Video generation system to render frames on demand using a fleet of servers

Information

  • Patent Grant
  • 12045276
  • Patent Number
    12,045,276
  • Date Filed
    Monday, May 8, 2023
    a year ago
  • Date Issued
    Tuesday, July 23, 2024
    5 months ago
Abstract
Content controller system comprising rendering server system comprising a plurality of servers. The servers receiving a plurality of segment render requests that correspond respectively to segments included in a set of media content item segments. The servers render the segments corresponding to the segment render requests using a media content identification and a main user identification. Rendering the segments comprises retrieving metadata from a metadata database associated with the media content identification, rendering the segments using the metadata, generating a main user avatar based on the main user identification, and incorporating the main user avatar into the segments. The servers can upload the segments to a segment database and update segment states in a segment state database to indicate that the segments are available. Other embodiments are disclosed herein.
Description
BACKGROUND

The popularity of social networking systems continues to grow, and users increasingly use customized avatars within electronic messages such as text messages, emails, chats, reflecting a global demand to communicate more visually.


These customized avatars can be personalized by the users to represent the users in various applications, video games, messaging services, etc. Since the customized avatars can be generated in a different array of situations, displaying various emotions, or even be animated, the users are able to communicate their feelings more accurately in messages using the customized avatars. The users can use the customized avatars as a virtual extension of themselves online.


Moreover, with the increasing number of users on social networking systems, each user also has a growing network of individuals that she follows. In order to maintain the user's engagement on social networking systems, it is paramount that the systems have the ability to present to each user the media content items that are most interesting or relevant to her. In addition to the need to curate the media content items, the social networking systems are also presented with the challenge of providing a graphical user interface that captivates the user's attention and allows her to view the curated media content items and further interact the network of individuals that she follows.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

To easily identify the discussion of any particular element or act, the most significant digit or digits in a reference number refer to the figure number in which that element is first introduced.



FIG. 1 is a diagrammatic representation of a networked environment in which the present disclosure may be deployed, in accordance with some example embodiments.



FIG. 2 is a diagrammatic representation of a messaging client application, in accordance with some example embodiments.



FIG. 3 is a diagrammatic representation of a data structure as maintained in a database, in accordance with some example embodiments.



FIG. 4 is a diagrammatic representation of a message, in accordance with some example embodiments.



FIG. 5 is a diagrammatic representation of the details of the networked environment in which the present disclosure may be deployed, in accordance with some example embodiments.



FIG. 6 illustrates a flowchart of a process for rendering video on demand, in accordance with one embodiment.



FIG. 7 illustrates a flowchart of a process for rendering the second set of media content item segments, in accordance with one embodiment.



FIG. 8 illustrates a flowchart of a process for rendering the video on demand using a plurality of GPUs, in accordance with one embodiment.



FIG. 9 illustrates a flowchart of a process for rendering the video on demand using a plurality of servers, in accordance with one embodiment.



FIG. 10 illustrates a flowchart of a process for selecting the avatars to be included in a video being generated on demand, in accordance with one embodiment.



FIG. 11 illustrates an example of a user interface 1100 being displayed by the client device in accordance with one embodiment.



FIG. 12 illustrates an example of a frame 1200 of the media content item being displayed by the client device in accordance with one embodiment.



FIG. 13 illustrates an example of a frame 1300 of the media content item being displayed by the client device in accordance with one embodiment.



FIG. 14 is block diagram showing a software architecture within which the present disclosure may be implemented, in accordance with some example embodiments.



FIG. 15 is a diagrammatic representation of a machine, in the form of a computer system within which a set of instructions may be executed for causing the machine to perform any one or more of the methodologies discussed, in accordance with some example embodiments.



FIG. 16 is a diagrammatic representation of a processing environment, in accordance with some example embodiments.





DETAILED DESCRIPTION

The description that follows includes systems, methods, techniques, instruction sequences, and computing machine program products that embody illustrative embodiments of the disclosure. In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide an understanding of various embodiments of the inventive subject matter. It will be evident, however, to those skilled in the art, that embodiments of the inventive subject matter may be practiced without these specific details. In general, well-known instruction instances, protocols, structures, and techniques are not necessarily shown in detail.


With the customized avatar increasingly being used as a virtual extension of a user online, the messaging system 100 can further engage the user by creating content (e.g., video content) that can feature the user's avatar as well as the user's connections' avatars. The content can be in the form of a number of episodes in a series like a television series that is released periodically (e.g., daily, weekly, monthly, etc.)


As used herein, an “avatar” of a user is any visual representation of a user. The avatar of a user may be based on information (e.g., characteristics) derived from images of the user in conjunction with the avatar characteristics identified from the user's relationships with other users. Alternatively, or additionally, the user may select and customize characteristics of the user's avatar via the user's computing device. Such avatar characteristics may include, for example, the user's bodily features (e.g., muscular, thin, etc.), facial features, clothing and accessories, text displayed in conjunction with the avatar, and images displayed in conjunction with the avatar.


On digital content platforms, the content is generated beforehand, uploaded to a server and delivered to the user's device upon receiving a request by the user. However, given that the content needs to be personalized to feature the user's avatar and/or the user's friend's avatar, it would be challenging to individually generate content for each of the multiple millions of users on the messaging system 100 and wait for the user to request the content. Further, the users on the messaging system 100 customize their avatars on a whim and further interact with different users on the messaging system 100 such that it would also be challenging to generate content beforehand includes up-to-date avatars.


Embodiments of the present invention improve on the functionality of electronic messaging and imaging software and systems by rendering the video content including the user's avatar on demand. Thus, the video content is personalized to the requesting user just in time for delivery to the user's client device 102. Accordingly, embodiments of the present invention can receive from a content creator, for example, an animation (e.g., media content item) with a placeholder avatar and when the user requests the media content item, the placeholder avatar is replaced with the user's avatar and the media content item that is personalized to the requesting user is transmitted to the user's device.


Embodiments of the present invention further improve on the functionality of electronic messaging and imaging software and systems by minimizing the delay between the requesting and transmitting of the media content item to the user's device, by selecting the relevant avatars to be incorporated into the media content item, and by simplifying the animation process for the content creators.



FIG. 1 is a block diagram showing an example messaging system 100 for exchanging data (e.g., messages and associated content) over a network. The messaging system 100 includes multiple instances of a client device 102, each of which hosts a number of applications including a messaging client application 104. Each messaging client application 104 is communicatively coupled to other instances of the messaging client application 104 and a messaging server system 108 via a network 106 (e.g., the Internet).


A messaging client application 104 is able to communicate and exchange data with another messaging client application 104 and with the messaging server system 108 via the network 106. The data exchanged between messaging client application 104, and between a messaging client application 104 and the messaging server system 108, includes functions (e.g., commands to invoke functions) as well as payload data (e.g., text, audio, video or other multimedia data).


The messaging server system 108 provides server-side functionality via the network 106 to a particular messaging client application 104. While certain functions of the messaging system 100 are described herein as being performed by either a messaging client application 104 or by the messaging server system 108, the location of certain functionality either within the messaging client application 104 or the messaging server system 108 is a design choice. For example, it may be technically preferable to initially deploy certain technology and functionality within the messaging server system 108, but to later migrate this technology and functionality to the messaging client application 104 where a client device 102 has a sufficient processing capacity.


The messaging server system 108 supports various services and operations that are provided to the messaging client application 104. Such operations include transmitting data to, receiving data from, and processing data generated by the messaging client application 104. This data may include, message content, client device information, geolocation information, media annotation and overlays, message content persistence conditions, social network information, and live event information, as examples. Data exchanges within the messaging system 100 are invoked and controlled through functions available via user interfaces (UIs) of the messaging client application 104.


Turning now specifically to the messaging server system 108, an Application Program Interface (API) server 110 is coupled to, and provides a programmatic interface to, an application server 112. The application server 112 is communicatively coupled to a database server 118, which facilitates access to a database 120 in which is stored data associated with messages processed by the application server 112.


The Application Program Interface (API) server 110 receives and transmits message data (e.g., commands and message payloads) between the client device 102 and the application server 112. Specifically, the Application Program Interface (API) server 110 provides a set of interfaces (e.g., routines and protocols) that can be called or queried by the messaging client application 104 in order to invoke functionality of the application server 112. The Application Program Interface (API) server 110 exposes various functions supported by the application server 112, including account registration, login functionality, the sending of messages, via the application server 112, from a particular messaging client application 104 to another messaging client application 104, the sending of media files (e.g., images or video) from a messaging client application 104 to the messaging server application 114, and for possible access by another messaging client application 104, the setting of a collection of media data (e.g., story), the retrieval of a list of friends of a user of a client device 102, the retrieval of such collections, the retrieval of messages and content, the adding and deletion of friends to a social graph, the location of friends within a social graph, and opening an application event (e.g., relating to the messaging client application 104).


The application server 112 hosts a number of applications and subsystems, including a messaging server application 114, an image processing system 116, a social network system 122, and a content controller system 124. The messaging server application 114 implements a number of message processing technologies and functions, particularly related to the aggregation and other processing of content (e.g., textual and multimedia content) included in messages received from multiple instances of the messaging client application 104. As will be described in further detail, the text and media content from multiple sources may be aggregated into collections of content (e.g., called stories or galleries). These collections are then made available, by the messaging server application 114, to the messaging client application 104. Other processor and memory intensive processing of data may also be performed server-side by the messaging server application 114, in view of the hardware requirements for such processing.


The application server 112 also includes an image processing system 116 that is dedicated to performing various image processing operations, typically with respect to images or video received within the payload of a message at the messaging server application 114.


The social network system 122 supports various social networking functions services and makes these functions and services available to the messaging server application 114. To this end, the social network system 122 maintains and accesses an entity graph 304 (as shown in FIG. 3) within the database 120. Examples of functions and services supported by the social network system 122 include the identification of other users of the messaging system 100 with which a particular user has relationships or is “following”, and also the identification of other entities and interests of a particular user.


The application server 112 is communicatively coupled to a database server 118, which facilitates access to a database 120 in which is stored data associated with messages processed by the messaging server application 114.


The content controller system 124 is dedicated to manage the media content items that are rendered to include the user of the client device 102's avatar on demand. The content controller system 124 can include a delivery server system 502 and a rendering server system 504, as shown in FIG. 5.



FIG. 2 is block diagram illustrating further details regarding the messaging system 100, according to example embodiments. Specifically, the messaging system 100 is shown to comprise the messaging client application 104 and the application server 112, which in turn embody a number of some subsystems, namely an ephemeral timer system 202, a collection management system 204 and an annotation system 206.


The ephemeral timer system 202 is responsible for enforcing the temporary access to content permitted by the messaging client application 104 and the messaging server application 114. To this end, the ephemeral timer system 202 incorporates a number of timers that, based on duration and display parameters associated with a message, or collection of messages (e.g., a story), selectively display and enable access to messages and associated content via the messaging client application 104. Further details regarding the operation of the ephemeral timer system 202 are provided below.


The collection management system 204 is responsible for managing collections of media (e.g., collections of text, image video and audio data). In some examples, a collection of content (e.g., messages, including images, video, text and audio) may be organized into an “event gallery” or an “event story.” Such a collection may be made available for a specified time period, such as the duration of an event to which the content relates. For example, content relating to a music concert may be made available as a “story” for the duration of that music concert. The collection management system 204 may also be responsible for publishing an icon that provides notification of the existence of a particular collection to the user interface of the messaging client application 104.


The collection management system 204 furthermore includes a curation interface 208 that allows a collection manager to manage and curate a particular collection of content. For example, the curation interface 208 enables an event organizer to curate a collection of content relating to a specific event (e.g., delete inappropriate content or redundant messages). Additionally, the collection management system 204 employs machine vision (or image recognition technology) and content rules to automatically curate a content collection. In certain embodiments, compensation may be paid to a user for inclusion of user-generated content into a collection. In such cases, the curation interface 208 operates to automatically make payments to such users for the use of their content.


The annotation system 206 provides various functions that enable a user to annotate or otherwise modify or edit media content associated with a message. For example, the annotation system 206 provides functions related to the generation and publishing of media overlays for messages processed by the messaging system 100. The annotation system 206 operatively supplies a media overlay or supplementation (e.g., an image filter) to the messaging client application 104 based on a geolocation of the client device 102. In another example, the annotation system 206 operatively supplies a media overlay to the messaging client application 104 based on other information, such as social network information of the user of the client device 102. A media overlay may include audio and visual content and visual effects. Examples of audio and visual content include pictures, texts, logos, animations, and sound effects. An example of a visual effect includes color overlaying. The audio and visual content or the visual effects can be applied to a media content item (e.g., a photo) at the client device 102. For example, the media overlay may include text that can be overlaid on top of a photograph taken by the client device 102. In another example, the media overlay includes an identification of a location overlay (e.g., Venice beach), a name of a live event, or a name of a merchant overlay (e.g., Beach Coffee House). In another example, the annotation system 206 uses the geolocation of the client device 102 to identify a media overlay that includes the name of a merchant at the geolocation of the client device 102. The media overlay may include other indicia associated with the merchant. The media overlays may be stored in the database 120 and accessed through the database server 118.


In one example embodiment, the annotation system 206 provides a user-based publication platform that enables users to select a geolocation on a map, and upload content associated with the selected geolocation. The user may also specify circumstances under which a particular media overlay should be offered to other users. The annotation system 206 generates a media overlay that includes the uploaded content and associates the uploaded content with the selected geolocation.


In another example embodiment, the annotation system 206 provides a merchant-based publication platform that enables merchants to select a particular media overlay associated with a geolocation via a bidding process. For example, the annotation system 206 associates the media overlay of a highest bidding merchant with a corresponding geolocation for a predefined amount of time.



FIG. 3 is a schematic diagram illustrating data structures 300 which may be stored in the database 120 of the messaging server system 108, according to certain example embodiments. While the content of the database 120 is shown to comprise a number of tables, it will be appreciated that the data could be stored in other types of data structures (e.g., as an object-oriented database).


The database 120 includes message data stored within a message table 314. The entity table 302 stores entity data, including an entity graph 304. Entities for which records are maintained within the entity table 302 may include individuals, corporate entities, organizations, objects, places, events, etc. Regardless of type, any entity regarding which the messaging server system 108 stores data may be a recognized entity. Each entity is provided with a unique identifier, as well as an entity type identifier (not shown).


The entity graph 304 furthermore stores information regarding relationships and associations between entities. Such relationships may be social, professional (e.g., work at a common corporation or organization) interested-based or activity-based, merely for example.


The database 120 also stores annotation data, in the example form of filters, in an annotation table 312. Filters for which data is stored within the annotation table 312 are associated with and applied to videos (for which data is stored in a video table 310) and/or images (for which data is stored in an image table 308). Filters, in one example, are overlays that are displayed as overlaid on an image or video during presentation to a recipient user. Filters may be of various types, including user-selected filters from a gallery of filters presented to a sending user by the messaging client application 104 when the sending user is composing a message. Other types of filters include geolocation filters (also known as geo-filters) which may be presented to a sending user based on geographic location. For example, geolocation filters specific to a neighborhood or special location may be presented within a user interface by the messaging client application 104, based on geolocation information determined by a GPS unit of the client device 102. Another type of filter is a data filter, which may be selectively presented to a sending user by the messaging client application 104, based on other inputs or information gathered by the client device 102 during the message creation process. Example of data filters include current temperature at a specific location, a current speed at which a sending user is traveling, battery life for a client device 102, or the current time.


Other annotation data that may be stored within the image table 308 is so-called “lens” data. A “lens” may be a real-time special effect and sound that may be added to an image or a video.


As mentioned above, the video table 310 stores video data which, in one embodiment, is associated with messages for which records are maintained within the message table 314. Similarly, the image table 308 stores image data associated with messages for which message data is stored in the entity table 302. The entity table 302 may associate various annotations from the annotation table 312 with various images and videos stored in the image table 308 and the video table 310.


A story table 306 stores data regarding collections of messages and associated image, video, or audio data, which are compiled into a collection (e.g., a story or a gallery). The creation of a particular collection may be initiated by a particular user (e.g., each user for which a record is maintained in the entity table 302). A user may create a “personal story” in the form of a collection of content that has been created and sent/broadcast by that user. To this end, the user interface of the messaging client application 104 may include an icon that is user-selectable to enable a sending user to add specific content to his or her personal story.


A collection may also constitute a “live story,” which is a collection of content from multiple users that is created manually, automatically, or using a combination of manual and automatic techniques. For example, a “live story” may constitute a curated stream of user-submitted content from various locations and events. Users whose client devices have location services enabled and are at a common location event at a particular time may, for example, be presented with an option, via a user interface of the messaging client application 104, to contribute content to a particular live story. The live story may be identified to the user by the messaging client application 104, based on his or her location. The end result is a “live story” told from a community perspective.


A further type of content collection is known as a “location story”, which enables a user whose client device 102 is located within a specific geographic location (e.g., on a college or university campus) to contribute to a particular collection. In some embodiments, a contribution to a location story may require a second degree of authentication to verify that the end user belongs to a specific organization or other entity (e.g., is a student on the university campus).


The database 120 also stores a metadata table 316, segment table 318, and a segment state table 320. The metadata table 316 includes the metadata associated with the media content items. The metadata can be associated with the animation that is created by a content creator and the media content identifier. The media content item can include a plurality of media content segments that include the user's avatar. As the media content segments including the user's avatar are generated, the segment table 318 can store the media content segments. The segment state table 320 can store the segment state associated with each of the media content segments. For example, the segment state can indicate that a media content segment associated therewith is ready and available for transmission.



FIG. 4 is a schematic diagram illustrating a structure of a message 400, according to some in some embodiments, generated by a messaging client application 104 for communication to a further messaging client application 104 or the messaging server application 114. The content of a particular message 400 is used to populate the message table 314 stored within the database 120, accessible by the messaging server application 114. Similarly, the content of a message 400 is stored in memory as “in-transit” or “in-flight” data of the client device 102 or the application server 112. The message 400 is shown to include the following components:

    • A message identifier 402: a unique identifier that identifies the message 400.
    • A message text payload 404: text, to be generated by a user via a user interface of the client device 102 and that is included in the message 400.
    • A message image payload 406: image data, captured by a camera component of a client device 102 or retrieved from a memory component of a client device 102, and that is included in the message 400.
    • A message video payload 408: video data, captured by a camera component or retrieved from a memory component of the client device 102 and that is included in the message 400.
    • A message audio payload 410: audio data, captured by a microphone or retrieved from a memory component of the client device 102, and that is included in the message 400.
    • A message annotation 412: annotation data (e.g., filters, stickers or other enhancements) that represents annotations to be applied to message image payload 406, message video payload 408, or message audio payload 410 of the message 400.
    • A message duration parameter 414: parameter value indicating, in seconds, the amount of time for which content of the message (e.g., the message image payload 406, message video payload 408, message audio payload 410) is to be presented or made accessible to a user via the messaging client application 104.
    • A message geolocation parameter 416: geolocation data (e.g., latitudinal and longitudinal coordinates) associated with the content payload of the message. Multiple message geolocation parameter 416 values may be included in the payload, each of these parameter values being associated with respect to content items included in the content (e.g., a specific image into within the message image payload 406, or a specific video in the message video payload 408).
    • A message story identifier 418: identifier values identifying one or more content collections (e.g., “stories”) with which a particular content item in the message image payload 406 of the message 400 is associated. For example, multiple images within the message image payload 406 may each be associated with multiple content collections using identifier values.
    • A message tag 420: each message 400 may be tagged with multiple tags, each of which is indicative of the subject matter of content included in the message payload. For example, where a particular image included in the message image payload 406 depicts an animal (e.g., a lion), a tag value may be included within the message tag 420 that is indicative of the relevant animal. Tag values may be generated manually, based on user input, or may be automatically generated using, for example, image recognition.
    • A message sender identifier 422: an identifier (e.g., a messaging system identifier, email address, or device identifier) indicative of a user of the client device 102 on which the message 400 was generated and from which the message 400 was sent
    • A message receiver identifier 424: an identifier (e.g., a messaging system identifier, email address, or device identifier) indicative of a user of the client device 102 to which the message 400 is addressed.


The contents (e.g., values) of the various components of message 400 may be pointers to locations in tables within which content data values are stored. For example, an image value in the message image payload 406 may be a pointer to (or address of) a location within an image table 308. Similarly, values within the message video payload 408 may point to data stored within a video table 310, values stored within the message annotations 412 may point to data stored in an annotation table 312, values stored within the message story identifier 418 may point to data stored in a story table 306, and values stored within the message sender identifier 422 and the message receiver identifier 424 may point to user records stored within an entity table 302.



FIG. 5 is a diagrammatic representation of the details 500 of the networked environment in which the present disclosure may be deployed, in accordance with some example embodiments.


As shown in FIG. 5, the content controller system 124 comprising a delivery server system 502 and a rendering server system 504 is communicatively coupled with the client device 102 and the segment table 318, the segment state table 320, and the metadata table 316 of the database 120.


Content creators (e.g., animators) can upload new content periodically to the messaging server system 108 in FIG. 1. The content creators can upload the new content via an electronic device (e.g., client device 102) or new content can be uploaded by the messaging server system 108. The content can be in the form of a number of episodes in a series like a television series that is released periodically (e.g., daily, weekly, monthly, etc.). The media content item can be in the form of a video that includes an animation.


In one embodiment, the content controller system 124 receives a request for the new content (e.g., a media content item) from a client device 102. The content controller system 124 delivers the media content item to the client device 102 on demand by using a streaming playlist where the delivery server system 502 coordinates with the rendering server system 504 to progressively append newly-rendered media content item segments (e.g., 2-3 second video segments) at the end of the playlist.


In one embodiment, the delivery server system 502 receives the request from the client device 102. The request can be sent to the delivery server system 502 when the user of the client device 102 selects a selectable icon or link being displayed on the client device 102 that is associated with the media content item. FIG. 11 illustrates an example user interface 1100 being displayed on the client device 102. As shown FIG. 11, the user interface 1100 can be an electronic program guide including a number of episodes of a video program (e.g., similar to a television series) or single video (e.g., similar to a feature length movie). The portions of the electronic program guide in user interface 1100 can be selectable to cause the request for a media content item to be transmitted to the delivery server system 502. For example, when the user selects the link “Night Court” in the user interface 1100, the request for the “Night Court” media content item is transmitted to the delivery server system 502.


The request from the client device 102 can include request parameters such as, for example, a media content identification and the main user identification. The media content identification identifies the media content item that is requested to be viewed. The media content identification can be an episode identification (e.g., Night Court episode 1). The main user identification can be an identification of the user of the client device 102 that is requesting the media content item. The main user identification can also be the identification of the avatar that is associated with the user of the client device 102 making the request (e.g., a main user avatar identification). In one embodiment, the request from the client device 102 also includes the second user identification that is associated with a user of a different client device 102. In another embodiment, the request from the client device 102 also includes a plurality of user identifications that are associated with a plurality of users of different client devices 102.


The delivery server system 502 of the content controller system 124 can retrieve (or fetch) the states of the segments of the media content item from the segment state table 320. The delivery server system 502 can retrieve the states of the segments using the media content identification and the main user identifier (and/or the second user identification). The delivery server system 502 compiles a playlist with the latest available video segments (e.g., media content item segments). In one embodiment, when each of the of the media content item segments is available, the rendering server system 504 updates the state of the segment in the segment state table 320 to indicate that the segment is available.


The content controller system 124 can transmit to the client device 102 the playlist that includes a first set of media content segments. In one embodiment, the delivery server system 502 transmits the playlist including the first set of media content segments to the client device 102. The first set of media content segments can include the introduction video portion of the media content item. The introduction video portion can be the first few video segments (e.g., 3 video segments) of the media content item. The introduction video portion can be, for example, 6-10 seconds of static introduction video. The set of media content item segments can also be a plurality of frames included in the media content item.


While the first set of media content item segments are being displayed, the delivery server system 502 can also signal to the rendering server system 504 to start rendering the subsequent set of media content item segments (e.g., the second set of media content item segments) which causes the rendering server system 504 to start the rendering. The second set of media content items can be for example the next 3 segments after the introduction video portion. In one embodiment, while the first set of media content item segments are being displayed, the rendering server system 504 renders a second set of media content item segments using the media content identification and the main user identification.


In one embodiment, the rendering server system 504 retrieves (or fetches) and processes metadata from the metadata table 316 into the second set of media content item segments. The metadata can be for example metadata associated with the media content item identifier (e.g., episode metadata) which is needed to render the requested video segments. The metadata can be packaged as one large file per episode such that the rendering server system 504 processes the metadata by cutting the file into a plurality of windows of frames to render the respective segments. Once rendered, the rendering server system 504 stores the second set of media content item segments in the segment table 318. The sets of media content item segments stored in the segment table 318 can be in MPEG-TS (.ts) files format. In one embodiment, the rendering server system 504 can render the second set of media content item segments by rendering a main user avatar based on the main user identification and incorporating the main user avatar into the second set of media content segments.



FIG. 12 and FIG. 13 illustrates examples of different frames of the media content item being displayed on the user interface of the client device 102 according to some embodiments of the present invention. As shown in the frames 1200 and 1300, the avatar associated with the user of the client device 102 can be incorporated into the media content item. For example, the frames 1200 and 1300 can be frames of an animated episode of a television series. The frames 1200 and 1300 can include a recurring character in the series (e.g., an avatar cast member) and also include an avatar that are associated with the user of the client device 102 and/or an avatar associated with the friends or contacts of the user of the client device 102 on the social network system 122. Accordingly, the episodes in the series can feature the user of the client device 102's avatar as well as the user's friend's avatars. By using the main user identification and the second user's identification (e.g., user of a different client device 102 that is a connection), the rendering server system 504 can retrieve the most up-to-date version of the avatars to be incorporated into the media content item segments.


The rendering server system 504 can also update the segment state table 320 by updating the state associated with the second set of media content item segments to indicate that the second set of media content item segments are available to be processed by the delivery server system 502. The next time the client device 102 attempts to refresh the playlist, the delivery server system 502 can pick up the change of the state of the next available set of media content item segments (e.g., the second set of media content item segments) and compile a new playlist. In one embodiment, the rendering server system 504 can update the playlist to include the second set of media content items segments. The delivery server system 502 can transmit the updated playlist to the client device 102.


This process is repeated by the delivery server system 502 and the rendering server system 504 until it is determined that the media content item is completely rendered. For example, once the delivery server system 502 and/or the rendering server system 504 determines that all the sets of media content item segments in the media content item are rendered, the playlist is no longer updated and the client device 102 will have displayed the entire media content item.


Although the following flowcharts can describe the operations as a sequential process, many of the operations can be performed in parallel or concurrently. In addition, the order of the operations may be re-arranged. A process is terminated when its operations are completed. A process may correspond to a method, a procedure, etc. The steps of methods may be performed in whole or in part, may be performed in conjunction with some or all of the steps in other methods, and may be performed by any number of different systems, such as the systems described in FIG. 1, FIG. 5, FIG. 14, FIG. 15, and/or FIG. 16, or any portion thereof, such as a processor included in any of the systems.



FIG. 6 illustrates a flowchart of a process 600 for rendering video on demand, in accordance with one embodiment. In operation 602, the delivery server system 502 of the content controller system 124 receives a request for a media content item from a client device 102. The request can comprise a media content identification and a main user identification. In one embodiment, the media content item is a video that is associated with the media content identification and the main user identification is associated with a user of the client device 102.


In operation 604, the delivery server system 502 transmits a playlist including a first set of media content item segments to the client device 102. The first set of media content item segments can be an introduction video portion of the media content item. In one embodiment, the content controller system 124 causes the first set of media content item segments to be displayed on the client device 102.


While the first set of media content item segments are being displayed on a display of the client device 102, at operation 606, the rendering server system 504 of the content controller system 124 renders a second set of media content item segments using the media content identification and the main user identification. The rendering server system 504 can upload the second set of media content item segments to a storage. For example, the rendering server system 504 can upload and store the second set of media content item segments to a segment table 318. The rendering server system 504 can also set a segment state to indicate that the storage (e.g., segment table 318) includes the second set of media content item segments for consumption by the client device 102. The rendering server system 504 can set the segment state that is stored in the segment state table 320 and that is associated with the second set of media content item segments.


At operation 608, the rendering server system 504 updates the playlist to include the second set of media content item segments. In one embodiment, the delivery server system 502 retrieves the segment states from the segment state table 320 and updates the playlist is based on the segment states.


At operation 610, the delivery server system 502 transmits the updated playlist to the client device 102. In one embodiment, while the first set of media content item segments are being displayed on the client device 102, the delivery server system 502 transmits the updated playlist to the client device 102.



FIG. 7 illustrates a flowchart of a process 700 for rendering of the second set of media content item segments (operation 606) in FIG. 6, in accordance with one embodiment. To render the second set of media content item segments, the rendering server system 504 can render a main user avatar based on the main user identification in operation 702. In operation 704, the rendering server system 504 can incorporate the main user avatar into the second set of media content item segments.


In one embodiment, the rendering server system 504 can also render the second set of media content item segments using a secondary user identification that is associated with a user (e.g., a second user) associated with a different client device 102. The second user can be a connection of the user (e.g., main user) of the client device 102 on the social network system 122. The second user can be, for example, a friend, a family member, or a contact of the main user on the social network system 122. The rendering server system 504 can render a secondary user avatar based on the secondary user identification and incorporate the secondary user avatar into the second set of media content item segments.


In this embodiment, the rendering server system 504 generates media content item segments that include the avatar of the second user to be displayed on the main user's client device 102. Accordingly, the media content item that is being displayed for the main user of the client device 102 who requested the media content item can include at least one of the main user's avatar or his friend, family member or contact's avatar (e.g., second user) as stars of the episode.



FIG. 8 illustrates a flowchart of a process 800 for rendering the video on demand using a plurality of graphics processing units (GPUs), in accordance with one embodiment. To generate media content items for each requesting user on the messaging system 100 involves a significant number of renders and video encoding such that using GPU enabled instances can greatly accelerate the process of serving the media content items to the plurality client device 102.


The delivery server system 502 can receive a request for a media content item from a client device 102 that includes a media content identification and a main user identification. In one embodiment, the media content item is a video associated with the media content identification and the main user identification is associated with a user of the client device 102 (e.g., main user).


The rendering server system 504 in this embodiment comprises a plurality of GPUs to render a set of media content item segments using the media content identification and the main user identification. The set of media content item segments can be a plurality of frames included in the media content item. The plurality of GPUs included in the rendering server system 504 can be a fleet of GPUs that render the media content item segments, respectively.


To render the set of media content item segments, the rendering server system 504 can perform operations 802 to 808. At operation 802, the rendering server system 504 retrieves metadata from a metadata database (e.g., metadata table 316). The metadata that is retrieved is associated with the media content identification.


At operation 804, the rendering server system 504 renders the set of media content item segments using the metadata. At operation 806, the rendering server system 504 generates a main user avatar based on the main user identification. At operation 808, the rendering server system 504 incorporates the main user avatar into the set of media content item segments. The rendering server system 504 then uploads the set of media content item segments to a segment database (e.g., segment table 318) at operation 810. The segment states in the segment state table 320 indicate availability associated with media content item segments. The rendering server system 504 then updates segment states in a segment state database (e.g., segment state table 320) to indicate that the set of media content item segments are available.


The delivery server system 502 can retrieve the segment states from the segment state database (e.g., segment state table 320) and compile and transmit to the client device 102 a playlist including the set of media content item segments.


In one embodiment, when the delivery server system 502 receives the request for the media content item from the client device 102, the delivery server system 502 retrieves the segment states from the segment state database (e.g., segment state table 320) and compiles and transmits to the client device 102 a first set of media content item segments that is based on the segment states. For example, the first set of media content item segments can be the introduction video portion of the media content item. The delivery server system 502 then initializes the rendering of a second set of media content item segments.


In this embodiment, the rendering server system 504 comprising the plurality of GPUs renders a second set of media content item segments using the media content identification and the main user identification. The first set of media content item segments and the second set of media content item segments, respectively, are a plurality of frames included in the media content item. The first set of media content item segments can be sequential to the second set of media content item segments.


For example, the rendering server system 504 can render the second set of media content item segments by retrieving metadata from the metadata database (e.g., metadata table 316) associated with the media content identification, rendering the second set of media content item segments using the metadata, generating a main user avatar based on the main user identification, and incorporating the main user avatar into the second set of media content item segments. The rendering server system 504 can then upload the second set of media content item segments to a segment database (e.g., segment table 318) and update the segment states in the segment state database (e.g., segment state table 320) to indicate that the second set of media content item segments are available.


The delivery server system 502, in this embodiment, can update the playlist to include the second set of media content item segments. The delivery server system 502 can update the playlist by compiling the updated playlist to include the second set of media content item segments and transmit the updated playlist to the client device 102. In one embodiment, the client device 102 receives the second set of media content item segments from the segment database.



FIG. 9 illustrates a flowchart of a process 900 for rendering the video on demand using a plurality of servers, in accordance with one embodiment. To generate media content items for each requesting user on the messaging system 100 involves a significant number of renders and video encoding such that a fleet of servers to generate segments in a media content item, respectively, can greatly accelerate the process of serving the media content items to the plurality client device 102. Each of the servers in the plurality of servers can perform operations simultaneously or sequentially.


In one embodiment, the process 900 starts at operation 902 with the rendering server system 504 that comprises the plurality of servers receiving a plurality of segment render requests. The segment render requests can correspond respectively to segments included in a set of media content item segments. The set of media content item segments are a plurality of frames included in a media content item. The media content item can be a video associated with the media content identification.


The rendering server system 504 renders the segments corresponding to the segment render requests using a media content identification and a main user identification. The main user identification is associated with a user of the client device 102.


In one embodiment, the rendering server system 504 can render the segments by performing operations 904 to 910. At operation 904, the rendering server system 504 retrieves metadata from a metadata database (e.g., metadata table 316) associated with the media content identification. At operation 906, the rendering server system 504 renders the segments using the metadata. At operation 908, the rendering server system 504 generates a main user avatar based on the main user identification. At operation 910, the rendering server system 504 incorporates the main user avatar into the segments.


At operation 912, the rendering server system 504 uploads the segments to a segment database (e.g., segment table 318). At operation 914, the rendering server system 504 updates segment states in a segment state database (e.g., segment state table 320) to indicate that the segments are available.


In one embodiment, the content controller system 124 can include a delivery server system 502 and a rendering server system 504 that comprises a plurality of servers. In one embodiment, the delivery server system 502 receives a request for a media content item from a client device 102. The request includes a media content identification and a main user identification. The delivery server system 502 retrieve segment states from a segment state database (e.g., segment state table 320) that indicates the availability associated with media content item segments. The delivery server system 502 compiles and transmits to the client device 102 a playlist including a first set of media content item segments. The first set of media content item segments is based on the segment states. The delivery server system 502 initializes rendering of a second set of media content item segments by generating a plurality of segment render requests. In one embodiment, the segment render requests correspond respectively to segments included in the second set of media content item segments. The first set of media content item segments can be sequential to the second set of media content item segments.


In one embodiment, the plurality of servers in the rendering server system 504 respectively receive the segment render requests and respectively render the segments corresponding to the segment render requests using the media content identification and the main user identification.


As illustrated in the FIG. 9, each of the plurality of servers can render the segments by retrieving metadata from a metadata database associated with the media content identification (operation 904), render the segments using the metadata (operation 906), generate a main user avatar based on the main user identification (operation 908), and incorporate the main user avatar into the segments (operation 910). The plurality of servers in the rendering server system 504 can then upload the segments to a segment database (operation 912), and update segment states in a segment state database to indicate that the segments are available (operation 914). In one embodiment, the delivery server system 502 is further to retrieve the segment states from the segment state database (e.g., segment state table 320).


In one embodiment, the delivery server system 502 collects the segments and to generate the second set of media content item segments. In one embodiment, the delivery server system 502 updates the playlist to include the second set of media content item segments. The delivery server system 502 can update the playlist by compiling the updated playlist to include the second set of media content item segments and by transmitting the updated playlist to the client device 102.


Given that the media content items are personalized to feature the main user's avatar and/or another user's avatar who is connected to the main user (e.g., user requesting the media content item) on the messaging system 100, a determination needs to be made regarding which avatars are to be incorporated into the media content item. FIG. 10 illustrates a flowchart of the process 1000 for selecting the avatars to be included in a video being generated on demand, in accordance with one embodiment.


The following process 1000 may be performed by any number of different systems, such as the content controller system 124 and/or the client device 102, or any portion thereof, such as a processor included in any of the systems or devices.


At operation 1002 of process 1000, a processor can cause an electronic program guide to be displayed on a display of a first client device 102. The first client device 102 is associated with a first user (e.g., main user) being associated with a first avatar. FIG. 11 illustrates an example of a user interface 1100 being displayed by the client device 102 in accordance with one embodiment. The user interface 1100 can be an example of the electronic program guide that includes selectable items (e.g., texts, images, links or icons) that are associated with a plurality of media content items.


In another embodiment, the user interface that includes the electronic program guide that is in the form of a plurality of selectable tiles. The electronic program guide can be scrolled through vertically or horizontally on the display screen by the user. Each of the selectable tiles can be associated with a different media content item (e.g., an episode of an animated series). In another embodiment, the selectable tiles can also be associated with a plurality of media content items (e.g., an animated series including a plurality of episodes). In this embodiment, by selecting the one of the selectable tiles, the animated series' profile page associated with the selected selectable tile is caused to be displayed. Via the animated series' profile page, the user can access the available episodes.


At operation 1004, the processor detects a selection of a selectable item associated with a media content item by the first user. For example, the processor can detect that the user has selected the selectable item associated with “Golden Girls” media content item by selecting the area around the “Golden Girls” text via a touch screen or display device of the client device 102.


At operation 1006, the processor identifies a second user associated with a second client device 102 that is connected to the first user on a communication platform (e.g., messaging system 100). The second user can be a friend, family member, connection, or contact on the communication platform. In one embodiment, the second user can be another user on the communication platform that is random or unknown to the first user. In one embodiment, the second user can be based on the timing of the last communication with the first user on the messaging system 100. In this embodiment, the processor can identify the second user by identifying a user that most recently transmitted an electronic message to the first client device 102. The processor can also identify the second user by identifying a user that transmitted an electronic message to the first client device 102 within a predetermined period of time. In another embodiment, the first user can also select the second user from a list of users. Alternatively, the second user can select the first user such that the second user identifies himself to the processor.


In some instances, the processor needs to select a second user based on whether the user has created a personalized avatar for the messaging system 100. To ensure that the second user has an avatar that can be used for the rendering of the media content item, the processor can identify a second user by identifying a user that is associated with the first user on the communication platform (e.g., messaging system 100) that is associated with an avatar. The processor can also select a second user based on both the timing of the last communication between the user and the first user as well as whether the user is associated with an avatar. In this embodiment, the processor identifies the second user by determining whether the user that transmitted the electronic message to the first client device 102 within the predetermined period of time is associated with an avatar.


In one embodiment, if the processor determines that no user that is associated with the first user on the communication platform (e.g., messaging system 100) is associated with an avatar, the processor selects the generic second user and indicates that a generic avatar should be used as the second avatar. In another embodiment, the processor can select a second user that is a contact of the first user on the messaging system 100 but assigns the generic avatar to that contact.


The processor can, at operation 1008, retrieve a main user identification associated with the first user and a secondary user identification associated with the second user. The second user is associated with a second avatar.


At operation 1010, the processor generates a request for the media content item. The request can include a media content identification associated with the media content item, the main user identification, and the secondary user identification.


At operation 1012, the processor receives a playlist associated with the media content item. The playlist includes a plurality of media content item segments that include the first avatar and the second avatar. FIG. 12 and FIG. 13 illustrate examples of frames (e.g., frame 1200 and frame 1300) of the media content item being displayed by the client device 102 that can include the first avatar and the second avatar, in accordance with one embodiment.


In one embodiment, the request for the media content item can be received by the processor of the content controller system 124 (e.g., delivery server system 502) and the processor of the content controller system 124 (e.g., rendering server system 504) renders the media content item segments using the media content identification, the main user identification, and the secondary user identification. The processor of the content controller system 124 can render the media content item segments by rendering the first avatar based on the main user identification, rendering the second avatar based on the secondary user identification, and incorporating the first avatar and the second avatar into the media content item segments.


To further optimize the on demand rendering of the media content items, the content controller system 124 can also include a puppet animation system and an avatar matching system. In one embodiment, the puppet animation system and the avatar matching system can be included in the rendering server system 504.


The puppet animation system receives an animation input from a client device 102 of a content creator. The content creator is the author of the media content items (e.g., the animator). The animation input can include the software, code, or art that is used to generate an animation file used to create the media content item. The puppet animation system generates an animation file including metadata based on the animation input. The animation file is associated with a media content identification. Accordingly, the animation file can include placeholder puppets that are animated based on the animation input. These placeholder puppets can be swapped for the avatar of the main user (first avatar) and/or the avatar of the second user (second avatar).


The avatar matching system can receive the animation file and replace the placeholder puppets with avatars.


The rendering server system 504 renders a set of media content item segments using the media content identification and a main user identification. In one embodiment, the rendering server system 504 renders the set of media content item segments by retrieving the metadata from a metadata database associated with the media content identification, rendering the set of media content item segments using the metadata, generating a main user avatar based on the main user identification, and incorporating the main user avatar into the set of media content item segments. The rendering server system 504 can also upload the set of media content item segments to a segment database and update segment states in the segment state database to indicate that the set of media content item segments are available.



FIG. 14 is a block diagram 1400 illustrating a software architecture 1404, which can be installed on any one or more of the devices described herein. The software architecture 1404 is supported by hardware such as a machine 1402 that includes processors 1420, memory 1426, and I/O components 1438. In this example, the software architecture 1404 can be conceptualized as a stack of layers, where each layer provides a particular functionality. The software architecture 1404 includes layers such as an operating system 1412, libraries 1410, frameworks 1408, and applications 1406. Operationally, the applications 1406 invoke API calls 1450 through the software stack and receive messages 1452 in response to the API calls 1450.


The operating system 1412 manages hardware resources and provides common services. The operating system 1412 includes, for example, a kernel 1414, services 1416, and drivers 1422. The kernel 1414 acts as an abstraction layer between the hardware and the other software layers. For example, the kernel 1414 provides memory management, processor management (e.g., scheduling), component management, networking, and security settings, among other functionality. The services 1416 can provide other common services for the other software layers. The drivers 1422 are responsible for controlling or interfacing with the underlying hardware. For instance, the drivers 1422 can include display drivers, camera drivers, BLUETOOTH® or BLUETOOTH® Low Energy drivers, flash memory drivers, serial communication drivers (e.g., Universal Serial Bus (USB) drivers), WI-FI® drivers, audio drivers, power management drivers, and so forth.


The libraries 1410 provide a low-level common infrastructure used by the applications 1406. The libraries 1410 can include system libraries 1418 (e.g., C standard library) that provide functions such as memory allocation functions, string manipulation functions, mathematic functions, and the like. In addition, the libraries 1410 can include API libraries 1424 such as media libraries (e.g., libraries to support presentation and manipulation of various media formats such as Moving Picture Experts Group-4 (MPEG4), Advanced Video Coding (H.264 or AVC), Moving Picture Experts Group Layer-3 (MP3), Advanced Audio Coding (AAC), Adaptive Multi-Rate (AMR) audio codec, Scaleable Vector Graphics (SVG), Joint Photographic Experts Group (JPEG or JPG), or Portable Network Graphics (PNG)), graphics libraries (e.g., an OpenGL framework used to render in two dimensions (2D) and three dimensions (3D) in a graphic content on a display), database libraries (e.g., SQLite to provide various relational database functions), web libraries (e.g., WebKit to provide web browsing functionality), Compute Unified Device Architecture (CUDA™), and the like. The libraries 1410 can also include a wide variety of other libraries 1428 to provide many other APIs to the applications 1406.


The frameworks 1408 provide a high-level common infrastructure that is used by the applications 1406. For example, the frameworks 1408 provide various graphical user interface (GUI) functions, high-level resource management, and high-level location services. The frameworks 1408 can provide a broad spectrum of other APIs that can be used by the applications 1406, some of which may be specific to a particular operating system or platform.


In an example embodiment, the applications 1406 may include a home application 1436, a contacts application 1430, a browser application 1432, a book reader application 1434, a location application 1442, a media application 1444, a messaging application 1446, a game application 1448, and a broad assortment of other applications such as third-party applications 1440. The applications 1406 are programs that execute functions defined in the programs. Various programming languages can be employed to create one or more of the applications 1406, structured in a variety of manners, such as object-oriented programming languages (e.g., Objective-C, Java, or C++) or procedural programming languages (e.g., C or assembly language). In a specific example, the third-party applications 1440 (e.g., applications developed using the ANDROID™ or IOS™ software development kit (SDK) by an entity other than the vendor of the particular platform) may be mobile software running on a mobile operating system such as IOS™, ANDROID™, WINDOWS® Phone, or another mobile operating system. In this example, the third-party applications 1440 can invoke the API calls 1450 provided by the operating system 1412 to facilitate functionality described herein.



FIG. 15 is a diagrammatic representation of a machine 1500 within which instructions 1508 (e.g., software, a program, an application, an applet, an app, or other executable code) for causing the machine 1500 to perform any one or more of the methodologies discussed herein may be executed. For example, the instructions 1508 may cause the machine 1500 to execute any one or more of the methods described herein. The instructions 1508 transform the general, non-programmed machine 1500 into a particular machine 1500 programmed to carry out the described and illustrated functions in the manner described. The machine 1500 may operate as a standalone device or may be coupled (e.g., networked) to other machines. In a networked deployment, the machine 1500 may operate in the capacity of a server machine or a client machine in a server-client network environment, or as a peer machine in a peer-to-peer (or distributed) network environment. The machine 1500 may comprise, but not be limited to, a server computer, a client computer, a personal computer (PC), a tablet computer, a laptop computer, a netbook, a set-top box (STB), a PDA, an entertainment media system, a cellular telephone, a smart phone, a mobile device, a wearable device (e.g., a smart watch), a smart home device (e.g., a smart appliance), other smart devices, a web appliance, a network router, a network switch, a network bridge, or any machine capable of executing the instructions 1508, sequentially or otherwise, that specify actions to be taken by the machine 1500. Further, while only a single machine 1500 is illustrated, the term “machine” shall also be taken to include a collection of machines that individually or jointly execute the instructions 1508 to perform any one or more of the methodologies discussed herein.


The machine 1500 may include processors 1502, memory 1504, and I/O components 1542, which may be configured to communicate with each other via a bus 1544. In an example embodiment, the processors 1502 (e.g., a Central Processing Unit (CPU), a Reduced Instruction Set Computing (RISC) processor, a Complex Instruction Set Computing (CISC) processor, a Graphics Processing Unit (GPU), a Digital Signal Processor (DSP), an ASIC, a Radio-Frequency Integrated Circuit (RFIC), another processor, or any suitable combination thereof) may include, for example, a processor 1506 and a processor 1510 that execute the instructions 1508. The term “processor” is intended to include multi-core processors that may comprise two or more independent processors (sometimes referred to as “cores”) that may execute instructions contemporaneously. Although FIG. 15 shows multiple processors 1502, the machine 1500 may include a single processor with a single core, a single processor with multiple cores (e.g., a multi-core processor), multiple processors with a single core, multiple processors with multiples cores, or any combination thereof.


The memory 1504 includes a main memory 1512, a static memory 1514, and a storage unit 1516, both accessible to the processors 1502 via the bus 1544. The main memory 1504, the static memory 1514, and storage unit 1516 store the instructions 1508 embodying any one or more of the methodologies or functions described herein. The instructions 1508 may also reside, completely or partially, within the main memory 1512, within the static memory 1514, within machine-readable medium 1518 within the storage unit 1516, within at least one of the processors 1502 (e.g., within the processor's cache memory), or any suitable combination thereof, during execution thereof by the machine 1500.


The I/O components 1542 may include a wide variety of components to receive input, provide output, produce output, transmit information, exchange information, capture measurements, and so on. The specific I/O components 1542 that are included in a particular machine will depend on the type of machine. For example, portable machines such as mobile phones may include a touch input device or other such input mechanisms, while a headless server machine will likely not include such a touch input device. It will be appreciated that the I/O components 1542 may include many other components that are not shown in FIG. 15. In various example embodiments, the I/O components 1542 may include output components 1528 and input components 1530. The output components 1528 may include visual components (e.g., a display such as a plasma display panel (PDP), a light emitting diode (LED) display, a liquid crystal display (LCD), a projector, or a cathode ray tube (CRT)), acoustic components (e.g., speakers), haptic components (e.g., a vibratory motor, resistance mechanisms), other signal generators, and so forth. The input components 1530 may include alphanumeric input components (e.g., a keyboard, a touch screen configured to receive alphanumeric input, a photo-optical keyboard, or other alphanumeric input components), point-based input components (e.g., a mouse, a touchpad, a trackball, a joystick, a motion sensor, or another pointing instrument), tactile input components (e.g., a physical button, a touch screen that provides location and/or force of touches or touch gestures, or other tactile input components), audio input components (e.g., a microphone), and the like.


In further example embodiments, the I/O components 1542 may include biometric components 1532, motion components 1534, environmental components 1536, or position components 1538, among a wide array of other components. For example, the biometric components 1532 include components to detect expressions (e.g., hand expressions, facial expressions, vocal expressions, body gestures, or eye tracking), measure biosignals (e.g., blood pressure, heart rate, body temperature, perspiration, or brain waves), identify a person (e.g., voice identification, retinal identification, facial identification, fingerprint identification, or electroencephalogram-based identification), and the like. The motion components 1534 include acceleration sensor components (e.g., accelerometer), gravitation sensor components, rotation sensor components (e.g., gyroscope), and so forth. The environmental components 1536 include, for example, illumination sensor components (e.g., photometer), temperature sensor components (e.g., one or more thermometers that detect ambient temperature), humidity sensor components, pressure sensor components (e.g., barometer), acoustic sensor components (e.g., one or more microphones that detect background noise), proximity sensor components (e.g., infrared sensors that detect nearby objects), gas sensors (e.g., gas detection sensors to detection concentrations of hazardous gases for safety or to measure pollutants in the atmosphere), or other components that may provide indications, measurements, or signals corresponding to a surrounding physical environment. The position components 1538 include location sensor components (e.g., a GPS receiver component), altitude sensor components (e.g., altimeters or barometers that detect air pressure from which altitude may be derived), orientation sensor components (e.g., magnetometers), and the like.


Communication may be implemented using a wide variety of technologies. The I/O components 1542 further include communication components 1540 operable to couple the machine 1500 to a network 1520 or devices 1522 via a coupling 1524 and a coupling 1526, respectively. For example, the communication components 1540 may include a network interface component or another suitable device to interface with the network 1520. In further examples, the communication components 1540 may include wired communication components, wireless communication components, cellular communication components, Near Field Communication (NFC) components, Bluetooth® components (e.g., Bluetooth® Low Energy), Wi-Fi® components, and other communication components to provide communication via other modalities. The devices 1522 may be another machine or any of a wide variety of peripheral devices (e.g., a peripheral device coupled via a USB).


Moreover, the communication components 1540 may detect identifiers or include components operable to detect identifiers. For example, the communication components 1540 may include Radio Frequency Identification (RFID) tag reader components, NFC smart tag detection components, optical reader components (e.g., an optical sensor to detect one-dimensional bar codes such as Universal Product Code (UPC) bar code, multi-dimensional bar codes such as Quick Response (QR) code, Aztec code, Data Matrix, Dataglyph, MaxiCode, PDF417, Ultra Code, UCC RSS-2D bar code, and other optical codes), or acoustic detection components (e.g., microphones to identify tagged audio signals). In addition, a variety of information may be derived via the communication components 1540, such as location via Internet Protocol (IP) geolocation, location via Wi-Fi® signal triangulation, location via detecting an NFC beacon signal that may indicate a particular location, and so forth.


The various memories (e.g., memory 1504, main memory 1512, static memory 1514, and/or memory of the processors 1502) and/or storage unit 1516 may store one or more sets of instructions and data structures (e.g., software) embodying or used by any one or more of the methodologies or functions described herein. These instructions (e.g., the instructions 1508), when executed by processors 1502, cause various operations to implement the disclosed embodiments.


The instructions 1508 may be transmitted or received over the network 1520, using a transmission medium, via a network interface device (e.g., a network interface component included in the communication components 1540) and using any one of a number of well-known transfer protocols (e.g., hypertext transfer protocol (HTTP)). Similarly, the instructions 1508 may be transmitted or received using a transmission medium via the coupling 1526 (e.g., a peer-to-peer coupling) to the devices 1522.


Turning now to FIG. 16, there is shown a diagrammatic representation of a processing environment 1600, which includes the processor 1606 and a processor 1602 (e.g., a GPU, CPU or combination thereof).


The processor 1602 is shown to be coupled to a power source 1604, and to include (either permanently configured or temporarily instantiated) modules, namely a Delivery Component 1608 and a Rendering Component 1610. The Delivery Component 1608 operationally performs the operations of the delivery server system 502 such as processing the requests and delivery of the media content item, and the Rendering Component 1610 operationally performs the operations of the rendering server system 504 such as generating the segments of the media content items included in the playlist.


Where a phrase similar to “at least one of A, B, or C,” “at least one of A, B, and C,” “one or more A, B, or C,” or “one or more of A, B, and C” is used, it is intended that the phrase be interpreted to mean that A alone may be present in an embodiment, B alone may be present in an embodiment, C alone may be present in an embodiment, or that any combination of the elements A, B and C may be present in a single embodiment; for example, A and B, A and C, B and C, or A and B and C.


Changes and modifications may be made to the disclosed embodiments without departing from the scope of the present disclosure. These and other changes or modifications are intended to be included within the scope of the present disclosure, as expressed in the following claims.

Claims
  • 1. A system comprising: a processor; anda memory having instructions stored thereon, when executed by the processor, causes the system to perform operations comprising:receiving a request for a media content item from a client device;compiling and transmitting to the client device a playlist including a first set of media content item segments based on segment states from a segment state database;causing segments corresponding to a plurality of segment render requests to be rendered using the request for the media content item, wherein the segment render requests correspond to segments included in a second set of media content item segments; andupdating the segment states in the segment state database to indicate that the segments are available.
  • 2. The system of claim 1, wherein the media content item is a video associated with a media content identification included in the request.
  • 3. The system of claim 2, wherein the segments included in the second set of media content item segments are a plurality of frames included in the media content item.
  • 4. The system of claim 1, wherein the request includes a main user identification that is associated with a user of the client device.
  • 5. The system of claim 1, wherein the operations further comprising: retrieving the segment states from the segment state database.
  • 6. The system of claim 1, wherein rendering the segments further comprises: incorporating a main user avatar into the segments, wherein the main user avatar is based on a main user identification included in the request.
  • 7. The system of claim 1, wherein the operations further comprising: collecting the segments; andgenerating the second set of media content item segments.
  • 8. The system of claim 7, wherein the operations further comprising: updating the playlist to include the second set of media content item segments.
  • 9. The system of claim 8, wherein updating the playlist further comprises: compiling the updated playlist to include the second set of media content item segments; andtransmitting the updated playlist to the client device.
  • 10. A method comprising: receiving a request for a media content item from a client device;compiling and transmitting to the client device a playlist including a first set of media content item segments based on segment states from a segment state database;rendering segments corresponding to a plurality of segment render requests using the request for the media content item, wherein the segment render requests correspond to segments included in a second set of media content item segments; andupdating segment states in the segment state database to indicate that the segments are available.
  • 11. The method of claim 10, wherein the media content item is a video associated with a media content identification included in the request.
  • 12. The method of claim 10, wherein the first set of media content item segments and the second set of media content item segments, respectively, are a plurality of frames included in the media content item.
  • 13. The method of claim 12, further comprising: updating the playlist to include the second set of media content item segments.
  • 14. The method of claim 13, wherein updating the playlist further comprises: compiling the updated playlist to include the second set of media content item segments; andtransmitting the updated playlist to the client device.
  • 15. The method of claim 10, wherein the first set of media content item segments is sequential to the second set of media content item segments.
  • 16. The method of claim 10, wherein the request includes a main user identification that is associated with a user of the client device.
  • 17. The method of claim 10, further comprising: retrieving the segment states from the segment state database.
  • 18. The method of claim 10, wherein rendering the segments further comprises: incorporating a main user avatar into the segments, wherein the main user avatar is based on a main user identification included in the request.
  • 19. The method of claim 10, further comprising: collecting the segments and generating the second set of media content item segments; andencoding the second set of media content item segments into a video.
  • 20. A rendering server system comprising: a processor; anda memory component having instructions stored thereon, when executed by the processor, causes the rendering server system to perform operations comprising:receiving a request for a media content item from a client device;compiling and transmitting to the client device a playlist including a first set of media content item segments based on segment states from a segment state database;generating a plurality of segment render requests, wherein the segment render requests correspond respectively to segments included in a second set of media content item segments;causing the segments corresponding to the segment render requests to be rendered using the request for the media content item; andupdating segment states in the segment state database to indicate that the segments are available.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 17/583,784, filed Jan. 25, 2022, which application is a continuation of U.S. patent application Ser. No. 17/327,050, filed May 21, 2021, now issued as U.S. Pat. No. 11,263,254, which application is a continuation of U.S. patent application Ser. No. 16/777,799, filed Jan. 30, 2020, now issued as U.S. Pat. No. 11,036,781, which are incorporated by reference herein in their entirety. This application is also related to U.S. patent application Ser. No. 16/777,817, filed Jan. 30, 2020; U.S. patent application Ser. No. 16/777,793, filed Jan. 30, 2020; U.S. patent application Ser. No. 16/777,798, filed Jan. 30, 2020; and U.S. patent application Ser. No. 62/968,111, filed Jan. 30, 2020.

US Referenced Citations (297)
Number Name Date Kind
5880731 Liles et al. Mar 1999 A
6023270 Brush, II et al. Feb 2000 A
6223165 Lauffer Apr 2001 B1
6754904 Cooper et al. Jun 2004 B1
6772195 Hatlelid et al. Aug 2004 B1
6842779 Nishizawa Jan 2005 B1
6889325 Sipman et al. May 2005 B1
7248270 Boylan Jul 2007 B1
7342587 Danzig et al. Mar 2008 B2
7468729 Levinson Dec 2008 B1
7636755 Blattner et al. Dec 2009 B2
7639251 Gu et al. Dec 2009 B2
7775885 Van Luchene et al. Aug 2010 B2
7859551 Bulman et al. Dec 2010 B2
7885931 Seo et al. Feb 2011 B2
7925703 Dinan et al. Apr 2011 B2
8088044 Tchao et al. Jan 2012 B2
8095878 Bates et al. Jan 2012 B2
8108774 Finn et al. Jan 2012 B2
8117281 Robinson et al. Feb 2012 B2
8130219 Fleury et al. Mar 2012 B2
8146005 Jones et al. Mar 2012 B2
8151191 Nicol Apr 2012 B2
8190435 Li-chun et al. May 2012 B2
8253745 Hahn et al. Aug 2012 B1
8290423 Wang et al. Oct 2012 B2
8384719 Reville et al. Feb 2013 B2
RE44054 Kim Mar 2013 E
8396708 Park et al. Mar 2013 B2
8425322 Gillo et al. Apr 2013 B2
8458601 Castelli et al. Jun 2013 B2
8462198 Lin et al. Jun 2013 B2
8484158 Deluca et al. Jul 2013 B2
8495503 Brown et al. Jul 2013 B2
8495505 Smith et al. Jul 2013 B2
8504926 Wolf Aug 2013 B2
8537166 Boucher et al. Sep 2013 B1
8559980 Pujol Oct 2013 B2
8564621 Branson et al. Oct 2013 B2
8564710 Nonaka et al. Oct 2013 B2
8581911 Becker et al. Nov 2013 B2
8597121 del Valle Dec 2013 B2
8601051 Wang Dec 2013 B2
8601379 Marks et al. Dec 2013 B2
8632408 Gillo et al. Jan 2014 B2
8648865 Dawson et al. Feb 2014 B2
8650603 Doets et al. Feb 2014 B2
8659548 Hildreth Feb 2014 B2
8683354 Khandelwal et al. Mar 2014 B2
8688600 Barton et al. Apr 2014 B2
8692830 Nelson et al. Apr 2014 B2
8725829 Wang et al. May 2014 B2
8810513 Ptucha et al. Aug 2014 B2
8811885 Wang Aug 2014 B2
8812171 Filev et al. Aug 2014 B2
8832201 Wall Sep 2014 B2
8832552 Arrasvuori et al. Sep 2014 B2
8839327 Amento et al. Sep 2014 B2
8890926 Tandon et al. Nov 2014 B2
8892999 Nims et al. Nov 2014 B2
8924250 Bates et al. Dec 2014 B2
8963926 Brown et al. Feb 2015 B2
8989786 Feghali Mar 2015 B2
8990842 Rowley et al. Mar 2015 B2
9086776 Ye et al. Jul 2015 B2
9105014 Collet et al. Aug 2015 B2
9241184 Weerasinghe Jan 2016 B2
9256860 Herger et al. Feb 2016 B2
9298257 Hwang et al. Mar 2016 B2
9314692 Konoplev et al. Apr 2016 B2
9330483 Du et al. May 2016 B2
9357174 Li et al. May 2016 B2
9361510 Yao et al. Jun 2016 B2
9378576 Bouaziz et al. Jun 2016 B2
9402057 Kaytaz et al. Jul 2016 B2
9412192 Mandel et al. Aug 2016 B2
9460541 Li et al. Oct 2016 B2
9489760 Li et al. Nov 2016 B2
9503845 Vincent Nov 2016 B2
9508197 Quinn et al. Nov 2016 B2
9544257 Ogundokun et al. Jan 2017 B2
9576400 Van Os et al. Feb 2017 B2
9589357 Li et al. Mar 2017 B2
9592449 Barbalet et al. Mar 2017 B2
9648376 Chang et al. May 2017 B2
9697635 Quinn et al. Jul 2017 B2
9706040 Kadirvel et al. Jul 2017 B2
9744466 Fujioka Aug 2017 B2
9746990 Anderson et al. Aug 2017 B2
9749270 Collet et al. Aug 2017 B2
9792714 Li et al. Oct 2017 B2
9839844 Dunstan et al. Dec 2017 B2
9883838 Kaleal, III et al. Feb 2018 B2
9898849 Du et al. Feb 2018 B2
9911073 Spiegel et al. Mar 2018 B1
9936165 Li et al. Apr 2018 B2
9959037 Chaudhri et al. May 2018 B2
9980100 Charlton et al. May 2018 B1
9990373 Fortkort Jun 2018 B2
10039988 Lobb et al. Aug 2018 B2
10097492 Tsuda et al. Oct 2018 B2
10114689 Yang Oct 2018 B1
10116598 Tucker et al. Oct 2018 B2
10155168 Blackstock et al. Dec 2018 B2
10242477 Charlton et al. Mar 2019 B1
10242503 McPhee et al. Mar 2019 B2
10262250 Spiegel et al. Apr 2019 B1
10282425 Shaw May 2019 B2
10325416 Scapel et al. Jun 2019 B1
10362219 Wilson et al. Jul 2019 B2
10454857 Blackstock et al. Oct 2019 B1
10475225 Park et al. Nov 2019 B2
10504266 Blattner et al. Dec 2019 B2
10573048 Ni et al. Feb 2020 B2
10657701 Osman et al. May 2020 B2
10885693 Saragih et al. Jan 2021 B1
11036781 Baril et al. Jun 2021 B1
11263254 Baril et al. Mar 2022 B2
11284144 Kotsopoulos et al. Mar 2022 B2
11356720 Baril et al. Jun 2022 B2
11651022 Baril et al. May 2023 B2
11651539 Kotsopoulos et al. May 2023 B2
11729441 Baril et al. Aug 2023 B2
11831937 Kotsopoulos et al. Nov 2023 B2
20020067362 Agostino Nocera et al. Jun 2002 A1
20020072982 Barton et al. Jun 2002 A1
20020083060 Wang et al. Jun 2002 A1
20020169644 Greene Nov 2002 A1
20020184634 Cooper Dec 2002 A1
20040199387 Wang et al. Oct 2004 A1
20050028195 Feinleib et al. Feb 2005 A1
20050091274 Stanford Apr 2005 A1
20050162419 Kim et al. Jul 2005 A1
20050192863 Mohan Sep 2005 A1
20050206610 Cordelli Sep 2005 A1
20050209917 Anderson et al. Sep 2005 A1
20060094500 Dyke et al. May 2006 A1
20060195359 Robinson et al. Aug 2006 A1
20060224452 Ng Oct 2006 A1
20060224546 Ballin et al. Oct 2006 A1
20060256133 Rosenberg Nov 2006 A1
20060294465 Ronen et al. Dec 2006 A1
20070113181 Blattner et al. May 2007 A1
20070124756 Covell et al. May 2007 A1
20070130580 Covell et al. Jun 2007 A1
20070143778 Covell et al. Jun 2007 A1
20070168863 Blattner et al. Jul 2007 A1
20070176921 Iwasaki et al. Aug 2007 A1
20070179850 Ganjon et al. Aug 2007 A1
20070192784 Postrel Aug 2007 A1
20070214049 Postrel Sep 2007 A1
20080052062 Stanford Feb 2008 A1
20080158222 Li et al. Jul 2008 A1
20090007200 Amento et al. Jan 2009 A1
20090016617 Bregman-amitai et al. Jan 2009 A1
20090044113 Jones et al. Feb 2009 A1
20090046097 Franklin Feb 2009 A1
20090055484 Vuong et al. Feb 2009 A1
20090070688 Gyorfi et al. Mar 2009 A1
20090099925 Mehta et al. Apr 2009 A1
20090106672 Burstrom Apr 2009 A1
20090158170 Narayanan et al. Jun 2009 A1
20090177976 Bokor et al. Jul 2009 A1
20090198701 Haileselassie et al. Aug 2009 A1
20090202114 Morin et al. Aug 2009 A1
20090265604 Howard et al. Oct 2009 A1
20090271820 Choi et al. Oct 2009 A1
20090293079 Mckee et al. Nov 2009 A1
20090300525 Jolliff et al. Dec 2009 A1
20090303984 Clark et al. Dec 2009 A1
20090313670 Takao Dec 2009 A1
20100011422 Mason et al. Jan 2010 A1
20100023885 Reville et al. Jan 2010 A1
20100030746 Steelberg et al. Feb 2010 A1
20100034466 Jing et al. Feb 2010 A1
20100070858 Malik et al. Mar 2010 A1
20100083320 Khandelwal et al. Apr 2010 A1
20100114713 Anderson May 2010 A1
20100115426 Liu et al. May 2010 A1
20100162149 Sheleheda et al. Jun 2010 A1
20100203968 Gill et al. Aug 2010 A1
20100227682 Reville et al. Sep 2010 A1
20100306655 Mattingly et al. Dec 2010 A1
20110093780 Dunn Apr 2011 A1
20110115798 Nayar et al. May 2011 A1
20110131593 Scott et al. Jun 2011 A1
20110145327 Stewart Jun 2011 A1
20110148864 Lee et al. Jun 2011 A1
20110239136 Goldman et al. Sep 2011 A1
20110273455 Powar et al. Nov 2011 A1
20120011545 Doets et al. Jan 2012 A1
20120013621 Ospina Jan 2012 A1
20120016926 Toga et al. Jan 2012 A1
20120076310 Debusk et al. Mar 2012 A1
20120113106 Choi et al. May 2012 A1
20120117596 Mountain et al. May 2012 A1
20120124458 Cruzada May 2012 A1
20120124608 Postrel May 2012 A1
20120130717 Xu et al. May 2012 A1
20120190456 Rogers Jul 2012 A1
20120191231 Wang Jul 2012 A1
20120221131 Wang et al. Aug 2012 A1
20120295560 Mufti Nov 2012 A1
20120297400 Hill et al. Nov 2012 A1
20120316969 Metcalf, III Dec 2012 A1
20120317240 Wang Dec 2012 A1
20130010204 Wang Jan 2013 A1
20130029762 Klappert Jan 2013 A1
20130031579 Klappert Jan 2013 A1
20130042262 Riethmueller Feb 2013 A1
20130044051 Jeong Feb 2013 A1
20130067512 Dion et al. Mar 2013 A1
20130073366 Heath Mar 2013 A1
20130073377 Heath Mar 2013 A1
20130080242 Alhadeff et al. Mar 2013 A1
20130080262 Scott et al. Mar 2013 A1
20130085828 Schuster Apr 2013 A1
20130103760 Golding et al. Apr 2013 A1
20130111519 Rice et al. May 2013 A1
20130124073 Ren May 2013 A1
20130201187 Tong et al. Aug 2013 A1
20130242031 Carpenter et al. Sep 2013 A1
20130249948 Reitan Sep 2013 A1
20130257877 Davis Oct 2013 A1
20140043329 Wang et al. Feb 2014 A1
20140055554 Du et al. Feb 2014 A1
20140078148 Diard et al. Mar 2014 A1
20140125678 Wang et al. May 2014 A1
20140129343 Finster et al. May 2014 A1
20140137139 Jones et al. May 2014 A1
20140214532 Barton et al. Jul 2014 A1
20140278845 Teiser et al. Sep 2014 A1
20140306884 Sano et al. Oct 2014 A1
20150032798 van Bemmel Jan 2015 A1
20150066712 Altieri Mar 2015 A1
20150071613 Dharssi et al. Mar 2015 A1
20150128180 Mountain et al. May 2015 A1
20150206349 Rosenthal et al. Jul 2015 A1
20150229979 Wood et al. Aug 2015 A1
20150237389 Grouf et al. Aug 2015 A1
20150244754 Beckham, Jr. Aug 2015 A1
20150264416 Heinz, II et al. Sep 2015 A1
20160014482 Chen Jan 2016 A1
20160117147 Zambetti et al. Apr 2016 A1
20160127793 Grouf et al. May 2016 A1
20160134840 Mcculloch May 2016 A1
20160134938 Miyazaki et al. May 2016 A1
20160165287 Wood et al. Jun 2016 A1
20160188709 Doerring Jun 2016 A1
20160234149 Tsuda et al. Aug 2016 A1
20160323650 Grouf et al. Nov 2016 A1
20170078727 Wood et al. Mar 2017 A1
20170080346 Abbas Mar 2017 A1
20170087473 Siegel et al. Mar 2017 A1
20170113140 Blackstock et al. Apr 2017 A1
20170118145 Aittoniemi et al. Apr 2017 A1
20170199855 Fishbeck Jul 2017 A1
20170220314 Kaneko et al. Aug 2017 A1
20170235848 Van Deusen et al. Aug 2017 A1
20170256086 Park et al. Sep 2017 A1
20170272380 Rao Sep 2017 A1
20170310934 Du et al. Oct 2017 A1
20170312634 Ledoux et al. Nov 2017 A1
20170318065 Davies et al. Nov 2017 A1
20170324995 Grouf et al. Nov 2017 A1
20170337841 Styles Nov 2017 A1
20180047200 O'hara et al. Feb 2018 A1
20180113587 Allen et al. Apr 2018 A1
20180115503 Baldwin et al. Apr 2018 A1
20180197343 Hare Jul 2018 A1
20180262783 Yang et al. Sep 2018 A1
20180262805 Grouf et al. Sep 2018 A1
20180315076 Andreou Nov 2018 A1
20180315133 Brody et al. Nov 2018 A1
20180315134 Amitay et al. Nov 2018 A1
20180350144 Rathod Dec 2018 A1
20180374145 Koon et al. Dec 2018 A1
20190001223 Blackstock et al. Jan 2019 A1
20190057616 Cohen et al. Feb 2019 A1
20190188920 Mcphee et al. Jun 2019 A1
20190250795 Weldemariam et al. Aug 2019 A1
20190286847 Kato Sep 2019 A1
20190289354 Garcia et al. Sep 2019 A1
20190320141 Almheiri Oct 2019 A1
20190377345 Bachrach et al. Dec 2019 A1
20200104020 Grantham et al. Apr 2020 A1
20210011939 Sardar et al. Jan 2021 A1
20210125393 Sumner et al. Apr 2021 A1
20210241512 Kotsopoulos et al. Aug 2021 A1
20210243482 Baril et al. Aug 2021 A1
20210243487 Kotsopoulos et al. Aug 2021 A1
20210243503 Kotsopoulos et al. Aug 2021 A1
20210342384 Baril et al. Nov 2021 A1
20220253475 Baril et al. Aug 2022 A1
20220368960 Baril et al. Nov 2022 A1
20230088471 Kotsopoulos et al. Mar 2023 A1
20230162423 Kotsopoulos et al. May 2023 A1
Foreign Referenced Citations (51)
Number Date Country
1980332 Jun 2007 CN
102450031 May 2012 CN
104170374 Nov 2014 CN
104205171 Dec 2014 CN
107645655 Jan 2018 CN
108475280 Aug 2018 CN
108476329 Aug 2018 CN
108876877 Nov 2018 CN
106294828 May 2019 CN
109863527 Jun 2019 CN
109863532 Jun 2019 CN
110168478 Aug 2019 CN
110168586 Aug 2019 CN
110769305 May 2021 CN
115004714 Sep 2022 CN
115004714 Sep 2022 CN
115039401 Sep 2022 CN
115039401 Sep 2022 CN
115175748 Oct 2022 CN
115175748 Oct 2022 CN
115039401 Jan 2024 CN
2184092 May 2010 EP
3404659 Nov 2018 EP
2591618 May 2019 EP
2001230801 Aug 2001 JP
5497931 Mar 2014 JP
20070014408 Feb 2007 KR
101445263 Sep 2014 KR
20140129171 Nov 2014 KR
20180081783 Jul 2018 KR
WO-2003094072 Nov 2003 WO
WO-2004095308 Nov 2004 WO
WO-2006107182 Oct 2006 WO
WO-2007134402 Nov 2007 WO
WO-2012139276 Oct 2012 WO
WO-2013027893 Feb 2013 WO
WO-2013152454 Oct 2013 WO
WO-2013166588 Nov 2013 WO
WO-2014031899 Feb 2014 WO
WO-2014194439 Dec 2014 WO
WO-2016090605 Jun 2016 WO
WO-2018081013 May 2018 WO
WO-2018102562 Jun 2018 WO
WO-2018129531 Jul 2018 WO
WO-2019089613 May 2019 WO
2021154998 Aug 2021 WO
2021155249 Aug 2021 WO
2021155394 Aug 2021 WO
WO-2021154998 Aug 2021 WO
WO-2021155249 Aug 2021 WO
WO-2021155394 Aug 2021 WO
Non-Patent Literature Citations (89)
Entry
“U.S. Appl. No. 17/163,053, Corrected Notice of Allowability mailed Dec. 7, 2022”, 2 pgs.
“U.S. Appl. No. 17/653,389, Preliminary Amendment filed Dec. 7, 2022”, 6 pgs.
“U.S. Appl. No. 17/831,075, Non Final Office Action mailed Dec. 8, 2022”, 7 pgs.
“U.S. Appl. No. 16/777,798, Response filed Jan. 20, 2023 to Final Office Action mailed Oct. 28, 2022”, 13 pgs.
“U.S. Appl. No. 17/163,053, Corrected Notice of Allowability mailed Apr. 3, 2023”, 2 pgs.
“Chinese Application Serial No. 202180012043.X, Voluntary Amendment Filed Jan. 31, 2023”, w/ English Claims, 16 pgs.
“U.S. Appl. No. 17/653,389, Response filed Jun. 14, 2023 to Non Final Office Action mailed Mar. 14, 2023”, 9 pgs.
“U.S. Appl. No. 16/777,798, Non Final Office Action malled Jun. 16, 2023”, 23 pgs.
“European Application Serial No. 21707592.8, Communication Pursuant to Article 94(3) EPC mailed Jun. 19, 2023”, 5 pgs.
“Chinese Application Serial No. 202180011951.7, Office Action mailed Jun. 1, 2023”, w/ English Translation, 15 pgs.
“U.S. Appl. No. 17/653,389, Notice of Allowance mailed Jul. 19, 2023”, 7 pgs.
“U.S. Appl. No. 17/831,075, Corrected Notice of Allowability mailed Jul. 19, 2023”, 2 pgs.
“U.S. Appl. No. 17/653,389, Corrected Notice of Allowability mailed Aug. 7, 2023”, 2 pgs.
“U.S. Appl. No. 16/777,798, Response filed Sep. 18, 2023 to Non Final Office Action mailed Jun. 16, 2023”, 11 pgs.
“U.S. Appl. No. 16/777,793, Corrected Notice of Allowability mailed Feb. 15, 2022”, 2 pgs.
“U.S. Appl. No. 16/777,793, Corrected Notice of Allowability mailed May 13, 2022”, 2 pgs.
“U.S. Appl. No. 16/777,793, Final Office Action mailed May 13, 2021”, 10 pgs.
“U.S. Appl. No. 16/777,793, Non Final Office Action mailed Sep. 2, 2021”, 10 pgs.
“U.S. Appl. No. 16/777,793, Non Final Office Action mailed Dec. 10, 2020”, 9 pgs.
“U.S. Appl. No. 16/777,793, Notice of Allowance malled Feb. 2, 2022”, 8 pgs.
“U.S. Appl. No. 16/777,793, Response filed Mar. 10, 2021 to Non Final Office Action mailed Dec. 10, 2020”, 9 pgs.
“U.S. Appl. No. 16/777,793, Response filed Aug. 13, 2021 to Final Office Action mailed May 13, 2021”, 9 pgs.
“U.S. Appl. No. 16/777,793, Response filed Dec. 2, 2021 to Non Final Office Action mailed Sep. 2, 2021”, 9 pgs.
“U.S. Appl. No. 16/777,798, Final Office Action mailed Oct. 21, 2021”, 30 pgs.
“U.S. Appl. No. 16/777,798, Final Office Action mailed Oct. 28, 2022”, 34 pgs.
“U.S. Appl. No. 16/777,798, Non Final Office Action mailed Apr. 7, 2021”, 14 pgs.
“U.S. Appl. No. 16/777,798, Non Final Office Action mailed Apr. 20, 2022”, 32 pgs.
“U.S. Appl. No. 16/777,798, Response filed Feb. 21, 2022 to Final Office Action mailed Oct. 21, 2021”, 12 pgs.
“U.S. Appl. No. 16/777,798, Response filed Jul. 7, 2021 to Non Final Office Action mailed Apr. 7, 2021”, 10 pgs.
“U.S. Appl. No. 16/777,798, Response filed Jul. 20, 2022 to Non Final Office Action mailed Apr. 20, 2022”, 11 pgs.
“U.S. Appl. No. 16/777,799, Corrected Notice of Allowability mailed Mar. 3, 2021”, 2 pgs.
“U.S. Appl. No. 16/777,799, Corrected Notice of Allowability mailed Apr. 9, 2021”, 2 pgs.
“U.S. Appl. No. 16/777,799, Corrected Notice of Allowability mailed May 20, 2021”, 2 pgs.
“U.S. Appl. No. 16/777,799, Non Final Office Action mailed Oct. 29, 2020”, 16 pgs.
“U.S. Appl. No. 16/777,799, Notice of Allowance mailed Feb. 16, 2021”, 9 pgs.
“U.S. Appl. No. 16/777,799, Response filed Jan. 29, 2021 to Non Final Office Action mailed Oct. 29, 2020”, 10 pgs.
“U.S. Appl. No. 16/777,817, Corrected Notice of Allowability mailed Nov. 24, 2021”, 2 pgs.
“U.S. Appl. No. 16/777,817, Non Final Office Action mailed Feb. 2, 2021”, 25 pgs.
“U.S. Appl. No. 16/777,817, Notice of Allowance mailed May 26, 2021”, 8 pgs.
“U.S. Appl. No. 16/777,817, Notice of Allowance mailed Nov. 16, 2021”, 5 pgs.
“U.S. Appl. No. 16/777,817, Response filed May 3, 2021 to Non Final Office Action mailed Feb. 2, 2021”, 7 pgs.
“U.S. Appl. No. 17/163,053, Non Final Office Action mailed Mar. 24, 2022”, 9 pgs.
“U.S. Appl. No. 17/163,053, Notice of Allowance mailed Jul. 13, 2022”, 10 pgs.
“U.S. Appl. No. 17/163,053, Response filed Jun. 24, 2022 to Non Final Office Action mailed Mar. 24, 2022”, 8 pgs.
“U.S. Appl. No. 17/163,053, Supplemental Notice of Allowability mailed Nov. 4, 2022”, 2 pgs.
“U.S. Appl. No. 17/327,050, Corrected Notice of Allowability mailed Nov. 4, 2021”, 5 pgs.
“U.S. Appl. No. 17/327,050, Corrected Notice of Allowability mailed Dec. 8, 2021”, 2 pgs.
“U.S. Appl. No. 17/327,050, Notice of Allowance mailed Oct. 20, 2021”, 9 pgs.
“U.S. Appl. No. 17/327,050, Preliminary Amendment filed Jul. 27, 2021”, 8 pgs.
“U.S. Appl. No. 17/583,784, Corrected Notice of Allowability mailed Apr. 10, 2023”, 2 pgs.
“U.S. Appl. No. 17/583,784, Corrected Notice of Allowability mailed Dec. 14, 2022”, 2 pgs.
“U.S. Appl. No. 17/583,784, Notice of Allowance mailed Dec. 2, 2022”, 9 pgs.
“U.S. Appl. No. 17/583,784, Preliminary Amendment filed May 3, 2022”, 8 pgs.
“U.S. Appl. No. 17/653,389, Non Final Office Action mailed Mar. 14, 2023”, 21 pgs.
“U.S. Appl. No. 17/831,075, Notice of Allowance mailed Mar. 30, 2023”, 8 pgs.
“U.S. Appl. No. 17/831,075, Preliminary Amendment filed Aug. 3, 2022”, 7 pgs.
“U.S. Appl. No. 17/831,075, Response filed Mar. 7, 2023 to Non Final Office Action mailed Dec. 8, 2022”, 7 pgs.
“FFmpeg Formats Documentation”, FFMpeg, [Online] Retrieved from the Internet: <URL: https://web.archive.org/web/20190718073211/https://ffmpeg.org/ffmpeg-formats.html>, (Jul. 18, 2019), 43 pgs.
“FFmpeg Protocols Documentation”, FFmpeg, [Online] Retrieved from the Internet: <URL: https://web.archive.org/web/20190718073211/https://ffmpeg.org/ffmpeg-protocols.html>, (Jul. 18, 2019), 29 pgs.
“International Application Serial No. PCT/US2021/015497, International Preliminary Report on Patentability mailed Aug. 11, 2022”, 8 pgs.
“International Application Serial No. PCT/US2021/015497, International Search Report mailed Apr. 26, 2021”, 5 pgs.
“International Application Serial No. PCT/US2021/015497, Written Opinion mailed Apr. 26, 2021”, 6 pgs.
“International Application Serial No. PCT/US2021/015854, International Preliminary Report on Patentability mailed Aug. 11, 2022”, 11 pgs.
“International Application Serial No. PCT/US2021/015854, International Search Report mailed Apr. 1, 2021”, 5 pgs.
“International Application Serial No. PCT/US2021/015854, Written Opinion mailed Apr. 1, 2021”, 9 pgs.
“International Application Serial No. PCT/US2021/070063, International Preliminary Report on Patentability mailed Aug. 11, 2022”, 9 pgs.
“International Application Serial No. PCT/US2021/070063, International Search Report mailed Apr. 22, 2021”, 4 pgs.
“International Application Serial No. PCT/US2021/070063, Written Opinion mailed Apr. 22, 2021”, 7 pgs.
“NVIDIA System Management Interface”, NVIDIA Corp, [Online] Retrieved from the Internet: <URL: https://web.archive.org/web/20190713225750/https://developer.nvidia.com/nvidia-system-management-interface>, (Jul. 13, 2019), 3 pgs.
“SYLLO/NVTOP: What is NVTOP?”, GitHub, [Online] Retrieved from the Internet: <URL: https://web.archive.org/web/20190302055249/https://github.com/Syllo/nvtop>, (Mar. 2, 2019), 4 pgs.
“Video Encode and Decode GPU Support Matrix”, NVIDIA Corp, [Online] Retrieved from the Internet: <URL: https://web.archive.org/web/20190629142230/https://developer.nvidia.com/video-encode-decode-gpu-support-matrix>, (Jun. 29, 2019), 3 pgs.
“What exactly is Fragmented mp4(fMP4)? How is it different from normal mp4?”, stack overflow, [Online] Retrieved from the Internet: <URL: https://web.archive.org/web/20160626215532/https://stackoverflow.com/questions/35177797/what-exactly-is-fragmented-mp4fmp4-how-is-it-different-from-normal-mp4>, (Feb. 3, 2016), 2 pgs.
Carnahan, Daniel, “Snap is Offering Personalized Video Content Through Bitmoji TV”, Business Insider, [Online] Retrieved from the Internet: <URL: https://www.businessinsider.com/snap-offers-personalized-video-content-through-bitmoji-tv-2019-12>, (2019), 10 pgs.
Constine, Josh, “Meet ‘Genies,’ the lifelike personalized avatars that reenact news”, TechCrunch, [Online] Retrieved from the Internet: <URL: https://techcrunch.com/2017/12/08/genies/>, (Dec. 8, 2017), 22 pgs.
Constine, Josh, “Snapchat launches Bitmoji merch and comic strips starring your avatar”, TechCrunch, [Online] Retrieved from the Internet: <URL: https://techcrunch.com/2018/11/13/bitmoji-store/>, (Nov. 13, 2018), 16 pgs.
Constine, Josh, “Snapchat Launches Bitmoji TV: Zany 4-min Cartoons of Your Avatar”, TechCrunch, [Online] Retrieved from the Internet: <URL: https://techcrunch.com/2020/01/30/bitmoji-tv/>, (Jan. 3, 20200), 13 pgs.
Newton, Casey, “Your Snapchat friendships now have their own profiles—and merchandise”, The Verge, [Online] Retrieved from the Internet: <URL: https://www.theverge.com/2018/11/13/18088772/snapchat-friendship-profiles-bitmoji-merchandise-comics>, (Nov. 13, 2018), 5 pgs.
Pantos, R, et al., “HTTP Live Streaming”, Internet Engineering Task Force (IETF), [Online] Retrieved from the Internet: <URL: https://web.archive.org/web/20190718102609/https://tools.ietf.org/html/rfc8216>, (Aug. 2017), 62 pgs.
Siglin, Timothy, “Unifying Global Video Strategies: MP4 File Fragmentation for Broadcast, Mobile and Web Delivery”, Transitions, Inc., (Nov. 16, 2011), 16 pgs.
“U.S. Appl. No. 16/777,798, Corrected Notice of Allowability mailed Feb. 28, 2024”, 2 pgs.
“U.S. Appl. No. 16/777,798, Corrected Notice of Allowability mailed Nov. 24, 2023”, 2 pgs.
“U.S. Appl. No. 16/777,798, Notice of Allowance mailed Nov. 14, 2023”, 7 pgs.
“U.S. Appl. No. 18/058,157, Non Final Office Action mailed Dec. 14, 2023”, 19 pgs.
“Chinese Application Serial No. 202180012043.X, Office Action mailed Oct. 11, 2023”, w/ English Translation, 10 pgs.
“European Application Serial No. 21707852.6, Communication Pursuant to Article 94(3) EPC mailed Dec. 18, 2023”, 6 pgs.
“Korean Application Serial No. 10-2022-7029459, Notice of Preliminary Rejection mailed Jan. 12, 2024”, w/ English Translation, 16 pgs.
“Korean Application Serial No. 10-2022-7029477, Notice of Preliminary Rejection mailed Jan. 12, 2024”, w/ English Translation, 15 pgs.
“Chinese Application Serial No. 202180011914.6, Office Action mailed Feb. 2, 2024”, w/ English Translation, 23 pgs.
“Application Serial No. 18/058, 157, Response filed Mar. 1, 2024 to Non Final Office Action mailed Dec. 14, 2023”, 7 pgs.
Related Publications (1)
Number Date Country
20230273948 A1 Aug 2023 US
Continuations (3)
Number Date Country
Parent 17583784 Jan 2022 US
Child 18144755 US
Parent 17327050 May 2021 US
Child 17583784 US
Parent 16777799 Jan 2020 US
Child 17327050 US