Video processor having scalar and vector components

Information

  • Patent Grant
  • 8698817
  • Patent Number
    8,698,817
  • Date Filed
    Friday, November 4, 2005
    19 years ago
  • Date Issued
    Tuesday, April 15, 2014
    10 years ago
Abstract
A video processor for executing video processing operations. The video processor includes a host interface for implementing communication between the video processor and a host CPU. A memory interface is included for implementing communication between the video processor and a frame buffer memory. A scalar execution unit is coupled to the host interface and the memory interface and is configured to execute scalar video processing operations. A vector execution unit is coupled to the host interface and the memory interface and is configured to execute vector video processing operations.
Description
FIELD OF THE INVENTION

The field of the present invention pertains to digital electronic computer systems. More particularly, the present invention relates to a system for efficiently handling video information on a computer system.


BACKGROUND OF THE INVENTION

The display of images and full-motion video is an area of the electronics industry improving with great progress in recent years. The display and rendering of high-quality video, particularly high-definition digital video, is a primary goal of modern video technology applications and devices. Video technology is used in a wide variety of products ranging from cellular phones, personal video recorders, digital video projectors, high-definition televisions, and the like. The emergence and growing deployment of devices capable of high-definition video generation and display is an area of the electronics industry experiencing a large degree of innovation and advancement.


The video technology deployed in many consumer electronics-type and professional level devices relies upon one or more video processors to format and/or enhance video signals for display. This is especially true for digital video applications. For example, one or more video processors are incorporated into a typical set top box and are used to convert HDTV broadcast signals into video signals usable by the display. Such conversion involves, for example, scaling, where the video signal is converted from a non-16×9 video image for proper display on a true 16×9 (e.g., widescreen) display. One or more video processors can be used to perform scan conversion, where a video signal is converted from an interlaced format, in which the odd and even scan lines are displayed separately, into a progressive format, where an entire frame is drawn in a single sweep.


Additional examples of video processor applications include, for example, signal decompression, where video signals are received in a compressed format (e.g., MPEG-2) and are decompressed and formatted for a display. Another example is re-interlacing scan conversion, which involves converting an incoming digital video signal from a DVI (Digital Visual Interface) format to a composite video format compatible with the vast number of older television displays installed in the market.


More sophisticated users require more sophisticated video processor functions, such as, for example, In-Loop/Out-of-loop deblocking filters, advanced motion adaptive de-interlacing, input noise filtering for encoding operations, polyphase scaling/re-sampling, sub-picture compositing, and processor-amplifier operations such as, color space conversion, adjustments, pixel point operations (e.g., sharpening, histogram adjustment etc.) and various video surface format conversion support operations.


The problem with providing such sophisticated video processor functionality is the fact that a video processor having a sufficiently powerful architecture to implement such functions can be excessively expensive to incorporate into many types of devices. The more sophisticated the video processing functions, the more expensive, in terms of silicon die area, transistor count, memory speed requirements, etc., the integrated circuit device required to implement such functions will be.


Accordingly, prior art system designers were forced to make trade-offs with respect to video processor performance and cost. Prior art video processors that are widely considered as having an acceptable cost/performance ratio have often been barely sufficient in terms of latency constraints (e.g., to avoid stuttering the video or otherwise stalling video processing applications) and compute density (e.g., the number of processor operations per square millimeter of die). Furthermore, prior art video processors are generally not suited to a linear scaling performance requirement, such as in a case where a video device is expected to handle multiple video streams (e.g., the simultaneous handling of multiple incoming streams and outgoing display streams).


Thus what is needed, is a new video processor system that overcomes the limitations on the prior art. The new video processor system should be scalable and have a high compute density to handle the sophisticated video processor functions expected by increasingly sophisticated users.


SUMMARY OF THE INVENTION

Embodiments of the present invention provide a new video processor system that supports sophisticated video processing functions while making efficient use of integrated circuit silicon die area, transistor count, memory speed requirements, and the like. Embodiments of the present invention maintain high compute density and are readily scalable to handle multiple video streams.


In one embodiment, the present invention is implemented as a video processor for executing video processing operations. The video processor includes a host interface for implementing communication between the video processor and a host CPU. The video processor includes a memory interface for implementing communication between the video processor and a frame buffer memory. A scalar execution unit is coupled to the host interface and the memory interface and is configured to execute scalar video processing operations. A vector execution unit is coupled to the host interface and the memory interface and is configured to execute vector video processing operations. The video processor can be a standalone video processor integrated circuit or can be a component integrated into a GPU integrated circuit.


In one embodiment, the scalar execution unit functions as a controller of the video processor and controls the operation of the vector execution unit. The scalar execution unit can be configured to execute flow control algorithms of an application and the vector execution unit can be configured to execute pixel processing operations of the application. A vector interface unit can be included in the video processor for interfacing the scalar execution unit with the vector execution unit. In one embodiment, the scalar execution unit and the vector execution unit are configured to operate asynchronously. The scalar execution unit can execute at a first clock frequency and the vector execution unit can execute at a different clock frequency (e.g., faster, slower, etc.). The vector execution unit can operate on a demand driven basis under the control of the scalar execution unit.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:



FIG. 1 shows an overview diagram showing the basic components of a computer system in accordance with one embodiment of the present invention.



FIG. 2 shows a diagram depicting the internal components of the video processor unit in accordance with one embodiment of the present invention.



FIG. 3 shows a diagram of an exemplary software program for the video processor in accordance with one embodiment of the present invention.



FIG. 4 shows an example for sub-picture blending with video using a video processor and accordance with one embodiment of the present invention.



FIG. 5 shows a diagram depicting the internal components of a vector execution in accordance with one embodiment of the present invention.



FIG. 6 shows a diagram depicting the layout of a datastore memory having a symmetrical array of tiles in accordance with one embodiment of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with the preferred embodiments, it will be understood that they are not intended to limit the invention to these embodiments. On the contrary, the invention is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the invention as defined by the appended claims. Furthermore, in the following detailed description of embodiments of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be recognized by one of ordinary skill in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, components, and circuits have not been described in detail as not to unnecessarily obscure aspects of the embodiments of the present invention.


Notation and Nomenclature:


Some portions of the detailed descriptions, which follow, are presented in terms of procedures, steps, logic blocks, processing, and other symbolic representations of operations on data bits within a computer memory. These descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. A procedure, computer executed step, logic block, process, etc., is here, and generally, conceived to be a self-consistent sequence of steps or instructions leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated in a computer system. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.


It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussions, it is appreciated that throughout the present invention, discussions utilizing terms such as “processing” or “accessing” or “executing” or “storing” or “rendering” or the like, refer to the action and processes of a computer system (e.g., computer system 100 of FIG. 1), or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.


Computer System Platform:



FIG. 1 shows a computer system 100 in accordance with one embodiment of the present invention. Computer system 100 depicts the components of a basic computer system in accordance with embodiments of the present invention providing the execution platform for certain hardware-based and software-based functionality. In general, computer system 100 comprises at least one CPU 101, a system memory 115, and at least one graphics processor unit (GPU) 110 and one video processor unit (VPU) 111. The CPU 101 can be coupled to the system memory 115 via the bridge component 105 or can be directly coupled to the system memory 115 via a memory controller (not shown) internal to the CPU 101. The bridge component 105 (e.g., Northbridge) can support expansion buses that connect various I/O devices (e.g., one or more hard disk drives, Ethernet adapter, CD ROM, DVD, etc.). The GPU 110 and the video processor unit 111 are coupled to a display 112. One or more additional GPUs can optionally be coupled to system 100 to further increase its computational power. The GPU(s) 110 and the video processor unit 111 are coupled to the CPU 101 and the system memory 115 via the bridge component 105. System 100 can be implemented as, for example, a desktop computer system or server computer system, having a powerful general-purpose CPU 101 coupled to a dedicated graphics rendering GPU 110. In such an embodiment, components can be included that add peripheral buses, specialized graphics memory and system memory, IO devices, and the like. Similarly, system 100 can be implemented as a handheld device (e.g., cellphone, etc.) or a set-top video game console device such as, for example, the Xbox®, available from Microsoft Corporation of Redmond, Wash., or the PlayStation3®, available from Sony Computer Entertainment Corporation of Tokyo, Japan.


It should be appreciated that the GPU 110 can be implemented as a discrete component, a discrete graphics card designed to couple to the computer system 100 via a connector (e.g., AGP slot, PCI-Express slot, etc.), a discrete integrated circuit die (e.g., mounted directly on the motherboard), or as an integrated GPU included within the integrated circuit die of a computer system chipset component (e.g., integrated within the bridge chip 105). Additionally, a local graphics memory can be included for the GPU 110 for high bandwidth graphics data storage. Additionally, it should be appreciated that the GPU 110 and the video processor unit 111 can be integrated onto the same integrated circuit die (e.g., as component 120) or can be separate discrete integrated circuit components otherwise connected to, or mounted on, the motherboard of computer system 100.


EMBODIMENTS OF THE PRESENT INVENTION


FIG. 2 shows a diagram depicting the internal components of the video processor unit 111 in accordance with one embodiment of the present invention. As illustrated in FIG. 2, the video processor unit 111 includes a scalar execution unit 201, a vector execution unit 202, a memory interface 203, and a host interface 204.


In the FIG. 2 embodiment, the video processor unit (hereafter simply video processor) 111 includes functional components for executing video processing operations. The video processor 111 uses the host interface 204 to establish communication between the video processor 111 and the host CPU 101 via the bridge 105. The video processor 111 uses the memory interface 203 to establish communication between the video processor 111 and a frame buffer memory 205 (e.g., for the coupled display 112, not shown). The scalar execution unit 201 is coupled to the host interface 204 and the memory interface 203 and is configured to execute scalar video processing operations. A vector execution unit is coupled to the host interface 204 and the memory interface 203 and is configured to execute vector video processing operations.


The FIG. 2 embodiment illustrates the manner in which the video processor 111 partitions its execution functionality into scalar operations and vector operations. The scalar operations are implemented by the scalar execution unit 201. The vector operations are implemented by the vector execution unit 202.


In one embodiment, the vector execution unit 202 is configured to function as a slave co-processor to the scalar execution unit 201. In such an embodiment, the scalar execution unit manages the workload of the vector execution unit 202 by feeding control streams to vector execution unit 202 and managing the data input/output for vector execution unit 202. The control streams typically comprise functional parameters, subroutine arguments, and the like. In a typical video processing application, the control flow of the application's processing algorithm will be executed on the scalar execution unit 201, whereas actual pixel/data processing operations will be implemented on the vector execution unit 202.


Referring still to FIG. 2, the scalar execution unit 201 can be implemented as a RISC style scalar execution unit incorporating RISC-based execution technologies. The vector execution unit 202 can be implemented as a SIMD machine having, for example, one or more SIMD pipelines. In a 2 SIMD pipeline embodiment, for example, each SIMD pipeline can be implemented with a 16 pixel wide datapath (or wider) and thus provide the vector execution unit 202 with raw computing power to create up to 32 pixels of resulting data output per clock. In one embodiment, the scalar execution unit 201 includes hardware configured to operate using VLIW (very long instruction word) software code to optimize the parallel execution of scalar operations on a per clock basis.


In the FIG. 2 embodiment, the scalar execution unit 201 includes an instruction cache 211 and a data cache 212 coupled to a scalar processor 210. The caches 211-212 interface with the memory interface 203 for access to external memory, such as, for example, the frame buffer 205. The scalar execution unit 201 further includes a vector interface unit 213 to establish communication with the vector execution unit 202. In one embodiment, the vector interface unit 213 can include one or more synchronous mailboxes 214 configured to enable asynchronous communication between the scalar execution unit 201 and the vector execution unit 202.


In the FIG. 2 embodiment, the vector execution unit 202 includes a vector control unit 220 configured to control the operation of a vector execution datapath, vector datapath 221. The vector control unit 220 includes a command FIFO 225 to receive instructions and data from the scalar execution unit 201. An instruction cache 222 is coupled to provide instructions to the vector control unit 220. A datastore memory 223 is coupled to provide input data to the vector datapath 221 and receive resulting data from the vector datapath 221. The datastore 223 functions as an instruction cache and a data RAM for the vector datapath 221. The instruction cache 222 and the datastore 223 are coupled to the memory interface 203 for accessing external memory, such as the frame buffer 205. The FIG. 2 embodiment also shows a second vector datapath 231 and a respective second datastore 233 (e.g., dotted outlines). It should be understood the second vector datapath 231 and the second datastore 233 are shown to illustrate the case where the vector execution unit 202 has two vector execution pipelines (e.g., a dual SIMD pipeline configuration). Embodiments of the present invention are suited to vector execution units having a larger number of vector execution pipelines (e.g., four, eight, sixteen, etc.).


The scalar execution unit 201 provides the data and command inputs for the vector execution unit 202. In one embodiment, the scalar execution unit 201 sends function calls to the vector execution unit 202 using a memory mapped command FIFO 225. Vector execution unit 202 commands are queued in this command FIFO 225.


The use of the command FIFO 225 effectively decouples the scalar execution unit 201 from the vector execution unit 202. The scalar execution unit 201 can function on its own respective clock, operating at its own respective clock frequency that can be distinct from, and separately controlled from, the clock frequency of the vector execution unit 202.


The command FIFO 225 enables the vector execution unit 202 to operate as a demand driven unit. For example, work can be handed off from the scalar execution unit 201 to command FIFO 225, and then accessed by the vector execution unit 202 for processing in a decoupled asynchronous manner. The vector execution unit 202 would thus process its workload as needed, or as demanded, by the scalar execution unit 201. Such functionality would allow the vector execution unit 202 to conserve power (e.g., by reducing/stopping one or more internal clocks) when maximum performance is not required.


The partitioning of video processing functions into a scalar portion (e.g., for execution by the scalar execution unit 201) and a vector portion (e.g., for execution by the vector execution unit 202) allow video processing programs built for the video processor 111 to be compiled into separate scalar software code and vector software code. The scalar software code and the vector software code can be compiled separately and subsequently linked together to form a coherent application.


The partitioning allows vector software code functions to be written separately and distinct from the scalar software code functions. For example, the vector functions can be written separately (e.g., at a different time, by different team of engineers, etc.) and can be provided as one or more subroutines or library functions for use by/with the scalar functions (e.g., scalar threads, processes, etc.). This allows a separate independent update of the scalar software code and/or the vector software code. For example, a vector subroutine can be independently updated (e.g., through an update of the previously distributed program, a new feature added to increase the functionality of the distributed program, etc.) from a scalar subroutine, or vice versa. The partitioning is facilitated by the separate respective caches of the scalar processor 210 (e.g., caches 211-212) and the vector control unit 220 and vector datapath 221 (e.g., caches 222-223). As described above, the scalar execution unit 201 and the vector execution unit 202 communicate via the command FIFO 225.



FIG. 3 shows a diagram of an exemplary software program 300 for the video processor 111 in accordance with one embodiment of the present invention. As depicted in FIG. 3, the software program 300 illustrates attributes of a programming model for the video processor 111, whereby a scalar control thread 301 is executed by the video processor 111 in conjunction with a vector data thread 302.


The software program 300 example of the FIG. 3 embodiment illustrates a programming model for the video processor 111, whereby a scalar control program (e.g., scalar control thread 301) on the scalar execution unit 201 executes subroutine calls (e.g., vector data thread 302) on the vector execution unit 202. The software program 300 example shows a case where a compiler or software programmer has decomposed a video processing application into a scalar portion (e.g., a first thread) and a vector portion (e.g., a second thread).


As shown in FIG. 3, the scalar control thread 301 running on the scalar execution unit 201 is computing work parameters ahead of time and feeding these parameters to the vector execution unit 202, which performs the majority of the processing work. As described above, the software code for the two threads 301 and 302 can be written and compiled separately.


The scalar thread is responsible for following:

  • 1. Interfacing with host unit 204 and implementing a class interface;
  • 2. Initialization, setup and configuration of the vector execution unit 202; and
  • 3. Execution of the algorithm in work-units, chunks or working sets in a loop, such that with each iteration;
  • a. the parameters for current working set are computed;
  • b. the transfer of the input data into vector execution unit is initiated; and
  • c. the transfer of the output data from vector execution unit is initiated.


The typical execution model of the scalar thread is “fire-and-forget”. The term fire-and-forget refers to the attribute whereby, for a typical model for a video baseband processing application, commands and data are sent to the vector execution unit 202 from the scalar execution unit 201 (e.g., via the command FIFO 225) and there is no return data from the vector execution unit 202 until the algorithm completes.


In the program 300 example of FIG. 3, the scalar execution unit 201 will keep scheduling work for vector execution unit 202 until there is no longer any space in command FIFO 225 (e.g., !end_of_alg & !cmd_fifo_full). The work scheduled by the scalar execution unit 201 computes parameters and sends these parameters to the vector subroutine, and subsequently calls the vector subroutine to perform the work. The execution of the subroutine (e.g., vector_funcB) by the vector execution unit 202 is delayed in time, mainly to hide the latency from main memory (e.g., system memory 115). Thus, the architecture of the video processor 111 provides a latency compensation mechanism on the vector execution unit 202 side for both instruction and data traffic. These latency compensation mechanisms are described in greater detail below.


It should be noted that the software program 300 example would be more complex in those cases where there are two or more vector execution pipelines (e.g., vector datapath 221 and second vector datapath 231 of FIG. 2). Similarly, the software program 300 example would be more complex for those situations where the program 300 is written for a computer system having two vector execution pipelines, but yet retains the ability to execute on a system having a single vector execution pipeline.


Thus, as described above in the discussion of FIG. 2 and FIG. 3, the scalar execution unit 201 is responsible for initiating computation on the vector execution unit 202. In one embodiment, the commands passed from the scalar execution unit 201 to the vector execution unit 202 are of the following main types:

  • 1. Read commands (e.g., memRd) initiated by the scalar execution unit 201 to transfer current working set data from memory to data RAMs of the vector execution unit 202;
  • 2. Parameter passing from the scalar execution unit 201 to the vector execution unit 202;
  • 3. Execute commands in the form of the PC (e.g., program counter) of the vector subroutine to be executed; and
  • 4. Write commands (e.g., memWr) initiated by scalar execution unit 201 to copy the results of the vector computation into memory.


In one embodiment, upon receiving these commands the vector execution unit 202 immediately schedules the memRd commands to memory interface 203 (e.g., to read the requested data from the frame buffer 205). The vector execution unit 202 also examines the execute commands and prefetches the vector subroutine to be executed (if not present in the cache 222).


The objective of the vector execution unit 202 in this situation is to schedule ahead the instruction and data steams of the next few executes while the vector execution unit 202 is working on current execute. The schedule ahead features effectively hide the latency involved in fetching instructions/data from their memory locations. In order to make these read requests ahead of time, the vector execution unit 202, the datastore (e.g., datastore 223), and the instruction cache (e.g., cache 222) are implemented by using high speed optimized hardware.


As described above, the datastore (e.g., datastore 223) functions as the working RAM of the vector execution unit 202. The scalar execution unit 201 perceives and interacts with the datastore as if it were a collection of FIFOs. The FIFOs comprise the “streams” with which the video processor 111 operates. In one embodiment, streams are generally input/output FIFOs that the scalar execution unit 201 initiates the transfers (e.g., to the vector execution unit 202) into. As described above, the operation of the scalar execution unit 201 and the vector execution unit 202 are decoupled.


Once the input/output streams are full, a DMA engine within the vector control unit 220 stops processing the command FIFO 225. This soon leads to the command FIFO 225 being full. The scalar execution unit 201 stops issuing additional work to the vector execution unit 202 when the command FIFO 225 is full.


In one embodiment, the vector execution unit 202 may need intermediate streams in addition to the input and output streams. Thus the entire datastore 223 can be seen as a collection of streams with respect to the interaction with the scalar execution unit 201.



FIG. 4 shows an example for sub-picture blending with video using a video processor in accordance with one embodiment of the present invention. FIG. 4 shows an exemplary case where a video surface is blended with a sub-picture and then converted to an ARGB surface. The data comprising the surfaces are resident in frame buffer memory 205 as the Luma parameters 412 and Chroma parameters 413. The sub-picture pixel elements 414 are also resident in the frame buffer memory 205 as shown. The vector subroutine instructions and parameters 411 are instantiated in memory 205 as shown.


In one embodiment, each stream comprises a FIFO of working 2D chunks of data called “tiles”. In such an embodiment, the vector execution unit 202 maintains a read tile pointer and a write tile pointer for each stream. For example, for input streams, when a vector subroutine is executed, the vector subroutine can consume, or read, from a current (read) tile. In the background, data is transferred to the current (write) tile by memRd commands. The vector execution unit can also produce output tiles for output streams. These tiles are then moved to memory by memWr( ) commands that follow the execute commands. This effectively pre-fetches tiles and has them ready to be operated on, effectively hiding the latency.


In the FIG. 4 sub-picture blending example, the vector datapath 221 is configured by the instantiated instance of the vector sub routine instructions and parameters 411 (e.g., &v_subp_blend). This is shown by the line 421. The scalar execution unit 201 reads in chunks (e.g., tiles) of the surfaces and loads them into datastore 223 using the DMA engine 401 (e.g., within the memory interface 203). The load operation is shown by line 422, line 423, and line 424.


Referring still to FIG. 4, since there are multiple input surfaces, multiple input streams need to be maintained. Each stream has a corresponding FIFO. Each stream can have different number of tiles. The FIG. 4 example shows a case where the sub-picture surface is in system memory 115 (e.g., sub-picture pixel elements 414) and hence would have additional buffering (e.g., n, n+1, n+2, n+3, etc.), whereas the video stream (e.g., Luma 412, Chroma 413, etc.) can have a smaller number of tiles. The number of buffers/FIFOs used can be adjusted in accordance with the degree of latency experienced by stream.


As described above, the datastore 223 utilizes a look ahead prefetch method to hide latency. Because of this, a stream can have data in two or more tiles as the data is prefetched for the appropriate vector datapath execution hardware (e.g., depicted as FIFO n, n+1, n+2, etc.).


Once the datastore is loaded, the FIFOs are accessed by the vector datapath hardware 221 and operated upon by the vector subroutine (e.g., subroutine 430). The results of the vector datapath operation comprises an output stream 403. This output stream is copied by the scalar execution unit 201 via the DMA engine 401 back into the frame buffer memory 205 (e.g., ARGB_OUT 415). This shown by the line 425.


Thus, embodiments of the present invention utilize an important aspect of stream processing, which is the fact that data storage and memory is abstracted as a plurality of memory titles. Hence, a stream can be viewed as a sequentially accessed collection of tiles. Streams are used to prefetch data. This data is in the form of tiles. The tiles are prefetched to hide latency from the particular memory source the data originates from (e.g., system memory, frame buffer memory, or the like). Similarly, the streams can be destined for different locations (e.g., caches for vector execution unit, caches for scalar execution unit, frame buffer memory, system memory, etc.). Another characteristic of streams is that they generally access tiles in a lookahead prefetching mode. As described above, the higher the latency, the deeper the prefetching and the more buffering that is used per stream (e.g., as depicted in FIG. 4).



FIG. 5 shows a diagram depicting the internal components of a vector execution unit in accordance with one embodiment of the present invention. The diagram of FIG. 5 shows an arrangement of the various functional units and register/SRAM resources of the vector execution unit 202 from a programming point of view.


In the FIG. 5 embodiment, the vector execution unit 202 comprises a VLIW digital signal processor optimized for the performance of video baseband processing and the execution of various codecs (compression-decompression algorithms). Accordingly, the vector execution unit 202 has a number of attributes directed towards increasing the efficiency of the video processing/codec execution.


In the FIG. 5 embodiment, the attributes comprise:

  • 1. Scalable performance by providing the option for the incorporation of multiple vector execution pipelines;
  • 2. The allocation of 2 data address generators (DAGs) per pipe;
  • 3. Memory/Register operands;
  • 4. 2D (x,y) pointers/iterators;
  • 5. Deep pipeline (e.g., 11-12) stages;
  • 6. Scalar (integer)/branch units;
  • 7. Variable instruction widths (Long/Short instructions);
  • 8. Data aligners for operand extraction;
  • 9. 2D datapath (4×4) shape of typical operands and result; and
  • 10. Slave vector execution unit to scalar execution unit, executing remote procedure calls.


Generally, a programmer's view of the vector execution unit 202 is as a SIMD datapath with 2 DAGs 503. Instructions are issued in VLIW manner (e.g., instructions are issued for the vector datapath 504 and address generators 503 simultaneously) and are decoded and dispatched to the appropriate execution unit by the instruction decoder 501. The instructions are of variable length, with the most commonly used instructions encoded in short form. The full instruction set is available in the long form, as VLIW type instructions.


The legend 502 shows three clock cycles having three such VLIW instructions. In accordance with the legend 510, the uppermost of the VLIW instructions 502 comprises two address instructions (e.g., for the 2 DSGs 503) and one instruction for the vector datapath 504. The middle VLIW instruction comprises one integer instruction (e.g., for the integer unit 505), one address instruction, and one vector instruction. The lower most VLIW instruction comprises a branch instruction (e.g., for the branch unit 506), one address instruction, and one vector instruction.


The vector execution unit can be configured to have a single data pipe or multiple data pipes. Each data pipe consists of local RAM (e.g., a datastore 511), a crossbar 516, 2 DAGs 503, and a SIMD execution unit (e.g., the vector datapath 504). FIG. 5 shows a basic configuration for explanatory purposes, where only 1 data pipe is instantiated. When 2 data pipes are instantiated, they can run as independent threads or as cooperative threads.


Six different ports (e.g., 4 read and 2 write) can be accessed via an address register file unit 515. These registers receive parameters from the scalar execution unit or from the results of the integer unit 505 or the address unit 503. The DAGs 503 also function as a collection controller and manages the distribution of the registers to address the contents of the datastore 511 (e.g., RA0, RA1, RA2, RA3, WA0, and WA1). A crossbar 516 is coupled to allocate the output data ports R0, R1, R2, R3 in any order/combination into the vector datapath 504 to implement a given instruction. The output of the vector datapath 504 for can be fed back into the datastore 511 as indicated (e.g., W0). A constant RAM 517 is used to provide frequently used operands from the integer unit 505 to the vector datapath 504, and the datastore 511.



FIG. 6 shows a diagram depicting a plurality of banks 601-604 of a memory 600 and a layout of a datastore having a symmetrical array of tiles 610 in accordance with one embodiment of the present invention. As depicted in FIG. 6, for explanatory purposes, only a portion of the datastore 610 is shown. The datastore 610 logically comprises an array (or arrays) of tiles. Each tile is an array of sub-tiles of 4×4 shape. Physically, as shown by the memory 600, the data store 610 is stored in an array of “N” physical banks of memory (e.g., banks 601-604).


Additionally, the data store 610 visually depicts a logical tile in a stream. In the FIG. 6 embodiment, this tile is 16 bytes high and 16 bytes wide. This tile is an array of subtiles (in this example 4×4). Each subtile is stored in a physical bank. This is shown in FIG. 6 by the number within each 4×4 subtile, in a case where there are 8 banks of physical memory (e.g., banks 0 through 7). The organization of subtiles in banks is done such that there is no common bank in 2×2 arrangement of subtitles. This makes any unaligned access (e.g., in both x and y direction) possible without any bank collision.


The banks 601-604 are configured to support accesses to different tiles of each bank. For example, in one case, the crossbar 516 can access a 2×4 set of tiles from bank 601 (e.g., the first two rows of bank 601). In another case, the crossbar 516 can access a 1×8 set of tiles from two adjacent banks. Similarly, in another case, the crossbar 516 can access an 8×1 set of tiles from two adjacent banks. In each case, the DAGs/collector 503 can receive the tiles as the banks are accessed by the crossbar 516, and provide those tiles to the front end of the vector datapath 504 on a per clock basis.


In this manner, embodiments of the present invention provide a new video processor architecture that supports sophisticated video processing functions while making efficient use of integrated circuit silicon die area, transistor count, memory speed requirements, and the like. Embodiments of the present invention maintain high compute density and are readily scalable to handle multiple video streams. Embodiments of the present invention can provide a number of sophisticated video processing operations such as, for example, MPEG-2/WMV9/H.264 encode assist (e.g., In-loop decoder), MPEG-2/WMV9/H.264 decode (e.g., post entropy decoding), and In Loop/Out of loop deblocking filters.


Additional video processing operations provided by embodiments of the present invention include, for example, advanced motion adaptive deinterlacing, input noise filtering for encoding, polyphase scaling/resampling, and sub-picture compositing. The video processor architecture of the present invention can also be used for certain video processor-amplifier (procamp) applications such as, for example, color space conversion, color space adjustments, pixel point operations such as sharpening, histogram adjustment, and various video surface format conversions.


The foregoing descriptions of specific embodiments of the present invention have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, and many modifications and variations are possible in light of the above teaching. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents.

Claims
  • 1. A video processor for executing video processing operations, comprising: a host interface for implementing communication between the video processor and a host CPU;a memory interface for implementing communication between the video processor and a frame buffer memory;a scalar execution unit coupled to the host interface and the memory interface and configured to execute scalar video processing operations;a vector execution unit coupled to the host interface and the memory interface and configured to execute vector video processing operations; anda command FIFO associated with the vector execution unit, wherein the scalar execution unit is configured to send function calls to the vector execution unit via the command FIFO, and wherein the vector execution unit operates on a demand driven basis by accessing the command FIFO, and wherein the vector execution unit is operable to execute plurality of instructions in response to each of said function calls.
  • 2. The video processor of claim 1, wherein the scalar execution unit functions as a controller of the video processor and controls the operation of the vector execution unit.
  • 3. The video processor of claim 1, further comprising a vector interface unit for interfacing the scalar execution unit with the vector execution unit.
  • 4. The video processor of claim 1, wherein the scalar execution unit and the vector execution unit are configured to operate asynchronously.
  • 5. The video processor of claim 4, wherein the scalar execution unit executes at a first clock frequency and the vector execution unit executes at a second clock frequency.
  • 6. The video processor of claim 1, wherein the scalar execution unit is configured to execute flow control algorithms of an application and the vector execution unit is configured to execute pixel processing operations of the application.
  • 7. The video processor of claim 6, wherein the asynchronous operation of the video processor is configured to support a separate independent update of a vector subroutine or a scalar subroutine of the application.
  • 8. The video processor of claim 1, wherein the scalar execution unit is configured to operate using VLIW (very long instruction word) code.
  • 9. A method for executing video processing operations, the method implemented using a video processor of a computer system executing computer readable code, comprising: establishing communication between the video processor and a host CPU by using a host interface;establishing communication between the video processor and a frame buffer memory by using a memory interface;executing scalar video processing operations by using a scalar execution unit coupled to the host interface and the memory interface;executing vector video processing operations by using a vector execution unit coupled to the host interface and the memory interface; andaccessing a command FIFO that is associated with the vector execution unit, wherein the scalar execution unit sends function calls to the vector execution unit via the command FIFO enabling the vector execution unit to operate on a demand driven basis, and wherein the vector execution unit is operable to execute a plurality of instructions in response to each of said function calls.
  • 10. The method of claim 9, wherein the scalar execution unit functions as a controller of the video processor and controls the operation of the vector execution unit.
  • 11. The method of claim 9, further comprising a vector interface unit for interfacing the scalar execution unit with the vector execution unit.
  • 12. The method of claim 9, wherein the scalar execution unit and the vector execution unit are configured to operate asynchronously.
  • 13. The method of claim 12, wherein the scalar execution unit executes at a first clock frequency and the vector execution unit executes at a second clock frequency.
  • 14. The method of claim 9, wherein the scalar execution unit is configured to execute flow control algorithms of an application and the vector execution unit is configured to execute pixel processing operations of the application.
  • 15. The method of claim 14, wherein the asynchronous operation of the video processor is configured to support a separate independent update of a vector subroutine or a scalar subroutine of the application.
  • 16. The method of claim 9, wherein the scalar execution unit is configured to operate using VLIW (very long instruction word) code.
  • 17. A system for executing video processing operations, comprising: a motherboard;a host CPU coupled to the motherboard;a video processor coupled to the motherboard and coupled to the CPU, comprising: a host interface for implementing communication between the video processor and the host CPU;a memory interface for implementing communication between the video processor and a frame buffer memory;a scalar execution unit coupled to the host interface and the memory interface and configured to execute scalar video processing operations;a vector execution unit coupled to the host interface and the memory interface and configured to execute vector video processing operations; anda command FIFO associated with the vector execution unit, wherein the scalar execution unit is configured to send video processing function calls to the vector execution unit via the command FIFO, and wherein the vector execution unit operates on a demand driven basis by accessing the command FIFO, and wherein the vector execution unit is operable to execute a plurality of instructions in response to each of said video processing function calls.
  • 18. The system of claim 17, wherein the scalar execution unit executes at a first clock frequency and the vector execution unit executes at a second clock frequency asynchronous to the first clock frequency.
  • 19. The system of claim 17, wherein the scalar execution unit is configured to execute flow control algorithms of an application and the vector execution unit is configured to execute pixel processing operations of the application.
  • 20. The system of claim 19, wherein the asynchronous operation of the video processor is configured to support a separate independent update of a vector subroutine or a scalar subroutine of the application.
  • 21. The system of claim 17, wherein said video processor executes a video processing program comprising scalar software code and vector software code compiled separately and linked together to form a coherent application.
Parent Case Info

This application claims the benefit under 35 U.S.C. Section 119(e) of U.S. Provisional Application Ser. No. 60/628,414, filed on Nov. 15, 2004, to Gadre et al., entitled “A METHOD AND SYSTEM FOR VIDEO PROCESSING” which is incorporated herein in its entirety.

US Referenced Citations (204)
Number Name Date Kind
3091657 John K. Stuessel May 1963 A
3614740 Delagi et al. Oct 1971 A
3987291 Gooding et al. Oct 1976 A
4101960 Stokes et al. Jul 1978 A
4541046 Nagashima et al. Sep 1985 A
4566005 Apperley et al. Jan 1986 A
4748585 Chiarulli et al. May 1988 A
4897717 Hamilton et al. Jan 1990 A
4958303 Assarpour et al. Sep 1990 A
4965716 Sweeney Oct 1990 A
4965751 Thayer et al. Oct 1990 A
4985848 Pfeiffer et al. Jan 1991 A
5040109 Bowhill et al. Aug 1991 A
5047975 Patti et al. Sep 1991 A
5175828 Hall et al. Dec 1992 A
5179530 Genusov et al. Jan 1993 A
5197130 Chen et al. Mar 1993 A
5210834 Zurawski et al. May 1993 A
5263136 DeAguiar et al. Nov 1993 A
5327369 Ashkenazi Jul 1994 A
5357623 Megory-Cohen Oct 1994 A
5375223 Meyers et al. Dec 1994 A
5388206 Poulton et al. Feb 1995 A
5388245 Wong Feb 1995 A
5418973 Ellis et al. May 1995 A
5430841 Tannenbaum et al. Jul 1995 A
5430884 Beard et al. Jul 1995 A
5432905 Hsieh et al. Jul 1995 A
5517666 Ohtani et al. May 1996 A
5522080 Harvey May 1996 A
5560030 Guttag et al. Sep 1996 A
5561808 Kuma et al. Oct 1996 A
5574944 Stager Nov 1996 A
5627988 Oldfield May 1997 A
5644753 Ebrahim et al. Jul 1997 A
5649173 Lentz Jul 1997 A
5666169 Ohki et al. Sep 1997 A
5682552 Kuboki et al. Oct 1997 A
5682554 Harrell Oct 1997 A
5706478 Dye Jan 1998 A
5754191 Mills et al. May 1998 A
5761476 Martell Jun 1998 A
5764243 Baldwin Jun 1998 A
5784590 Cohen et al. Jul 1998 A
5784640 Asghar et al. Jul 1998 A
5796974 Goddard et al. Aug 1998 A
5802574 Atallah et al. Sep 1998 A
5809524 Singh et al. Sep 1998 A
5812147 Van Hook et al. Sep 1998 A
5835788 Blumer et al. Nov 1998 A
5848254 Hagersten Dec 1998 A
5920352 Inoue Jul 1999 A
5925124 Hilgendorf et al. Jul 1999 A
5940090 Wilde Aug 1999 A
5940858 Green Aug 1999 A
5949410 Fung Sep 1999 A
5950012 Shiell et al. Sep 1999 A
5978838 Mohamed et al. Nov 1999 A
5999199 Larson Dec 1999 A
6009454 Dummermuth Dec 1999 A
6016474 Kim et al. Jan 2000 A
6041399 Terada et al. Mar 2000 A
6049672 Shiell et al. Apr 2000 A
6073158 Nally et al. Jun 2000 A
6092094 Ireton Jul 2000 A
6108766 Hahn et al. Aug 2000 A
6112019 Chamdani et al. Aug 2000 A
6131152 Ang et al. Oct 2000 A
6141740 Mahalingaiah et al. Oct 2000 A
6144392 Rogers Nov 2000 A
6150610 Sutton Nov 2000 A
6189068 Witt et al. Feb 2001 B1
6192073 Reader et al. Feb 2001 B1
6192458 Arimilli et al. Feb 2001 B1
6208361 Gossett Mar 2001 B1
6209078 Chiang et al. Mar 2001 B1
6222552 Haas et al. Apr 2001 B1
6230254 Senter et al. May 2001 B1
6239810 Van Hook et al. May 2001 B1
6247094 Kumar et al. Jun 2001 B1
6252610 Hussain Jun 2001 B1
6292886 Makineni et al. Sep 2001 B1
6301600 Petro et al. Oct 2001 B1
6314493 Luick Nov 2001 B1
6317819 Morton Nov 2001 B1
6351808 Joy et al. Feb 2002 B1
6370617 Lu et al. Apr 2002 B1
6437789 Tidwell et al. Aug 2002 B1
6438664 McGrath et al. Aug 2002 B1
6480927 Bauman Nov 2002 B1
6490654 Wickeraad et al. Dec 2002 B2
6496902 Faanes et al. Dec 2002 B1
6499090 Hill et al. Dec 2002 B1
6525737 Duluk, Jr. et al. Feb 2003 B1
6529201 Ault et al. Mar 2003 B1
6556197 Van Hook et al. Apr 2003 B1
6597357 Thomas Jul 2003 B1
6603481 Kawai et al. Aug 2003 B1
6624818 Mantor et al. Sep 2003 B1
6629188 Minkin et al. Sep 2003 B1
6631423 Brown et al. Oct 2003 B1
6631463 Floyd et al. Oct 2003 B1
6657635 Hutchins et al. Dec 2003 B1
6658447 Cota-Robles Dec 2003 B2
6674841 Johns et al. Jan 2004 B1
6700588 MacInnis et al. Mar 2004 B1
6715035 Colglazier et al. Mar 2004 B1
6732242 Hill et al. May 2004 B2
6809732 Zatz et al. Oct 2004 B2
6812929 Lavelle et al. Nov 2004 B2
6825843 Allen et al. Nov 2004 B2
6825848 Fu et al. Nov 2004 B1
6839062 Aronson et al. Jan 2005 B2
6862027 Andrews et al. Mar 2005 B2
6891543 Wyatt May 2005 B2
6915385 Leasure et al. Jul 2005 B1
6944744 Ahmed et al. Sep 2005 B2
6952214 Naegle et al. Oct 2005 B2
6965982 Nemawarkar Nov 2005 B2
6975324 Valmiki et al. Dec 2005 B1
6976126 Clegg et al. Dec 2005 B2
6978149 Morelli et al. Dec 2005 B1
6978457 Johl et al. Dec 2005 B1
6981106 Bauman et al. Dec 2005 B1
6985151 Bastos et al. Jan 2006 B1
7015909 Morgan, III et al. Mar 2006 B1
7031330 Bianchini, Jr. Apr 2006 B1
7032097 Alexander et al. Apr 2006 B2
7035979 Azevedo et al. Apr 2006 B2
7148888 Huang Dec 2006 B2
7151544 Emberling Dec 2006 B2
7154500 Heng et al. Dec 2006 B2
7159212 Schenk et al. Jan 2007 B2
7185178 Barreh et al. Feb 2007 B1
7202872 Paltashev et al. Apr 2007 B2
7249350 Wang et al. Jul 2007 B2
7260677 Vartti et al. Aug 2007 B1
7305540 Trivedi et al. Dec 2007 B1
7321787 Kim Jan 2008 B2
7334110 Faanes et al. Feb 2008 B1
7369815 Kang et al. May 2008 B2
7373478 Yamazaki May 2008 B2
7406698 Richardson Jul 2008 B2
7412570 Moll et al. Aug 2008 B2
7486290 Kilgariff et al. Feb 2009 B1
7487305 Hill et al. Feb 2009 B2
7493452 Eichenberger et al. Feb 2009 B2
7545381 Huang et al. Jun 2009 B2
7564460 Boland et al. Jul 2009 B2
7750913 Parenteau et al. Jul 2010 B1
7777748 Bakalash et al. Aug 2010 B2
7852341 Rouet et al. Dec 2010 B1
7869835 Zu Jan 2011 B1
8020169 Yamasaki Sep 2011 B2
8427490 Luu et al. Apr 2013 B1
20010026647 Morita Oct 2001 A1
20020116595 Morton Aug 2002 A1
20020130874 Baldwin Sep 2002 A1
20020144061 Faanes et al. Oct 2002 A1
20020194430 Cho Dec 2002 A1
20030001847 Doyle et al. Jan 2003 A1
20030003943 Bajikar Jan 2003 A1
20030014457 Desai et al. Jan 2003 A1
20030016217 Vlachos et al. Jan 2003 A1
20030016844 Numaoka Jan 2003 A1
20030031258 Wang et al. Feb 2003 A1
20030067473 Taylor et al. Apr 2003 A1
20030172326 Coffin, III et al. Sep 2003 A1
20030188118 Jackson Oct 2003 A1
20030204673 Venkumahanti et al. Oct 2003 A1
20030204680 Hardage, Jr. Oct 2003 A1
20030227461 Hux et al. Dec 2003 A1
20040012597 Zatz et al. Jan 2004 A1
20040073771 Chen et al. Apr 2004 A1
20040073773 Demjanenko Apr 2004 A1
20040103253 Kamei et al. May 2004 A1
20040193837 Devaney et al. Sep 2004 A1
20040205326 Sindagi et al. Oct 2004 A1
20040212730 MacInnis et al. Oct 2004 A1
20040215887 Starke Oct 2004 A1
20040221117 Shelor Nov 2004 A1
20040263519 Andrews et al. Dec 2004 A1
20050012759 Valmiki et al. Jan 2005 A1
20050024369 Xie Feb 2005 A1
20050071722 Biles Mar 2005 A1
20050088448 Hussain et al. Apr 2005 A1
20050239518 D'Agostino et al. Oct 2005 A1
20050262332 Rappoport et al. Nov 2005 A1
20050280652 Hutchins et al. Dec 2005 A1
20060020843 Frodsham et al. Jan 2006 A1
20060064517 Oliver Mar 2006 A1
20060064547 Kottapalli et al. Mar 2006 A1
20060103659 Karandikar et al. May 2006 A1
20060152519 Hutchins et al. Jul 2006 A1
20060152520 Gadre et al. Jul 2006 A1
20060176308 Karandikar et al. Aug 2006 A1
20060176309 Gadre et al. Aug 2006 A1
20070076010 Swamy et al. Apr 2007 A1
20070130444 Mitu et al. Jun 2007 A1
20070285427 Morein et al. Dec 2007 A1
20080016327 Menon et al. Jan 2008 A1
20080278509 Washizu et al. Nov 2008 A1
20090235051 Codrescu et al. Sep 2009 A1
20120023149 Kinsman et al. Jan 2012 A1
Foreign Referenced Citations (17)
Number Date Country
29606102 Jun 1996 DE
07-101885 Apr 1995 JP
H08-077347 Mar 1996 JP
H08-153032 Jun 1996 JP
08-297605 Nov 1996 JP
09-287217 Oct 1997 JP
09-287217 Nov 1997 JP
H09-325759 Dec 1997 JP
10-222476 Aug 1998 JP
11-190447 Jul 1999 JP
2000-148695 May 2000 JP
11-190447 Jan 2001 JP
2003-178294 Jun 2003 JP
2004-252990 Sep 2004 JP
413766 Dec 2000 TW
436710 May 2001 TW
442734 Jun 2001 TW
Non-Patent Literature Citations (68)
Entry
FOLDOC, definition of “vector processor”, http://foldoc.org/, Sep. 11, 2003.
Wikipedia, definition of “vector processor”, http://en.wikipedia.org/, May 14, 2007.
Fisher, Joseph A., Very Long Instruction Word Architectures and the ELI-512, ACM, 1993, pp. 140-150.
Free On-Line Dictionary of Computing (FOLDOC), definition of “video”, from foldoc.org/index.cgi?query=video&action=Search, May 23, 2008.
FOLDOC, definition of “frame buffer”, from foldoc.org/index.cgi?query=frame+buffer&action=Search, Oct. 3, 1997.
PCreview, article entitled “What is a Motherboard”, from www.pcreview.co.uk/articles/Hardware/What—is—a—Motherboard/, Nov. 22, 2005.
FOLDOC, definition of “motherboard”, from foldoc.org/index.cgi?query=motherboard&action=Search, Ausuts 10, 2000.
FOLDOC, definition of “separate compilation”, from foldoc.org/index.cgi?query=separate+compilation&action=Search, Feb. 19, 2005.
Definition of “queue” from Free on-Line Dictionary of Computing (FOLDOC), http://foldoc.org/index.cgi?query=queue&action=Search, May 15, 2007.
Definition of “first-in first-out” from FOLDOC, http://foldoc.org/index.cgi?query=fifo&action=Search, Dec. 6, 1999.
Definition of “block” from FOLDOC, http://foldoc.org/index.cgi?block, Sep. 23, 2004.
Graf, Rudolf F., Modern Dictionary of Electronics, Sixth Edition, Howard W. Sams & Company, 1984, pp. 566.
Wikipedia, definition of “Subroutine”, published Nov. 29, 2003, four pages.
Rosenberg, Jerry M., Dictionary of Computers, Information Processing & Telecommunications, Second Edition, John Wiley & Sons, 1987, pp. 102 and 338.
Rosenberg, Jerry M., Dictionary of Computers, Information Processing & Telecommunications,, 2nd edition, 1987.
FOLDOC, definition of Pentium, Sep. 30, 2003.
FOLDOC, definition of X86, Feb. 27, 2004.
Graham, Susan L., “Getting Up to Speed: The Future of Supercomputing”, The National Academies Press, 2005, glossary.
Intel, Intel Architecture Software Developer's Manual, vol. 1: Basic Architecture, 1997, p. 8-1.
Intel, Intel Architecture Software Developer's Manual, vol. 1: Basic Architecture, 1999, p. 8-1, 9-1.
Intel, Intel MMX Technology at a Glance, Jun. 1997.
Intel, Intel Pentium III Xeon Processor at 500 and 550Mhz, Feb. 1999.
Intel, Pentium Processor Family Developer's Manual, 1997, pp. 2-13.
Intel, Pentium Processor with MMX Technology at 233Mhz Performance Brief, Jan. 1998.
Wikipedia, definition of scalar processor, Oct. 22, 2007.
Wikipedia, SIMD entry, Feb. 22, 2008.
Gadre, S., Patent Application Entitled “Separately Schedulable Condition Codes for a Video Processor”, U.S. Appl. No. 11/267,793, filed Nov. 4, 2005.
Lew et al, Patent Application Entitled “A Programmable DMA Engine for Implementing Memory Transfers For a Video Processor”, U.S. Appl. No. 11/267,777, filed Nov. 4, 2005.
Karandikar et al., Patent Application Entitled “A Pipelined L2 Cache For Memory Transfers For a Video Processor”, U.S. Appl. No. 11/267,606, filed Nov. 4, 2005.
Karandikar et al., Patent Application Entitled “Command Acceleration in a Video Processor”, U.S. Appl. No. 10/267,640, filed Nov. 4, 2005.
Karandikar et al., Patent Application Entitled “A Configurable SIMD Engine in a Video Processor”, U.S. Appl. No. 11/267,393, filed Nov. 4, 2005.
Karandikar et al., Patent Application Entitled “Context Switching on a Video Processor Having a Scalar Execution Unit and a Vector Execution Unit”, U.S. Appl. No. 11/267,778, filed Nov. 4, 2005.
Lew et al., Patent Application Entitled “Multi Context Execution on a Video Processor”, U.S. Appl. No. 11/267,780, filed Nov. 4, 2005.
Su et al., Patent Application No. “State Machine Control for a Pipelined L2 Cache to Implement Memory Transfers For a Video Processor”, U.S. Appl. No. 11/267,119, filed Nov. 4, 2005.
Fisher, Joseph A., “Very Long Instruction Word Architecture and the ELI-512”, ACM, 1993, pp. 140-150.
Quinnell, Richard A. “New DSP Architectures Go “Post-Harvard” for Higher Performance and Flexibility” Techonline; posted May 1, 2002.
Wikipedia, definition of Multiplication, accessed from en.wikipedia.org/w/index.php?title=Multiplication&oldid=1890974, published Oct. 13, 2003.
Graf, Rudolf F., Modern Dictionary of Electronics, Howard W. Sams & Company, 1988, pp. 273.
IBM TDB, Device Queue Management, vol. 31 Iss. 10, pp. 45-50, Mar. 1, 1989.
Hamacher, V. Carl et al., Computer Organization, Second Edition, McGraw Hill, 1984, pp. 1-9.
Graham, Susan L. et al., Getting Up to Speed: The future of Supercomputing, the National Academies Press, 2005, glossary.
Rosenberg, Jerry M., Dictionary of Computers, Information Processing & Telecommunications, 2nd Edition, John Wiley & Sons, 1987, pp. 305.
Graston et al. (Software Pipelining Irregular Loops on the TMS320C6000 VLIW DSP Architecture); Proceedings of the ACM SIGPLAN workshop on Languages, compilers and tools for embedded systems; pp. 138-144; Year of Publication: 2001.
Foldoc, definition of “superscalar,” http://foldoc.org/, Jun. 22, 2009.
SearchStorage.com Definitions, “Pipeline Burst Cache,” Jul. 31, 2001, url: http://searchstorage.techtarget.com/sDefinition/0,,sid5—gci214414,00.html.
Karandikar et al., Patent Application Entitled: “Multidemnsional Datapath Processing in a Video Processor”, U.S. Appl. No. 11/267,638, filed Nov. 4, 2005.
Gadre, S., Patent Application Entitled “Stream Processing in a Video Processor”, U.S. Appl. No. 11/267,599, filed Date Nov. 4, 2005.
Merriam-Webster Dictionary Online; Definition for “program”; retrieved Dec. 14, 2010.
Nvidia Corporation, Technical Brief: Transform and Lighting; dated 1999; month unknown.
Foldoc, Free Online Dictionary of Computing, defintion of SIMD, foldoc.org/index.cgi?query=simd&action=Search, Nov. 4, 1994.
Woods J., Nvidia GeForce FX Preview, at http://www.tweak3d.net/reviews/nvidia/nv30preview/1.shtml; dated Nov. 18, 2002; retrieved Jun. 16, 2011.
Wilson D., NVIDIA's Tiny 90nm G71 and G73: GeForce 7900 and 7600 Debut; at http://www.anandtech.com/show/1967/2; dated Sep. 3, 2006, retrieved Jun. 16, 2011.
Hutchins E., SC10: A Video Processor and Pixel-Shading GPU for Handheld Devices; presented at the Hot Chips conferences on Aug. 23, 2004.
HPL-PD A Parameterized Research Approach—May 31, 2004 http://web/archive.org/web/*/www.trimaran.org/docs/5—hpl-pd.pdf.
Kozyrakis, “A Media enhanced vector architecture for embedded memory systems,” Jul. 1999, http://digitalassets.lib.berkeley.edu/techreports/ucb/text/CSD-99/1059.pdf.
Karandikar et al., Patent Application Entitled: “A Latency Tolerant System for Executing Video Processing Operations”, U.S. Appl. No. 11/267,875, filed Nov. 4, 2005.
Parhami, Behrooz, Computer Arithmetic: Algorithms and Hardware Designs, Oxford University Press, Jun. 2000, pp. 413-418.
gDEBugger, graphicRemedy, http://www.gremedy.com, Aug. 8, 2006.
Duca et al., A Relational Debugging Engine for Graphics Pipeline, International Conference on Computer Graphics and Interactive Techniques, ACM Siggraph 2005, pp. 453-463, ISSN:0730-0301.
“Vertex Fog”; http://msdn.microsoft.com/library/en-us/directx9—c/Vertex—fog.asp?frame=true.
“Anti-aliasing”; http://en.wikipedia.org/wiki/Anti-aliasing.
“Alpha Testing State”; http://msdn.microsoft.com/library/en-us/directx9—c/directx/graphics/programmingguide/GettingStarted/Direct3Kdevices/States/renderstates/alphatestingstate.asp.
Brown, Brian; “Data Structure and Number Systems”; 2000; http://www.ibilce.unesp.br/courseware/datas/data3.htm.
Heirich; Optimal Automatic Mulit-pass Shader Partitioning by Dynamic Programming; Eurographics—Graphics Hardware (2005); Jul. 2005.
Foley et al. Computer Graphics: Principles and Practice; Second Edition in C; pp. 866-867; Addison-Wesley 1997.
Defintion of “Slot,” http://www.thefreedictionary.com/slot, Oct. 2, 2012.
Korean Intellectual Property Office; English Abstract for Publication No. 100262453, corresponding to application 1019970034995, 2001.
Espasa R et al: “Decoupled vector architectures”, High-Performance Computer Architecture, 1996. Proceedings., Second International Symposium on San Jose, CA, USA FEB. 3-7, 1996, Los Alamitos, CA, USA IEEE Comput. Soc, US, Feb. 3, 1996, pp. 281-290, XPO1 0162067, DOI:10.11 09/HPCA:1996.501193 ISBN: 978-0-8186-7237-8.
Related Publications (1)
Number Date Country
20060176309 A1 Aug 2006 US
Provisional Applications (1)
Number Date Country
60628414 Nov 2004 US