The telecommunications industry has demonstrated that voice and data can be successfully transported over a data network, such as an Internet Protocol (IP) network. The evolution of this technology has allowed traditional, public switched telephone network (PSTN) equipment, such as traditional phones and lines, to access the data network through gateways. Meanwhile, more advanced end points are becoming available, allowing the end point to access the network directly in the native format of the network, such as an IP phone that captures audio voice signals, transcodes it into digital signals, packetizes it according to the appropriate protocol and transmits it directly onto the network.
Similar to telecommunications managers prior to this integration of data and voice networks, security and facility managers build separate video surveillance (VS) networks using co-axial (coax) cables to transport video to monitors and video recorders. Recently, the traditional tape video recorders have begun to be replaced with digital video recorders that digitize the video stream and store it on hard disks and other digital media. In addition to the overhead of having a separate network to maintain, typically security managers have to have personnel assigned to monitor the feeds from the cameras as well personnel to move about the facility, for either security or maintenance reasons.
The ability to monitor the video feeds in a mobile fashion, as well as eliminate the extra network, would provide VS network managers cost savings while increasing effectiveness of their employees.
One embodiment is a network device. The device has a first interface to allow communication with at least one network-capable camera, and a second interface to allow communication with a network. A video encoder may also provide an interface to network-incapable cameras. A processor allows the device to receive video data from the network-capable camera and any network-incapable cameras communicate the video data to a network, receive commands for the cameras from the network and communicate them from the network.
Another embodiment is a method of managing a video surveillance data network. The method receives data from a network-capable camera and registers the camera with a network management device. An identification number for the camera is provided and video data from the camera is transmitted across a network. Requests for communication with the camera are screened to only allow authorized users to access data from the camera.
Embodiments of the invention may be best understood by reading the disclosure with reference to the drawings, wherein:
Typically, the tapes are either shipped or transported to a storage facility to allow for storage of a particular number of tapes, as well as freeing up space in the local facility. Alternatively, users may record a certain number of days, weeks or hours on a tape and store it for a particular length of time, and then record over it. In either case, the storage has been problematic.
Recently, in newer embodiments of the video surveillance networks, the cumbersome taping procedures have been replaced with digital video recorders (DVRs). DVRs typically employ a ‘solid-state’ memory such as a computer hard disk, taking the images, digitizing them as necessary and storing them on the hard disk of the DVR. The increased capacity of the hard disks and their increased density require less storage space and fewer problems with transporting. An alternative embodiment of a conventional video surveillance network is shown in
In
In addition, the network 30 includes network-capable cameras 40 and 42. A network-capable camera, as that term is used here, is a camera that can communicate across a network 50 in a particular protocol, as well as receive commands for configuration and operation across the network as well. The analog and PTZ cameras are network-incapable in that they cannot communicate across the network themselves. With the addition of a video encoder, however, they become network-capable cameras. The network-capable cameras are simple devices that offer an interface for configuration and streaming video across the network to a DVR such as 36, and video monitors such as 52. This network may be interconnected with both coax cables and data network cables, to support both the ‘legacy’ systems such as the analog cameras and the network-capable cameras.
The network-capable cameras generally transport the video images using some transport protocol, such as Text Control Protocol (TCP) in an IP network, typically using JPEG (Joint Photographic Experts Group). Streamed JPEG images may be referred to as MJPEG. This is not to be confused with MPEG (Moving Pictures Experts Group), which is typically used for video streaming.
One aspect of data network to transport voice is a voice gateway. A voice gateway is a device that receives traditional telephony signals and converts them into digital data and then packetizes the data for transport over the network and de-packetization and reconversion on the other end. One embodiment of this invention is a ‘video gateway’ that provides the same capability for video surveillance networks.
It is already possible to transport video data across networks, using such protocols as the International Telecommunications Union (ITU) standard H.323. However, this protocol assumes that the video data is in a ‘moving picture’ format, such as MPEG, and that the equipment is capable of producing the video data in the appropriate form. A video gateway will provide a greater intelligence than currently available to network-capable cameras and video servers, without requiring specialized equipment to replace them, as well as allowing telephone-like access to the video feeds from the cameras, making the network far more efficient and flexible. A video surveillance network including such a gateway is shown in
The video gateway 70 resides in a combined network 60. The combined network is one that combines video surveillance feeds, voice calls, and data, or at least two of the three. The video gateway 70 receives image feeds from any combination of network-capable cameras such as 90 and 92, and analog cameras 72 and 74, and PTZ cameras such as 76. The network-capable cameras 92 and 90 may be simple devices that are made more intelligent when used in conjunction with the video gateway 70. The network switch, such as a LAN card/Ethernet card, 88, allows the cameras to communicate in a more intelligent fashion through the network 80. The analog and PTZ cameras interact with the network through the video encoder 78 included in the gateway.
The processor 82, which may be a general-purpose processor or a digital signal processor (DSP), may also be referred to as a central processing unit (CPU). The CPU 72 provides the cameras with increase abilities to interact with the network, as will be discussed below. In addition, a coder/decoder (codec) 84 may be included in the processor, or may be a dedicated chip. The codec would allow the MJPEG or JPEG data from the cameras and allow it to be transcoded into MPEG 2-4, H.263 or H.264 video streams, allowing other devices, such as video phones, personal digital assistants, and personal computers to view the video stream.
The video gateway may have control over the network-capable cameras. As will be discussed with regard to
In addition, if the video gateway were being used in conjunction with a voice over data networks implementation, the video gateway 70 may include a voice gateway 86. The voice gateway may have a voice network device such as a hub or private-branch exchange (PBX) 94, and a number of phones such as 96 in communication with it.
Referring now to
Once the video gateway 70 begins receiving the data from the camera at 114, the video gateway registers the camera 116. This may involve registering a dial plan for the camera under H.323, or a registration request under SIP. Some network-capable cameras support DHCP, but none of them support registration. Once the video gateway registers the camera at 114, it provides identification numbers for the cameras at 118. This may be akin to a telephone number, such that a user on the network may ‘dial’ the camera and access its image stream from across the network. Alternatively, or in addition, the camera may be provided an IP address or alias to allow other devices on the network to identify and communicate with the camera. If the video gateway is also functioning as a voice gateway, phone numbers for the phones using the gateway will also be registered.
With the increase intelligence in the video gateway, it is possible to control access to the video stream. For example, only members of a particular group, such as a closed users group (CUG), may be allowed to access the video from a particular camera. A user that is a member of the group, such as security personnel or the facility manager may be granted access, either by user identification/password, or identification of a calling unit.
Returning to
With the increase capabilities provided by the video gateway, it is possible for other devices on the network to directly contact the camera and allow the video stream to be accessed. Access may include viewing the stream, such as on monitor 100, or accessing the stream for storage, such as by DVR 102. As mentioned previously, a user could use a telephone, such as video phone 98, to access the video stream from anywhere on the network.
For some applications, it may be desirable for a user to access a camera in a wireless fashion. For example, security personnel on foot patrol may desire to view a stream from a camera across the facility. They may be granted wireless access from a wireless device such as a wireless-equipped personal digital assistant (PDA) 106, through a wireless access point 104. The access will more than likely be secured and authenticated, such as through encryption, etc., to ensure that the video stream is not susceptible to hijack or hacking.
In addition, the video gateway may provide the ability to change the configuration or operation of the cameras via other devices on the network. Pan/tilt/zoom control may be enabled through a user interface provided via a web interface, or through a phone keypad, where a particular number may correspond to a command, such a pan right, pan left, tilt up, tilt down, zoom in, zoom out, etc.
Thus, although there has been described to this point a particular embodiment for a method and apparatus to provide a video surveillance network using a data network, it is not intended that such specific references be considered as limitations upon the scope of this invention except in-so-far as set forth in the following claims.