The present disclosure is directed toward video laryngoscope systems.
Video laryngoscopy for assisting tracheal intubation is a commonplace medical procedure alongside traditional direct view laryngoscopy and indirect view laryngoscopy using optical view tubes. Tracheal intubation can be further facilitated by the use of a video stylet in conjunction with a video laryngoscope.
Video laryngoscopy includes a handheld video laryngoscope and a display screen for instantaneously displaying an anatomically defined sequence of progressively imaged physiological structures during the manipulation of a laryngoscope blade from an initial blade insertion into a patient's mouth to a final blade position for assisting tracheal intubation. The anatomically defined sequence of progressively imaged physiological structures includes the following intubation significant landmarks: (1) the tongue and uvula, (2) the epiglottis, (3) the posterior cartilages and interarytenoid notch, (4) the glottic opening, and (5) the vocal cords.
Challenges often arise to hinder recognition of progressively imaged physiological structures. For example, recognition of the epiglottis may be hindered owing to its visual similarity to the mucosa of the posterior pharynx, and accumulation of blood, secretions, and/or vomitus in the posterior pharynx. Improper identification of certain landmarks can lead to errors in intubations. For example, if the esophagus and glottic opening are confused, esophageal, rather than tracheal, intubation may occur.
US Patent Application Publication No. US 2012/0190929 to Patel et al. (hereinafter the Patel disclosure) discloses a laryngoscope including a handle, a blade holding element, a detachable blade, means for viewing the laryngeal inlet of a patient and means for adjusting the viewing field. The Patel disclosure discloses the laryngoscope is configured to be usable with at least two different detachable blades including inter alia straight blades, curved blades, and so-called difficult intubation blades.
Patel paragraph [0013] discloses a blade holding element with a multi-camera system including two adjacent fixed cameras directed to two different viewing fields and intended to be used with different blades. Patel paragraph [0013] also discloses means for switching from one camera to the other so that a clinician may select to use the first camera for when the laryngoscope is fitted with a standard blade and the second camera when a difficult intubation blade is used.
Patel paragraph [0014] discloses a blade holding element with a single movable or tiltable camera and mechanical or electronic means for remotely changing the position of the camera for positioning in a desired position to provide a clear, non-distorted view of a patient's laryngeal inlet.
U.S. Pat. No. 5,800,344 to Wood, Sr. et al, (hereinafter the Wood disclosure) discloses a video laryngoscope having an image sensor assembly mounted thereon for providing video imaging of a patient's airway passage. The Wood disclosure discloses a fixed position image sensor and an image sensor assembly slidably mounted on a track formed on a curved section of a laryngoscope body so that sliding of the image sensor assembly along the track adjusts the distance of the assembly from a target and the orientation angle of the image sensor assembly.
U.S. Pat. No. 8,398,545 to Chen et al. (hereinafter the Chen disclosure) discloses a video laryngoscope with a movable image capturing unit similar to the Wood disclosure. The Chen disclosure discloses a laryngoscope with a side mounted display and also a laryngoscope with an external display for reducing the volume and size of the laryngoscope.
U.S. Pat. No. 8,652,033 to Berci et al. (hereinafter the Berci disclosure) discloses a video intubation system that provides multiple streams to be simultaneously presented to a user. A video laryngoscope provides a first image stream and a video stylet provides a second image stream. The two image streams may be presented to the user on two different side-by-side monitors or a single monitor provided with a split screen. The video intubation system presents a user with a view of the upper portion of a patient's anatomy via the laryngoscope as well as being presented with a view in front of the video stylet as the stylet is advanced through the trachea.
US Patent Application Publication No. US 2011/0263935 to Qiu (hereinafter the Qui disclosure) discloses an intubation system for intubations based on an airway pattern indicating a trachea opening. The airway pattern is determined from analysis of airway data detected by a trachea identifying device disposed on a movable guide stylet of the intubation system. Qui FIG. 4 shows a guide stylet 46 with light sources 62, image capture devices 64a and 64b on either side of a laser pointer 70, gas exchange detectors 66 and control cable 68. Qiu para [0050] discloses the image capture devices may be a video camera to continually capture images or a still camera to capture still images. In another example, the image capture devices may be a thermal camera or an infrared camera to capture thermal images.
US Patent Application Publication No. US 2012/0116156 to Lederman (hereinafter the Lederman disclosure) discloses a medical device includes a tube, at least one imaging sensor coupled to an endoscope in the tube, and a monitor application to monitor positioning of the tube in a medical patient by identifying expected anatomical features in images provided by the at least one sensor. The Lederman disclosure also discloses a method for endotracheal intubation including receiving imaging frames from a sensor located in an endotracheal tube inserted through a patient's and processing the image frames to identify progression of anatomical features consistent with a proper placement of the endotracheal tube. In particular, the Lederman disclosure discloses image processing to identify vocal cords, trachea, the esophagus, carina, and the like.
The present invention is directed toward video laryngoscope systems including an image capture module with at least two stationary imaging units longitudinally deployed along a laryngoscope blade for generating a corresponding number of different real-time video streams during manipulation of a laryngoscope blade from an initial blade insertion into a patient's mouth to a final blade position for assisting intubations of patients. The present invention is based on the notion that a clinician performing an intubation will be assisted by the ability to select at least one real-time video stream from at least two different real-time video streams at a series of continuous locations of a laryngoscope blade along a patient's airway passage to orient the location of a laryngoscope blade tip in the patient's airway passage and recognize the aforesaid intubation significant landmarks.
The video laryngoscope systems of the present invention include a controller for controlling operation of the imaging module including inter alia real-time video display during intubation procedures, real-time video recording of intubation procedures, and the like. The controller preferably includes user controls which can be readily operated by a clinician performing an intubation, for example, for selecting which one or more real time video streams he wants to be view at a particular instance on a display screen. Such user controls can be preferably provisioned on a laryngoscope handle for finger/thumb operation during an intubation. Alternatively, video laryngoscope systems of the present invention can include touch display screens for touch screen operation similar to a smartphone. Alternatively, one or more real time video streams can be displayed on a display screen in accordance with a default setup which can be overridden by a clinician.
The video laryngoscope systems of the present invention can include image processing software for processing the captured real time video streams prior to their display as disclosed in inter alia the aforementioned Lederman disclosure, the aforementioned Qui disclosure, and the like. Such processing includes inter alia improving contour definition, improving boundary definition, automatic recognition of intubation significant landmarks, and the like.
The video laryngoscope systems of the present invention preferably employ conventional imaging units. Such imaging units preferably include an illumination source, for example, a LED, and the like, for illuminating a patient's airway passage during intubation. Such imaging units include a digital imaging sensor, for example, a CCD, a CMOS chip, and the like. The laryngoscope blades can be provisioned with anti-fogging arrangements for preventing fogging of the digital imaging sensors. One or more of the digital imaging sensors can be tiltable similar to the aforementioned Patel disclosure. Also, the video laryngoscope systems of the present invention can include mechanical or electronic means for remotely changing the tilt of a tiltable digital imaging sensor for positioning in a desired position.
The video laryngoscope systems of the present invention can include a laryngoscope mounted display screen similar to the aforementioned Chen disclosure or an external display screen similar to the aforementioned Berci disclosure. Laryngoscope mounted display screens can be mounted to enable traditional direct view laryngoscopy as well as video laryngoscopy. Alternatively, laryngoscope mounted display screens can be mounted to enable video laryngoscopy only. The display screens can display side-by-side image streams similar to aforementioned Berci disclosure.
Also, as similar to the aforementioned Berci disclosure, the video laryngoscope systems of the present invention can also be used with a video stylet for providing a stylet video stream for display on the display monitor. The video stylets can be re-usable items or disposable single use items. The clinician can select to display a real time video stream from a video stylet on the display screen either by itself or together with a real time video stream from one of the blade mounted imaging units.
The present invention can be readily applied to the differing approaches regarding re-usable components and disposable single use components as exemplified in commercially available video laryngoscope systems. Such commercially available video laryngoscope systems include inter alia the C-MAC by Karl Storz Endo vision, Inc., Charlton, Mass., USA, the Glidescope by Verathon, and the like. In some implementations, disposable single use components include electronic sub-components. In other implementations, disposable single use components are employed for sterility purposes only and do not include electronic sub-components. The present invention can also be readily applied to disposable laryngoscope blades for detachable attachment to laryngoscope handles. The disposable laryngoscope blades can be made from metal or plastic. Suitable metal laryngoscope blades are disclosed in commonly assigned U.S. Pat. No. 7,736,304 to Pecherer. Suitable plastic laryngoscope blades are disclosed in commonly assigned U.S. Pat. No. 5,879,304 to Shucman et al.
The video laryngoscope systems of the present invention can be implemented with a wide range of conventional laryngoscope blade shapes and sizes for assisting in regular intubation and so-called difficult intubations. The laryngoscope blade shapes include inter alia Miller blades, Macintosh blades, Foregger-Magill blades, and the like. The laryngoscope blades can be optionally provided with a guide channel for guiding an endotracheal tube.
In order to understand the invention and to see how it can be carried out in practice, preferred embodiments will now be described, by way of non-limiting examples only, with reference to the accompanying drawings in which similar parts are likewise numbered, and in which:
The video laryngoscope system 100 includes a handheld video laryngoscope 101 having a laryngoscope handle 102 and a laryngoscope blade 103 transversely extending from the laryngoscope handle 102 and terminating at a distal laryngoscope blade tip 104. The laryngoscope handle 102 includes a power source 106 preferably in the form of a rechargeable battery and an onboard display screen 107. The laryngoscope blade 103 has an underside blade surface 108 for deploying against a patient's tongue on insertion of the laryngoscope blade 103 into his mouth and an upperside blade surface 109 opposite the underside blade surface 108.
The video laryngoscope 101 includes an image capture module 111 including stationary imaging units 112 deployed along the laryngoscope blade 103 at increasing lengths from the distal laryngoscope blade tip 104. The imaging units 112 are each capable of independently and simultaneously generating a real-time video stream of a patient's airway passage during an intubation for selective display on the display screen 107.
The video laryngoscope system 100 includes a controller 113 for controlling the operation of the image capture module 111 including inter alia real-time video display during intubation procedures, real-time video recording of intubation procedures, and the like. The controller 113 can also control the operation of the video stylet 300. The controller 113 is preferably in wireless communication with the video stylet 300.
The image capture module 111 preferably includes a so-called imaging unit daisy chain 119 of a series of at least two longitudinally spaced apart rigidly mounted imaging units 112 and in this case four imaging units 112 stationary mounted on the laryngoscope blade 103. The imaging unit daisy chain 119 is preferably deployed on the upright blade surface 117. Alternatively, it can be deployed on the uppermost blade surface 118 as shown in dashed lines. The imaging unit daisy chain 119 can be permanently or detachably mounted on the laryngoscope blade 103.
The image capture module 111 includes at least a pair of imaging units 112 having a leading imaging unit 123 proximate the distal laryngoscope blade tip 104 and a trailing imaging unit 124 behind the leading imaging unit 123 relative to the distal laryngoscope blade tip 104. The length denoted L the trailing imaging unit 124 is behind the leading imaging unit 123 relative to the distal laryngoscope blade tip 104 depends on blade size and is at least 1 cm. In view of their longitudinal spaced apart configuration and the imaging units 123 and 124 can also have different magnifications and therefore different FOVs,
Based on a particular implemented FOV arrangement and taking into account the imaging units 123 and 124 can be at different distances from the internal structures of a patient's airway passage that they are imaging at a particular location of the laryngoscope blade 103 therealong during an intubation, the leading imaging unit 123 and the trailing imaging unit 124 image different sized areas of different locations of a patient's airway passage at a particular location of the laryngoscope blade 103.
The use of a video laryngoscope system 100 with a leading imaging unit 123 and a trailing imaging unit 124 is now described with reference to
While the invention has been described with respect to a limited number of embodiments, it will be appreciated that many variations, modifications, and other applications of the invention can be made within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
226379 | May 2013 | IL | national |
This application is a continuation of U.S. patent application Ser. No. 14/891,137, filed on Nov. 13, 2015, which is a National Stage Application of International Application No. PCT/IL2014/050426, filed on May 15, 2014, which claims priority to foreign Israel Patent Application No. IL 226379, filed on May 16, 2013, the disclosures of which are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 14891137 | Nov 2015 | US |
Child | 16792565 | US |