The technology herein relates to consumer electronics, and more particularly to video game and entertainment systems. In still more detail, the technology herein relates to a home video game system including a modular remote wireless handheld game control device with capabilities including position sensing. The technology also relates to a game operating controller device in which a housing is held by one hand and, in that state, operating keys and operating switches arranged on an upper surface and lower surface of the controller housing are operated.
Computer graphics technology has come a long way since video games were first developed. Relatively inexpensive 3D graphics engines now provide nearly photo-realistic interactive game play on home video game and personal computer hardware platforms costing only a few hundred dollars.
Most game players demand great graphics, but the core of video game play is the game/user interface—the interaction between the (human) game player and the gaming platform. Video games are fun and exciting to play because the game player can interact with the game and affect or control the gaming events and outcomes. Since the essence of an enjoyable video game play experience relates to the way the user interacts with the game and the game playing system, user input details tend to be important to the success and marketability of home video game play systems.
One aspect of the video game/user interface relates to how the user controls the position of one or more objects on the display. Much work has been done on this user interface aspect in the past. For example, the first Magnavox Odyssey home video game systems provided detachable handheld controllers with knobs that allowed the game player to control the horizontal and vertical positioning of objects on the screen. Pong®, another early home video game system, had a very simple user interface providing controls the players manipulated to control the positioning of paddles on the screen. Nintendo's Game and Watch® early handheld video game systems used a “cross-switch” as described in Nintendo's U.S. Pat. No. 4,687,200 to control the position of objects on the screen. These were relatively simple yet effective user interfaces.
In recent years, video game system handheld controllers have tended to become increasingly more complicated and more capable. Video game platforms offered by Nintendo and others have provided joysticks, cross-switches or other user-manipulable controls as a means for allowing the user to control game play in a variety of simple and sophisticated ways. Many handheld controllers provide multiple joysticks as well an array of trigger buttons, additional control buttons, memory ports, and other features. Rumble or vibration effects are now common, as are wireless capabilities. Home video game manufacturers supply a variety of user input devices, and game accessory manufacturers often provide an even wider array of input device options. For example, some in the past have also tried to develop a video game handheld controller that senses the orientation of the handheld controller itself to control object position on the display. See U.S. Pat. No. 5,059,958 assigned to the present assignee.
Conventionally, a typical controller used for playing a game is a controller in which the main body of the controller is held by both hands of the user, and the keys are operated with the fingers of both hands. There is a problem, however, with a controller to be held by both hands because the hands are then restrained during operation, and thus, the user cannot do anything else, resulting in inconvenience.
One controller that addresses such a problem is disclosed in Japanese Patent Laying-open No. 2004-313492 [A63F 13/06]. The controller disclosed therein is a controller to be held by both hands that can be divided into right and left parts as necessary. In the divided state, the user holds only one part and performs an operation by means of only the keys arranged on the one part.
The controller described in the above-identified patent document is a controller to be held by both hands that is simply divided into two, and its keys are arranged under the assumption that the housing is supported by both hands from the right and left sides. Thus, the controller is not suitable for holding by one hand.
More specifically, the operating keys are arranged on the upper surface and side surfaces. The user operates the keys on the upper surface with thumbs and operates the keys on the side surfaces with index fingers and middle fingers, and needs to support the housing with ring fingers and little fingers against the pressure from the operating fingers. This causes a problem in that it is difficult to maintain the holding state with stability and hard to support the housing when no key operation needs to be performed and a finger is moved off the key.
However, configuring the controller so as to be operated by one hand brings about a decrease in the number of the keys, which imposes a limitation to a degree of flexibility in performing an input operation. In particular, these problems become more pronounced in a case of playing a game because the user is required to operate many buttons on the controller for manipulating a game character, and for selecting a command.
Another challenge that some have confronted in the past relates to cross-platform video game play. Generally, most video game system manufacturers differentiate new gaming systems from other or previous ones by providing unique user interface features including, for example, handheld controller configurations. Video games for play on different home video game platforms may therefore use different handheld controller configurations. While it may be possible in some cases to “remap” the user controls from one interface configuration to another so a game for one platform can be controlled using a different input control interface, such remapping may be less than optimal and/or change the game play experience in significant ways. For example, playing a game using a four-active-position cross-switch to control the movement of the main character on the screen may be quite a different experience for the user as compared with using an analog or digital joystick offering many different directional positions.
Furthermore, most video game platforms in the past have provided a single basic user interface that is used for all games playable on the platform. Even though different video games may provide quite different game play, video game developers have become skilled at using the common set of user input controls provided by the platform to control various different games. For example, most games developed to run on the Nintendo GameCube home video game system make use of the same handheld controller inputs comprising two joysticks, trigger switches and additional miscellaneous controls. Some games allocate different controls to different functions. For example, in one game, the left-hand joystick might navigate a 2D map view of a battlefield whereas in another game that same control might be used to allow the user to adjust virtual camera position or direction within a three-dimensional world.
The technology disclosed herein advances home video game user interfaces in ways not previously envisioned, to provide a more flexible and satisfying user experience across an ever increasing and divergent range of video games and other applications.
Therefore, it is a primary object of the present invention to provide a novel game operating device.
It is another object of the present invention to provide a game operating device that can be operated even by one hand in a stable manner.
It is still another object of the present invention to provide a game operating device that can be operated by one hand and offers a high degree of operation flexibility.
To solve the above mentioned issues, the present invention employs the various structures described below. It is noted that, the reference numerals, supplementary explanations, etc. in parentheses are intended to indicate correspondence with the embodiments described later, as an aid in understanding, and impose no limitations on the present invention.
One illustrative non-limiting exemplary aspect of the technology herein provides for positioning video game objects on the screen in response to the position of a handheld controller relative to the display. Rather than moving a joystick or cross-switch, the user simply moves the entire handheld controller. The motion of the controller is sensed and used to control the position of objects or other parameters in connection with video game play.
Another exemplary non-limiting illustrative aspect of the technology herein provides a handheld controller with a modular design. The basic controller functionality including wireless connectivity, vibration generation, position sensing, orientation sensing and other features are provided within a core or basic handheld controller unit. This core unit can control many or most videogame input functions and play most games. However, for enhanced input functionality, the core unit can be plugged into an expansion controller assembly providing additional controls, inputs and other functionality. As one example, the core unit can be plugged into a first accessory expansion unit providing touch pads when it is desired to play videogames requiring touch pad input. The same core unit can be plugged into a different expansion unit providing joysticks and other input devices to play videogames designed for joystick inputs. The same core controller can be plugged into a still additional expansion unit when the player wishes to interact with a videogame system using a simpler control interface providing a cross-switch and additional input buttons. In one exemplary illustrative non-limiting implementation, some of the accessory units are designed to mimic earlier or different videogame platforms to allow the videogame system to match user interactivity experiences provided by such other systems.
Another exemplary non-limiting illustrative aspect of the technology herein provides a game operating device comprising a longitudinal housing, a first operating portion provided on a first plane of the housing along a longitudinal direction at one end in the longitudinal direction, a second operating portion provided on a second plane opposed to the first plane of the housing at a position corresponding to the first operating portion, and a holding portion formed in a direction of the other end along the longitudinal direction of the housing from the second operating portion. In this aspect, the first operating portion is provided at one end of the first plane of the longitudinal housing in the longitudinal direction, and the second operating portion is provided on the second plane at the opposite side of the first plane. The housing is of shape and dimensions capable of being held by one hand of the game player, the holding portion for holding the housing, i.e. the controller is formed at one end of the housing along the longitudinal direction from the second operating portion. With the holding portion held by the palm of one hand, the first operating portion and the second operating portion can be operated by fingers of that hand. In other words, the player can operate the game operating device only by one hand, and the other hand is free even during the game, and the player can use the free hand for playing the game or for another purpose.
Another exemplary non-limiting illustrative aspect of the technology herein provides a game operating device comprising a longitudinal housing having a thickness capable of being held by one hand, a first operating portion provided on a first plane of the housing along a longitudinal direction, a second operating portion provided on a second plane opposed to the first plane of the housing at a position reached by an index finger of the one hand when a thumb of the one hand is placed on the first operating portion, and a holding portion formed on the housing, wherein the holding portion is formed at a position where can be held by palm and other fingers of the one hand, when the thumb is placed on the first operating portion and the index finger is placed on the second operating portion. In this aspect, the first operating portion is provided at one end of the first plane of the longitudinal housing in the longitudinal direction, and the second operating portion is provided on the second plane at the opposite side of the first plane. The housing is of shape and dimensions capable of being held by one hand of the game player, the holding portion for holding the housing is formed on the housing. The holding portion is formed at a position where can be held by the palm and the other fingers of the one hand, when the thumb is placed on the first operating portion and the index finger is placed on the second operating portion. That is, the game operating device can be operated only by one hand, and the other hand is free even during the game, and the player can use the free hand for playing the game or for another purpose.
Another exemplary non-limiting illustrative aspect of the technology herein provides a game operating device comprising a longitudinal housing, a holding portion formed at one part of the housing in a longitudinal direction and capable of being held by palm of one hand, a first operating portion provided on the housing, at a position reached by thumb of the one hand when the holding portion is held by the palm, and a second operating portion provided on the housing, at a position reached by index finger of the one hand when the holding portion is held by the palm, wherein the first operating portion and the second operating portion are arranged at positions corresponding to each other on a first plane and a second plane opposite to the first plane of the housing, respectively. In this aspect, the holding portion of shape and dimensions capable of being held by the game player's one hand is provided at one part (rear end, for example) of the longitudinal housing in the longitudinal direction. The holding portion is wrapped and held by the palm of the one hand and, at that time, the first operating portion is provided at a position reached by the thumb and the second operating portion is provided at a position reached by the index finger. Besides, the first operating portion and the second operating portion are provided on the first plane and the second plane, respectively, at the positions corresponding to each other. Accordingly, with the holding portion held by the palm of the one hand, the first operating portion and the second operating portion can be operated by the thumb and index finger of that hand. That is, the game operating device can be operated only by one hand. Thus, the other hand is free even during the game, and the player can use the free hand for playing the game or another purpose. Moreover, the first operating portion and the second operating portion are arranged on the first plane and the second plane of the housing, with correspondence in position between the two, and therefore, the housing is supported by the index finger on the second plane in operating the first operating portion on the first plane, and the housing is supported by the thumb on the first plane in operating the second operating portion on the second plane, which make the operations more stable.
In one arrangement, the first operating portion is a direction switch including a plurality of switch contacts arranged in shape of a polygon and a single key top or a plurality of key tops for turning on or off the switch contacts, and the second operating portion is at least one operating switch including a switch contact and a key top for turning on or off the switch contact.
Alternatively, the first operating portion is a direction switch having the switch contacts for designating individually four directions of upward, downward, rightward and leftward, for example. The switch contacts of the direction switch are arranged in shape of a polygon. In addition, one or a plurality of key tops are provided. In the case of a single key top, one of the four directions can be selectively designated or specified by operating an operating portion of the key top. In the case of a plurality of key tops, the corresponding key top may be operated. The key top is provided in such a manner that a pressing direction is perpendicular to the first plane, and in the second operating portion, the key top is provided in such a manner that a pressing direction is faced toward the holding portion and is not perpendicular to the first plane. When the key top (the operating portion thereof) of the direction switch is operated, the pressing direction is a direction perpendicular to the first plane of the housing. However, the pressing direction of the key top of the second operating portion is a direction not perpendicular to the first plane. Nevertheless, in the case of operating the second operating portion by the index finger, it is hard to press the second operating portion in the direction perpendicular to the first plane. Thus, the second operating portion is pressed in the direction not perpendicular to the first plane. Consequently, the first operating portion and the second operating portion are arranged so as to be easy to be operated without impairment of operability.
The first operating portion further may also include a pressing switch including a switch contact and a key top for turning on or off the switch contact, which are separated from those of the direction switch, and the pressing switch is provided on the first plane of the holding portion in vicinity of the direction switch. Thus, the operating switches of the second operating portion can be favorably operated even if the same finger is used to operate the direction switch and the pressing switch. In addition, the key top of the direction switch is provided at a higher position as compared with the key top of the pressing switch. Specifically, the height of the direction switch exceeds the height of the pressing switch, which reduces the occurrence of a situation in which the pressing switch is pressed by mistake at the operation of the direction switch.
The second operating portion is at least one operating switch including a switch contact and a key top for turning on or off the switch contact, and the key top is pressed along a direction of the holding portion when the index finger is bent. The second operating portion offers favorable operability because it can be naturally operated when the index finger is bent.
Any of the game operating devices described above may further comprise a concave portion formed in the second plane of the housing, with the second operating portion provided in the concave portion. Accordingly, it is possible to place the index finger in the concave portion, which makes it possible to operate the second operating portion in a quick and reliable manner.
The concave portion may include a first inclined surface with inclination toward the holding portion and a second inclined surface with inclination toward an opposite side of the holding portion, and the second operating portion is provided on the first inclined surface of the concave portion. As a consequence, the second operating portion can be operated quickly and reliably just by bending the index finger in the concave portion toward the holding portion.
The concave portion may be formed in such a manner that an angle of inclination of the second inclined surface toward the first plane is smaller than an angle of inclination of the first inclined surface toward the first plane.
The angle of inclination of the first inclined surface may be set so as to be smaller than the angle of inclination of the second inclined surface. This brings about the advantages that the housing is easy to hold by both hands and the index finger can be reliably taken off the second operating portion.
The concave portion may also include at least a parallel surface approximately parallel to the first plane and an inclined surface between the parallel surface and the holding portion, and the second operating portion is provided on the inclined surface. More specifically, the concave portion includes the valley, for example, and the bottom of the valley forms a plane approximately parallel to the first plane. Meanwhile, the holding portion is provided rearward of the housing. Accordingly, the inclined surface is formed linking the bottom of the valley and the holding portion, and the second operating portion is placed on the inclined surface. Thus, the second operating portion can be naturally operated when the index finger is bent.
Any of the game operating devices described above may also include a position and/or attitude determining means, which may include at least one of an acceleration sensor (or linear acceleration sensor) and a gyro-sensor, provided within the holding portion of the housing, for determining at least one of position and attitude of the housing, and an output means for outputting information on the position and/or attitude determined by the position and/or attitude determining means as an operating signal, together with an operating signal from at least one of the first operating portion and the second operating portion. In this case, the position and/or attitude determining means is provided within the holding portion of the housing. The information on the position and/or attitude determined by the position and/or attitude determining means, is output from the output means together with an operating signal from at least one of the first operating portion and the second operating portion. Thus, the game machine can make the game progress by not only the operating signals from the first operating portion and the second operating portion but also the position and/or attitude information. Moreover, the position and attitude of the housing can be changed by the movement of the wrist of the hand holding the housing, which makes it possible to input the position and/or attitude with stability, independent of any difference among individuals in the way to hold the housing. In addition, using the acceleration sensor realizes cost reduction.
According to the present invention, it is easy to operate the first operating portion and the second operating portion while holding the controller by one hand, which makes it possible to obtain a novel game operating device with a high degree of flexibility that is capable of being operated only by one hand. In addition, the game operating device of the present invention can be operated with stability by one hand, which allows the user to use the other hand for playing a game or for other purposes.
The above described objects and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.
Example Overall Exemplary Illustrative Non-Limiting System
Main unit 12 in the exemplary illustrative non-limiting implementation can be used to play a variety of different games including driving games, adventure games, flying games, fighting games, and almost any other type of game one might think of. The video game software that main unit 12 executes may be delivered on bulk storage devices such as optical disks, semiconductor memory devices or the like; it may be downloaded into the main unit 12 over a network; or it may be provided to the main unit in any other desired manner. Main unit 12 may also be capable of performing applications in addition to video games (e.g., movie playback, email, web browsing, or any other application one can imagine). A security system built into main unit 12 may ensure that only authorized or authentic applications are executed.
More specifically,
In the exemplary illustrative non-limiting implementation of system 10 shown, players 18a, 18b operate handheld controllers 20a, 20b, respectively, in various ways to provide input signals to main unit 12. For example, the players 18a, 18b may depress buttons or otherwise manipulate other controls on controllers 20a, 20b, respectively, to generate certain input signals. The effect of such control manipulations in the exemplary illustrative non-limiting implementation depends, at least in part, on the particular software that main unit 12 is executing. For example, depressing a certain button may provide a “start game” or “pause game” in some contexts, and may provide different functions (e.g., “jump character”) in other contexts.
In the illustrative exemplary non-limiting implementation shown, controllers 20 have internal capabilities for detecting position and/or orientation. In the exemplary illustrative non-limiting implementation, players may change the orientation or position of controllers 20 to generate input signals. Controllers 20 may sense position and/or orientation and report that information to main unit 12. Main unit 12 may use that information to control or affect video game play or other functionality.
In one exemplary illustrative non-limiting implementation, each of the handhold controllers 20a, 20b may include an internal position, attitude or orientation sensor that can sense the position, attitude and/or orientation of the controller relative to the earth's gravitational force. Such a sensor may for example comprise a 3-axis accelerometer that can sense orientation (or changes in orientation) of the controller relative to the direction of earth's gravitational pull. The output of such a sensor may be reported to main unit 12 and used, for example, to control motion of a character displayed on display screen 14.
In addition, the exemplary illustrative non-limiting implementation of system 10 shown in
In one exemplary illustrative non-limiting implementation, the energy that emitters 22 emit has a wavelength or other characteristic that allows the radiation to be readily distinguished from ambient radiation. In the exemplary illustrative non-limiting implementation, handheld controllers 20 each detect the radiation emitted by emitters 22 and generate signals indicative of the controller's relative position and/or movement. Multiple controllers 20 can sense the same emitted radiation and generate different signals depending on the position or movement of that particular controller. Controllers 20 report the relative position and/or movement signal to main unit 12. Main unit 12 may take any appropriate action in response to such signals such as, for example, moving, rotating or otherwise changing a game character or other object or background on the display screen 14, scrolling a screen shot, selecting a different game function, or taking other actions.
In the exemplary illustrative implementation shown, the emitters 22 are added or retrofitted onto a conventional color television set 16 by, for example, using an adhesive to attach the emitters onto the top housing of the television set on the extreme left and right of the television set housing, in alignment with the edges of display screen 14. In this exemplary illustrative non-limiting implementation, emitters 22 can be connected to main unit 12 by cables or wires run behind the television set 16. In other implementations, emitters 22 could be built-in to television set 16 or mounted separately (e.g., on a set top box or otherwise). In still other implementations, emitters 22 could possibly be replaced with small reflective surfaces attached by adhesive to corners of display screen 14, and controllers 20 could emit electromagnetic radiation and receive reflections from the reflective surfaces (e.g., whose angle of incidence is equal to angle of reflectance). In still other implementations, controllers 20 could emit electromagnetic radiations and emitters 22 could include sensors that sense the emitted radiation. Other implementations are possible.
Example Illustrative Non-Limiting Handheld Controller Design
As shown in
The top control surface 28 of the housing 26 (
Top control surface 28 in the exemplary illustrative non-limiting implementation also provides a pair of thumb-operated control switches 38a, 38b. These control switches can be oriented as shown, or they could each be rotated, say 45 degrees, so as to be angularly displaced from one another (for example, see
Top control surface 28 may also provide an additional push button 40 operated by the thumb for other functionality selection. A slide switch 42 on the side of housing 26 may be operated to provide on/off or other functionality. Depending on requirements, a slide switch 42 could be located on either or both side surfaces of the exemplary controller 20.
Top control surface 28 in the exemplary illustrative non-limiting implementation further provides two additional controls 44a, 44b that may comprise indicator lamps or lights. Alternatively, such controls could comprise additional operable controls such as push button switches, so-called “pointing stick” type input devices, or other input devices. These controls 44a, 44b may be relatively dormant or little used (while not being subject to accidental operation) when the controller 20 is operated in the hand positions shown in
In the exemplary illustrative non-limiting exemplary implementation shown, the trigger switch 56 is disposed on an angular surface 58 of the bottom surface 30 of controller 20 within a V-shaped depression 60 located near the front distal end 62. This V-shaped depression 60 (or concave portion) is dimensioned to comfortably provide a resting and grasping slot for the forefinger which may be slightly rotated and pulled toward the user between a resting position (see
Example Illustrative Non-Limiting Optical Pointing Device Motion Detection
Sensor 74 in the exemplary illustrative non-limiting implementation comprises an infrared-sensitive CCD type image or motion tracking sensor. Sensor 74 may comprise a one-dimensional line sensor or it could comprise a 2D sensor such as for example a low resolution monochrome CCD or other camera. Sensor 74 may include a lens and a closely coupled digital signal processor to process incoming images and reduce the amount of information that needs to be conveyed to main unit 12. In one exemplary non-limiting implementation, sensor 74 may include a 128 pixel by 96 pixel relatively low resolution monochrome camera, a digital signal processor and a focusing lens. More than one such sensor could be used if desired.
In the exemplary illustrative non-limiting implementation, sensor 74 gives controller 20 optical pointing capabilities. For example, movement of the controller 20 can be detected (e.g., by the controller itself) and used to control what is being displayed on display screen 14. Such control could include for example scrolling of the screen, rotation or other reorientation of display objects in response to rotation/reorientation of controller 20, and other responsive interactive displays. Such control may provide a better moment arm as compared to a joystick.
The direction switch 86 and the A button 88 correspond to the first operating portion in this embodiment. Accordingly, the direction switch 86 and the A button 88 are a key top pushed in a direction orthogonal to the first plane (defined by surface 85) and a push switch having contacts (not shown) operated by the key top. Start and select buttons 90, 92 may be provided for example to start game play, select menu options, etc. A menu button 94 (which may be recessed to avoid accidental depression) may be provided to display or select menu/home functions. “X” and “Y” buttons 96, 98 may be used to provide additional directional or other control. Light emitting diodes or other indicators 100 (a-d) may be used to indicate various states of operation (e.g., for example to designate which controller number in a multi-controller environment the current controller is assigned). A connector 102 is provided to connect the controller to external devices.
Moreover, in this embodiment, as understood well from
The start switch 90 and the select switch 92 are arranged in one straight line in a direction orthogonal to the longitudinal direction (width direction), and also a menu switch 94 is provided between them. The menu switch 94 is used to select a menu item of a game to be executed by means of the controller 82 (for example, a one-person play mode, a match-up mode, etc.) and to switch the game mode instantly to the menu to be provided immediately after the startup of the game machine or the like. The center of the menu switch 94 is aligned with that of the A button 88 in the width direction of the housing 87, and the start switch 90 and the select switch 92 are arranged at positions with uniform spacing at left and right from the menu switch 94.
With such a button layout as mentioned above, in manipulating the controller 82 with the right hand, for example, the player can operate the select switch 92 quickly just by sliding the thumb placed on the A button 88 without having to bending the thumb. Additionally, in the case of operation with the left hand, the start switch 90 is a switch suitable for a quick operation in the same manner. Accordingly, it is possible to perform a quick operation regardless of whether the user is right-handed or left-handed, by making a change to the assignments of the select switch 92 and the start switch 90 through the use of a software program or the like.
Besides, the menu switch 94 and the power switch 84 are provided in such a manner as to be caved in or buried in holes formed on the upper surface 85 of the housing 87 so that they are invisible from a side view as shown in 6E. These switches 84 and 94 are caved because, although they may be operated only on specific occasions such as the time of starting the game, operating these switches by accident during the game would cause some inconvenience such as data loss, and thus these switches are designed to be capable of being intentionally operated at the game start but incapable of being unconsciously operated during the game.
Furthermore, in the controller 82 of this embodiment, the LEDs 100a-d for indicating the controller numbers are provided as with the controller of
The concave portion 60 is formed on the lower surface 32 of the housing 87, at a position approximately corresponding to the position of the above mentioned direction switch 86, on the side opposite to the holding portion in the longitudinal direction. In the preceding embodiments, the concave portion 60 has a valley with a plane parallel to the top surface or first plane 28, and in this embodiment, the concave portion 34 has no valley and includes the first inclined surface 61 and the second inclined part 63 that have gentle inclination. Also, the B button 56 is provided on the first inclined surface 61 extending in the direction of the holding portion. In addition, the B button 56 is provided at a position corresponding to the direction switch 86 and the A button 88 forming the first operating portion. Besides, the corresponding position denotes a position where the B button 56 is arranged close to the direction switch 86 and the A button 88 when viewed through the upper surface of the housing 87.
While the A button may be arranged on the lower surface of the housing, the A button of this embodiment is arranged at a position easier to press. Thus, button 88 is assumed to be the frequently-used A button and the switch 56 on the lower surface 30 of the housing is assumed to be the B button, which makes button operation easier.
Additionally, in this embodiment, the B button 56 corresponds to the second operating portion. The B button 56 therefore has a key top to be pushed in a direction perpendicular to the inclined surface 61 but non-perpendicular to the first plane 85, and a contact (not shown) turned on or off by the key top.
Moreover, in this embodiment, an angle of inclination of the second inclined surface 63 extending toward the front end of the housing 87, with respect to the first plane 85 is set as to be smaller than an angle of inclination of the first inclined surface 61 with respect to the first plane 85, as can be well understood from
Furthermore, as can be understood from
Besides, in the embodiment of
In the exemplary illustrative non-limiting implementations described above, sensor 74 is designed and configured to sense the emitters 22a, 22b shown in
In more detail,
At an average distance from controller 20 to television set 16 (
In the illustrative, exemplary non-limiting implementation shown, it is unnecessary to modulate or synchronize LED emitters 24, although it may be desirable to power down the emitters when not in use to conserve power usage. In other arrangements, however, synchronous detection, modulation and other techniques could be used.
The exemplary illustrative non-limiting implementation of controller 20 (and 82) and/or main unit 12 includes software or hardware functionality to determine the position of controller 20 (and 82) relative to LED emitters 24, in response to the illumination maxima sensed by sensor 74. In one example illustrative non-limiting implementation, controller 20, 82 include an on-board processor coupled to the sensor 74 that interprets the currently detected illumination pattern, correlates it with previous sensed illumination patterns, and derives a current position. In another example illustrative non-limiting implementation, controllers 20, 82 may simply report the sensed pattern to main unit 12 which then performs the needed processing to detect motion of controller. The sensor could also be affixed to the human operating the system to provide additional control.
Since it may not be desirable to require end users of system 10 to measure and program in the precise distance between the LED emitters 24 and since television sets vary in dimension from small screens to very large screens, controller 20 (or 82) does not attempt to calculate or derive exact positional or distance information. Rather, controller 20 (or 82) may determine movement changes in relative position or distance by analyzing changes in the illumination pattern “seen” by CCD array 104.
It may be possible to ask the user to initially point the controller at the center of the television display screen 14 and press a button, so as to establish a calibration point (e.g., see FIG. 7A)—or the game player may be encouraged to point to the center of the screen by displaying an object at the center of the screen and asking the user to “aim” at the object and depress the trigger switch. Alternatively, to maximize user friendliness, the system can be self-calibrating or require no calibration at all.
Differences in the illumination pattern that CCD array 104 observes relative to previously sensed patterns (see e.g.,
Software algorithms of conventional design can ascertain position of controller 20 (or 82) relative to emitters 24 and to each logical or actual edge of the display screen 14. If desired, controller 20 (or 82) may further include an internal conventional 3-axis accelerometer that detects the earth's gravitational forces in three dimensions and may thus be used as an inclinometer. Such inclination (orientation) information in three axis can be used to provide further inputs to the relative position-detecting algorithm, to provide rough (x, y, z) position information in three dimensions. Such relative position information (or signals from which it can be derived) can be wirelessly communicated to main unit 12 and used to control the position of displayed objects on the screen.
Another Example Illustrative Non-Limiting Handheld Controller Design
With reference now to
The housing 108 has a holding portion 114 and is of size capable of being held by one hand of an adult or child on the whole. Its length L (see
Alternatively, the shape of the housing 108 is not limited to a longitudinal shape with a plane rectangle and may be a longitudinal shape with a plane oval or the like. Likewise, its cross-section shape is not limited to a rectangle and may be a circle or other polygons.
A flat main surface of the upper housing portion 112 constitutes an upper surface 116 of the housing 108. As can be seen well from
A power switch 120 is provided on the upper surface 116 of the housing 108, slightly right of center in a width direction of the upper surface 116 (indicated by the center line C1 in
In this embodiment, a power switch for turning on or off the controller 106 itself is not provided. The controller 106 is turned on by operating any one of the operating switches of the controller 106, and is automatically turned off if no operation is performed for a predetermined period of time or more.
A direction switch 122 is provided on the width-direction center line C1 of the upper surface 116, forward of the longitudinal-direction center of the housing 108 (indicated by a center line C2 in
The center switch 124 is a single push-button switch and may be used as a so-called “B” button. As is well known, the “B” button 124 can be used for changing the game mode selected by means of a select switch 126 described later, canceling the action decided by means of an “A” button, also described later, and so on.
Besides, as is well known, such a combined switch as described in relation to this embodiment is highly utilized for cellular telephones and the like (see http://www.jpo.go.jp/shiryou/s_sonota/hyoujun_gijutsu/small_switch/b-6-2.-htm, for example), and thus a more detailed description of it is omitted.
As stated above, the direction switch 122 of this embodiment includes the contacts (not shown) arranged in the shape of a polygon (rectangle or rhombus) so as to indicate individual directions (the four directions in the embodiment) so that these contacts are operated by means of the operating portions 122F, 122B, 122R and 122L formed on a single key top. Alternatively, the operating portions 122F, 122B, 122R and 122L may be provided as individual key tops so that one contact is operated by means of each corresponding key top.
In addition, the direction switch 122 may be a cross key or a joystick. In the case of the direction switch 122 as a joystick, an arbitrary direction and position can be designated by turning its tip end 360 degrees in an arbitrary direction or deflecting the same.
As can be seen well from
Additionally, the start switch 128 and the select switch 126 may be provided in an arbitrary layout such as one transverse line and one vertical line, not limited to the shape of the Japanese KATAKANA character “ ” presented in relation to the embodiment.
A concave portion 130 is formed on the second plane 118 of the lower housing 110, at a position approximately corresponding to the position of the direction switch 122. The concave portion 130 is concave-formed so as to reach from one end of the other of the second plane 118 in a width direction, as can be understood from
An “A” button 138 is provided on the inclined surface 134 on the rear side of the concave portion 130 of the lower housing 110. The “A” button 138 is provided at a position corresponding to the direction switch 122. Here, the corresponding position means a position where the direction switch 122 and the “A” button 138 are arranged close to each other as viewed through from the upper surface of housing 108, and more preferably, the direction switch 122 and the “A” button 138 are arranged in such a manner as to be at least partially overlapped. As can be seen well from the illustration, the bottom of the valley 132 is on a plane approximately parallel with the upper surface 116, i.e., the first plane of the housing 108, and the rear inclined surface 134 on which the “A” button 138 is arranged is formed between the bottom parallel surface of the valley 132 and the holding portion 114 formed on the rear (other) side of the housing 108 described earlier. Also, the “A” button 138 is a push switch having a switch contact (not shown) and a key top for turning on or off the switch contact, and the key top is provided so as to move in a direction perpendicular to the inclined surface 134. Therefore, as described later, the player can turn on the “A” button 138 just by putting his/her index finger or middle finger in the concave portion 130 and pulling it toward him/her. That is, the index finger or the middle finger can be positioned in the concave portion 130, which makes it possible to operate the “A” button 138 quickly and reliably when needed.
Besides, the “A” button 138 allows a player character or a player object to perform an arbitrary action such as punching, throwing, capturing (obtaining), riding and jumping. For example, in an action game, the “A” button 138 makes it possible to designate jumping, punching and manipulating a weapon, etc. Also, in a role-playing game (RPG) or simulation RPG, the “A” button 138 makes it possible to designate the obtainment of an item, the selection and decision of a weapon and a command, and so on.
In addition, the above stated holding portion 114 is formed on the housing, backward of the concave portion 130, i.e., the “A” button 138. As described later, in using the controller 106, the controller 106, i.e., the housing 108 is held in such a manner that the player's palm of one hand wraps the holding portion 114. At that time, the player can hold stably the holding portion 114 only by one hand because the controller 106, i.e., the housing 108 is of a size or thickness capable of being held by one hand.
Moreover, the key top of the “A” button 138 is turned on by pushing it in the direction perpendicular to the inclined surface 134, that is, the direction toward the holding portion 114. The inclined part 134 is not perpendicular to the upper surface of the housing 108, that is, the first plane 116 and, in the end, the key top of the “A” button 138 is pushed in a direction not perpendicular to the upper surface 116. On the contrary, the “B” button 124 and the direction switch 122 are turned on by pushing them in the direction perpendicular to the upper surface 116 of the upper housing 112. These push directions mean directions in which the index finger and the thumb can apply pressure naturally in holding the holding portion 114. This makes it possible to support a periphery of the operating portion continuously by the thumb and the index finger during the operation while holding the holding portion 114, and perform the operation in the stable holding state at any time.
Furthermore, an “X” button 140 and a “Y” button 142 are arranged on the width-direction center line C1 and backward of the longitudinal-direction center C2 of the housing 108, in a straight line with a spacing between the two. These “X” button 140 and “Y” button 142 are used to make adjustments to view point position and view point direction in displaying a three-dimension game image, that is, make adjustments to a position and a field angle of a virtual camera.
A battery cover 144 is detachably attached to the lower housing 110 forming the holding portion 114, and battery (or batteries) 146 shown in
The battery (or batteries) 146 is relatively heavy and is stored within a range of the holding portion 114 of the housing 108, and thus a center of gravity G (
An infrared imaging device 150 forming one part of an imaging information arithmetic unit 152 (
The controller 106 is structured in such a manner that it can be held by one hand of the game player, similar to the manner in which the controller 20 is held as described above in connection with
It will be appreciated that the same manner of holding the controller 106 applies if the holding hand of the user is a left hand.
In addition, the “A” button 138 is described above as being operated by the index finger 160f. Alternatively, by further providing an “A2” button (not shown) of the same shape as the “A” button 138 and rearward of the “A” button 138, the housing 108 may be held by the palm 160a and the balls of the ring finger 160c and small finger 160d so that the “A” button 138 can be operated by the index finger 160f and the “A2” button by the middle finger 160b, respectively.
As stated above, the controller 106 of this embodiment, under the state of being held by one hand, allows the first operating portion (the direction switch 122 in the embodiment) and the second operating portion (the “A” button 138 in the embodiment) to be easily operated. That is, the controller 106 of this embodiment makes it possible to operate each of the operating portions with stability while holding the controller 106 by one hand. Therefore, the player can use the other hand for playing a game or for another purpose. Moreover, since it can be held only by one hand, the controller 106 can be handled more freely as compared with the case of holding by the both hands. As a consequence, it is possible to perform smoothly the carrying, movement or displacement of the controller 106.
Additionally, in the controller 106 of this embodiment, the position of the first operating portion, for example, the direction switch 122 provided on the upper surface 116 of the housing 108 and the position of the second operating portion, e.g., the “A” button 138 provided on the lower surface of the housing 108 correspond to each other on the upper and lower surfaces 116 and 118 of the housing 108 so that the housing 108 can be caught by the thumb and the index finger (or middle finger) operating these portions, resulting in further stable operations. For example, when the direction switch 122 is operated by the thumb 160e, the housing 108 is supported from underneath by the index finger 160f or the middle finger 160b positioned in the concave portion 130 for operating the “A” button 138, which makes it possible to push the direction switch 122 by the thumb 160e in a stable manner. Likewise, when the “A” button 138 is operated by the index finger 160f or the middle finger 160b, the housing 108 is supported from above by the thumb 160e for operating the direction switch 122, which make it possible to push the “A” button 138 by the index finger 160f or the middle finger 160b with stability.
Furthermore, in this embodiment, the center of gravity G of the controller 106 falls across the point of intersection of the width-direction center line C1 and the longitudinal-direction center line C2 shown in
It will be appreciated that the manner in which the controller is held, and the manner in which the thumb and index finger are used to manipulate the various buttons/switches is essentially the same for all of the controllers described herein, and regardless of the functions described to the buttons (for example, regardless of “A” and “B” button designations).
Moreover, an acceleration sensor 166 and a wireless module 168 (also shown in
The acceleration sensor 166 is preferably a three-axis linear accelerometer that detects linear acceleration along each of an X axis, Y axis and Z axis. Alternatively, a two-axis linear accelerometer that only detects linear acceleration along each of an X axis and Y axis (or other pair of axes) may be used in another embodiment depending on the type of control signals desired. As a non-limiting example, the three-axis or two-axis linear accelerometer 68 may be of the type available from Analog Devices, Inc. or STMicroelectronics N.V. Preferably, the acceleration sensor 166 is an electrostatic capacitance or capacitance-coupling type that is based on silicon micro-machined MEMS (microelectromechanical systems) technology. However, any other suitable accelerometer technology (e.g., piezoelectric type or piezoresistance type) now existing or later developed may be used to provide the three-axis or two-axis acceleration sensor 166.
As one skilled in the art understands, a linear accelerometer, such as acceleration sensor 166, is only capable of detecting acceleration along a straight line corresponding to each axis of the acceleration sensor. In other words, the direct output of the acceleration sensor 166 is limited to signals indicative of linear acceleration (static or dynamic) along each of the two or three axes thereof. As a result, the acceleration sensor 166 cannot directly detect movement along a non-linear (e.g. arcuate) path, rotation, rotational movement, angular displacement, tilt, position, attitude or any other physical characteristic.
However, through additional processing of the linear acceleration signals output from the acceleration sensor 166, additional information relating to the housing 108 can be inferred or calculated, as one skilled in the art will readily understand from the description herein. For example, by detecting static linear acceleration (i.e., gravity), the linear acceleration output of the acceleration sensor 166 can be used to infer tilt of the object relative to the gravity vector by correlating tilt angles with detected linear acceleration. In this way, the acceleration sensor 166 can be used in combination with the processor 164 (or another processor) to determine tilt, attitude or position of the housing 108. Similarly, various movements and/or positions of the housing 108 can be calculated or inferred through processing of the linear acceleration signals generated by the acceleration sensor 166 when the housing 108 containing the acceleration sensor 166 is subjected to dynamic accelerations by, for example, the hand of a user. In another embodiment, the acceleration sensor 166 may include an embedded signal processor or other type of dedicated processor for performing any desired processing of the acceleration signals output from the accelerometers therein prior to outputting signals to processor 164. For example, the embedded or dedicated processor could be used to convert the detected acceleration signal to a corresponding tilt angle when the acceleration sensor is intended to detect static acceleration (i.e., gravity).
In this embodiment, the acceleration sensor 166 and processor 164 function as a position and/or attitude determining means for determining the position and/or attitude of the controller 106 held by the player with his/her hand. By outputting information on the position and/or attitude through conversion of the acceleration signal output from the acceleration sensor 166, in addition to operation signals from the direction switch 122, the “A” button 138, etc. and obtaining operation signals for position or attitude at the game machine side, it is possible to perform game operations with a high degree of flexibility.
As stated above, by arranging the acceleration sensor 166 within the housing 108 so that the acceleration detected by acceleration sensor 166 can be used to determine the attitude and position of the housing 108, i.e. the controller 106, the player can easily change the position and attitude of the controller 106 by moving (turning) the wrist of his/her hand while holding the holding portion 114 of the housing 108 by that hand described above with reference to
Moreover, the acceleration sensor 166 is provided within the housing 108 of the holding portion 114, and in the course of nature, the thumb is placed on the direction switch 122 and the index finger is placed on the “A” button 138, and the remaining fingers support the holding portion. Thus, no variations occur among individuals in the way to hold the controller 106, which makes it possible to perform high-precision detection without variations under predetermined criteria. That is, the above mentioned turning operation of the wrist may result in a displacement of a rotational axis due to its rotation. Also, since right-handed rotation and left-handed rotation are asymmetrical, there is a possibility of causing an error. However, by providing the acceleration sensor 166 within the housing 108 of the holding portion 114 as in this embodiment, the displacement of the rotation axis due to its rotation is reduced with a decreased possibility of detection errors.
Additionally, in the embodiment, the acceleration sensor 166 is set up within a range of the holding portion 114 of the housing 108 (see also
In another exemplary embodiment, the acceleration sensor 166 may be replaced with a gyro-sensor of any suitable technology incorporating, for example, a rotating or vibrating element. Exemplary MEMS gyro-sensors that may be used in this embodiment are available from Analog Devices, Inc. Unlike the linear acceleration sensor 166, a gyro-sensor is capable of directly detecting rotation (or angular rate) around an axis defined by the gyroscopic element (or elements) therein. Thus, due to the fundamental differences between a gyro-sensor and an linear acceleration sensor, corresponding changes need to be made to the processing operations that are performed on the output signals from these devices depending on which device is selected for a particular application. Due to the fact that the nature of gyroscopes is known to one skilled in the art, as well as the fundamental differences between linear accelerometers and gyroscopes, further details are not provided herein so as not to obscure the remainder of the disclosure. While gyro-sensors provide certain advantages due to their ability to directly detect rotational movement, linear acceleration sensors are generally more cost effective when used in connection with the controller applications described herein.
An antenna pattern (or antenna) 170 (
In addition, a crystal oscillator 172 (
As shown in
Additionally, the above described “A” button 138 is attached to the lower main surface of the substrate 162 backward of the imaging information arithmetic unit 152, and the aforesaid battery 146 is stored further backward thereof. A vibrator 176 is attached to the lower main surface of the substrate 162, between the battery 146 and the connector 156. The vibrator 176 may be a vibrating motor or solenoid, for example. The vibrator 176 creates vibrations in the controller 106, and the vibrations are transmitted to the player's hand 160 (
Besides, as stated above, arranging the vibrator 176 on the opposite side of the imaging information arithmetic unit 152 in the longitudinal direction of the housing 108 would decrease the possibility that the vibrations from the vibrator 80 affect adversely imaging by the imaging information arithmetic unit 152. That is, a longest distance can be secured between the vibrator 176 and the imaging information arithmetic unit 152, which makes it possible to prevent the imaging element of the imaging information arithmetic unit 152 from being blurred as much as possible.
Besides, in changing the direction of imaging with the imaging means or imaging device 150, the player may hold the holding portion 114 of the housing 108 by one hand and move the wrist of the hand in that state, as already described with reference to
Here, referring to
The imaging information arithmetic unit 152 has the infrared imaging device 150 and the aforesaid image processing circuit 174 for processing image data imaged by the imaging device 150. As illustrated, the imaging device 150 includes a solid imaging element 178 such as a CMOS sensor and a CCD. An infrared filter (a filter permeable to infrared rays only) 180 and a lens 182 are arranged frontward of the imaging element 178. Accordingly, the imaging device 150 generates image data through detection of infrared rays alone. In addition, the image processing circuit 174 processes the infrared image data obtained from the imaging device 150, senses a high-intensity portion, detects the portion's center-of-gravity position and area, and outputs the data on them. The data on the position and area of the high-intensity portion is input from the image processing circuit 174 to the processor 164. Moreover, the operation signals from the aforementioned switches and buttons 120 to 128, 140 and 142 are input into the processor 164. In addition, the three-axis or two-axis acceleration data (acceleration signal) from the acceleration sensor 166 is also input into the processor 164.
Based on the operation signals from the operating switches 120 to 128, 140 and 142, the processor 164 detects which one of the operating switches and operating buttons is being operated from time to time. The operation data is output as a sequence of controller data together with the acceleration data and the high-intensity portion data, and is input into the wireless module 168. The wireless module 168 modulates a carrier wave of predetermined frequency with the controller data, and emits the weak radio wave signal from the antenna 170.
Besides, the signals and data input through the connector 156 provided at the rear end of the controller 106 are also input into the processor 164, and processed by the processor 164 as with the aforementioned signals and data, provided as controller data to the wireless module 168, and then output as a weak radio wave signal from the controller 106 in the same manner.
Additionally, the processor 164 may be independent from the wireless module 168, and, in using a wireless module based on Bluetooth (registered trademark) standard, etc., it may be contained as a microcomputer in the module.
In order to play a game using the controller 106 in a game system 184 (see
The image processing circuit 174 (
In this manner, the imaging information arithmetic unit 152 can image a marker (an infrared light from the LED in the embodiment) and obtain an operation signal according to a change in the position of the marker in the taken image. This allows coordinate direct input and rotational input to the screen, unlike operations with the operating switches, operating keys or operating buttons which are manipulated with fingers. However, the principle of the imaging information arithmetic unit is well known as described in Japanese Patent No. 3422383, and thus a more detailed explanation on it is omitted here. Besides, motion tracking means an analysis of the movement of an object or camera (the controller 106 here) with a specific mark or pattern as a target in the screen (image).
Besides, the LED modules 192A and 192B shown in
However, when only one LED module 192A or 192B exists within the viewing angle C of the imaging device 150 as shown in
The above described controller 106 sufficiently carries out the functions as a game operating device by itself. Furthermore, as in an embodiment described below, it is possible to make the controller 106 cooperate with another controller (or an adapter).
In the embodiment represented in
A receiving portion 208 (
Additionally, although not illustrated with precision, a connector 210 to be connected with the connector 160 provided to the controller 106 is arranged in a back of the receiving portion 208. Since the connector 160 of the first controller 106 is a male connector, the connector 210 of the expansion controller 200 is a female connector.
A well-known analog joystick 212 and direction or cross switch (digital joystick) 214 are arranged on the upper surface of the left-hand holding portion 204 of the housing 202 of the expansion controller 200. Also, an “A” button 216 and “B” button 218 are provided on the upper surface of the right-hand holding portion 206, and an “X” button 220 and “Y” button 222 are provided so as to surround the slightly larger A button 216. Moreover, a joystick 224 is provided for changing a position, i.e. view point of a virtual camera while a three-dimensional game image is displayed in the display screen 190 (
The housing 108 of the controller 106 is inserted from its other end (rear end) thereof into the opening of the front surface of the receiving portion 208 of the second or expansion controller 200. Then, the housing 108 is pushed into until the connector 156 of the first controller 106 is connected to the connector 210 of the receiving portion 208. By doing that, the controller 106 is combined with the expansion controller 200, as shown in
In the state of a combination of the first controller 106 and the expansion controller 200, the holding portion 114 of the first controller 10 is almost buried in the receiving portion 208, as can be seen well from
Moreover, the width of the receiving portion 208 is set as to be equal to or slightly longer than the width of the housing 108 of the controller 106, and the depth of the same is formed so as to be equal to or slightly longer than the thickness of the housing 108. Thus, when the controller 106 is inserted into or attached to the receiving portion 208 of the expansion controller 200, no rattle occurs between the controller 106 and the expansion controller 200. In addition, as can be well understood from
When the controller 106 and the second or expansion controller 200 are combined with each other, the player holds the holding portions 204 and 206 of the housing 202 of the second or expansion controller 200 by the left hand 161 and the right hand 160, respectively, as shown in
When the controllers 106 and 200 are combined with each other as shown in
In addition, the imaging information arithmetic unit 152 of the controller 106 is never affected by the combination of the controller 106 and the expansion controller 200. Thus, by displacing the housing 202 of the expansion controller 200 held by both hands as shown in
Besides, in the state where controller 106 and the expansion controller 200 are combined with each other, the first operating portion is typically the aforesaid direction switch 122 of the controller 106, and the second operating portion is the “A” button 138 in the same sense. The third operating portion is the joystick 212 and the direction switch 214 provided in the left-hand holding portion 204 of the expansion controller 200. The fourth operating portion is the “A” button 216, etc. provided in the right-hand holding portion 206 of the expansion controller 200. However, the correspondences of the third operating portion and the fourth operating portion may be exchanged. In either case, the third operating portion and the fourth operating portion can be operated by the thumb 161e of the left hand 161 and the thumb 160e of the right hand 160, as shown in
As described above, in the controller 106, the first operating portion (the direction switch 122) is arranged at a position that can be operated by the thumb 160e, and the second operating portion (the “A” button 138) is arranged at a position that can be operated by the index finger 160f or the middle finger 160b when the controller 106 is held at the holding portion 114. Thus, in the controller 106, it is a little hard to operate the “X” button 140 and the “Y” button 142 provided within a range of the holding portion 114. On the contrary, in the expansion controller 200, the “X” button 220 and the “Y” button 222 are both provided in the right-hand holding portion 206 of the housing 202 and are easy to operate by the thumb 160e in the state that the holding portion 206 is held by the right hand 160 (
As stated above, it is possible to make the one-handed controller 106 easier to operate by one hand by arranging a minimum required number of operating switches or keys therein. However, the aforementioned “X” button 140 and “Y” button 142, for example, may need to be operated with considerable frequency depending on the kind of a game. In the controller 106, the “X” button 140 and the “Y” button 142 are not necessarily easy to operate because they are provided in the range of the holding portion 114. That is, the player may be dissatisfied with the controller 106 alone due to difficulty of operating the “X” button 140 and the “Y” button 142. In this case, by combining the expansion controller 200 and the controller 106, it is possible to prevent the player from having such dissatisfaction because the “X” button 220 and the “Y” button 222 of the expansion controller 200 are easy to operate.
In addition, the joystick 212 and the direction switch 214 are arranged as direction designation means in the expansion controller 200 as well. Meanwhile, the joystick 212 and the direction switch 214 are provided in the left-hand holding portion 204 of the housing 202 and easy to operate by the thumb 161e in the state that the holding portion 204 is held by the left hand 161 (
In addition, in the embodiment of
That is, even when the controller 106 and the expansion controller 200 are combined with each other, the “A” button 138 and the “B” button 124 (
As shown in
An embodiment shown in
It will be appreciated that in the embodiment of
An embodiment of
Since the width of the housing 202 is slightly shorter, the joystick 212 provided in the left-hand holding portion 204 of the housing 202 of
In addition, in the embodiment of
An embodiment illustrated in
An embodiment of
One possible motivation for manufacturing expansion controllers 200 is to provide control interface compatibility with other video game platforms including for example legacy platforms such as the Nintendo Entertainment System, the Super Nintendo Entertainment System, the Nintendo 64, the Nintendo GameCube System, and the Nintendo Game Boy, Game Boy Advance and Nintendo DS systems. An expansion controller 200 providing a control interface similar or identical to for the example the Super Nintendo Entertainment System could be made available for playing Super Nintendo Entertainment System games on system 184. This would eliminate the desire to reprogram or rework Super Nintendo Entertainment System games for use with the newer or different interface provided by expansion controller 200.
Another possible, more general motivation for additional expansion controllers 200 is to provide customized control interfaces for particular games or other applications. For example, it would be possible to develop a unit 300 with a steering wheel for driving games, a unit with a keyboard for text entry applications, a unit with one or multiple touch pads for touch screen style games, etc. Any desired control configuration is possible and can be flexibly accommodated.
Still another possible application would be to use expansion controllers 200 to give different players of a multi-player game different capabilities. For example, one game player might use controller 200 “as is” without any expansion, another game player might use the expansion configuration shown in
Example Illustrative Non-Limiting Block Diagrams
Each expansion unit may be programmed with a 4-bit or other length “type” ID to permit controller 200 to detect which type of expansion unit is being used. Main unit 102 can adapt user interactivity based at least in part on the “type” ID.
Shown in
In addition, by pulling out the gun barrel 308 from the connector 310 and inserting the connector 156 of the controller 106, for example, into a connector 310, the controller 106 (or 20 or 82) can be attached instead of the gun barrel 308 (
In a controller 400 of an embodiment shown in
In this exemplary embodiment, a plurality of (four in this embodiment) light-emitting diodes (LEDs) 821, 822, 823 and 824 are provided at the forward or front end of the upper surface 402 of the controller 400. Light from the LEDs 821 to 824 can be visually recognized from outside, but they are buried in the upper surface 402 of the housing 404 and thus do not appear to protrude in
For example, when the game machine 196 shown in
Additionally, in the embodiment of
That is, in the preceding embodiments, the front-end surface 154, for example, (
Although the present invention has been described and illustrated in detail, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, the spirit and scope of the present invention being limited only by the terms of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2005-239983 | Aug 2005 | JP | national |
This application is a continuation-in-part of U.S. application Ser. No. 11/446,187, filed Jun. 5, 2006 now U.S. Pat. No. 7,942,745, which claims priority to the filing date of Japanese Patent Application No. 2005-239983, filed on Aug. 25, 2005. This application is also a continuation-in-part of U.S. application Ser. No. 11/532,328 filed Sep. 15, 2006 now U.S. Pat. No. 7,927,216, which claims priority to the filing date of U.S. Provisional Application No. 60/716,937, filed on Sep. 15, 2005. The disclosures of all of the foregoing applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3454920 | Mehr | Jul 1969 | A |
3474241 | Kuipers | Oct 1969 | A |
D220268 | Kliewer | Mar 1971 | S |
3660648 | Kuipers | May 1972 | A |
3973257 | Rowe | Aug 1976 | A |
4009619 | Snyman | Mar 1977 | A |
4038876 | Morris | Aug 1977 | A |
4166406 | Maughmer | Sep 1979 | A |
4240638 | Morrison et al. | Dec 1980 | A |
4287765 | Kreft | Sep 1981 | A |
4303978 | Shaw et al. | Dec 1981 | A |
4318245 | Stowell et al. | Mar 1982 | A |
4321678 | Krogmann | Mar 1982 | A |
4337948 | Breslow | Jul 1982 | A |
4342985 | Desjardins | Aug 1982 | A |
4402250 | Baasch | Sep 1983 | A |
4425488 | Moskin | Jan 1984 | A |
4443866 | Burgiss, Sr. | Apr 1984 | A |
4450325 | Luque | May 1984 | A |
4503299 | Henrard et al. | Mar 1985 | A |
4514600 | Lentz | Apr 1985 | A |
4514798 | Lesche | Apr 1985 | A |
4540176 | Baer | Sep 1985 | A |
4546551 | Franks | Oct 1985 | A |
4558604 | Auer | Dec 1985 | A |
4561299 | Orlando et al. | Dec 1985 | A |
4578674 | Baker et al. | Mar 1986 | A |
4623930 | Oshima et al. | Nov 1986 | A |
4672374 | Desjardins | Jun 1987 | A |
4739128 | Grisham | Apr 1988 | A |
4761540 | McGeorge | Aug 1988 | A |
4787051 | Olson | Nov 1988 | A |
4816810 | Moore | Mar 1989 | A |
4839838 | LaBiche et al. | Jun 1989 | A |
4849655 | Bennett | Jul 1989 | A |
4851685 | Dubgen | Jul 1989 | A |
4862165 | Gart | Aug 1989 | A |
4914598 | Krogmann et al. | Apr 1990 | A |
4918293 | McGeorge | Apr 1990 | A |
4957291 | Miffitt et al. | Sep 1990 | A |
4961369 | McGill | Oct 1990 | A |
4969647 | Mical et al. | Nov 1990 | A |
4988981 | Zimmerman et al. | Jan 1991 | A |
4994795 | MacKenzie | Feb 1991 | A |
5045843 | Hansen | Sep 1991 | A |
D320624 | Taylor | Oct 1991 | S |
5059958 | Jacobs et al. | Oct 1991 | A |
5062696 | Oshima et al. | Nov 1991 | A |
5068645 | Drumm | Nov 1991 | A |
D322242 | Cordell | Dec 1991 | S |
D325225 | Adhida | Apr 1992 | S |
5124938 | Algrain | Jun 1992 | A |
5128671 | Thomas, Jr. | Jul 1992 | A |
D328463 | King et al. | Aug 1992 | S |
5136222 | Yamamoto et al. | Aug 1992 | A |
5138154 | Hotelling | Aug 1992 | A |
D331058 | Morales | Nov 1992 | S |
5175481 | Kanno | Dec 1992 | A |
5178477 | Gambaro | Jan 1993 | A |
5181181 | Glynn | Jan 1993 | A |
5192082 | Inoue et al. | Mar 1993 | A |
5202844 | Kamio et al. | Apr 1993 | A |
5207426 | Inoue et al. | May 1993 | A |
D338242 | Cordell | Aug 1993 | S |
D340042 | Copper et al. | Oct 1993 | S |
5259626 | Ho | Nov 1993 | A |
5262777 | Low et al. | Nov 1993 | A |
D342256 | Payne | Dec 1993 | S |
5280744 | DeCarlo et al. | Jan 1994 | A |
D345164 | Grae | Mar 1994 | S |
5296871 | Paley | Mar 1994 | A |
5307325 | Scheiber | Apr 1994 | A |
5317394 | Hale et al. | May 1994 | A |
5329276 | Hirabayashi | Jul 1994 | A |
5332322 | Gambaro | Jul 1994 | A |
5339095 | Redford | Aug 1994 | A |
D350736 | Takahashi et al. | Sep 1994 | S |
D350782 | Barr | Sep 1994 | S |
D351430 | Barr | Oct 1994 | S |
5357267 | Inoue | Oct 1994 | A |
5359321 | Ribic | Oct 1994 | A |
5359348 | Pilcher et al. | Oct 1994 | A |
5363120 | Drumm | Nov 1994 | A |
5369580 | Monji et al. | Nov 1994 | A |
H1383 | Kaplan et al. | Dec 1994 | H |
5369889 | Callaghan | Dec 1994 | A |
5373857 | Travers et al. | Dec 1994 | A |
5396265 | Ulrich et al. | Mar 1995 | A |
5421590 | Robbins | Jun 1995 | A |
5430435 | Hoch et al. | Jul 1995 | A |
D360903 | Barr et al. | Aug 1995 | S |
5440326 | Quinn | Aug 1995 | A |
5453758 | Sato | Sep 1995 | A |
D362870 | Oikawa | Oct 1995 | S |
5459489 | Redford | Oct 1995 | A |
5469194 | Clark et al. | Nov 1995 | A |
5481957 | Paley et al. | Jan 1996 | A |
5484355 | King, II et al. | Jan 1996 | A |
5485171 | Copper et al. | Jan 1996 | A |
5490058 | Yamasaki et al. | Feb 1996 | A |
5502486 | Ueda et al. | Mar 1996 | A |
5506605 | Paley | Apr 1996 | A |
5512892 | Corballis et al. | Apr 1996 | A |
5517183 | Bozeman, Jr. | May 1996 | A |
5523800 | Dudek | Jun 1996 | A |
5526022 | Donahue et al. | Jun 1996 | A |
5528265 | Harrison | Jun 1996 | A |
5531443 | Cruz | Jul 1996 | A |
5541860 | Takei et al. | Jul 1996 | A |
5551701 | Bouton et al. | Sep 1996 | A |
5554033 | Bizzi et al. | Sep 1996 | A |
5554980 | Hashimoto et al. | Sep 1996 | A |
5561543 | Ogawa | Oct 1996 | A |
5563628 | Stroop | Oct 1996 | A |
5569085 | Igarashi et al. | Oct 1996 | A |
D375326 | Yokoi et al. | Nov 1996 | S |
5573011 | Felsing | Nov 1996 | A |
5574479 | Odell | Nov 1996 | A |
5579025 | Itoh | Nov 1996 | A |
D376826 | Ashida | Dec 1996 | S |
5587558 | Matsushima | Dec 1996 | A |
5594465 | Poulachon | Jan 1997 | A |
5598187 | Ide et al. | Jan 1997 | A |
5602569 | Kato | Feb 1997 | A |
5603658 | Cohen | Feb 1997 | A |
5605505 | Han | Feb 1997 | A |
5606343 | Tsuboyama et al. | Feb 1997 | A |
5611731 | Bouton et al. | Mar 1997 | A |
5615132 | Horton et al. | Mar 1997 | A |
5621459 | Ueda et al. | Apr 1997 | A |
5624117 | Ohkubo et al. | Apr 1997 | A |
5627565 | Morishita et al. | May 1997 | A |
D379832 | Ashida | Jun 1997 | S |
5640152 | Copper | Jun 1997 | A |
5641288 | Zaenglein, Jr. | Jun 1997 | A |
5643087 | Marcus et al. | Jul 1997 | A |
5645077 | Foxlin et al. | Jul 1997 | A |
5645277 | Cheng | Jul 1997 | A |
5666138 | Culver | Sep 1997 | A |
5667220 | Cheng | Sep 1997 | A |
5670845 | Grant et al. | Sep 1997 | A |
5670988 | Tickle | Sep 1997 | A |
5676673 | Ferre et al. | Oct 1997 | A |
5679004 | McGowan et al. | Oct 1997 | A |
5682181 | Nguyen et al. | Oct 1997 | A |
5698784 | Hotelling et al. | Dec 1997 | A |
5701131 | Kuga | Dec 1997 | A |
5702305 | Norman et al. | Dec 1997 | A |
5703623 | Hall et al. | Dec 1997 | A |
5724106 | Autry et al. | Mar 1998 | A |
5726675 | Inoue | Mar 1998 | A |
5734371 | Kaplan | Mar 1998 | A |
5734373 | Rosenberg et al. | Mar 1998 | A |
5734807 | Sumi | Mar 1998 | A |
D393884 | Hayami | Apr 1998 | S |
5736970 | Bozeman, Jr. | Apr 1998 | A |
5739811 | Rosenberg et al. | Apr 1998 | A |
5741182 | Lipps et al. | Apr 1998 | A |
5742331 | Uomori et al. | Apr 1998 | A |
5745226 | Gigioli, Jr. | Apr 1998 | A |
D394264 | Sakamoto et al. | May 1998 | S |
5746602 | Kikinis | May 1998 | A |
5751273 | Cohen | May 1998 | A |
5752880 | Gabai et al. | May 1998 | A |
5757354 | Kawamura | May 1998 | A |
5757360 | Nitta et al. | May 1998 | A |
D395464 | Shiibashi et al. | Jun 1998 | S |
5764224 | Lilja et al. | Jun 1998 | A |
5769719 | Hsu | Jun 1998 | A |
5771038 | Wang | Jun 1998 | A |
D396468 | Schindler et al. | Jul 1998 | S |
5785317 | Sasaki | Jul 1998 | A |
D397162 | Yokoi et al. | Aug 1998 | S |
5794081 | Itoh et al. | Aug 1998 | A |
5796354 | Cartabiano et al. | Aug 1998 | A |
5807284 | Foxlin | Sep 1998 | A |
5819206 | Horton | Oct 1998 | A |
5820462 | Yokoi et al. | Oct 1998 | A |
5822713 | Profeta | Oct 1998 | A |
5825350 | Case, Jr. et al. | Oct 1998 | A |
D400885 | Goto | Nov 1998 | S |
5831553 | Lenssen et al. | Nov 1998 | A |
5835077 | Dao | Nov 1998 | A |
5835156 | Blonstein et al. | Nov 1998 | A |
5841409 | Ishibashi et al. | Nov 1998 | A |
D402328 | Ashida | Dec 1998 | S |
5847854 | Benson, Jr. | Dec 1998 | A |
5850624 | Gard et al. | Dec 1998 | A |
5854622 | Brannon | Dec 1998 | A |
D405071 | Gambaro | Feb 1999 | S |
5867146 | Kim et al. | Feb 1999 | A |
5874941 | Yamada | Feb 1999 | A |
5875257 | Marrin et al. | Feb 1999 | A |
D407071 | Keating | Mar 1999 | S |
D407761 | Barr | Apr 1999 | S |
5897437 | Nishiumi et al. | Apr 1999 | A |
5898421 | Quinn | Apr 1999 | A |
5900867 | Schindler et al. | May 1999 | A |
5902968 | Sato et al. | May 1999 | A |
D410909 | Tickle | Jun 1999 | S |
5912612 | DeVolpi | Jun 1999 | A |
5919149 | Allum | Jul 1999 | A |
5923317 | Sayler et al. | Jul 1999 | A |
5926780 | Fox et al. | Jul 1999 | A |
5929782 | Stark et al. | Jul 1999 | A |
D412940 | Kato | Aug 1999 | S |
5947868 | Dugan | Sep 1999 | A |
5955713 | Titus et al. | Sep 1999 | A |
5955988 | Blonstein et al. | Sep 1999 | A |
5956035 | Sciammarella et al. | Sep 1999 | A |
5967898 | Takasaka et al. | Oct 1999 | A |
5973757 | Aubuchon et al. | Oct 1999 | A |
5982352 | Pryor | Nov 1999 | A |
5982356 | Akiyama | Nov 1999 | A |
5984785 | Takeda | Nov 1999 | A |
5986644 | Herder et al. | Nov 1999 | A |
5991085 | Rallison et al. | Nov 1999 | A |
5999168 | Rosenberg et al. | Dec 1999 | A |
6002394 | Schein et al. | Dec 1999 | A |
D419199 | Cordell et al. | Jan 2000 | S |
D419200 | Ashida | Jan 2000 | S |
6010406 | Kajikawa et al. | Jan 2000 | A |
6011526 | Toyoshima et al. | Jan 2000 | A |
6012980 | Yoshida et al. | Jan 2000 | A |
6013007 | Root et al. | Jan 2000 | A |
6016144 | Blonstein et al. | Jan 2000 | A |
6019680 | Cheng | Feb 2000 | A |
6020876 | Rosenberg et al. | Feb 2000 | A |
6037882 | Levy | Mar 2000 | A |
6044297 | Sheldon et al. | Mar 2000 | A |
6049823 | Hwang | Apr 2000 | A |
6052083 | Wilson | Apr 2000 | A |
6057788 | Cummings | May 2000 | A |
6058342 | Orbach et al. | May 2000 | A |
6059576 | Brann | May 2000 | A |
6069594 | Barnes et al. | May 2000 | A |
6072467 | Walker | Jun 2000 | A |
6072470 | Ishigaki | Jun 2000 | A |
6075575 | Schein et al. | Jun 2000 | A |
6081819 | Ogino | Jun 2000 | A |
6084315 | Schmitt | Jul 2000 | A |
6084577 | Sato et al. | Jul 2000 | A |
6087950 | Capan | Jul 2000 | A |
D429718 | Rudolph | Aug 2000 | S |
6110039 | Oh | Aug 2000 | A |
6115028 | Balakrishnan | Sep 2000 | A |
6130664 | Suzuki | Oct 2000 | A |
6137457 | Tokuhashi et al. | Oct 2000 | A |
D433381 | Talesfore | Nov 2000 | S |
6146278 | Kobayashi | Nov 2000 | A |
6148100 | Anderson et al. | Nov 2000 | A |
6155926 | Miyamoto et al. | Dec 2000 | A |
6160405 | Needle et al. | Dec 2000 | A |
6160540 | Fishkin et al. | Dec 2000 | A |
6162191 | Foxlin | Dec 2000 | A |
6164808 | Shibata et al. | Dec 2000 | A |
6171190 | Thanasack et al. | Jan 2001 | B1 |
6176837 | Foxlin | Jan 2001 | B1 |
6181329 | Stork et al. | Jan 2001 | B1 |
6183365 | Tonomura et al. | Feb 2001 | B1 |
6184862 | Leiper | Feb 2001 | B1 |
6184863 | Sibert et al. | Feb 2001 | B1 |
6186896 | Takeda et al. | Feb 2001 | B1 |
6191774 | Schena et al. | Feb 2001 | B1 |
6198295 | Hill | Mar 2001 | B1 |
6198470 | Agam et al. | Mar 2001 | B1 |
6198471 | Cook | Mar 2001 | B1 |
6200219 | Rudell et al. | Mar 2001 | B1 |
6200253 | Nishiumi et al. | Mar 2001 | B1 |
6201554 | Lands | Mar 2001 | B1 |
6211861 | Rosenberg et al. | Apr 2001 | B1 |
6217450 | Meredith | Apr 2001 | B1 |
6217478 | Vohmann et al. | Apr 2001 | B1 |
D442998 | Ashida | May 2001 | S |
6225987 | Matsuda | May 2001 | B1 |
6226534 | Aizawa | May 2001 | B1 |
6238291 | Fujimoto et al. | May 2001 | B1 |
6239806 | Nishiumi et al. | May 2001 | B1 |
6241611 | Takeda et al. | Jun 2001 | B1 |
6243658 | Raby | Jun 2001 | B1 |
6244987 | Ohsuga et al. | Jun 2001 | B1 |
6245014 | Brainard, II | Jun 2001 | B1 |
6264558 | Nishiumi et al. | Jul 2001 | B1 |
6273819 | Strauss et al. | Aug 2001 | B1 |
6280327 | Leifer et al. | Aug 2001 | B1 |
6287198 | McCauley | Sep 2001 | B1 |
6297751 | Fadavi-Ardekani | Oct 2001 | B1 |
6301534 | McDermott, Jr. et al. | Oct 2001 | B1 |
6304250 | Yang et al. | Oct 2001 | B1 |
6315673 | Kopera et al. | Nov 2001 | B1 |
6323614 | Palazzolo et al. | Nov 2001 | B1 |
6323654 | Needle et al. | Nov 2001 | B1 |
6325718 | Nishiumi et al. | Dec 2001 | B1 |
6331841 | Tokuhashi et al. | Dec 2001 | B1 |
6331856 | Van Hook et al. | Dec 2001 | B1 |
6337954 | Soshi et al. | Jan 2002 | B1 |
6346046 | Miyamoto et al. | Feb 2002 | B2 |
6347998 | Yoshitomi et al. | Feb 2002 | B1 |
6361507 | Foxlin | Mar 2002 | B1 |
D456410 | Ashida | Apr 2002 | S |
6369794 | Sakurai et al. | Apr 2002 | B1 |
6375572 | Masuyama et al. | Apr 2002 | B1 |
6377793 | Jenkins | Apr 2002 | B1 |
6377906 | Rowe | Apr 2002 | B1 |
D456854 | Ashida | May 2002 | S |
6383079 | Takeda et al. | May 2002 | B1 |
6392613 | Goto | May 2002 | B1 |
6394904 | Stalker | May 2002 | B1 |
D458972 | Ashida | Jun 2002 | S |
6400480 | Thomas | Jun 2002 | B1 |
6400996 | Hoffberg et al. | Jun 2002 | B1 |
6409687 | Foxlin | Jun 2002 | B1 |
D459727 | Ashida | Jul 2002 | S |
D460787 | Nishikawa | Jul 2002 | S |
6415223 | Lin et al. | Jul 2002 | B1 |
6421056 | Nishiumi et al. | Jul 2002 | B1 |
6424333 | Tremblay | Jul 2002 | B1 |
6426719 | Nagareda et al. | Jul 2002 | B1 |
6426741 | Goldsmith et al. | Jul 2002 | B1 |
D462683 | Ashida | Sep 2002 | S |
6452494 | Harrison | Sep 2002 | B1 |
6456276 | Park | Sep 2002 | B1 |
D464052 | Fletcher | Oct 2002 | S |
D464950 | Fraquelli | Oct 2002 | S |
6466198 | Feinstein | Oct 2002 | B1 |
6466831 | Shibata et al. | Oct 2002 | B1 |
6473070 | Mishra et al. | Oct 2002 | B2 |
6473713 | McCall et al. | Oct 2002 | B1 |
6474159 | Foxlin et al. | Nov 2002 | B1 |
6484080 | Breed | Nov 2002 | B2 |
6492981 | Stork et al. | Dec 2002 | B1 |
6496122 | Sampsell | Dec 2002 | B2 |
6518952 | Leiper | Feb 2003 | B1 |
6530838 | Ha | Mar 2003 | B2 |
6538675 | Aratani et al. | Mar 2003 | B2 |
D473942 | Motoki et al. | Apr 2003 | S |
6540607 | Mokris et al. | Apr 2003 | B2 |
6540611 | Nagata | Apr 2003 | B1 |
6544124 | Ireland et al. | Apr 2003 | B2 |
6544126 | Sawano et al. | Apr 2003 | B2 |
6545661 | Goschy et al. | Apr 2003 | B1 |
6554781 | Carter et al. | Apr 2003 | B1 |
D474763 | Tozaki et al. | May 2003 | S |
6565444 | Nagata et al. | May 2003 | B2 |
6567536 | McNitt et al. | May 2003 | B2 |
6572108 | Bristow | Jun 2003 | B1 |
6577350 | Proehl et al. | Jun 2003 | B1 |
6582299 | Matsuyama et al. | Jun 2003 | B1 |
6582380 | Kazlausky et al. | Jun 2003 | B2 |
6585596 | Leifer | Jul 2003 | B1 |
6590536 | Walton | Jul 2003 | B1 |
6591677 | Rothoff | Jul 2003 | B2 |
6597342 | Haruta | Jul 2003 | B1 |
6597443 | Boman | Jul 2003 | B2 |
6599194 | Smith et al. | Jul 2003 | B1 |
6605038 | Teller et al. | Aug 2003 | B1 |
6608563 | Weston et al. | Aug 2003 | B2 |
6609977 | Shimizu et al. | Aug 2003 | B1 |
6616607 | Hashimoto et al. | Sep 2003 | B2 |
6628257 | Oka et al. | Sep 2003 | B1 |
6634949 | Briggs et al. | Oct 2003 | B1 |
6636826 | Abe et al. | Oct 2003 | B1 |
6640337 | Lu | Oct 2003 | B1 |
6650029 | Johnston | Nov 2003 | B1 |
6650313 | Levine et al. | Nov 2003 | B2 |
6650345 | Saito et al. | Nov 2003 | B1 |
6654001 | Su | Nov 2003 | B1 |
6672962 | Ozaki et al. | Jan 2004 | B1 |
6676520 | Nishiumi | Jan 2004 | B2 |
6677990 | Kawahara | Jan 2004 | B1 |
6681629 | Foxlin et al. | Jan 2004 | B2 |
6682351 | Abraham-Fuchs et al. | Jan 2004 | B1 |
6684062 | Gosior et al. | Jan 2004 | B1 |
D486145 | Kaminski et al. | Feb 2004 | S |
6686954 | Kitaguchi et al. | Feb 2004 | B1 |
6692170 | Abir | Feb 2004 | B2 |
6693622 | Shahoian et al. | Feb 2004 | B1 |
6712692 | Basson et al. | Mar 2004 | B2 |
6717573 | Shahoian et al. | Apr 2004 | B1 |
6718280 | Hermann | Apr 2004 | B2 |
6725173 | An et al. | Apr 2004 | B2 |
D489361 | Mori et al. | May 2004 | S |
6736009 | Schwabe | May 2004 | B1 |
D491924 | Kaminski et al. | Jun 2004 | S |
D492285 | Ombao et al. | Jun 2004 | S |
6743104 | Ota et al. | Jun 2004 | B1 |
6747632 | Howard | Jun 2004 | B2 |
6747690 | Mølgaard | Jun 2004 | B2 |
6749432 | French et al. | Jun 2004 | B2 |
6752719 | Himoto et al. | Jun 2004 | B2 |
6753849 | Curran et al. | Jun 2004 | B1 |
6753888 | Kamiwada et al. | Jun 2004 | B2 |
6757068 | Foxlin | Jun 2004 | B2 |
6757446 | Li et al. | Jun 2004 | B1 |
6761637 | Weston et al. | Jul 2004 | B2 |
6765553 | Odamura | Jul 2004 | B1 |
D495336 | Andre et al. | Aug 2004 | S |
6786877 | Foxlin | Sep 2004 | B2 |
6796177 | Mori | Sep 2004 | B2 |
6811489 | Shimizu et al. | Nov 2004 | B1 |
6811491 | Levenberg et al. | Nov 2004 | B1 |
6812881 | Mullaly et al. | Nov 2004 | B1 |
6813525 | Reid et al. | Nov 2004 | B2 |
6813584 | Zhou et al. | Nov 2004 | B2 |
6816151 | Dellinger | Nov 2004 | B2 |
6821204 | Aonuma et al. | Nov 2004 | B2 |
6821206 | Ishida et al. | Nov 2004 | B1 |
6836705 | Hellmann et al. | Dec 2004 | B2 |
6836751 | Paxton et al. | Dec 2004 | B2 |
6836971 | Wan | Jan 2005 | B1 |
6842991 | Levi et al. | Jan 2005 | B2 |
6850221 | Tickle | Feb 2005 | B1 |
6850844 | Walters et al. | Feb 2005 | B1 |
6852032 | Ishino | Feb 2005 | B2 |
6856327 | Choi | Feb 2005 | B2 |
D502468 | Knight et al. | Mar 2005 | S |
6868738 | Moscrip et al. | Mar 2005 | B2 |
6872139 | Sato et al. | Mar 2005 | B2 |
6873406 | Hines et al. | Mar 2005 | B1 |
D503750 | Kit et al. | Apr 2005 | S |
D504677 | Kaminski et al. | May 2005 | S |
D505424 | Ashida et al. | May 2005 | S |
6897845 | Ozawa | May 2005 | B2 |
6897854 | Cho et al. | May 2005 | B2 |
6906700 | Armstrong | Jun 2005 | B1 |
6908388 | Shimizu et al. | Jun 2005 | B2 |
6922632 | Foxlin | Jul 2005 | B2 |
6925410 | Narayanan | Aug 2005 | B2 |
6929543 | Ueshima et al. | Aug 2005 | B1 |
6929548 | Wang | Aug 2005 | B2 |
6933861 | Wang | Aug 2005 | B2 |
6933923 | Feinstein | Aug 2005 | B2 |
6954980 | Song | Oct 2005 | B2 |
6955606 | Taho et al. | Oct 2005 | B2 |
6956564 | Williams | Oct 2005 | B1 |
6967566 | Weston et al. | Nov 2005 | B2 |
6982697 | Wilson et al. | Jan 2006 | B2 |
6984208 | Zheng | Jan 2006 | B2 |
6990639 | Wilson | Jan 2006 | B2 |
6993206 | Ishino | Jan 2006 | B2 |
6993451 | Chang et al. | Jan 2006 | B2 |
6995748 | Gordon et al. | Feb 2006 | B2 |
6998966 | Pedersen et al. | Feb 2006 | B2 |
7000469 | Foxlin et al. | Feb 2006 | B2 |
7002591 | Leather et al. | Feb 2006 | B1 |
7031875 | Ellenby et al. | Apr 2006 | B2 |
7066781 | Weston | Jun 2006 | B2 |
D524298 | Hedderich et al. | Jul 2006 | S |
7081051 | Himoto et al. | Jul 2006 | B2 |
7090582 | Danieli et al. | Aug 2006 | B2 |
7098891 | Pryor | Aug 2006 | B1 |
7098894 | Yang et al. | Aug 2006 | B2 |
7102616 | Sleator | Sep 2006 | B1 |
7107168 | Oystol et al. | Sep 2006 | B2 |
D531228 | Ashida et al. | Oct 2006 | S |
7115032 | Cantu et al. | Oct 2006 | B2 |
7126584 | Nishiumi et al. | Oct 2006 | B1 |
7127370 | Kelly et al. | Oct 2006 | B2 |
D531585 | Weitgasser et al. | Nov 2006 | S |
7133026 | Horie et al. | Nov 2006 | B2 |
7136674 | Yoshie et al. | Nov 2006 | B2 |
7139983 | Kelts | Nov 2006 | B2 |
7140962 | Okuda et al. | Nov 2006 | B2 |
7142191 | Idesawa et al. | Nov 2006 | B2 |
7149627 | Ockerse et al. | Dec 2006 | B2 |
7154475 | Crew | Dec 2006 | B2 |
7155604 | Kawai | Dec 2006 | B2 |
7158118 | Liberty | Jan 2007 | B2 |
7173604 | Marvit et al. | Feb 2007 | B2 |
7176919 | Drebin et al. | Feb 2007 | B2 |
7182691 | Schena | Feb 2007 | B1 |
7183480 | Nishitani et al. | Feb 2007 | B2 |
7184059 | Fouladi et al. | Feb 2007 | B1 |
D543246 | Ashida et al. | May 2007 | S |
7220220 | Stubbs et al. | May 2007 | B2 |
7225101 | Usuda et al. | May 2007 | B2 |
7231063 | Naimark et al. | Jun 2007 | B2 |
7233316 | Smith et al. | Jun 2007 | B2 |
7236156 | Liberty et al. | Jun 2007 | B2 |
7239301 | Liberty et al. | Jul 2007 | B2 |
7261690 | Teller et al. | Aug 2007 | B2 |
7262760 | Liberty | Aug 2007 | B2 |
D556201 | Ashida et al. | Nov 2007 | S |
7292151 | Ferguson et al. | Nov 2007 | B2 |
7301527 | Marvit | Nov 2007 | B2 |
7301648 | Foxlin | Nov 2007 | B2 |
D556760 | Ashida et al. | Dec 2007 | S |
D559847 | Ashida et al. | Jan 2008 | S |
D561178 | Azuma | Feb 2008 | S |
7335134 | LaVelle | Feb 2008 | B1 |
D563948 | d'Hore | Mar 2008 | S |
D567243 | Ashida et al. | Apr 2008 | S |
7359121 | French et al. | Apr 2008 | B2 |
RE40324 | Crawford | May 2008 | E |
7379566 | Hildreth | May 2008 | B2 |
7395181 | Foxlin | Jul 2008 | B2 |
7414611 | Liberty | Aug 2008 | B2 |
7445550 | Barney et al. | Nov 2008 | B2 |
7488231 | Weston | Feb 2009 | B2 |
7500917 | Barney et al. | Mar 2009 | B2 |
7510477 | Argentar | Mar 2009 | B2 |
7568289 | Burlingham et al. | Aug 2009 | B2 |
7582016 | Suzuki | Sep 2009 | B2 |
7614958 | Weston et al. | Nov 2009 | B2 |
7663509 | Shen | Feb 2010 | B2 |
7774155 | Sato et al. | Aug 2010 | B2 |
7775882 | Kawamura et al. | Aug 2010 | B2 |
7796116 | Salsman | Sep 2010 | B2 |
7877224 | Ohta | Jan 2011 | B2 |
7905782 | Sawano et al. | Mar 2011 | B2 |
7927216 | Ikeda et al. | Apr 2011 | B2 |
7931535 | Ikeda et al. | Apr 2011 | B2 |
7942245 | Shimizu et al. | May 2011 | B2 |
20010008847 | Miyamoto et al. | Jul 2001 | A1 |
20010010514 | Ishino | Aug 2001 | A1 |
20010015123 | Nishitani et al. | Aug 2001 | A1 |
20010021668 | Takeda et al. | Sep 2001 | A1 |
20010024973 | Meredith | Sep 2001 | A1 |
20010031662 | Larian | Oct 2001 | A1 |
20010049302 | Hagiwara | Dec 2001 | A1 |
20020024500 | Howard | Feb 2002 | A1 |
20020024675 | Foxlin | Feb 2002 | A1 |
20020028071 | Mølgaard | Mar 2002 | A1 |
20020072418 | Masuyama et al. | Jun 2002 | A1 |
20020075335 | Rekimoto | Jun 2002 | A1 |
20020098887 | Himoto et al. | Jul 2002 | A1 |
20020103026 | Himoto et al. | Aug 2002 | A1 |
20020107069 | Ishino | Aug 2002 | A1 |
20020126026 | Lee et al. | Sep 2002 | A1 |
20020137567 | Cheng | Sep 2002 | A1 |
20020140745 | Ellenby et al. | Oct 2002 | A1 |
20020158843 | Levine et al. | Oct 2002 | A1 |
20020183961 | French et al. | Dec 2002 | A1 |
20030038778 | Noguera et al. | Feb 2003 | A1 |
20030052860 | Park et al. | Mar 2003 | A1 |
20030057808 | Lee | Mar 2003 | A1 |
20030063068 | Anton et al. | Apr 2003 | A1 |
20030069077 | Korienek | Apr 2003 | A1 |
20030107551 | Dunker | Jun 2003 | A1 |
20030144056 | Leifer et al. | Jul 2003 | A1 |
20030193572 | Wilson et al. | Oct 2003 | A1 |
20030195041 | McCauley | Oct 2003 | A1 |
20030204361 | Townsend et al. | Oct 2003 | A1 |
20030216176 | Shimizu et al. | Nov 2003 | A1 |
20030222851 | Lai et al. | Dec 2003 | A1 |
20040028258 | Naimark et al. | Feb 2004 | A1 |
20040034289 | Teller et al. | Feb 2004 | A1 |
20040048666 | Bagley | Mar 2004 | A1 |
20040070564 | Dawson | Apr 2004 | A1 |
20040075650 | Paul et al. | Apr 2004 | A1 |
20040095317 | Zhang et al. | May 2004 | A1 |
20040134341 | Sandoz et al. | Jul 2004 | A1 |
20040140954 | Faeth | Jul 2004 | A1 |
20040143413 | Oystol et al. | Jul 2004 | A1 |
20040147317 | Ito et al. | Jul 2004 | A1 |
20040152515 | Wegmuller et al. | Aug 2004 | A1 |
20040193413 | Wilson et al. | Sep 2004 | A1 |
20040203638 | Chan | Oct 2004 | A1 |
20040204240 | Barney | Oct 2004 | A1 |
20040218104 | Smith et al. | Nov 2004 | A1 |
20040222969 | Buchenrieder | Nov 2004 | A1 |
20040227725 | Calarco et al. | Nov 2004 | A1 |
20040229693 | Lind et al. | Nov 2004 | A1 |
20040239626 | Noguera | Dec 2004 | A1 |
20040252109 | Trent et al. | Dec 2004 | A1 |
20040254020 | Dragusin | Dec 2004 | A1 |
20040259651 | Storek | Dec 2004 | A1 |
20040268393 | Hunleth et al. | Dec 2004 | A1 |
20050017454 | Endo et al. | Jan 2005 | A1 |
20050020369 | Davis et al. | Jan 2005 | A1 |
20050032582 | Mahajan et al. | Feb 2005 | A1 |
20050047621 | Cranfill et al. | Mar 2005 | A1 |
20050054457 | Eyestone et al. | Mar 2005 | A1 |
20050070359 | Rodriquez et al. | Mar 2005 | A1 |
20050076161 | Albanna et al. | Apr 2005 | A1 |
20050085298 | Woolston | Apr 2005 | A1 |
20050125826 | Hunleth et al. | Jun 2005 | A1 |
20050130739 | Argentar | Jun 2005 | A1 |
20050134555 | Liao | Jun 2005 | A1 |
20050143173 | Barney et al. | Jun 2005 | A1 |
20050170889 | Lum et al. | Aug 2005 | A1 |
20050172734 | Alsio | Aug 2005 | A1 |
20050174324 | Liberty et al. | Aug 2005 | A1 |
20050176485 | Ueshima | Aug 2005 | A1 |
20050179644 | Alsio | Aug 2005 | A1 |
20050210419 | Kela | Sep 2005 | A1 |
20050212749 | Marvit | Sep 2005 | A1 |
20050212750 | Marvit | Sep 2005 | A1 |
20050212751 | Marvit | Sep 2005 | A1 |
20050212752 | Marvit | Sep 2005 | A1 |
20050212753 | Marvit | Sep 2005 | A1 |
20050212754 | Marvit | Sep 2005 | A1 |
20050212755 | Marvit | Sep 2005 | A1 |
20050212756 | Marvit | Sep 2005 | A1 |
20050212757 | Marvit | Sep 2005 | A1 |
20050212758 | Marvit | Sep 2005 | A1 |
20050212759 | Marvit | Sep 2005 | A1 |
20050212760 | Marvit | Sep 2005 | A1 |
20050212764 | Toba | Sep 2005 | A1 |
20050212767 | Marvit et al. | Sep 2005 | A1 |
20050215295 | Arneson | Sep 2005 | A1 |
20050215322 | Himoto et al. | Sep 2005 | A1 |
20050217525 | McClure | Oct 2005 | A1 |
20050233808 | Himoto et al. | Oct 2005 | A1 |
20050239548 | Ueshima et al. | Oct 2005 | A1 |
20050243061 | Liberty et al. | Nov 2005 | A1 |
20050243062 | Liberty | Nov 2005 | A1 |
20050253806 | Liberty et al. | Nov 2005 | A1 |
20050256675 | Kurata | Nov 2005 | A1 |
20050277470 | Watanachote | Dec 2005 | A1 |
20060028446 | Liberty et al. | Feb 2006 | A1 |
20060030385 | Barney et al. | Feb 2006 | A1 |
20060046849 | Kovacs | Mar 2006 | A1 |
20060092133 | Touma et al. | May 2006 | A1 |
20060094502 | Katayama et al. | May 2006 | A1 |
20060122474 | Teller et al. | Jun 2006 | A1 |
20060123146 | Wu et al. | Jun 2006 | A1 |
20060148563 | Yang | Jul 2006 | A1 |
20060152487 | Grunnet-Jepsen et al. | Jul 2006 | A1 |
20060152488 | Salsman et al. | Jul 2006 | A1 |
20060152489 | Sweetser et al. | Jul 2006 | A1 |
20060154726 | Weston et al. | Jul 2006 | A1 |
20060178212 | Penzias | Aug 2006 | A1 |
20060205507 | Ho | Sep 2006 | A1 |
20060231794 | Sakaguchi et al. | Oct 2006 | A1 |
20060252477 | Zalewski et al. | Nov 2006 | A1 |
20060256081 | Zalewski et al. | Nov 2006 | A1 |
20060258452 | Hsu | Nov 2006 | A1 |
20060264258 | Zalewski et al. | Nov 2006 | A1 |
20060264260 | Zalewski et al. | Nov 2006 | A1 |
20060282873 | Zalewski et al. | Dec 2006 | A1 |
20060287086 | Zalewski et al. | Dec 2006 | A1 |
20060287087 | Zalewski et al. | Dec 2006 | A1 |
20070015588 | Matsumoto et al. | Jan 2007 | A1 |
20070021208 | Mao et al. | Jan 2007 | A1 |
20070049374 | Ikeda et al. | Mar 2007 | A1 |
20070050597 | Ikeda et al. | Mar 2007 | A1 |
20070052177 | Ikeda et al. | Mar 2007 | A1 |
20070060391 | Ikeda et al. | Mar 2007 | A1 |
20070066394 | Ikeda et al. | Mar 2007 | A1 |
20070066396 | Weston et al. | Mar 2007 | A1 |
20070072680 | Ikeda et al. | Mar 2007 | A1 |
20070091084 | Ueshima et al. | Apr 2007 | A1 |
20070093291 | Hulvey | Apr 2007 | A1 |
20070159362 | Shen | Jul 2007 | A1 |
20070173705 | Teller et al. | Jul 2007 | A1 |
20070252815 | Kuo et al. | Nov 2007 | A1 |
20070265075 | Zalewski | Nov 2007 | A1 |
20070265076 | Lin et al. | Nov 2007 | A1 |
20070265088 | Nakada et al. | Nov 2007 | A1 |
20080014835 | Weston et al. | Jan 2008 | A1 |
20080015017 | Ashida et al. | Jan 2008 | A1 |
20080039202 | Sawano et al. | Feb 2008 | A1 |
20080121782 | Hotelling et al. | May 2008 | A1 |
20080273011 | Lin | Nov 2008 | A1 |
20080278445 | Sweetser et al. | Nov 2008 | A1 |
20080280660 | Ueshima et al. | Nov 2008 | A1 |
20090005166 | Sato | Jan 2009 | A1 |
20090051653 | Barney et al. | Feb 2009 | A1 |
20090124165 | Weston | May 2009 | A1 |
20090156309 | Weston et al. | Jun 2009 | A1 |
Number | Date | Country |
---|---|---|
1338961 | Mar 2002 | CN |
1559644 | Jan 2005 | CN |
3930581 | Mar 1991 | DE |
19701344 | Jul 1997 | DE |
19701374 | Jul 1997 | DE |
19648487 | Jun 1998 | DE |
19814254 | Oct 1998 | DE |
19937307 | Feb 2000 | DE |
10029173 | Jan 2002 | DE |
10241392 | May 2003 | DE |
10219198 | Nov 2003 | DE |
1 524 334 | Mar 1977 | EP |
0 835 676 | Apr 1998 | EP |
0 848 226 | Jun 1998 | EP |
0 852 961 | Jul 1998 | EP |
1 062 994 | Dec 2000 | EP |
1 279 425 | Jan 2003 | EP |
1 293 237 | Mar 2003 | EP |
0993845 | Dec 2005 | EP |
1524334 | Sep 1978 | GB |
2 244 546 | May 1990 | GB |
2244546 | May 1990 | GB |
2284478 | Jun 1995 | GB |
2307133 | May 1997 | GB |
2316482 | Feb 1998 | GB |
2319374 | May 1998 | GB |
60-077231 | May 1985 | JP |
62-14527 | Jan 1987 | JP |
03-74434 | Jul 1991 | JP |
03-08103 | Aug 1991 | JP |
3-059619 | Nov 1991 | JP |
04-287888 | Oct 1992 | JP |
5-056191 | Jul 1993 | JP |
2-901476 | Dec 1993 | JP |
6-50758 | Feb 1994 | JP |
3-262677 | May 1994 | JP |
6-154422 | Jun 1994 | JP |
03-000028 | Jul 1994 | JP |
6-190144 | Jul 1994 | JP |
6-198075 | Jul 1994 | JP |
3-194841 | Oct 1994 | JP |
06-77387 | Oct 1994 | JP |
3-273531 | Nov 1994 | JP |
6-308879 | Nov 1994 | JP |
3-228845 | Jan 1995 | JP |
7-28591 | Jan 1995 | JP |
7-44315 | Feb 1995 | JP |
7044315 | Feb 1995 | JP |
7-107573 | Apr 1995 | JP |
07-22312 | May 1995 | JP |
7-115690 | May 1995 | JP |
3-517482 | Jun 1995 | JP |
7-146123 | Jun 1995 | JP |
7-200142 | Aug 1995 | JP |
07-262797 | Oct 1995 | JP |
7-302148 | Nov 1995 | JP |
07-318332 | Dec 1995 | JP |
8-071252 | Mar 1996 | JP |
8-095704 | Apr 1996 | JP |
8-106352 | Apr 1996 | JP |
08-111144 | Apr 1996 | JP |
11-114223 | Apr 1996 | JP |
8-114415 | May 1996 | JP |
8-122070 | May 1996 | JP |
8-152959 | Jun 1996 | JP |
8-211993 | Aug 1996 | JP |
08-221187 | Aug 1996 | JP |
8-305355 | Nov 1996 | JP |
83-35136 | Dec 1996 | JP |
9-230997 | Sep 1997 | JP |
9-274534 | Oct 1997 | JP |
09-319510 | Dec 1997 | JP |
10-021000 | Jan 1998 | JP |
10-033831 | Feb 1998 | JP |
10-99542 | Apr 1998 | JP |
10-154038 | Jun 1998 | JP |
10-254614 | Sep 1998 | JP |
11-099284 | Apr 1999 | JP |
11-506857 | Jun 1999 | JP |
2000-270237 | Sep 2000 | JP |
2000-308756 | Nov 2000 | JP |
2001-038052 | Feb 2001 | JP |
30-78268 | Apr 2001 | JP |
2001-104643 | Apr 2001 | JP |
03-080103 | Jun 2001 | JP |
2001-175412 | Jun 2001 | JP |
2001-251324 | Sep 2001 | JP |
2001-306245 | Nov 2001 | JP |
2002-062981 | Feb 2002 | JP |
2002-082751 | Mar 2002 | JP |
2002-091692 | Mar 2002 | JP |
2002-153673 | May 2002 | JP |
2002-202843 | Jul 2002 | JP |
2002-224444 | Aug 2002 | JP |
2002-232549 | Aug 2002 | JP |
2002-233665 | Aug 2002 | JP |
2002-298145 | Oct 2002 | JP |
2003-053038 | Feb 2003 | JP |
34-22383 | Apr 2003 | JP |
2003-208263 | Jul 2003 | JP |
2003-236246 | Aug 2003 | JP |
2003-325974 | Nov 2003 | JP |
2004-062774 | Feb 2004 | JP |
2004-313429 | Nov 2004 | JP |
2004-313492 | Nov 2004 | JP |
2005-040493 | Feb 2005 | JP |
2005-063230 | Mar 2005 | JP |
2003-140823 | Apr 2006 | JP |
2006-113019 | Apr 2006 | JP |
2002-136694 | Jun 2006 | JP |
2006-136694 | Jun 2006 | JP |
2006-216569 | Apr 2007 | JP |
2007-083024 | Apr 2007 | JP |
2007-283134 | Nov 2007 | JP |
9300171 | Aug 1994 | NL |
2125853 | Feb 1999 | RU |
2126161 | Feb 1999 | RU |
2141738 | Nov 1999 | RU |
9402931 | Feb 1994 | WO |
2004039055 | May 1994 | WO |
9605766 | Feb 1996 | WO |
9709101 | Mar 1997 | WO |
9712337 | Apr 1997 | WO |
9717598 | May 1997 | WO |
9728864 | Aug 1997 | WO |
9732641 | Sep 1997 | WO |
9811528 | Mar 1998 | WO |
9958214 | Nov 1999 | WO |
00033168 | Jun 2000 | WO |
0035345 | Jun 2000 | WO |
0047108 | Aug 2000 | WO |
0063874 | Oct 2000 | WO |
0187426 | Nov 2001 | WO |
0191042 | Nov 2001 | WO |
0217054 | Feb 2002 | WO |
0234345 | May 2002 | WO |
03015005 | Feb 2003 | WO |
03107260 | Jun 2003 | WO |
03088147 | Oct 2003 | WO |
2004051391 | Jun 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20110081969 A1 | Apr 2011 | US |
Number | Date | Country | |
---|---|---|---|
60716937 | Sep 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11446187 | Jun 2006 | US |
Child | 12889863 | US | |
Parent | 11532328 | Sep 2006 | US |
Child | 11446187 | US |