(a) Field of the Invention
The invention relates to video data source systems, particularly to analog back ends in video data source systems.
(b) Description of the Related Art
Since the entering of the 20th century, the development of television technology and its applications has proven that it is now part of human life and core of entertainment. Because of the improvement of display technology in recent years, providing massive data and high-definition images has become the focus of the future development of the television industry. Please refer to
The video source of the television system 120 can take many forms, such as a DVD player, set top box, and even various game consoles. In general, the components of the video source system 110 comprise a video encoder 112 for performing image data encoding, and a digital-to-analog converter (DAC) 114, which converts the encoded digital signal into an image analog signal and outputs the image analog signal.
The television system 120, such as a LCD TV or other flat panel television system or digital television system, which is becoming the main stream applications, receives an image analog signal transmitted from the video source, converts it into digital format with an analog-to-digital converter (ADC) 124, and performs decoding operation with a video decoder 122 for further image processing and displaying.
There are many types of video encoding format. The most commonly available ones are: RGB signal format, CVBS signal format, luminance/chrominance (Y/C) signal format, and color difference (YPrPb) signal format and so forth. Therefore, the analog transmission interface for transmitting video signals between the video source system 110 and the television system 120 can also be one of several types, such as Digital Visual Interface (DVI), which comprises a Display Data Channel (DDC), for transmitting signals in RGB format; AV interface for transmitting signals in the CVBS format; S-video interface for transmitting signals in the Y/C format; and color difference video interface for transmitting signals in the YPrPb format.
As shown in
As shown in
In the conventional design, a buffer amplifier outside the chip, usually disposed on the printed circuit board, is used to provide the required driving power. However, such design still suffers the problems of increasing costs of external circuitry and increasing power consumption due to the added buffer amplifier.
In light of the above-mentioned problem, one object of the invention is to provide a video data source system, which adds a post-stage driving unit into the analog back end device.
In order to achieve the above-mentioned object, the invention provides a video data source system, receiving a digital signal that represents video data and generating an adjusted analog signal. The video data source system comprises a video encoding unit and an analog back end device. The video encoding unit receives the digital signal, encodes the digital signal, and generates an encoded digital signal. The analog back end device comprises a digital-to-analog converter and a post-stage driving unit. The digital-to-analog converter receives the encoded digital signal and converts the received encoded digital signal into a video analog signal. The post-stage driving unit receives the video analog signal and then generates an adjusted analog signal to drive a post-stage component.
In one embodiment of the invention, the video source system utilizes the additional post-stage driving unit to control the biasing point of its output signal. As a result, the driving power of the video source system to the post-stage component can be improved and the problems in the prior art can be solved.
The video encoding unit 31 receives the digital signal Din and encodes the digital signal Din into a video encoding format to generate an encoded digital signal Df. The digital signal Din may represent a television signal from the station or an image signal read from an optical disk, etc.
The analog back end device 32 comprises a digital-to-analog converter 114 and a post-stage driving unit 322. The digital-to-analog converter 114 receives the encoded digital signal Df and converts the received encoded digital signal Df into a video analog signal Aout. The post-stage driving unit 322 receives the video analog signal Aout, adjusts the absolute voltage level of the video analog signal Aout, and then generates an adjusted analog signal Ad. The post-stage driving unit 322 comprises a resistor Ro and an operational amplifier Opa. The resistor Ro in the post-stage driving unit 322 comprises a first end 1 and a second end 2. The inverting input terminal of the operational amplifier Opa is coupled to the first end 1 of the resistor Ro to form an input node A for receiving the video analog signal Aout. On the other hand, the non-inverting input terminal of the operational amplifier Opa receives a reference voltage Vref, and the output terminal of the operational amplifier Opa is coupled to the second end 2 of the resistor Ro to form an output node B. The operational amplifier Opa generates the adjusted analog signal Ad at the output node B. Finally, the video data source system 30 outputs the adjusted analog signal Ad to drive the subsequent circuit comprised of a power source resistor RS and a load resistor RL. Generally, the subsequent circuit is constituted of the post-stage load, comprised of the components on the circuit board and transmission medium, such as cables.
It should be noted that the digital-to-analog converter 114 is implemented by a well-known current-steering digital-to-analog converter (current-steering DAC), wherein a plurality of digital bits control switching on or off of a plurality of current sources. For example as shown in
In the embodiment shown in
For those who are skilled in the art, it is understood that the upper and lower parts of the digital-to-analog converter 114 shown in
Although the present invention has been fully described by way of examples with reference to the accompanying drawings, it should not be construed as any limitation on the scope of the present invention. Various modifications and changes can be made by those who are skilled in the art without deviating from the essence of the invention.
Number | Date | Country | Kind |
---|---|---|---|
95133776 A | Sep 2006 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
5333010 | Nakamura et al. | Jul 1994 | A |
5596373 | White et al. | Jan 1997 | A |
5621428 | King et al. | Apr 1997 | A |
6411330 | Purcell et al. | Jun 2002 | B1 |
6452526 | Sagawa et al. | Sep 2002 | B2 |
6545707 | Newcomb et al. | Apr 2003 | B1 |
6778119 | May | Aug 2004 | B2 |
6989779 | Sasaki et al. | Jan 2006 | B2 |
6999015 | Zhang et al. | Feb 2006 | B2 |
7450095 | Yu et al. | Nov 2008 | B2 |
7468687 | Nozawa et al. | Dec 2008 | B2 |
Number | Date | Country | |
---|---|---|---|
20080063049 A1 | Mar 2008 | US |