may be precomputed to enable the display of any needed viewpoint from the precomputed virtual views. Thus, rather than generating virtual views in real-time, the viewing software may read and display the precomputed virtual views. Alternatively, some precomputed virtual views may be used in combination with real time generation of other virtual views.
Conventional Camera Arrays
In some embodiments, conventional, two-dimensional cameras may be used in order to provide additional spatial resolution, cost reduction, more manageable data storage, processing, and/or transmission, and/or other benefits. Advantageously, such conventional cameras may be arranged in a tiled array similar to those described above for light-field cameras. Such arrays may also be arranged to provide continuous, or nearly continuous, fields-of-view.
Referring to
As shown in
Referring to
Referring to
The upper view cameras 3710, the center view cameras 3720, and the lower view cameras 3730 may be arranged in three rows, including a top row 3760, a middle row 3770, and a bottom row 3780. In the top row 3760, the upper view cameras 3710 and the center view cameras 3720 may be arranged in an alternating pattern. In the middle row 3770, only the center view cameras 3720 may be present. In the bottom row, 3780, the lower view cameras 3730 and the center view cameras 3720 may be arranged in an alternating pattern similar to that of the upper view cameras 3710 and the center view cameras 3720 of the top row 3760. The tiled array 3700 may have approximately four times as many of the center view cameras 3720 as of each of the upper view cameras 3710 and the lower view cameras 3730. Thus, as in the previous embodiment, more complete imaging may be provided for the center views, in which the viewer of a virtual reality experience is likely to spend the majority of his or her viewing time. Notably, the center view cameras 3720 on the top row 3760 may be tilted upward, and the center view cameras 3720 on the bottom row 3780 may be tilted downward. This tilt may provide enhanced vertical stitching and/or an enhanced vertical field-of-view.
Further, the tiled array 3700 may have three full degrees of freedom, and three limited degrees of freedom. The tiled array 3700 may provide support for head tilt via the enhanced vertical field-of-view, and may further provide limited vertical parallax. Further, the tiled array 3700 may support limited forward/backward movement.
In other alternative embodiments, various alterations may be made in order to accommodate user needs or budgetary restrictions. For example, fewer cameras may be used; in some tiled array embodiments, only ten to twenty cameras may be present. It may be advantageous to use smaller cameras with smaller pixel sizes. This and other modifications may be used to reduce the overall size of the tiled array. More horizontal and/or vertical stitching may be used.
According to one exemplary embodiment, approximately forty cameras may be used. The cameras may be, for example, Pt Grey Grasshopper 3 machine vision cameras, with CMOSIS MCV3600 sensors, USB 3.0 connectivity, and one-inch, 2 k×2 k square image sensors, with 90 frames per second (FPS) capture and data transfer capability. The data transfer rate for raw image data may be 14.4 GB/s (60 FPS at 12 bits), and a USB 3.0 to PCIE adapter may be used. Each USB 3.0 interface may receive the image data for one camera.
The tiled array may have a total resolution of 160 megapixels. Each of the center view cameras may have a Kowa 6 mm lens with a 90° field-of-view. Each of the upper view cameras and lower view cameras may have a Fujinon 2.7 mm fisheye lens with a field-of-view of 180° or more. In alternative embodiments, more compact lenses may be used to reduce the overall size of the tiled array.
Conventional cameras may be arranged in tiled arrays according to a wide variety of tiled arrays not specifically described herein. With the aid of the present disclosure, a person of skill in the art would recognize the existence of many variations of the tiled array 3500 of
Spatial Random Access Enabled Volumetric Video—Introduction
As described in the background, the capture process for volumetric video may result in the generation of large quantities of volumetric video data. The amount of volumetric video data may strain the storage, bandwidth, and/or processing capabilities of client computing systems and/or networks. Accordingly, in at least one embodiment, the volumetric video data may be divided into portions, and only the portion needed, or likely to be needed soon, by a viewer may be delivered.
Specifically, at any given time, a viewer is only able to observe a field-of-view (FoV) inside the viewing volume. In at least one embodiment, the system only fetches and renders the needed FoV from the video volume data. To address the challenges of data and complexity, a spatial random access coding and viewing scheme may be used to allow arbitrary access to a viewer's desired FoV on a compressed volumetric video stream. Inter-vantage and inter spatial-layer predictions may also be used to help improve the system's coding efficiency.
Advantages of such a coding and/or viewing scheme may include, but are not limited to, the following:
Several different methods may be used to apportion the video data, associate the video data with the corresponding vantage, encode the video data, and/or compress the video data for subsequent transmission. Some exemplary methods will be shown and described, as follows. These can be implemented singly or in any suitable combination.
Data Representation—Vantages
Numerous data representations are possible for video data for fully immersive virtual reality and/or augmented reality (hereafter “immersive video”). “Immersive video” may also be referred to as “volumetric video” where there is a volume of viewpoints from which the views presented to the user can be generated. In some data representations, digital sampling of all view-dependent color and depth information may be carried out for any visible surfaces in a given viewing volume. Such sampling representation may provide sufficient data to render any arbitrary viewpoints within the viewing space. Viewers may enjoy smooth view-dependent lighting transitions and artifacts-free occlusion filling when switching between different viewpoints.
As described in the above-cited U.S. patent application Ser. No. 15/590,841 for “Vantage Generation”, for ease of spatial random access and viewport rendering, an image-based rendering system according to the present disclosure may represent immersive video data by creating a three-dimensional sampling grid over the viewing volume. Each point of the sampling grid is called a “vantage.” Various vantage arrangements may be used, such as a rectangular grid, a polar (spherical) matrix, a cylindrical matrix, and/or an irregular matrix. Each vantage may contain a projected view, such as an omnidirectional view projected onto the interior of a sphere, of the scene at a given coordinate in the sampling grid. This projected view may be encoded into video data for that particular vantage. It may contain color, texture, and/or depth information. Additionally or alternatively, the projected view may be created using the virtual view generated from the light-field volume data, as discussed in the previous section.
To provide smooth transitions for view-dependent lighting and rendering, the system may perform a barycentric interpolation of color between four vantages whose locations form a tetrahedron that includes the view position for each eye view. Other fusion techniques may alternatively or additionally be used to interpolate between vantages. The result may be the combination of any number of vantages to generate viewpoint video data for a viewpoint that is not necessarily located at any of the vantages.
Tile-Based Vantage Coding
A positional tracking video experience may require more than hundreds of high resolution omnidirectional vantages across the viewing volume. This may require at least two orders of magnitude more storage space, by comparison with conventional two-dimensional videos. With color and depth information represented in each of the vantages, image-based and/or video-based compression techniques, such as JPEG, H.264/AVC and/or HEVC, may be applied to the color and/or depth channels to remove any spatial and temporal redundancies within a single vantage stream, as well as redundancies between different vantage streams.
In many situations, during decoding and rendering, there may be a need for multiple vantages to be loaded and rendered in real-time at a high frame rate. A compressed vantage, which requires a decoding procedure, may further put computation and memory pressure on the client's system. To relieve this pressure, in at least one embodiment, the system and method may only decode and render the region of vantages within a viewer's FoV. Spatial random access may be facilitated by dividing a vantage into multiple tiles. Each tile may be independently and/or jointly encoded with the system's vantage encoder using image-based and/or video-based compression techniques, or encoded through the use of any other compression techniques. When a user is accessing an arbitrary viewpoint inside a viewing volume, the system may find the corresponding vantages within the sampling grid and fetch the corresponding tiles inside the vantages. A tile-based representation may also offer inherent parallelizability for multi-core systems. The tiling scheme used for vantage compression may be different from the tiling scheme used for rendering or culling used by the rendering pipeline. Notably, tiling may be used to expedite delivery, decoding, and/or display of video data, independently of the use of compression. Tiling may expedite playback and rendering independently of the manner in which tiling is performed for encoding and/or transmission. In some embodiments, the tiling scheme used for encoding and transmission may also be used be used for playback and rendering. A tiled rendering scheme may help reduce computation complexity and provide stability to meet time-varying demands on the CPU and/or GPU of a computing system.
Referring to
Multiple Resolution Layers
Coding dependencies, system processing, and/or network transmission may introduce spatial random access latency to the system. Spatial random access to different tiles may be needed in certain instances, such as when the viewer switches the FoV in a virtual reality experience by turning his or her head or when the viewer moves to a new region along the vantage sampling grid. To prevent playback discontinuity in such situations, the system and method disclosed herein may pre-load the tiles outside a viewer's FoV. However, this may increase the decoding load on the client system and limit the complexity savings provided by the compression and/or apportionment of the video data. Accordingly, the pre-fetched tiles may instead be provided at a lower spatial resolution, so as to conceal switching latency.
In addition, clients with different constraints, such as network bandwidth, display resolution and computation capabilities, may require different quality representation of the tiles. In at least one embodiment, the system and method provide such different quality representations by displaying the tiles at different resolutions and/or delivering the tiles at different bitrates. To meet these demands, a multi-spatial resolution layer scheme may be used. A system according to the present disclosure may have any number of spatial resolution layers. Further, all tiles need not necessarily have the same number of spatial resolution layers; rather, different tiles may have different numbers of spatial resolution layers. Different tiles may additionally or alternatively have different bit rates, spatial resolutions, frame resolutions, shapes, and/or aspect ratios. A spatial layered scheme may also provide error-resilience against data corruption and network packet losses.
Thus, the first layer 3810 may be transmitted and used to generate and display the viewpoint video data when bandwidth, storage, and/or computational limits are stringent. The second layer 3820 may be transmitted and used to generate and display the viewpoint video data when bandwidth, storage, and/or computational limits are moderate. The third layer 3830 may be transmitted and used to generate and display the viewpoint video data when bandwidth, storage, and/or computational limits are less significant.
Tiling Design for Equirectangular Projected Vantage
In some embodiments, equirectangular projection can be used to project a given scene onto each vantage. In equirectangular projection, a panoramic projection may be formed from a sphere onto a plane. This type of projection may create non-uniform sampling densities. Due to constant spacing of latitude, this projection may have a constant vertical sampling density on the sphere. However, horizontally, each latitude ϕ, may be stretched to a unit length to fit in a rectangular projection, resulting in a horizontal sampling density of 1/cos(ϕ). Therefore, to reduce the incidence of over-sampling in equirectangular projection, there may be a need to scale down the horizontal resolution of each tile according to the latitude location of the tile. This re-sampling rate may enable bit-rate reduction and/or maintain uniform spatial sampling across tiles.
Referring to
In alternative embodiments, in addition to or instead of re-sampling the dimension of the tile, the length of pixels in scanline order may be resampled. Such resampling may enable the use of a uniform tiling scheme, as in
Compression Scheme References
In recent years, a number of compression schemes have been developed specifically for two-dimensional, three-dimensional, and multi-view videos. Examples of various compression standards include:
Any of the foregoing may optionally be incorporated into the systems and methods disclosed herein. However, most image/video-based compression schemes exploit redundancies that exist, for example, between different camera views (inter-view) and between different video frames in time (inter-frame). Recent standards, such as MV/3D-HEVC, aim to compress video-plus-depth format more efficiently by addressing the unique characteristics of depth maps and exploiting redundancies between the views. Numbers 1, 7, and 8 above are examples of such standards.
The compression schemes set forth above generally rely on block-based disparity compensation and expect all input views to be aligned in a one-dimensional linear and coplanar arrangement. Numbers 4 and 5 make use of the geometric relationship between different camera views and generate a synthesized reference view using view interpolation and extrapolation. Number 6 represents disparity information using meshes and yields higher coding gains with higher quality view interpolation for stereo image compression. Other prior techniques also utilize lifting-based wavelet decomposition to encode multi-view data by performing motion-compensated temporal filtering, as in Number 2 above, and disparity-compensated inter-view filtering, as in Number 3 above. However, all inter-view techniques described above have only applied on-camera data with planar projection. In terms of spatial random access enabled video, Numbers 9 and 10 provide a rectangular tiling scheme with multi-spatial resolution layers and enabled pan/tilt/zoom capabilities on high-resolution two-dimensional videos.
Prediction Types
Referring to
By contrast with conventional inter-view prediction in stereo images or video, the inter-vantage prediction carried out by the encoder 3900 may deal with non-planar projection. It may generate meshes by extracting color, texture, and/or depth information from each vantage and rendering a vantage prediction after warping and interpolation. Other methods for inter-vantage prediction include, but are not limited to:
Disocclusions may be filled with special considerations for different cases. According to some examples, disocclusions may be filled with previously mentioned methods such as, without limitation, image inpainting (Patch match), and spatial interpolation.
For the case of inter-frame coding, conventional two-dimensional motion compensation and estimation used in inter-frame prediction may only account for linear motion on a planar projection. One solution to rectify this problem is to map the input vantage projection to another projection map, such as cube map, that minimizes geometric distortion and/or favors straight-line motions. This procedure may be achieved by the module that handles projection transform 3970 in
In a manner similar to that of scalable video coding (SVC), the system may also make use of the tiles from one or more lower resolution layers (such as the first layer 3810 and/or the second layer 3820 of
Prediction Structure
The encoding prediction steps mentioned previously may be carried out according to a wide variety of techniques. Some examples will be shown and described in connection with
Referring to
Of the coding structures of
Many prediction structures may be used for inter-vantage prediction, in addition to or in the alternative to those of
Referring to
To increase compression efficiency, the encoding scheme 4550 may also decrease the number of intra-coded reference vantages and have each predicted vantage predict other vantages as well. Therefore, the encoding scheme 4550 may create a chain of dependencies as shown in
Referring to
In some embodiments (not shown), a full inter-temporal/inter-vantage encoding scheme may be used. Such a scheme may provide optimum encoding efficiency, but may be relatively more difficult to decode.
Hierarchical Inter-Vantage Prediction Structure
In some embodiments, a hierarchical coding structure for inter-vantage prediction may provide a scalable solution to vantage compression. A set of vantages can be decomposed into hierarchical layers. The vantages in the lower layer may be independently encoded and used as references for the upper layers. The vantages in a layer may be predicted by either interpolating or extrapolating the vantages views from the lower layers.
Such a coding scheme may provide scalability to address different rate and/or device constraints. Devices with less processing power and/or bandwidth may selectively receive, decode and/or store the lower layers with a smaller viewing volume and/or lower vantage sampling density.
Referring to
Referring to
Referring to
Such hierarchical coding schemes may also provide enhanced error-resiliency. For example, if the client fails to receive, decode, and/or load the higher layers before the playback deadline, the client can still continue playback by just decoding and processing the lower layers.
Rate-Distortion-Optimized (RDO) Encoder Control with Decoding Complexity and Latency Awareness
The systems and methods of the present disclosure may utilize a rate-distortion optimized encoder control that addresses different decoding complexity and latency demands from different content types and client playback devices. For example, content with higher resolution or more complex scenery might require higher decoding complexity. Content storage that does not need real-time decoding would exploit the highest compression ratio possible without considering latency.
To estimate decoding complexity, the controller may map a client device's capabilities to a set of possible video profiles with different parameter configurations. The client device capabilities may include hardware and/or software parameters such as resolution, supported prediction types, frame-rate, prediction structure, number of references, codec support and/or other parameters.
Given the decoding complexity mapping and the switching latency requirement, the encoder control can determine the best possible video profile used for encoding. The latency can be reduced by decreasing the intra-frame interval and/or pruning the number of frame dependencies.
Decoding complexity can be reduced by disabling more complex prediction modes, reducing playback quality, and/or reducing resolution. Using the chosen video profile, the controller can then apply Lagrangian optimization to select the most optimal prediction structure and encoding parameters, for example, from those set forth previously. Exemplary Lagrangian optimization is disclosed in Wiegand, Thomas, and Bernd Girod, “Lagrange multiplier selection in hybrid video coder control.” Image Processing, 2001. Proceedings. 2001 International Conference on. Vol. 3. IEEE, 2001. An optimal encoder control may find the optimal decision, {circumflex over (m)}, by the following Lagrangian cost function:
{circumflex over (m)}=argminm∈M[D(l,m)+λ·R(l,m)□]
where l denotes the locality of the decision (frame-level or block level), m denotes the parameters or mode decision, D denotes the distortion, R denotes the rate and λ denotes the Lagrangian multiplier.
The encoder control may manage and find the optimal settings for the following encoding parameters on a block or frame level:
In various embodiments, any suitable compression scheme and/or codec can be used for encoding prediction residuals and encoder side information. The system may be compatible with image/texture-based and/or video-based encoders, such as BC7, JPEG, H.264/AVC, HEVC, VP8/9 and others. Components, such as intra-frame prediction and inter-frame prediction, which exist in other codecs can be reused and integrated with the system and method set forth herein.
Depth Channel Compression
In some embodiments, information regarding the depth of objects in a scene may be used to facilitate compression and/or decompression or to otherwise enhance the user experience. For example, a depth map, which may be a two-dimensional grayscale image with intensity indicative of the depth of objects, may be used. In general, depth channel compression or depth map compression may advantageously preserve the mapping of silhouettes in the depth map to their associated color information. Image-based and/or video-based lossless compression techniques may advantageously be applied to the depth map data. Inter-vantage prediction techniques are applicable to depth map compression as well. Depth values may need to be geometrically re-calculated to another vantage with respect to an origin reference. In a manner similar to that of color, the (x,y) coordinate can be geometrically reprojected to another vantage.
Extension to Other Data Representations
The techniques set forth above describe the application of spatial random access-enabled compression schemes to a vantage representation. Each vantage may consist of multi-channel color information, such as RGB, YUV and other color formats, and a single depth channel. Similar techniques can also be performed in connection with other forms of data representation, such as layered depth images, as set forth in Shade, Jonathan, et al. “Layered depth images.” Proceedings of the 25th annual coference on Computer graphics and interactive techniques. ACM, 1998, epipolar plane image volumes, as set forth in Bolles, Robert C., H. Harlyn Baker, and David H. Marimont. “Epipolar-plane image analysis: An approach to determining structure from motion.”International Journal of Computer Vision 1.1 (1987): 7-55, light field images, three-dimensional point clouds, and meshes.
Temporal redundancies may be removed by tracking each data sample in the temporal direction for a given representation. Spatial redundancies may be removed by exploiting correlations between neighboring sample points across space and/or layers, depending on the representation. To facilitate spatial random access similar to vantage-based tiling, each sample from the corresponding layers may be grouped together according to their spatial location and/or viewing direction on a two-dimensional, three-dimensional, and/or other multi-dimensional space. Each grouping may be independently encoded such that the viewer only needs to decode samples from a subregion of a viewing volume when facing a given direction with a given field-of-view.
Referring to
System Architecture
Various system architectures may be used to implement encoding, decoding, and/or other tasks related to the provision of viewpoint video data to a viewer. In some embodiments, the system may provide six degrees of freedom and/or full parallax in a three-dimensional viewing volume. The system may be scalable to support different degrees of immersion. For example, all aforementioned techniques, such as hierarchical vantage prediction, spatial layers, and tiling, may support scalability to different applications. Such a scheme may be scaled to support two-dimensional planar video, single viewpoint omnidirectional three-dimensional video, a virtual reality video system with only vertical or horizontal parallax, and/or systems with different degrees of freedom ranging from one degree of freedom to six degrees of freedom. To achieve such scaling, vantage density and vantage volume may be decreased and/or the set of vantages and tiles that can be fetched to generate a viewpoint may be limited. A hierarchical vantage scheme may be designed to support different platforms, for example, a base layer that supports one degree of freedom (a single vantage), a secondary layer that supports three degrees of freedom with horizontal parallax (a disk of vantages), and a third layer that supports six degrees of freedom with full parallax (a set of all vantages in a viewing volume). Exemplary architecture will be shown and described as follows.
Tile Processing and Encoding
Referring to
For each spatial resolution layer (for example, for each of the first layer 3810, the second layer 3820, and the third layer 3830 of
Tile Decoding and Playback
Referring to
In some embodiments, pause, fast-forward, and/or rewind functionality may be supported. The system may perform spatial-temporal access on the tiles at the same time during fast-forward and rewind, for example, by fast-forwarding or rewinding while the viewer's head is moving. The playback tile may continue to stream and/or decode the tiles spatially and temporally while a user is rewinding or fast-forwarding. A similar feature may be implemented to facilitate pausing playback.
To reduce complexity, tiles 4930 outside of the viewport 4910 may be fetched from the lower resolution layers (for example, the first layer 3810 of
In the example of
Referring to
When the scene inside a tile is composed of objects that are far away, the variations in view-dependent lighting and occlusions are very limited. Instead of fetching a set of four or more vantage tiles for rendering the view, the system might only need to fetch a single tile from the closest vantage. Conversely, when the scene inside a tile has one or more objects that are close to the viewpoint, representation of those objects may be more realistic if tiles from all four (or even more) vantages are used for rendering the view on the display device.
Through multi-spatial layer composition, a system and method according to the present disclosure may provide flexibility to optimize perceptual quality when the system is constrained by computing resources such as processing power, storage space, and/or bandwidth. Such flexibility can also support perceptual rendering techniques such as aerial perspective and foveated rendering.
Notably, the system 4700 of
Content Delivery
In various embodiment, the system and method may support different modes of content delivery for immersive videos. Such content delivery modes may include, for example and without limitation:
When a physical storage medium is available, the compressed volumetric video data may be stored on and retrieved from a local physical storage medium and played back in real-time. This may require the presence of sufficient memory bandwidth between the storage medium and the system's CPU and/or GPU.
Decompressed Video Data Downloaded to Client Device
The compressed video data may be packaged to support content downloading. The compression and packaging may be selected to meet the client device's complexity and storage capabilities. For a less complex device, such as a smartphone, lower resolution video data and/or less complex video data may be downloaded to the client device. In some embodiments, this may be achieved using the scalability techniques described previously.
Compressed Volumetric Video Data Downloaded to Client Device with Offline Decompression
When the file size of the volumetric video data or download time is a concern, the system can remove the decoding complexity constraint and compress the file stream by using the best available compression parameters. After a client device downloads the compressed package, the client can then decode the package offline and transcode it to another compression format that can be decodable at real-time, usually at the cost of creating a much larger store of compressed volumetric video data.
Video Data Streamed to Client Device
A tiling scheme with multiple resolution layers, as described above in connection with
Method for Capturing Volumetric Video Data
The systems described above may be used in conjunction with a wide variety of methods. One example will be shown and described below. Although the systems and methods of the present disclosure may be used in a wide variety of applications, the following discussion relates to a virtual reality application.
Referring to
In a step 5130, vantages may be distributed throughout the viewing volume. The viewing volume may be a designated volume, from within which the captured scene is to be viewable. The vantages may be distributed throughout the viewing volume in a regular pattern such as a three-dimensional grid or the like. In alternative embodiments, the vantages may instead be distributed in a three-dimensional hexagonal grid, in which each vantage is equidistant from all of its immediate neighbors. Such an arrangement may approximate a sphere. Vantages may also be distributed non-uniformly across the three-dimensional viewing volume. For example, regions of the viewing volume that are more likely to be selected as viewpoints, or from which the scene would beneficially be viewed in greater detail, may have comparatively more vantages.
In a step 5140, the volumetric video data may be used to generate video data for each of the vantages. For any given vantage, the corresponding video data may be usable to generate a view of the scene from a viewpoint located at the vantage.
In a step 5150, user input may be received to designate a viewpoint within the viewing volume. This may be done, for example, by a viewer positioning his or her head at a location corresponding to the viewpoint. The orientation of the viewer's head may be used to obtain a view direction along which the view from the viewpoint is to be constructed.
In a step 5160, a subset of the vantages nearest to the viewpoint may be identified. The subset may be, for example, the four vantages closest to the viewpoint, which may define a tetrahedral shape containing the viewpoint, as described previously. In step 5170, the video data for the subset of vantages may be retrieved.
In a step 5180, the video data from the subset of vantages may be combined together to yield viewpoint video data representing the view of the scene from the viewpoint, from along the view direction. The video data may be interpolated if the viewpoint does not lie on or adjacent to one of the vantages.
Further, various predictive methods may be used, as set forth above, to combine future video data from the viewpoint and/or future video data from proximate the viewpoint. Such predictive methods may be used to generate at least a portion of the viewpoint video data for a future view from any combination of the viewpoint, an additional viewpoint proximate the viewpoint, the view direction, an additional view direction different the view direction. Thus, if the viewer actually does turn his or her head in alignment with the viewpoint and view direction pertaining to the predicted viewpoint video data, the predicted viewpoint video data may be used to streamline the steps needed to display the scene from that viewpoint, along that view direction. Additionally or alternatively, the playback system may predict one or more viewing trajectories along which the viewer is likely to move his or her head. By predicting the viewing trajectories, the system may pre-fetch the tiles to be decoded and rendered to minimize viewing latencies.
Additionally or alternatively, predictive methods may be used to predict viewpoint video data without having to receive and/or process the underlying video data. Thus, tighter bandwidth and/or processing power requirements may be met without significantly diminishing the viewing experience.
In a step 5190, the viewpoint video data may be transmitted to the client device. Notably, this is an optional step, as the steps 5150, 5160, 5170, and 5180 may be optionally performed at the client device. In such an event, there may be no need to transmit the viewpoint video data to the client device. However, for embodiments in which the step 5180 is carried out remotely from the client device, the step 5190 may convey the viewpoint video data to the client device.
In a step 5192, the viewpoint video data may be used to display a view of the scene to the viewer, from the viewpoint, with a FoV oriented along the view direction. Then, in a query 5194, the method 5100 may determine whether the experience is complete. If not, the method 5100 may return to the step 5150, in which the viewer may provide a new viewpoint and/or a new view direction. The steps 5160, 5170, 5180, 5190, and 5192 may then be repeated to generate a view of the scene from the new viewpoint and/or along the new view direction. Once the query 5194 is answered in the affirmative, the method 5100 may end 5196.
Adaptive View-Dependent Lighting Removal
As mentioned previously, various compression techniques may be used to compress and/or remove data pertaining to the augmented aspects of a virtual reality or augmented reality video stream, such as stereopsis, binocular occlusions, vergence, motion parallax and view-dependent lighting. Examples presented herein show how to remove some or all of the view-dependent lighting from a video stream. Those of skill in the art will recognize that the systems and methods provided herein could also be applied to removal and/or compression of other elements unique to virtual reality or augmented reality video streams.
In some embodiments, a grid-based vantage representation scheme may be used to independently store the color and/or depth information (collectively, “vantage data”) from a fixed viewpoint, or “vantage location,” along the sampling grid. Redundancies between vantages may be removed using inter-vantage prediction that reprojects a vantage (the “base vantage” at a base vantage location) onto another vantage (the “target vantage” at a target vantage location). A variety of inter-vantage prediction methods may be used, for example, as discussed in connection with
For example, in
Removal of View-Dependent Lighting and Reprojection Error
Referring to
Removal of all View-Dependent Lighting
In some embodiments, one or more video-based compression techniques may be applied to the residual data. For example, quantization and/or entropy coding may be applied to the residual data. The result may be removal of small energy elements of the residual data that may not be perceptible to the viewer. For the given scene in the example, a majority of the residual energy is due to reprojection errors and view-dependent lighting. To lower bitrate requirements, view-dependent lighting and reprojection error may be removed from the residual data. Only the occluded region may be compressed, as depicted in
Referring to
Using information deduced from inter-vantage prediction, an occlusion mask can be computed to indicate one or more occluded regions between the vantage references reconstructed from the base vantage and the target vantage to be encoded. Residual energy can then be removed according to the occlusion mask. The mask may be provided as part of the compressed data stream. Since the mask may be available to the decoder, all residuals in unoccluded regions may be removed, and only samples in the occluded regions may be encoded in the compressed video stream. In the alternative, the mask may be re-computed at the decoder side.
Perceptually-Optimized Removal of View-Dependent Lighting
In the alternative to removal of all view-dependent lighting information in unoccluded region of the residual data, the system may adaptively remove only view-dependent information or reprojection-errors that are deemed unlikely to contribute to any perceptual quality differences when rendering the final viewpoint. This is depicted by way of example in
Referring to
Rate-Distortion Optimization for Residual Information Removal
In alternative embodiments, the residual information, including view-dependent lighting, reprojection errors and/or occluded regions, can be removed by rate-distortion optimization (RDO) techniques. The residual information for each vantage can be divided into small rectangular blocks (4×4, 8×8, 4×8, etc.). In each small block, the degree of quantization applied to the residual information can be parameterized. Separate quantization parameters can be chosen for occluded regions and non-occluded regions.
The degree of quantization may effectively control the degree of view-dependent lighting and reprojection error in the reprojection. Quantization parameters can be obtained by optimizing the RDO cost. A rate budget can be provided to limit the size of the compressed bitstream. In other words, the system can automatically choose the degree of view-dependent lighting and reprojection error removal depending on the system's rate constraints.
Systems for Removal of View-Dependent Lighting
A wide variety of system configurations may be used to remove all or part of the view-dependent lighting and/or other information from the residual data. Exemplary systems will be described in connection with
As embodied in
A residual splitter 6520, or demuxer, may receive the residual data 6516 and divide the residual data 6516 into an occluded region 6522 and an unoccluded region (not shown in
The residual data 6516, or at least portion thereof identified as the occluded region 6522, may then be passed to a residual quantizer 6530, which may apply quantization to the occluded region 6522 only. The resulting quantized data may be in the form of an unsigned n-bit integer 6532, which may be passed to an encoder 6540. The encoder 6540 may compress the unsigned n-bit integer 6532 and build an encoded bit stream 6542 that can be consumed by a decoder 6550. The encoded bit stream 6542 may also be referred to as a compressed video stream. The encoder 6540 may apply entropy encoding and/or other encoding techniques.
The decoder 6550 may receive the encoded bit stream 6542 and may decompress the encoded bit stream 6542 to generate an unsigned n-bit integer 6552, which may be similar or even identical to the unsigned n-bit integer 6532 compressed by the encoder 6540. The decoder 6550 may optionally operate by applying the algorithms employed by the encoder 6540, in reverse.
The unsigned n-bit integer 6552 may be passed to a residual dequantizer 6560, which may generate residual data 6562, which may be similar or identical to the residual data 6516. The residual dequantizer 6560 may optionally operate by applying the algorithms employed by the residual quantizer 6530, in reverse.
The residual data 6562 may be passed to an addition module 6570, which may add the residual data 6562 to the reprojected target vantage 6512 generated in the previous iteration of inter-vantage prediction, to generate a reconstructed frame 6572 for the target vantage. The reconstructed frame 6572 may be passed to a vantage references buffer 6580, and may be used as a base vantage for future inter-vantage prediction.
The base vantage may be used by an inter-vantage predictor 6590, which may apply inter-vantage prediction, for example, as set forth in connection with
Specifically, the system 6600 may have a low pass filter 6610 that receives the unoccluded region 6612 of the residual data 6516 after the residual data 6516 has been divided into the occluded region 6522 and the unoccluded region 6612. Of course, the residual splitter 6520 may delineate more than one of each of the occluded region 6522 and the unoccluded region 6612. The low pass filter 6610 may be applied to remove high frequency information in the unoccluded region 6612, which may not contribute to any perceptual quality differences during final viewpoint rendering using the vantages.
In the alternative to the low pass filter 6610, any filter design that removes non-perceptual information may be used. This filtering processing may, in other embodiments, be a manual process in which a human editor can manually remove information from the residual frame. The degree or threshold for view-dependent information removal can be adjusted by changing the parameters on such a filter. These parameters may allow the system 6600 to adjust the image quality of the encoded vantage and the size of encoded vantage output.
The system 6600 may also have an addition module 6620 that recombines the unoccluded region 6612 with the occluded region 6522, with the optional application of smoothing 6622 between the unoccluded region 6612 and the occluded region 6522. In some embodiments, the addition module 6620 may apply a Gaussian smoothing kernel to smooth the transitions between the unoccluded region 6612 and the occluded region 6522. The residual data 6516, with smoothing applied, may then be passed to the residual quantizer 6530 for the performance of further steps.
Methods for Removal of View-Dependent Lighting
Various methods may be used to remove view-dependent lighting, either entirely or in part, from residual data. One exemplary method will be shown and described in connection with
Referring to
The method 6700 may start 6710 with a step 5120 in which the volumetric video data is captured. This may be done, for example, through the use of a tiled camera array such as any of those described above. In a step 5130, vantages may be distributed throughout the viewing volume. In a step 5140, the volumetric video data may be used to generate video data for each of the vantages. The step 5120, the step 5130, and the step 5140 may all be substantially as described above in connection with the method 5100 of
In a step 6720, vantage data may be retrieved from the video stream. The vantage data may include, for example, base vantage data for the base vantage to be used as a basis for inter-vantage prediction, and target vantage data for the target vantage. The vantage data may include the actual target vantage 6514 of
In a step 6730, the base vantage data may be reprojected to the target vantage location. This may be done, for example, using any of the inter-vantage prediction methods set forth above, in connection with
In a step 6740, the reprojected target vantage data may be compared with the target vantage data retrieved from the video stream in the step 6720. The comparison may involve subtraction, for example, with the subtraction module 6510 of
In a step 6750, the residual data 6516 may be compressed. This step may involve compression and/or removal of data pertinent to delivery of the virtual reality or augmented reality experience, such as view-dependent lighting information. In some embodiments, the step 6750 may involve removal of all view-dependent lighting information. In other embodiments, the step 6750 may involve removal of only the portion of the view-dependent lighting information deemed to be imperceptible to the viewer. The step 6750 will be shown and described, according to one embodiment, in more detail in connection with
In a step 6760, a compressed video stream, such as the encoded bit stream 6542 of
In a step 6770, the compressed video stream may be decoded, for example, with the decoder 6550 of
Pursuant to a query 6780, a determination may be made as to whether the compressed video stream has been completely encoded. If not, the method 6700 may return to the step 6720, and additional vantage data may be retrieved from the video stream. The step 6730, the step 6740, the step 6750, the step 6760, and the step 6770 may be repeated until the compressed video stream has been completely encoded.
In a step 6790, the virtual reality or augmented reality experience may be presented for the viewer. This may involve iterative decoding of the compressed video stream. In some embodiments, the step 6790 may include performance of various other steps, such as the step 5150, the step 5160, the step 5170, the step 5180, the step 5190, and the step 5192 of
The various steps of the method 6700 of
In one particular embodiment, the step 6750 may involve a number of sub-steps. One manner in which the step 6750 may be carried out will be described in connection with
Referring to
In a step 6840, a low pass filter, such as the low pass filter 6610 of
In a step 6860, quantization may be applied to the blended residual data, including the occluded region and the remainder (i.e., the viewer-perceptible portion) of the unoccluded region. This may be done, for example, by the residual quantizer 6530 of
Advantages
Removal and/or compression of residual data in this manner may have several advantages. For clients with lower data, network bandwidth, and or processing capabilities, viewers can still enjoy a virtual reality or augmented reality experience with full motion parallax experience without view-dependent lighting. Further, the quality of the experience and the degree of compression applied to the video stream may easily be scaled by adjusting parameters such as the degree to which view-dependent lighting is removed. Thus, client devices with a wide range of capabilities may be supported.
Further, additional compression of the video stream may be carried out, potentially without sacrificing the visual quality of the experience in a viewer-perceptible way. This may particularly be the case where adaptive removal of view-dependent lighting is applied to remove only user-imperceptible aspects of the residual data. In some embodiments, the video stream may be compressed by a factor of about one thousand by removing view-dependent lighting for a viewing volume about one meter in diameter.
The above description and referenced drawings set forth particular details with respect to possible embodiments. Those of skill in the art will appreciate that the techniques described herein may be practiced in other embodiments. First, the particular naming of the components, capitalization of terms, the attributes, data structures, or any other programming or structural aspect is not mandatory or significant, and the mechanisms that implement the techniques described herein may have different names, formats, or protocols. Further, the system may be implemented via a combination of hardware and software, as described, or entirely in hardware elements, or entirely in software elements. Also, the particular division of functionality between the various system components described herein is merely exemplary, and not mandatory; functions performed by a single system component may instead be performed by multiple components, and functions performed by multiple components may instead be performed by a single component.
Reference in the specification to “one embodiment” or to “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiments is included in at least one embodiment. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment.
Some embodiments may include a system or a method for performing the above-described techniques, either singly or in any combination. Other embodiments may include a computer program product comprising a non-transitory computer-readable storage medium and computer program code, encoded on the medium, for causing a processor in a computing device or other electronic device to perform the above-described techniques.
Some portions of the above are presented in terms of algorithms and symbolic representations of operations on data bits within a memory of a computing device. These algorithmic descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent sequence of steps (instructions) leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical, magnetic or optical signals capable of being stored, transferred, combined, compared and otherwise manipulated. It is convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like. Furthermore, it is also convenient at times, to refer to certain arrangements of steps requiring physical manipulations of physical quantities as modules or code devices, without loss of generality.
It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussion, it is appreciated that throughout the description, discussions utilizing terms such as “processing” or “computing” or “calculating” or “displaying” or “determining” or the like, refer to the action and processes of a computer system, or similar electronic computing module and/or device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system memories or registers or other such information storage, transmission or display devices.
Certain aspects include process steps and instructions described herein in the form of an algorithm. It should be noted that the process steps and instructions of described herein can be embodied in software, firmware and/or hardware, and when embodied in software, can be downloaded to reside on and be operated from different platforms used by a variety of operating systems.
Some embodiments relate to an apparatus for performing the operations described herein. This apparatus may be specially constructed for the required purposes, or it may comprise a general-purpose computing device selectively activated or reconfigured by a computer program stored in the computing device. Such a computer program may be stored in a computer readable storage medium, such as, but is not limited to, any type of disk including floppy disks, optical disks, CD-ROMs, magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, flash memory, solid state drives, magnetic or optical cards, application specific integrated circuits (ASICs), and/or any type of media suitable for storing electronic instructions, and each coupled to a computer system bus. Further, the computing devices referred to herein may include a single processor or may be architectures employing multiple processor designs for increased computing capability.
The algorithms and displays presented herein are not inherently related to any particular computing device, virtualized system, or other apparatus. Various general-purpose systems may also be used with programs in accordance with the teachings herein, or it may prove convenient to construct more specialized apparatus to perform the required method steps. The required structure for a variety of these systems will be apparent from the description provided herein. In addition, the techniques set forth herein are not described with reference to any particular programming language. It will be appreciated that a variety of programming languages may be used to implement the techniques described herein, and any references above to specific languages are provided for illustrative purposes only.
Accordingly, in various embodiments, the techniques described herein can be implemented as software, hardware, and/or other elements for controlling a computer system, computing device, or other electronic device, or any combination or plurality thereof. Such an electronic device can include, for example, a processor, an input device (such as a keyboard, mouse, touchpad, trackpad, joystick, trackball, microphone, and/or any combination thereof), an output device (such as a screen, speaker, and/or the like), memory, long-term storage (such as magnetic storage, optical storage, and/or the like), and/or network connectivity, according to techniques that are well known in the art. Such an electronic device may be portable or nonportable. Examples of electronic devices that may be used for implementing the techniques described herein include: a mobile phone, personal digital assistant, smartphone, kiosk, server computer, enterprise computing device, desktop computer, laptop computer, tablet computer, consumer electronic device, television, set-top box, or the like. An electronic device for implementing the techniques described herein may use any operating system such as, for example: Linux; Microsoft Windows, available from Microsoft Corporation of Redmond, Wash.; Mac OS X, available from Apple Inc. of Cupertino, Calif.; iOS, available from Apple Inc. of Cupertino, Calif.; Android, available from Google, Inc. of Mountain View, Calif.; and/or any other operating system that is adapted for use on the device.
In various embodiments, the techniques described herein can be implemented in a distributed processing environment, networked computing environment, or web-based computing environment. Elements can be implemented on client computing devices, servers, routers, and/or other network or non-network components. In some embodiments, the techniques described herein are implemented using a client/server architecture, wherein some components are implemented on one or more client computing devices and other components are implemented on one or more servers. In one embodiment, in the course of implementing the techniques of the present disclosure, client(s) request content from server(s), and server(s) return content in response to the requests. A browser may be installed at the client computing device for enabling such requests and responses, and for providing a user interface by which the user can initiate and control such interactions and view the presented content.
Any or all of the network components for implementing the described technology may, in some embodiments, be communicatively coupled with one another using any suitable electronic network, whether wired or wireless or any combination thereof, and using any suitable protocols for enabling such communication. One example of such a network is the Internet, although the techniques described herein can be implemented using other networks as well.
While a limited number of embodiments has been described herein, those skilled in the art, having benefit of the above description, will appreciate that other embodiments may be devised which do not depart from the scope of the claims. In addition, it should be noted that the language used in the specification has been principally selected for readability and instructional purposes, and may not have been selected to delineate or circumscribe the inventive subject matter. Accordingly, the disclosure is intended to be illustrative, but not limiting.
The present application is a continuation-in-part of U.S. application Ser. No. 15/590,877 for “Spatial Random Access Enabled Video System with a Three-Dimensional Viewing Volume”, filed May 9, 2017, the disclosure of which is incorporated herein by reference. U.S. application Ser. No. 15/590,877 is a continuation-in-part of U.S. application Ser. No. 15/084,326 for “Capturing Light-Field Volume Image and Video Data Using Tiled Light-Field Cameras”, filed Mar. 29, 2016, the disclosure of which is incorporated herein by reference in its entirety. U.S. patent application Ser. No. 15/084,326 claims the benefit of U.S. Provisional Application Ser. No. 62/148,055 for “Light Guided Image Plane Tiled Arrays with Dense Fiber Optic Bundles for Light-Field and High Resolution Image Acquisition”, filed Apr. 15, 2015, the disclosure of which is incorporated herein by reference in its entirety. U.S. patent application Ser. No. 15/084,326 also claims the benefit of U.S. Provisional Application Ser. No. 62/148,460 for “Capturing Light Field Volume Image and Video Data Using Tiled Light Field Cameras”, filed Apr. 16, 2015, the disclosure of which is incorporated herein by reference in its entirety. The present application is also a continuation-in-part of U.S. application Ser. No. 15/590,808 for “Adaptive Control for Immersive Experience Delivery,” filed May 9, 2017, the disclosure of which is incorporated herein by reference. The present application is also related to U.S. patent application Ser. No. 14/302,826 for “Depth Determination for Light Field Images”, filed Jun. 12, 2014 and issued as U.S. Pat. No. 8,988,317 on Mar. 24, 2015, the disclosure of which is incorporated herein by reference. The present application is also related to U.S. application Ser. No. 15/590,841 for “Vantage Generation and Interactive Playback,” filed May 9, 2017, the disclosure of which is incorporated herein by reference. The present application is also related to U.S. application Ser. No. 15/590,951 for “Wedge-Based Light-Field Video Capture,” filed May 9, 2017, the disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
725567 | Ives | Apr 1903 | A |
4383170 | Takagi et al. | May 1983 | A |
4661986 | Adelson | Apr 1987 | A |
4694185 | Weiss | Sep 1987 | A |
4920419 | Easterly | Apr 1990 | A |
5076687 | Adelson | Dec 1991 | A |
5077810 | D'Luna | Dec 1991 | A |
5157465 | Kronberg | Oct 1992 | A |
5251019 | Moorman et al. | Oct 1993 | A |
5282045 | Mimura et al. | Jan 1994 | A |
5499069 | Griffith | Mar 1996 | A |
5572034 | Karellas | Nov 1996 | A |
5610390 | Miyano | Mar 1997 | A |
5729471 | Jain et al. | Mar 1998 | A |
5748371 | Cathey, Jr. et al. | May 1998 | A |
5757423 | Tanaka et al. | May 1998 | A |
5818525 | Elabd | Oct 1998 | A |
5835267 | Mason et al. | Nov 1998 | A |
5907619 | Davis | May 1999 | A |
5949433 | Klotz | Sep 1999 | A |
5974215 | Bilbro et al. | Oct 1999 | A |
6005936 | Shimizu et al. | Dec 1999 | A |
6021241 | Bilbro et al. | Feb 2000 | A |
6023523 | Cohen et al. | Feb 2000 | A |
6028606 | Kolb et al. | Feb 2000 | A |
6034690 | Gallery et al. | Mar 2000 | A |
6061083 | Aritake et al. | May 2000 | A |
6061400 | Pearlstein et al. | May 2000 | A |
6069565 | Stern et al. | May 2000 | A |
6075889 | Hamilton, Jr. et al. | Jun 2000 | A |
6084979 | Kanade et al. | Jul 2000 | A |
6091860 | Dimitri | Jul 2000 | A |
6097394 | Levoy et al. | Aug 2000 | A |
6115556 | Reddington | Sep 2000 | A |
6137100 | Fossum et al. | Oct 2000 | A |
6169285 | Pertrillo et al. | Jan 2001 | B1 |
6201899 | Bergen | Mar 2001 | B1 |
6221687 | Abramovich | Apr 2001 | B1 |
6320979 | Melen | Nov 2001 | B1 |
6424351 | Bishop et al. | Jul 2002 | B1 |
6448544 | Stanton et al. | Sep 2002 | B1 |
6466207 | Gortler et al. | Oct 2002 | B1 |
6476805 | Shum et al. | Nov 2002 | B1 |
6479827 | Hamamoto et al. | Nov 2002 | B1 |
6483535 | Tamburrino et al. | Nov 2002 | B1 |
6529265 | Henningsen | Mar 2003 | B1 |
6577342 | Webster | Jun 2003 | B1 |
6587147 | Li | Jul 2003 | B1 |
6597859 | Leinhardt et al. | Jul 2003 | B1 |
6606099 | Yamada | Aug 2003 | B2 |
6658168 | Kim | Dec 2003 | B1 |
6674430 | Kaufman et al. | Jan 2004 | B1 |
6680976 | Chen et al. | Jan 2004 | B1 |
6687419 | Atkin | Feb 2004 | B1 |
6697062 | Cabral | Feb 2004 | B1 |
6768980 | Meyer et al. | Jul 2004 | B1 |
6785667 | Orbanes et al. | Aug 2004 | B2 |
6833865 | Fuller et al. | Dec 2004 | B1 |
6842297 | Dowski, Jr. et al. | Jan 2005 | B2 |
6900841 | Mihara | May 2005 | B1 |
6924841 | Jones | Aug 2005 | B2 |
6927922 | George et al. | Aug 2005 | B2 |
7003061 | Wiensky | Feb 2006 | B2 |
7015954 | Foote et al. | Mar 2006 | B1 |
7025515 | Woods | Apr 2006 | B2 |
7034866 | Colmenarez et al. | Apr 2006 | B1 |
7079698 | Kobayashi | Jul 2006 | B2 |
7102666 | Kanade et al. | Sep 2006 | B2 |
7164807 | Morton | Jan 2007 | B2 |
7206022 | Miller et al. | Apr 2007 | B2 |
7239345 | Rogina | Jul 2007 | B1 |
7286295 | Sweatt et al. | Oct 2007 | B1 |
7304670 | Hussey et al. | Dec 2007 | B1 |
7329856 | Ma et al. | Feb 2008 | B2 |
7336430 | George | Feb 2008 | B2 |
7417670 | Linzer et al. | Aug 2008 | B1 |
7469381 | Ording | Dec 2008 | B2 |
7477304 | Hu | Jan 2009 | B2 |
7587109 | Reininger | Sep 2009 | B1 |
7620309 | Georgiev | Nov 2009 | B2 |
7623726 | Georgiev | Nov 2009 | B1 |
7633513 | Kondo et al. | Dec 2009 | B2 |
7683951 | Aotsuka | Mar 2010 | B2 |
7687757 | Tseng et al. | Mar 2010 | B1 |
7723662 | Levoy et al. | May 2010 | B2 |
7724952 | Shum et al. | May 2010 | B2 |
7748022 | Frazier | Jun 2010 | B1 |
7847825 | Aoki et al. | Dec 2010 | B2 |
7936377 | Friedhoff et al. | May 2011 | B2 |
7936392 | Ng et al. | May 2011 | B2 |
7941634 | Georgi | May 2011 | B2 |
7945653 | Zuckerberg et al. | May 2011 | B2 |
7949252 | Georgiev | May 2011 | B1 |
7982776 | Dunki-Jacobs et al. | Jul 2011 | B2 |
8013904 | Tan et al. | Sep 2011 | B2 |
8085391 | Machida et al. | Dec 2011 | B2 |
8106856 | Matas et al. | Jan 2012 | B2 |
8115814 | Iwase et al. | Feb 2012 | B2 |
8155456 | Babacan | Apr 2012 | B2 |
8155478 | Vitsnudel et al. | Apr 2012 | B2 |
8189089 | Georgiev et al. | May 2012 | B1 |
8228417 | Georgiev et al. | Jul 2012 | B1 |
8248515 | Ng et al. | Aug 2012 | B2 |
8259198 | Cote et al. | Sep 2012 | B2 |
8264546 | Witt | Sep 2012 | B2 |
8279325 | Pitts et al. | Oct 2012 | B2 |
8289440 | Knight et al. | Oct 2012 | B2 |
8290358 | Georgiev | Oct 2012 | B1 |
8310554 | Aggarwal et al. | Nov 2012 | B2 |
8315476 | Georgiev et al. | Nov 2012 | B1 |
8345144 | Georgiev et al. | Jan 2013 | B1 |
8400533 | Szedo | Mar 2013 | B1 |
8400555 | Georgiev et al. | Mar 2013 | B1 |
8411948 | Rother | Apr 2013 | B2 |
8427548 | Lim et al. | Apr 2013 | B2 |
8442397 | Kang et al. | May 2013 | B2 |
8446516 | Pitts et al. | May 2013 | B2 |
8494304 | Venable et al. | Jul 2013 | B2 |
8531581 | Shroff | Sep 2013 | B2 |
8542933 | Venkataraman et al. | Sep 2013 | B2 |
8559705 | Ng | Oct 2013 | B2 |
8570426 | Pitts et al. | Oct 2013 | B2 |
8577216 | Li et al. | Nov 2013 | B2 |
8581998 | Ohno | Nov 2013 | B2 |
8589374 | Chaudhri | Nov 2013 | B2 |
8593564 | Border et al. | Nov 2013 | B2 |
8605199 | Imai | Dec 2013 | B2 |
8614764 | Pitts et al. | Dec 2013 | B2 |
8619082 | Ciurea et al. | Dec 2013 | B1 |
8629930 | Brueckner et al. | Jan 2014 | B2 |
8665440 | Kompaniets et al. | Mar 2014 | B1 |
8675073 | Aagaard et al. | Mar 2014 | B2 |
8724014 | Ng et al. | May 2014 | B2 |
8736710 | Spielberg | May 2014 | B2 |
8736751 | Yun | May 2014 | B2 |
8749620 | Pitts et al. | Jun 2014 | B1 |
8750509 | Renkis | Jun 2014 | B2 |
8754829 | Lapstun | Jun 2014 | B2 |
8760566 | Pitts et al. | Jun 2014 | B2 |
8768102 | Ng et al. | Jul 2014 | B1 |
8797321 | Bertolami et al. | Aug 2014 | B1 |
8811769 | Pitts et al. | Aug 2014 | B1 |
8831377 | Pitts et al. | Sep 2014 | B2 |
8848970 | Aller et al. | Sep 2014 | B2 |
8860856 | Wetsztein et al. | Oct 2014 | B2 |
8879901 | Caldwell et al. | Nov 2014 | B2 |
8903232 | Caldwell | Dec 2014 | B1 |
8908058 | Akeley et al. | Dec 2014 | B2 |
8948545 | Akeley et al. | Feb 2015 | B2 |
8953882 | Lim et al. | Feb 2015 | B2 |
8971625 | Pitts et al. | Mar 2015 | B2 |
8976288 | Ng et al. | Mar 2015 | B2 |
8988317 | Liang et al. | Mar 2015 | B1 |
8995785 | Knight et al. | Mar 2015 | B2 |
8997021 | Liang et al. | Mar 2015 | B2 |
9001226 | Ng et al. | Apr 2015 | B1 |
9013611 | Szedo | Apr 2015 | B1 |
9106914 | Doser | Aug 2015 | B2 |
9172853 | Pitts et al. | Oct 2015 | B2 |
9184199 | Pitts et al. | Nov 2015 | B2 |
9201142 | Antao | Dec 2015 | B2 |
9201193 | Smith | Dec 2015 | B1 |
9210391 | Mills | Dec 2015 | B1 |
9214013 | Venkataraman et al. | Dec 2015 | B2 |
9262067 | Bell et al. | Feb 2016 | B1 |
9294662 | Vondran, Jr. et al. | Mar 2016 | B2 |
9300932 | Knight et al. | Mar 2016 | B2 |
9305375 | Akeley | Apr 2016 | B2 |
9305956 | Pittes et al. | Apr 2016 | B2 |
9386288 | Akeley et al. | Jul 2016 | B2 |
9392153 | Myhre et al. | Jul 2016 | B2 |
9419049 | Pitts et al. | Aug 2016 | B2 |
9467607 | Ng et al. | Oct 2016 | B2 |
9497380 | Jannard et al. | Nov 2016 | B1 |
9607424 | Ng et al. | Mar 2017 | B2 |
9628684 | Liang et al. | Apr 2017 | B2 |
9635332 | Carroll et al. | Apr 2017 | B2 |
9639945 | Oberheu et al. | May 2017 | B2 |
9647150 | Blasco Claret | May 2017 | B2 |
9681069 | El-Ghoroury et al. | Jun 2017 | B2 |
9774800 | El-Ghoroury et al. | Sep 2017 | B2 |
9858649 | Liang et al. | Jan 2018 | B2 |
9866810 | Knight et al. | Jan 2018 | B2 |
9900510 | Karafin et al. | Feb 2018 | B1 |
9979909 | Kuang et al. | May 2018 | B2 |
10244266 | Wu | Mar 2019 | B1 |
20010048968 | Cox et al. | Dec 2001 | A1 |
20010053202 | Mazess et al. | Dec 2001 | A1 |
20020001395 | Davis et al. | Jan 2002 | A1 |
20020015048 | Mister | Feb 2002 | A1 |
20020061131 | Sawhney | May 2002 | A1 |
20020109783 | Hayashi et al. | Aug 2002 | A1 |
20020159030 | Frey et al. | Oct 2002 | A1 |
20020199106 | Hayashi | Dec 2002 | A1 |
20030043270 | Rafey | Mar 2003 | A1 |
20030081145 | Seaman et al. | May 2003 | A1 |
20030103670 | Schoelkopf et al. | Jun 2003 | A1 |
20030117511 | Belz et al. | Jun 2003 | A1 |
20030123700 | Wakao | Jul 2003 | A1 |
20030133018 | Ziemkowski | Jul 2003 | A1 |
20030147252 | Fioravanti | Aug 2003 | A1 |
20030156077 | Balogh | Aug 2003 | A1 |
20030172131 | Ao | Sep 2003 | A1 |
20040002179 | Barton et al. | Jan 2004 | A1 |
20040012688 | Tinnerinno et al. | Jan 2004 | A1 |
20040012689 | Tinnerinno et al. | Jan 2004 | A1 |
20040101166 | Williams et al. | May 2004 | A1 |
20040114176 | Bodin et al. | Jun 2004 | A1 |
20040135780 | Nims | Jul 2004 | A1 |
20040189686 | Tanguay et al. | Sep 2004 | A1 |
20040212725 | Raskar | Oct 2004 | A1 |
20040257360 | Sieckmann | Dec 2004 | A1 |
20050031203 | Fukuda | Feb 2005 | A1 |
20050049500 | Babu et al. | Mar 2005 | A1 |
20050052543 | Li et al. | Mar 2005 | A1 |
20050080602 | Snyder et al. | Apr 2005 | A1 |
20050141881 | Taira et al. | Jun 2005 | A1 |
20050162540 | Yata | Jul 2005 | A1 |
20050212918 | Serra et al. | Sep 2005 | A1 |
20050253728 | Chen | Nov 2005 | A1 |
20050276441 | Debevec | Dec 2005 | A1 |
20060008265 | Ito | Jan 2006 | A1 |
20060023066 | Li et al. | Feb 2006 | A1 |
20060050170 | Tanaka | Mar 2006 | A1 |
20060056040 | Lan | Mar 2006 | A1 |
20060056604 | Sylthe et al. | Mar 2006 | A1 |
20060072175 | Oshino | Apr 2006 | A1 |
20060078052 | Dang | Apr 2006 | A1 |
20060082879 | Miyoshi et al. | Apr 2006 | A1 |
20060130017 | Cohen et al. | Jun 2006 | A1 |
20060208259 | Jeon | Sep 2006 | A1 |
20060248348 | Wakao et al. | Nov 2006 | A1 |
20060250322 | Hall et al. | Nov 2006 | A1 |
20060256226 | Alon et al. | Nov 2006 | A1 |
20060274210 | Kim | Dec 2006 | A1 |
20060285741 | Subbarao | Dec 2006 | A1 |
20070008317 | Lundstrom | Jan 2007 | A1 |
20070019883 | Wong et al. | Jan 2007 | A1 |
20070030357 | Levien et al. | Feb 2007 | A1 |
20070033588 | Landsman | Feb 2007 | A1 |
20070052810 | Monroe | Mar 2007 | A1 |
20070071316 | Kubo | Mar 2007 | A1 |
20070081081 | Cheng | Apr 2007 | A1 |
20070097206 | Houvener et al. | May 2007 | A1 |
20070103558 | Cai et al. | May 2007 | A1 |
20070113198 | Robertson et al. | May 2007 | A1 |
20070140676 | Nakahara | Jun 2007 | A1 |
20070188613 | Norbori et al. | Aug 2007 | A1 |
20070201853 | Petschnigg | Aug 2007 | A1 |
20070229653 | Matusik et al. | Oct 2007 | A1 |
20070230944 | Georgiev | Oct 2007 | A1 |
20070269108 | Steinberg et al. | Nov 2007 | A1 |
20070273795 | Jaynes | Nov 2007 | A1 |
20080007626 | Wernersson | Jan 2008 | A1 |
20080012988 | Baharav et al. | Jan 2008 | A1 |
20080018668 | Yamauchi | Jan 2008 | A1 |
20080031537 | Gutkowicz-Krusin et al. | Feb 2008 | A1 |
20080049113 | Hirai | Feb 2008 | A1 |
20080056569 | Williams et al. | Mar 2008 | A1 |
20080122940 | Mori | May 2008 | A1 |
20080129728 | Satoshi | Jun 2008 | A1 |
20080144952 | Chen et al. | Jun 2008 | A1 |
20080152215 | Horie et al. | Jun 2008 | A1 |
20080168404 | Ording | Jul 2008 | A1 |
20080180792 | Georgiev | Jul 2008 | A1 |
20080187305 | Raskar et al. | Aug 2008 | A1 |
20080193026 | Horie et al. | Aug 2008 | A1 |
20080205871 | Utagawa | Aug 2008 | A1 |
20080226274 | Spielberg | Sep 2008 | A1 |
20080232680 | Berestov et al. | Sep 2008 | A1 |
20080253652 | Gupta et al. | Oct 2008 | A1 |
20080260291 | Alakarhu et al. | Oct 2008 | A1 |
20080266688 | Errando Smet et al. | Oct 2008 | A1 |
20080277566 | Utagawa | Nov 2008 | A1 |
20080309813 | Watanabe | Dec 2008 | A1 |
20080316301 | Givon | Dec 2008 | A1 |
20090027542 | Yamamoto et al. | Jan 2009 | A1 |
20090041381 | Georgiev et al. | Feb 2009 | A1 |
20090041448 | Georgiev et al. | Feb 2009 | A1 |
20090070710 | Kagaya | Mar 2009 | A1 |
20090109280 | Gotsman | Apr 2009 | A1 |
20090128658 | Hayasaka et al. | May 2009 | A1 |
20090128669 | Ng et al. | May 2009 | A1 |
20090135258 | Nozaki | May 2009 | A1 |
20090140131 | Utagawa | Jun 2009 | A1 |
20090102956 | Georgiev | Jul 2009 | A1 |
20090167909 | Imagawa et al. | Jul 2009 | A1 |
20090185051 | Sano | Jul 2009 | A1 |
20090185801 | Georgiev et al. | Jul 2009 | A1 |
20090190022 | Ichimura | Jul 2009 | A1 |
20090190024 | Hayasaka et al. | Jul 2009 | A1 |
20090195689 | Hwang et al. | Aug 2009 | A1 |
20090202235 | Li et al. | Aug 2009 | A1 |
20090204813 | Kwan | Aug 2009 | A1 |
20090207233 | Mauchly et al. | Aug 2009 | A1 |
20090273843 | Raskar et al. | Nov 2009 | A1 |
20090290848 | Brown | Nov 2009 | A1 |
20090295829 | Georgiev et al. | Dec 2009 | A1 |
20090309973 | Kogane | Dec 2009 | A1 |
20090309975 | Gordon | Dec 2009 | A1 |
20090310885 | Tamaru | Dec 2009 | A1 |
20090321861 | Oliver et al. | Dec 2009 | A1 |
20100003024 | Agrawal et al. | Jan 2010 | A1 |
20100011117 | Hristodorescu et al. | Jan 2010 | A1 |
20100021001 | Honsinger et al. | Jan 2010 | A1 |
20100026852 | Ng et al. | Feb 2010 | A1 |
20100050120 | Ohazama et al. | Feb 2010 | A1 |
20100060727 | Steinberg et al. | Mar 2010 | A1 |
20100097444 | Lablans | Apr 2010 | A1 |
20100103311 | Makii | Apr 2010 | A1 |
20100107068 | Butcher et al. | Apr 2010 | A1 |
20100111489 | Presler | May 2010 | A1 |
20100123784 | Ding et al. | May 2010 | A1 |
20100141780 | Tan et al. | Jun 2010 | A1 |
20100142839 | Lakus-Becker | Jun 2010 | A1 |
20100201789 | Yahagi | Aug 2010 | A1 |
20100253782 | Elazary | Oct 2010 | A1 |
20100265385 | Knight et al. | Oct 2010 | A1 |
20100277617 | Hollinger | Nov 2010 | A1 |
20100277629 | Tanaka | Nov 2010 | A1 |
20100303288 | Malone | Dec 2010 | A1 |
20100328485 | Imamura et al. | Dec 2010 | A1 |
20110001858 | Shintani | Jan 2011 | A1 |
20110018903 | Lapstun et al. | Jan 2011 | A1 |
20110019056 | Hirsch et al. | Jan 2011 | A1 |
20110025827 | Shpunt et al. | Feb 2011 | A1 |
20110032338 | Raveendran et al. | Feb 2011 | A1 |
20110050864 | Bond | Mar 2011 | A1 |
20110050909 | Ellenby | Mar 2011 | A1 |
20110063414 | Chen | Mar 2011 | A1 |
20110069175 | Mistretta et al. | Mar 2011 | A1 |
20110075729 | Dane et al. | Mar 2011 | A1 |
20110090255 | Wilson et al. | Apr 2011 | A1 |
20110091192 | Iwane | Apr 2011 | A1 |
20110123183 | Adelsberger et al. | May 2011 | A1 |
20110129120 | Chan | Jun 2011 | A1 |
20110129165 | Lim et al. | Jun 2011 | A1 |
20110148764 | Gao | Jun 2011 | A1 |
20110149074 | Lee et al. | Jun 2011 | A1 |
20110169994 | DiFrancesco et al. | Jul 2011 | A1 |
20110194617 | Kumar et al. | Aug 2011 | A1 |
20110205384 | Zamowski et al. | Aug 2011 | A1 |
20110221947 | Awazu | Sep 2011 | A1 |
20110242334 | Wilburn et al. | Oct 2011 | A1 |
20110242352 | Hikosaka | Oct 2011 | A1 |
20110249341 | DiFrancesco et al. | Oct 2011 | A1 |
20110261164 | Olesen et al. | Oct 2011 | A1 |
20110261205 | Sun | Oct 2011 | A1 |
20110267263 | Hinckley | Nov 2011 | A1 |
20110267348 | Lin | Nov 2011 | A1 |
20110273466 | Imai et al. | Nov 2011 | A1 |
20110279479 | Rodriguez | Nov 2011 | A1 |
20110133649 | Bales et al. | Dec 2011 | A1 |
20110292258 | Adler | Dec 2011 | A1 |
20110293179 | Dikmen | Dec 2011 | A1 |
20110298960 | Tan et al. | Dec 2011 | A1 |
20110304745 | Wang et al. | Dec 2011 | A1 |
20110311046 | Oka | Dec 2011 | A1 |
20110316968 | Taguchi et al. | Dec 2011 | A1 |
20120014837 | Fehr et al. | Jan 2012 | A1 |
20120044330 | Watanabe | Feb 2012 | A1 |
20120050562 | Perwass et al. | Mar 2012 | A1 |
20120056889 | Carter et al. | Mar 2012 | A1 |
20120056982 | Katz et al. | Mar 2012 | A1 |
20120057040 | Park et al. | Mar 2012 | A1 |
20120057806 | Backlund et al. | Mar 2012 | A1 |
20120062755 | Takahashi et al. | Mar 2012 | A1 |
20120120240 | Muramatsu et al. | May 2012 | A1 |
20120132803 | Hirato et al. | May 2012 | A1 |
20120133746 | Bigioi et al. | May 2012 | A1 |
20120147205 | Lelescu et al. | Jun 2012 | A1 |
20120176481 | Lukk et al. | Jul 2012 | A1 |
20120183055 | Hong et al. | Jul 2012 | A1 |
20120188344 | Imai | Jul 2012 | A1 |
20120201475 | Carmel et al. | Aug 2012 | A1 |
20120206574 | Shikata et al. | Aug 2012 | A1 |
20120218463 | Benezra et al. | Aug 2012 | A1 |
20120224787 | Imai | Sep 2012 | A1 |
20120229691 | Hiasa et al. | Sep 2012 | A1 |
20120249529 | Matsumoto et al. | Oct 2012 | A1 |
20120249550 | Akeley | Oct 2012 | A1 |
20120249819 | Imai | Oct 2012 | A1 |
20120251131 | Henderson et al. | Oct 2012 | A1 |
20120257065 | Velarde et al. | Oct 2012 | A1 |
20120257795 | Kim et al. | Oct 2012 | A1 |
20120268367 | Vertegaal et al. | Oct 2012 | A1 |
20120269274 | Kim et al. | Oct 2012 | A1 |
20120271115 | Buerk | Oct 2012 | A1 |
20120272271 | Nishizawa et al. | Oct 2012 | A1 |
20120287246 | Katayama | Nov 2012 | A1 |
20120287296 | Fukui | Nov 2012 | A1 |
20120287329 | Yahata | Nov 2012 | A1 |
20120293075 | Engelen et al. | Nov 2012 | A1 |
20120300091 | Shroff et al. | Nov 2012 | A1 |
20120237222 | Ng et al. | Dec 2012 | A9 |
20120321172 | Jachalsky et al. | Dec 2012 | A1 |
20130002902 | Ito | Jan 2013 | A1 |
20130002936 | Hirama et al. | Jan 2013 | A1 |
20130021486 | Richardson | Jan 2013 | A1 |
20130038696 | Ding et al. | Feb 2013 | A1 |
20130041215 | McDowall | Feb 2013 | A1 |
20130044290 | Kawamura | Feb 2013 | A1 |
20130050546 | Kano | Feb 2013 | A1 |
20130064453 | Nagasaka et al. | Mar 2013 | A1 |
20130064532 | Caldwell et al. | Mar 2013 | A1 |
20130070059 | Kushida | Mar 2013 | A1 |
20130070060 | Chatterjee et al. | Mar 2013 | A1 |
20130077880 | Venkataraman et al. | Mar 2013 | A1 |
20130082905 | Ranieri et al. | Apr 2013 | A1 |
20130088616 | Ingrassia, Jr. | Apr 2013 | A1 |
20130093844 | Shuto | Apr 2013 | A1 |
20130093859 | Nakamura | Apr 2013 | A1 |
20130094101 | Oguchi | Apr 2013 | A1 |
20130107085 | Ng et al. | May 2013 | A1 |
20130113981 | Knight et al. | May 2013 | A1 |
20130120356 | Georgiev et al. | May 2013 | A1 |
20130120605 | Georgiev et al. | May 2013 | A1 |
20130120636 | Baer | May 2013 | A1 |
20130121577 | Wang | May 2013 | A1 |
20130127901 | Georgiev et al. | May 2013 | A1 |
20130128052 | Catrein et al. | May 2013 | A1 |
20130128081 | Georgiev et al. | May 2013 | A1 |
20130128087 | Georgiev et al. | May 2013 | A1 |
20130129213 | Shectman | May 2013 | A1 |
20130135448 | Nagumo et al. | May 2013 | A1 |
20130176481 | Holmes et al. | Jul 2013 | A1 |
20130188068 | Said | Jul 2013 | A1 |
20130215108 | McMahon et al. | Aug 2013 | A1 |
20130215226 | Chauvier et al. | Aug 2013 | A1 |
20130222656 | Kaneko | Aug 2013 | A1 |
20130234935 | Griffith | Sep 2013 | A1 |
20130242137 | Kirkland | Sep 2013 | A1 |
20130243391 | Park et al. | Sep 2013 | A1 |
20130258451 | El-Ghoroury et al. | Oct 2013 | A1 |
20130262511 | Kuffner et al. | Oct 2013 | A1 |
20130286236 | Mankowski | Oct 2013 | A1 |
20130321574 | Zhang et al. | Dec 2013 | A1 |
20130321581 | El-Ghoroury | Dec 2013 | A1 |
20130321677 | Cote et al. | Dec 2013 | A1 |
20130329107 | Burley et al. | Dec 2013 | A1 |
20130329132 | Tico et al. | Dec 2013 | A1 |
20130335596 | Demandoix et al. | Dec 2013 | A1 |
20130342700 | Kass | Dec 2013 | A1 |
20140002502 | Han | Jan 2014 | A1 |
20140002699 | Guan | Jan 2014 | A1 |
20140003719 | Bai et al. | Jan 2014 | A1 |
20140013273 | Ng | Jan 2014 | A1 |
20140035959 | Lapstun | Feb 2014 | A1 |
20140037280 | Shirakawa | Feb 2014 | A1 |
20140049663 | Ng et al. | Feb 2014 | A1 |
20140059462 | Wernersson | Feb 2014 | A1 |
20140085282 | Luebke et al. | Mar 2014 | A1 |
20140092424 | Grosz | Apr 2014 | A1 |
20140098191 | Rime et al. | Apr 2014 | A1 |
20140132741 | Aagaard et al. | May 2014 | A1 |
20140133749 | Kuo et al. | May 2014 | A1 |
20140139538 | Barber et al. | May 2014 | A1 |
20140167196 | Heimgartner et al. | Jun 2014 | A1 |
20140168484 | Suzuki | Jun 2014 | A1 |
20140176540 | Tosic et al. | Jun 2014 | A1 |
20140176592 | Wilburn et al. | Jun 2014 | A1 |
20140176710 | Brady | Jun 2014 | A1 |
20140177905 | Grefalda | Jun 2014 | A1 |
20140184885 | Tanaka et al. | Jul 2014 | A1 |
20140192208 | Okincha | Jul 2014 | A1 |
20140193047 | Grosz | Jul 2014 | A1 |
20140195921 | Grosz | Jul 2014 | A1 |
20140204111 | Vaidyanathan et al. | Jul 2014 | A1 |
20140211077 | Ng et al. | Jul 2014 | A1 |
20140218540 | Geiss et al. | Aug 2014 | A1 |
20140226038 | Kimura | Aug 2014 | A1 |
20140240463 | Pitts et al. | Aug 2014 | A1 |
20140240578 | Fishman et al. | Aug 2014 | A1 |
20140245367 | Sasaki | Aug 2014 | A1 |
20140267243 | Venkataraman et al. | Sep 2014 | A1 |
20140267639 | Tatsuta | Sep 2014 | A1 |
20140300753 | Yin | Oct 2014 | A1 |
20140313350 | Keelan | Oct 2014 | A1 |
20140313375 | Milnar | Oct 2014 | A1 |
20140333787 | Venkataraman | Nov 2014 | A1 |
20140340390 | Lanman et al. | Nov 2014 | A1 |
20140347540 | Kang | Nov 2014 | A1 |
20140354863 | Ahn et al. | Dec 2014 | A1 |
20140368494 | Sakharnykh et al. | Dec 2014 | A1 |
20140368640 | Strandemar et al. | Dec 2014 | A1 |
20150042767 | Ciurea et al. | Feb 2015 | A1 |
20150049915 | Ciurea et al. | Feb 2015 | A1 |
20150062178 | Matas et al. | Mar 2015 | A1 |
20150062386 | Sugawara | Mar 2015 | A1 |
20150092071 | Meng et al. | Apr 2015 | A1 |
20150097985 | Akeley | Apr 2015 | A1 |
20150130986 | Ohnishi | May 2015 | A1 |
20150161798 | Venkataraman et al. | Jun 2015 | A1 |
20150193937 | Georgiev et al. | Jul 2015 | A1 |
20150206340 | Munkberg et al. | Jul 2015 | A1 |
20150207990 | Ford et al. | Jul 2015 | A1 |
20150223731 | Sahin | Aug 2015 | A1 |
20150237273 | Sawadaishi | Aug 2015 | A1 |
20150264337 | Venkataraman et al. | Sep 2015 | A1 |
20150104101 | Bryant et al. | Oct 2015 | A1 |
20150288867 | Kajimura | Oct 2015 | A1 |
20150304544 | Eguchi | Oct 2015 | A1 |
20150304667 | Suehring et al. | Oct 2015 | A1 |
20150310592 | Kano | Oct 2015 | A1 |
20150312553 | Ng et al. | Oct 2015 | A1 |
20150312593 | Akeley et al. | Oct 2015 | A1 |
20150334420 | De Vieeschauwer et al. | Nov 2015 | A1 |
20150346832 | Cole et al. | Dec 2015 | A1 |
20150370011 | Ishihara | Dec 2015 | A1 |
20150370012 | Ishihara | Dec 2015 | A1 |
20150373279 | Osborne | Dec 2015 | A1 |
20160029002 | Balko | Jan 2016 | A1 |
20160029017 | Liang | Jan 2016 | A1 |
20160037178 | Lee et al. | Feb 2016 | A1 |
20160065931 | Konieczny | Mar 2016 | A1 |
20160065947 | Cole et al. | Mar 2016 | A1 |
20160142615 | Liang | May 2016 | A1 |
20160155215 | Suzuki | Jun 2016 | A1 |
20160165206 | Huang et al. | Jun 2016 | A1 |
20160173844 | Knight et al. | Jun 2016 | A1 |
20160182893 | Wan | Jun 2016 | A1 |
20160191823 | El-Ghoroury | Jun 2016 | A1 |
20160227244 | Rosewarne | Aug 2016 | A1 |
20160247324 | Mullins et al. | Aug 2016 | A1 |
20160253837 | Zhu et al. | Sep 2016 | A1 |
20160269620 | Romanenko et al. | Sep 2016 | A1 |
20160307368 | Akeley | Oct 2016 | A1 |
20160307372 | Pitts et al. | Oct 2016 | A1 |
20160309065 | Karafin et al. | Oct 2016 | A1 |
20160337635 | Nisenzon | Nov 2016 | A1 |
20160353006 | Anderson | Dec 2016 | A1 |
20160353026 | Blonde et al. | Dec 2016 | A1 |
20160381348 | Hayasaka | Dec 2016 | A1 |
20170031146 | Zheng | Feb 2017 | A1 |
20170059305 | Nonn et al. | Mar 2017 | A1 |
20170067832 | Ferrara, Jr. et al. | Mar 2017 | A1 |
20170078578 | Sato | Mar 2017 | A1 |
20170094906 | Liang et al. | Mar 2017 | A1 |
20170134639 | Pitts et al. | May 2017 | A1 |
20170139131 | Karafin et al. | May 2017 | A1 |
20170221226 | Shen | Aug 2017 | A1 |
20170237971 | Pitts | Aug 2017 | A1 |
20170243373 | Bevensee et al. | Aug 2017 | A1 |
20170256036 | Song et al. | Sep 2017 | A1 |
20170263012 | Sabater et al. | Sep 2017 | A1 |
20170302903 | Ng et al. | Oct 2017 | A1 |
20170316602 | Smirnov et al. | Nov 2017 | A1 |
20170358092 | Bleibel et al. | Dec 2017 | A1 |
20170365068 | Tan et al. | Dec 2017 | A1 |
20170374411 | Lederer et al. | Dec 2017 | A1 |
20180007253 | Abe | Jan 2018 | A1 |
20180012397 | Carothers | Jan 2018 | A1 |
20180024753 | Gewickey et al. | Jan 2018 | A1 |
20180033209 | Akeley et al. | Feb 2018 | A1 |
20180139436 | Yucer et al. | Feb 2018 | A1 |
20180070066 | Knight et al. | Mar 2018 | A1 |
20180070067 | Knight et al. | Mar 2018 | A1 |
20180082405 | Liang | Mar 2018 | A1 |
20180124371 | Kamal et al. | May 2018 | A1 |
20180158198 | Karnad | Jun 2018 | A1 |
20180199039 | Trepte | Jul 2018 | A1 |
Number | Date | Country |
---|---|---|
101226292 | Jul 2008 | CN |
101309359 | Nov 2008 | CN |
19624421 | Jan 1997 | DE |
2010020100 | Jan 2010 | JP |
2011135170 | Jul 2011 | JP |
2003052465 | Jun 2003 | WO |
2006039486 | Apr 2006 | WO |
2007092545 | Aug 2007 | WO |
2007092581 | Aug 2007 | WO |
2011010234 | Mar 2011 | WO |
2011029209 | Mar 2011 | WO |
2011081187 | Jul 2011 | WO |
Entry |
---|
Nimeroff, J., et al., “Efficient rendering of naturally illuminatied environments” in Fifth Eurographics Workshop on Rendering, 359-373, 1994. |
Nokia, “City Lens”, May 2012. |
Ogden, J., “Pyramid-Based Computer Graphics”, 1985. |
Okano et al., “Three-dimensional video system based on integral photography” Optical Engineering, Jun. 1999. vol. 38, No. 6, pp. 1072-1077. |
Orzan, Alexandrina, et al., “Diffusion Curves: A Vector Representation for Smooth-Shaded Images,” ACM Transactions on Graphics—Proceedings of SIGGRAPH 2008; vol. 27; 2008. |
Pain, B., “Back-Side Illumination Technology for SOI-CMOS Image Sensors”, 2009. |
Perez, Patrick et al., “Poisson Image Editing,” ACM Transactions on Graphics—Proceedings of ACM SIGGRAPH 2003; vol. 22, Issue 3; Jul. 2003; pp. 313-318. |
Petschnigg, George, et al., “Digial Photography with Flash and No-Flash Image Pairs”, SIGGRAPH 2004. |
Primesense, “The Primesense 3D Awareness Sensor”, 2007. |
Ramamoorthi, R., et al, “Frequency space environment map rendering” ACM Transactions on Graphics (SIGGRAPH 2002 proceedings) 21, 3, 517-526. |
Ramamoorthi, R., et al., “An efficient representation for irradiance environment maps”, in Proceedings of SIGGRAPH 2001, 497-500. |
Raskar, Ramesh et al., “Glare Aware Photography: 4D Ray Sampling for Reducing Glare Effects of Camera Lenses,” ACM Transactions on Graphics—Proceedings of ACM SIGGRAPH, Aug. 2008; vol. 27, Issue 3; pp. 1-10. |
Raskar, Ramesh et al., “Non-photorealistic Camera: Depth Edge Detection and Stylized Rendering using Multi-Flash Imaging”, SIGGRAPH 2004. |
Raytrix, “Raytrix Lightfield Camera,” Raytrix GmbH, Germany 2012, pp. 1-35. |
Roper Scientific, Germany “Fiber Optics,” 2012. |
Scharstein, Daniel, et al., “High-Accuracy Stereo Depth Maps Using Structured Light,” CVPR'03 Proceedings of the 2003 IEEE Computer Society, pp. 195-202. |
Schirmacher, H. et al., “High-Quality Interactive Lumigraph Rendering Through Warping,” May 2000, Graphics Interface 2000. |
Shade, Jonathan, et al., “Layered Depth Images”, SIGGRAPH 98, pp. 1-2, 1998. |
Shreiner, OpenGL Programming Guide, 7th edition, Chapter 8, 2010. |
Simpleviewer, “Tiltview”, http://simpleviewer.net/tiltviewer. Retrieved Jan. 2013. |
Skodras, A. et al., “The JPEG 2000 Still Image Compression Standard,” Sep. 2001, IEEE Signal Processing Magazine, pp. 36-58. |
Sloan, P., et al., “Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments”, ACM Transactions on Graphics 21, 3, 527-536, 2002. |
Snavely, Noah, et al., “Photo-tourism: Exploring Photo collections in 3D”, ACM Transactions on Graphics (SIGGRAPH Proceedings), 2006. |
Sokolov, “Autostereoscopy and Integral Photography by Professor Lippmann's Method” , 1911, pp. 23-29. |
Sony Corp, “Interchangeable Lens Digital Camera Handbook”, 2011. |
Sony, Sony's First Curved Sensor Photo: http://www.engadget.com; Jul. 2014. |
Stensvold, M., “Hybrid AF: A New Approach to Autofocus Is Emerging for both Still and Video”, Digital Photo Magazine, Nov. 13, 2012. |
Story, D., “The Future of Photography”, Optics Electronics, Oct. 2008. |
Sun, Jian, et al., “Stereo Matching Using Belief Propagation”, 2002. |
Tagging photos on Flickr, Facebook and other online photo sharing sites (see, for example, http://support.gnip.com/customer/portal/articles/809309-flickr-geo-photos-tag-search). Retrieved Jan. 2013. |
Takahashi, Keita, et al., “All in-focus View Synthesis from Under-Sampled Light Fields”, ICAT 2003, Tokyo, Japan. |
Tanida et al., “Thin observation module by bound optics (TOMBO): concept and experimental verification” Applied Optics 40, 11 (Apr. 10, 2001), pp. 1806-1813. |
Tao, Michael, et al., “Depth from Combining Defocus and Correspondence Using Light-Field Cameras”, Dec. 2013. |
Techcrunch, “Coolinis”, Retrieved Jan. 2013. |
Teo, P., et al., “Efficient linear rendering for interactive light design”, Tech. Rep. STAN-CS-TN-97-60, 1998, Stanford University. |
Teranishi, N. “Evolution of Optical Structure in Images Sensors,” Electron Devices Meeting (IEDM) 2012 IEEE International; Dec. 10-13, 2012. |
Vaish et al., “Using plane + parallax for calibrating dense camera arrays”, In Proceedings CVPR 2004, pp. 2-9. |
Vaish, V., et al., “Synthetic Aperture Focusing Using a Shear-Warp Factorization of the Viewing Transform,” Workshop on Advanced 3D Imaging for Safety and Security (in conjunction with CVPR 2005), 2005. |
VR Playhouse, “The Surrogate,” http://www.vrplayhouse.com/the-surrogate, 2016. |
Wanner, S. et al., “Globally Consistent Depth Labeling of 4D Light Fields,” IEEE Conference on Computer Vision and Pattern Recognition, 2012. |
Wanner, S. et al., “Variational Light Field Analysis for Disparity Estimation and Super-Resolution,” IEEE Transacations on Pattern Analysis and Machine Intellegence, 2013. |
Wenger, et al, “Performance Relighting and Reflectance Transformation with Time-Multiplexed Illumination”, Institute for Creative Technologies, SIGGRAPH 2005. |
Wetzstein, Gordon, et al., “Sensor Saturation in Fourier Multiplexed Imaging”, IEEE Conference on Computer Vision and Pattern Recognition (2010). |
Wikipedia—Adaptive Optics: http://en.wikipedia.orgiwiki/adaptive_optics. Retrieved Feb. 2014. |
Wikipedia—Autofocus systems and methods: http://en.wikipedia.org/wiki/Autofocus. Retrieved Jan. 2013. |
Wikipedia—Bayer Filter: http:/en.wikipedia.org/wiki/Bayer_filter. Retrieved Jun. 20, 2013. |
Wikipedia—Color Image Pipeline: http://en.wikipedia.org/wiki/color_image_pipeline. Retrieved Jan. 15, 2014. |
Wikipedia—Compression standard JPEG XR: http://en.wikipedia.org/wiki/JPEG_XR. Retrieved Jan. 2013. |
Wikipedia—CYGM Filter: http://en.wikipedia.org/wiki/CYGM_filter. Retrieved Jun. 20, 2013. |
Wikipedia—Data overlay techniques for real-time visual feed. For example, heads-up displays: http://en.wikipedia.org/wiki/Head-up_display. Retrieved Jan. 2013. |
Georgiev, T., et al., “Suppersolution with Plenoptic 2.0 Cameras,” Optical Society of America 2009; pp. 1-3. |
Georgiev, T., et al., “Unified Frequency Domain Analysis of Lightfield Cameras” (2008). |
Georgiev, T., et al., Plenoptic Camera 2.0 (2008). |
Girod, B., “Mobile Visual Search”, IEEE Signal Processing Magazine, Jul. 2011. |
Gortler et al., “The lumigraph” SIGGRAPH 96, pp. 43-54, 1996. |
Groen et al., “A Comparison of Different Focus Functions for Use in Autofocus Algorithms,” Cytometry 6:81-91, 1985. |
Haeberli, Paul “A Multifocus Method for Controlling Depth of Field” GRAPHICA Obscura, 1994, pp. 1-3. |
Heide, F. et al., “High-Quality Computational Imaging Through Simple Lenses,” ACM Transactions on Graphics, SIGGRAPH 2013; pp. 1-7. |
Heidelberg Collaboratory for Image Processing, “Consistent Depth Estimation in a 4D Light Field,” May 2013. |
Hirigoyen, F., et al., “1.1 um Backside Imager vs. Frontside Image: an optics-dedicated FDTD approach”, IEEE 2009 International Image Sensor Workshop. |
Huang, Fu-Chung et al., “Eyeglasses-free Display: Towards Correcting Visual Aberrations with Computational Light Field Displays,” ACM Transaction on Graphics, Aug. 2014, pp. 1-12. |
Isaksen, A., et al., “Dynamically Reparameterized Light Fields,” SIGGRAPH 2000, pp. 297-306. |
Ives H., “Optical properties of a Lippman lenticulated sheet,” J. Opt. Soc. Am. 21, 171 (1931). |
Ives, H. “Parallax Panoramagrams Made with a Large Diameter Lens”, Journal of the Optical Society of America; 1930. |
Jackson et al., “Selection of a Convolution Function for Fourier Inversion Using Gridding” IEEE Transactions on Medical Imaging, Sep. 1991, vol. 10, No. 3, pp. 473-478. |
Kautz, J., et al., “Fast arbitrary BRDF shading for low-frequency lighting using spherical harmonics”, in Eurographic Rendering Workshop 2002, 291-296. |
Koltun, et al., “Virtual Occluders: An Efficient Interediate PVS Representation”, Rendering Techniques 2000: Proc. 11th Eurographics Workshop Rendering, pp. 59-70, Jun. 2000. |
Kopf, J., et al., Deep Photo: Model-Based Photograph Enhancement and Viewing, SIGGRAPH Asia 2008. |
Lehtinen, J., et al. “Matrix radiance transfer”, in Symposium on Interactive 3D Graphics, 59-64, 2003. |
Lesser, Michael, “Back-Side Illumination”, 2009. |
Levin, A., et al., “Image and Depth from a Conventional Camera with a Coded Aperture”, SIGGRAPH 2007, pp. 1-9. |
Levoy et al.,“Light Field Rendering” SIGGRAPH 96 Proceeding, 1996. pp. 31-42. |
Levoy, “Light Fields and Computational Imaging” IEEE Computer Society, Aug. 2006, pp. 46-55. |
Levoy, M. “Light Field Photography and Videography,” Oct. 18, 2005. |
Levoy, M. “Stanford Light Field Microscope Project,” 2008; http://graphics.stanford.edu/projects/lfmicroscope/, 4 pages. |
Levoy, M., “Autofocus: Contrast Detection”, http://graphics.stanford.edu/courses/cs178/applets/autofocusPD.html, pp. 1-3, 2010. |
Levoy, M., “Autofocus: Phase Detection”, http://graphics.stanford.edu/courses/cs178/applets/autofocusPD.html, pp. 1-3, 2010. |
Levoy, M., et al., “Light Field Microscopy,” ACM Transactions on Graphics, vol. 25, No. 3, Proceedings SIGGRAPH 2006. |
Liang, Chia-Kai, et al., “Programmable Aperture Photography: Multiplexed Light Field Acquisition”, ACM SIGGRAPH, 2008. |
Lippmann, “Reversible Prints”, Communication at the French Society of Physics, Journal of Physics, 7 , 4, Mar. 1908, pp. 821-825. |
Lumsdaine et al., “Full Resolution Lightfield Rendering” Adobe Technical Report Jan. 2008, pp. 1-12. |
Maeda, Y. et al., “A CMOS Image Sensor with Pseudorandom Pixel Placement for Clear Imaging,” 2009 International Symposium on Intelligent Signal Processing and Communication Systems, Dec. 2009. |
Magnor, M. et al., “Model-Aided Coding of Multi-Viewpoint Image Data,” Proceedings IEEE Conference on Image Processing, ICIP-2000, Vancouver, Canada, Sep. 2000. https://graphics.tu-bs.de/static/people/magnor/publications/icip00.pdf. |
Mallat, Stephane, “A Wavelet Tour of Signal Processing”, Academic Press 1998. |
Malzbender, et al., “Polynomial Texture Maps”, Proceedings SIGGRAPH 2001. |
Marshall, Richard J. et al., “Improving Depth Estimation from a Plenoptic Camera by Patterned Illumination,” Proc. Of SPIE, vol. 9528, 2015, pp. 1-6. |
Masselus, Vincent, et al., “Relighting with 4D Incident Light Fields”, SIGGRAPH 2003. |
Meynants, G., et al., “Pixel Binning in CMOS Image Sensors,” Frontiers in Electronic Imaging Conference, 2009. |
Moreno-Noguer, F. et al., “Active Refocusing of Images and Videos,” ACM Transactions on Graphics, Aug. 2007; pp. 1-9. |
Munkberg, J. et al., “Layered Reconstruction for Defocus and Motion Blur” EGSR 2014, pp. 1-12. |
Naemura et al., “3-D Computer Graphics based on Integral Photography” Optics Express, Feb. 12, 2001. vol. 8, No. 2, pp. 255-262. |
Nakamura, J., “Image Sensors and Signal Processing for Digital Still Cameras” (Optical Science and Engineering), 2005. |
National Instruments, “Anatomy of a Camera,” pp. 1-5, Sep. 6, 2006. |
Nayar, Shree, et al., “Shape from Focus”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 16, No. 8, pp. 824-831, Aug. 1994. |
Ng, R., et al. “Light Field Photography with a Hand-held Plenoptic Camera,” Stanford Technical Report, CSTR 2005-2, 2005. |
Ng, R., et al., “All-Frequency Shadows Using Non-linear Wavelet Lighting Approximation. ACM Transactions on Graphics,” ACM Transactions on Graphics; Proceedings of SIGGRAPH 2003. |
Ng, R., et al., “Triple Product Wavelet Integrals for All-Frequency Relighting”, ACM Transactions on Graphics (Proceedings of SIGGRAPH 2004). |
Ng, Yi-Ren, “Digital Light Field Photography,” Doctoral Thesis, Standford University, Jun. 2006; 203 pages. |
Ng., R., “Fourier Slice Photography,” ACM Transactions on Graphics, Proceedings of SIGGRAPH 2005, vol. 24, No. 3, 2005, pp. 735-744. |
Nguyen, Hubert. “Practical Post-Process Depth of Field.” GPU Gems 3. Upper Saddle River, NJ: Addison-Wesley, 2008. |
Meng, J. et al., “An Approach on Hardware Design for Computational Photography Applications Based on Light Field Refocusing Algorithm,” Nov. 18, 2007, 12 pages. |
U.S. Appl. No. 15/967,076, filed Apr. 30, 2018 listing Jiantao Kuang et al. as inventors, entitled “Automatic Lens Flare Detection and Correction for Light-Field Images”. |
U.S. Appl. No. 15/666,298, filed Aug. 1, 2017 listing Yonggang Ha et al. as inventors, entitled “Focal Reducer With Controlled Optical Properties for Interchangeable Lens Light-Field Camera”. |
U.S. Appl. No. 15/590,808, filed May 9, 2017 listing Alex Song et al. as inventors, entitled “Adaptive Control for Immersive Experience Delivery”. |
U.S. Appl. No. 15/864,938, filed Jan. 8, 2018 listing Jon Karafin et al. as inventors, entitled “Motion Blur for Light-Field Images”. |
U.S. Appl. No. 15/703,553, filed Sep. 13, 2017 listing Jon Karafin et al. as inventors, entitled “4D Camera Tracking and Optical Stabilization”. |
U.S. Appl. No. 15/590,841, filed May 9, 2017 listing Kurt Akeley et al. as inventors, entitled “Vantage Generation and Inteactive Playback”. |
U.S. Appl. No. 15/590,951, filed May 9, 2017 listing Alex Song et al. as inventors, entitled “Wedge-Based Light-Field Video Capture”. |
U.S. Appl. No. 15/944,551, filed Apr. 3, 2018 listing Zejing Wang et al. as inventors, entitled “Generating Dolly Zoom Effect Using Light Field Image Data”. |
U.S. Appl. No. 15/874,723, filed Jan. 18, 2018 listing Mark Weir et al. as inventors, entitled “Multi-Camera Navigation Interface”. |
U.S. Appl. No. 15/897,994, filed Feb. 15, 2018 listing Trevor Carothers et al. as inventors, entitled “Generation of Virtual Reality With 6 Degrees of Freesom From Limited Viewer Data”. |
U.S. Appl. No. 15/605,037, filed May 25, 2017 listing Zejing Wang et al. as inventors, entitled “Multi-View Back-Projection to a Light-Field”. |
U.S. Appl. No. 15/897,836, filed Feb. 15, 2018 listing Francois Bleibel et al. as inventors, entitled “Multi-View Contour Tracking”. |
U.S. Appl. No. 15/897,942, filed Feb. 15, 2018 listing Francois Bleibel et al. as inventors, entitled “Multi-View Contour Tracking With Grabcut”. |
Adelsberger, R. et al., “Spatially Adaptive Photographic Flash,” ETH Zurich, Department of Computer Science, Technical Report 612, 2008, pp. 1-12. |
Adelson et al., “Single Lens Stereo with a Plenoptic Camera” IEEE Translation on Pattern Analysis and Machine Intelligence, Feb. 1992. vol. 14, No. 2, pp. 99-106. |
Adelson, E. H., and Bergen, J. R. 1991. The plenoptic function and the elements of early vision. In Computational Models of Visual Processing, edited by Michael S. Landy and J. Anthony Movshon. Cambridge, Mass.: mit Press. |
Adobe Systems Inc, “XMP Specification”, Sep. 2005. |
Adobe, “Photoshop CS6 / in depth: Digital Negative (DNG)”, http://www.adobe.com/products/photoshop/extend.displayTab2html. Retrieved Jan. 2013. |
Agarwala, A., et al., “Interactive Digital Photomontage,” ACM Transactions on Graphics, Proceedings of SIGGRAPH 2004, vol. 32, No. 3, 2004. |
Andreas Observatory, Spectrograph Manual: IV. Flat-Field Correction, Jul. 2006. |
Apple, “Apple iPad: Photo Features on the iPad”, Retrieved Jan. 2013. |
Bae, S., et al., “Defocus Magnification”, Computer Graphics Forum, vol. 26, Issue 3 (Proc. Of Eurographics 2007), pp. 1-9. |
Belhumeur, Peter et al., “The Bas-Relief Ambiguity”, International Journal of Computer Vision, 1997, pp. 1060-1066. |
Belhumeur, Peter, et al., “The Bas-Relief Ambiguity”, International Journal of Computer Vision, 1999, pp. 33-44, revised version. |
Bhat, P. et al. “GradientShop: A Gradient-Domain Optimization Framework for Image and Video Filtering,” SIGGRAPH 2010; 14 pages. |
Bolles, R., et al., “Epipolar-Plane Image Analysis: An Approach to Determining Structure from Motion”, International Journal of Computer Vision, 1, 7-55 (1987). |
Bourke, Paul, “Image filtering in the Frequency Domain,” pp. 1-9, Jun. 1998. |
Canon, Canon Speedlite wireless flash system, User manual for Model 550EX, Sep. 1998. |
Chai, Jin-Xang et al., “Plenoptic Sampling”, ACM SIGGRAPH 2000, Annual Conference Series, 2000, pp. 307-318. |
Chen, S. et al., “A CMOS Image Sensor with On-Chip Image Compression Based on Predictive Boundary Adaptation and Memoryless QTD Algorithm,” Very Large Scalee Integration (VLSI) Systems, IEEE Transactions, vol. 19, Issue 4; Apr. 2011. |
Chen, W., et al., “Light Field mapping: Efficient representation and hardware rendering of surface light fields”, ACM Transactions on Graphics 21, 3, 447-456, 2002. |
Cohen, Noy et al., “Enhancing the performance of the light field microscope using wavefront coding,” Optics Express, vol. 22, issue 20; 2014. |
Daly, D., “Microlens Arrays” Retrieved Jan. 2013. |
Debevec, et al, “A Lighting Reproduction Approach to Live-Action Compoisting” Proceedings SIGGRAPH 2002. |
Debevec, P., et al., “Acquiring the reflectance field of a human face”, SIGGRAPH 2000. |
Debevec, P., et al., “Recovering high dynamic radiance maps from photographs”, SIGGRAPH 1997, 369-378. |
Design of the xBox menu. Retrieved Jan. 2013. |
Digital Photography Review, “Sony Announce new RGBE CCD,” Jul. 2003. |
Dorsey, J., et al., “Design and simulation of opera light and projection effects”, in Computer Graphics (Proceedings of SIGGRAPH 91), vol. 25, 41-50, 1991. |
Dorsey, J., et al., “Interactive design of complex time dependent lighting”, IEEE Computer Graphics and Applications 15, 2 (Mar. 1995), 26-36. |
Dowski et al., “Wavefront coding: a modern method of achieving high performance and/or low cost imaging systems” SPIE Proceedings, vol. 3779, Jul. 1999, pp. 137-145. |
Dowski, Jr. “Extended Depth of Field Through Wave-Front Coding,” Applied Optics, vol. 34, No. 11, Apr. 10, 1995; pp. 1859-1866. |
Duparre, J. et al., “Micro-Optical Artificial Compound Eyes,” Institute of Physics Publishing, Apr. 2006. |
Eisemann, Elmar, et al., “Flash Photography Enhancement via Intrinsic Relighting”, SIGGRAPH 2004. |
Fattal, Raanan, et al., “Multiscale Shape and Detail Enhancement from Multi-light Image Collections”, SIGGRAPH 2007. |
Fernando, Randima, “Depth of Field—A Survey of Techniques,” GPU Gems. Boston, MA; Addison-Wesley, 2004. |
Fitzpatrick, Brad, “Camlistore”, Feb. 1, 2011. |
Fujifilm, Super CCD EXR Sensor by Fujifilm, brochure reference No. EB-807E, 2008. |
Georgiev, T. et al., “Reducing Plenoptic Camera Artifacts,” Computer Graphics Forum, vol. 29, No. 6, pp. 1955-1968; 2010. |
Georgiev, T., et al., “Spatio-Angular Resolution Tradeoff in Integral Photography,” Proceedings of Eurographics Symposium on Rendering, 2006. |
Wikipedia—Exchangeable image file format: http://en.wikipedia.org/wiki/Exchangeable_image_file_format. Retrieved Jan. 2013. |
Wikipedia—Expeed: http://en.wikipedia.org/wiki/EXPEED. Retrieved Jan. 15, 2014. |
Wikipedia—Extensible Metadata Platform: http://en.wikipedia.org/wiki/Extensible_Metadata_Platform. Retrieved Jan. 2013. |
Wikipedia—Key framing for video animation: http://en.wikipedia.org/wiki/Key_frame. Retrieved Jan. 2013. |
Wikipedia—Lazy loading of image data: http://en.wikipedia.org/wiki/Lazy_loading. Retrieved Jan. 2013. |
Wikipedia—Methods of Variable Bitrate Encoding: http://en.wikipedia.org/wiki/Variable_bitrate#Methods_of_VBR_encoding. Retrieved Jan. 2013. |
Wikipedia—Portable Network Graphics format: http://en.wikipedia.org/wiki/Portable_Network_Graphics. Retrieved Jan. 2013. |
Wikipedia—Unsharp Mask Technique: https://en.wikipedia.org/wiki/Unsharp_masking. Retrieved May 3, 2016. |
Wilburn et al., “High Performance Imaging using Large Camera Arrays”, ACM Transactions on Graphics (TOG), vol. 24, Issue 3 (Jul. 2005), Proceedings of ACM SIGGRAPH 2005, pp. 765-776. |
Wilburn, Bennett, et al., “High Speed Video Using A Dense Camera Array”, 2004. |
Wilburn, Bennett, et al., “The Light Field Video Camera”, Proceedings of Media Processors 2002. |
Williams, L. “Pyramidal Parametrics,” Computer Graphic (1983). |
Winnemoller, H., et al., “Light Waving: Estimating Light Positions From Photographs Alone”, Eurographics 2005. |
Wippermann, F. “Chirped Refractive Microlens Array,” Dissertation 2007. |
Wuu, S., et al., “A Manufacturable Back-Side Illumination Technology Using Bulk Si Substrate for Advanced CMOS Image Sensors”, 2009 International Image Sensor Workshop, Bergen, Norway. |
Wuu, S., et al., “BSI Technology with Bulk Si Wafer”, 2009 International Image Sensor Workshop, Bergen, Norway. |
Xiao, Z. et al., “Aliasing Detection and Reduction in Plenoptic Imaging,” IEEE Conference on Computer Vision and Pattern Recognition; 2014. |
Xu, Xin et al., “Robust Automatic Focus Algorithm for Low Contrast Images Using a New Contrast Measure,” Sensors 2011; 14 pages. |
Zheng, C. et al., “Parallax Photography: Creating 3D Cinematic Effects from Stills”, Proceedings of Graphic Interface, 2009. |
Zitnick, L. et al., “High-Quality Video View Interpolation Using a Layered Representation,” Aug. 2004; ACM Transactions on Graphics (TOG), Proceedings of ACM SIGGRAPH 2004; vol. 23, Issue 3; pp. 600-608. |
Zoberbier, M., et al., “Wafer Cameras—Novel Fabrication and Packaging Technologies”, 2009 International Image Senor Workshop, Bergen, Norway, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20180097867 A1 | Apr 2018 | US |
Number | Date | Country | |
---|---|---|---|
62148055 | Apr 2015 | US | |
62148460 | Apr 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15590877 | May 2017 | US |
Child | 15832023 | US | |
Parent | 15084326 | Mar 2016 | US |
Child | 15590877 | US | |
Parent | 15832023 | US | |
Child | 15590877 | US | |
Parent | 15590808 | May 2017 | US |
Child | 15832023 | US |