The invention will be more easily understood and further features and advantages will become apparent from the subsequent description of embodiments thereof referring to the appended drawings.
The display device of the invention comprises a large number n*l of light-emitting elements such as OLEDs (Organic Light-Emitting Diodes) arranged on a substrate in a matrix of n lines and 1 columns. Since the columns are identical in design and operation,
The current modulators 2-1, 2-2, . . . , 2-n may each be formed by a FET having two current electrodes, one connected to the circuit node 3 and the other to the OLED 1-1, 1-2, . . . or 1-n, respectively, and a control electrode connected to first sides of a switch 4-1, 4-2, . . . , 4-n and of a storage capacitor 5-1, 5-2, . . . , 5-n. Incidentally, the storage capacitors have their second sides connected to ground, but they might as well be connected to said negative supply voltage V-, to a positive supply voltage V+ or to any other appropriate constant potential. The switches 4-1, 4-2, 4-n have their second sides connected to an output of an operational amplifier 6, of which a non-inverting input is connected to circuit node 3 and an inverting input is connected to ground.
An operational amplifier 7 has its non-inverting input connected to ground, its inverting input connected to circuit node 3 and its output connected to a first side of a switch 8, a second side of which is connected to a storage capacitor 9 and to a control terminal of a current modulator 10 which may be of the same type as current modulators 2-1, 2-2, . . . , 2-n. Current modulator 10 has its current terminals connected to positive supply voltage V+ and to circuit node 3.
An exemplary current generator 11 comprises a control block 12, a transistor 13 and a resistor 14. Transistor 13 and resistor 14 are connected in series between the positive supply voltage V+ and the circuit node 3. Control block 12 has an input 15 for receiving digital data representative of desired luminosities of OLEDs 1-1, 1-2, . . . , 1-n, inputs 16 for detecting a voltage drop across resistor 14 and an output connected to a control electrode of transistor 13. Transistor 13 may be a bipolar or MOS-FET transistor.
For explaining the operation of the circuitry of
The control block reacts to the luminosity value D1 being input by closing switch 4-1 and making transistor 13 conductive, so that at a time t1c (cf.
When this happens, it is likely that the circuit node 3 will at first have a positive potential. This positive potential causes operational amplifier 6 to output a current which continues to charge storage capacitor 2-1, thus gradually increasing the potential at the control electrode of current modulator 2-1 and increasing its conductivity. Control block 12 continuously adjusts the control voltage applied to transistor 13, so that the current through circuit node 3 is kept constant at ID1. Soon, a steady state is reached in which circuit node 3 has ground potential. In this state, control block 12 reopens switch 4-1.
In a next step, at a time t1d, control block 12 blocks transistor 13, so that current generator 11 becomes non-conductive (IDATA=0), and closes switch 8. Since current modulator 2-1 stays conductive, the potential of circuit node 3 decreases, which causes operational amplifier 7 to output a positive current to storage capacitor 9 and to the control electrode of current modulator 10. Again, a steady state is reached as soon as circuit node 3 has returned to ground potential. When this happens, the current through OLED 1-1 is exactly equal to ID1, but the current is supplied not by current generator 11 any more, but by current modulator 10.
In a subsequent step, from time t2a to t2c, the control block 12 carries out a reset procedure which, for better understanding, will be explained later on.
By the time t2c, the control block 12 has received a second digital data specifying a desired luminosity D2 of OLED 1-2. At t2c, it closes switch 4-2 and begins to control transistor 13 so as to have a current IDATA=ID2 corresponding to said desired luminosity D2 flowing through current generator 11. Again, the potential of circuit node 3 becomes slightly positive, this time causing amplifier 6 to charge capacitor 5-2, and to make current modulator 2-2 conductive. A steady state is reached in which circuit node 3 is at ground potential, and the current IDATA=ID2 from current generator 11 is absorbed by OLED 2-2, whereas the current I10 from current modulator 10 flows through OLED 1-1. Control block 12 then opens switch 4-2, and at the time t2d, it blocks transistor 13 and closes switch 8 again. A potential decrease at circuit node 3 causes amplifier 7 to continue to charge capacitor 9, until the current I10 through current modulator 10 becomes equal to ID1+ID2.
The procedure is repeated for all remaining OLEDs of the column, and at the end of each repetition, the current from current modulator 10 is increased by the desired intensity IDi, i=3, . . . , n, for each of the OLEDs, finally reaching I93=ID1+ID2+ . . . +IDn. At this stage, an entire image is visible on the display device.
The next digital data received by control block 12 is data specifying a desired luminosity D1′ of OLED 1-1 in a subsequent picture. In order to adapt the luminosity of OLED 1-1 to this new value, at a time t1a′ (see
Since the control block 12 is used to program the luminosities of the OLEDs one by one, the resolution of the current generator 11 need not be higher than that of a single luminosity data received by the control block 12, regardless of the number of OLEDs in a column.
Referring to the teachings of EP 1 621 20 A1 it will be readily apparent to a skilled person that the operating procedure of the circuitry of
According to another embodiment, image build-up speed may be increased by not resetting the current modulators 2 prior to programming them. It is easily understood that when the display has just been activated and a first image is formed, the reset step is not necessary. When forming the second image, the luminosity of e. g. OLED 1-1 is programmed by having current generator 11 output a current IDATA=ID1′−ID1, wherein ID1′ is the current intensity corresponding to the desired luminosity D1′ of OLED 1-1 in the second image. Since in this embodiment IDATA may be negative, the current generator 11 must be adapted to generate negative currents, e. g by means of a second transistor, not shown, connected in series between transistor 13 and V− and controlled by control block 12.
In this embodiment, any inaccuracy of IDATA may cause the luminosities of the OLEDs to drift. In order to limit such drifts, it is conceivable to apply a reset to each OLED when it has been reprogrammed without reset a predetermined number of times.
Number | Date | Country | Kind |
---|---|---|---|
06300542.5 | Jun 2006 | EP | regional |