VIRAL VECTORS

Abstract
The present disclosure provides a cohort of novel viral genome derived products for use, for example, in medicine, as a medicaments, as expression vectors and as adjuvants. The disclosed viral genome derived products may be derived from members of the Paramyxoviridae Family which contains a wide variety of vertebrate viruses, including mumps, measles and human parainfluenza viruses.
Description
FIELD

The present disclosure provides viral vectors with therapeutic utility and a use in the generation and expression of recombinant proteins.


BACKGROUND

Virus can be modified for use as vectors to deliver therapeutic compounds to cells and other systems. Vectors based on PIV5 are useful as the virus is able to infect human cells but is not known to cause any disease. Moreover, the virus possesses a non-segmented negative strand RNA genome and does not move through a DNA phase when replicating in a cell—this avoids the possibility of viral genes being integrated into the host genome.


There is a need for improved vectors which can be used as adjuvants and which can be used in medicine to treat diseases like cancer.


SUMMARY

The present disclosure provides a cohort of novel viral genome derived products for use:

    • in medicine;
    • as a medicament;
    • as expression vectors;
    • in the delivery of therapeutic proteins;
    • in the production of recombinant/therapeutic proteins;
    • as adjuvants;
    • as vaccine adjuvants;
    • in the induction of immune responses, including, for example innate immune responses;
    • in the treatment and/or prevention of acute or chronic diseases and infections; and in the treatment and prevention of cancer.


The term ‘adjuvant’ may be applied to any product, molecule or compound which is able to augment or modulate an immune response to another product, molecule or compound. For example, adjuvants are often used to improve immune responses to antigens, wherein those antigens are, by themselves, poorly immunogenic or not capable of eliciting the correct immune response. An adjuvant may be administered together with the product (e.g. an antigen), molecule or compound which is to be subject to a modulated or augmented (for example improved) immune response. An adjuvant may be administered with a vaccine (as a ‘vaccine adjuvant’) to improve the immune response to the vaccine.


It should be noted that while this application refers to various viral genome derived products for use in the treatment and/or prevention of certain diseases, conditions and/or disorders, the disclosure extends to methods of treating those same diseases, conditions and/or disorders. Said methods may (generally) comprise steps in which subjects in need of treatment are administered any one or more of the viral genome derived products described herein. The subjects may be administered therapeutically effective amounts of any of the viral genome derived products described herein.


Moreover, throughout this specification, the term “comprising” is used to denote that the disclosed embodiments and teachings “comprise” the noted features and as such, may also include other features. However, the term “comprising” may also encompass embodiments and teachings which “consist essentially of” the relevant features or “consist of” the relevant features.


The disclosed viral genome derived products may be derived from members of the Paramyxoviridae Family. The Paramyxoviridae Family contains a wide variety of vertebrate viruses, including mumps, measles and human parainfluenza viruses.


In one teaching, the disclosed viral genome derived products are derived from the parainfluenza virus 5 (PIV5) genome. As such, the disclosed viral genome derived products are all PIV5 derived products.


PIV5 has a non-segmented, negative-sense RNA genome of 15,246 nucleotides (nt) containing seven tandemly arranged genes, that encode eight proteins, flanked by 3′-leader (Le) and 5′-trailer (Tr) sequences (at the genome ends). From the 3′-leader sequence, the genome encodes the nucleocapsid protein (NP), V protein (V), phosphoprotein (P), matrix protein (M), fusion protein (F), small hydrophobic protein (SH), haemagglutinin-neuraminidase (HN) and the large protein (L).


An exemplary PIV5 genome is shown in FIG. 1.


The HN, F and SH proteins protrude through the virus envelope; the HN protein binds the virus to its target cell, and together with the F protein, facilitates virus entry into the cell to initiate the replication process. The matrix protein is located on the inner surface of the virus envelope and plays an essential role in virion assembly. The genomic RNA is encapsidated by NP, forming a flexible helical nucleocapsid complex that is associated with the viral RNA-dependent RNA polymerase complex (vRdRP) consisting of L and P (see FIG. 2).


In view of the above, the disclosure provides a cohort of products derived from parainfluenza virus 5 (PIV5) and the genome thereof. All of the disclosed products may be for use as described above.


In one aspect, the viral genome derived product is a PIV5 vector. A PIV5 vector may comprise one or more wild-type PIV5 genes and a heterologous nucleic acid sequence for expression. Conversely, a PIV5 vector may (relative to a wild-type PIV5 genome) lack one or more wild-type PIV5 genes and comprise a heterologous nucleic acid sequence for expression.


The PIV5 vectors described herein may be used to generate recombinant proteins and/or to deliver therapeutic proteins.


The described PIV5 vectors are advantageous because:

    • They are capable of achieving high levels of heterologous protein expression in infected cells;
    • They can establish “persistent infections”-in other words, cells remain persistently infected;
    • Persistently infected cells contain many genomes, which if activated may lead to significantly enhanced expression;
    • Expression of multiple heterologous proteins in the same cell;
    • No problems with (cryptic) splicing of mRNA etc;
    • Can make vectors which do not produce infectious virus; and. Once vectors have been generated easy to use widely in vitro and in vivo.


By way of example, a PIV5 vector of this disclosure may lack, relative to a wild type PIV5 genome, one or more of the wild-type PIV5 gene(s). In one teaching a PIV5 vector of this disclosure may be characterised by, relative to a wild-type PIV5 genome, the full or partial deletion of any one or more of the wild-type genes.


In one teaching, a PIV5 vector of this disclosure may be characterised by the (functional) deletion of:

    • the F gene; and/or
    • the M gene; and/or
    • the P gene; and/or
    • the L gene; and/or
    • the HN gene.


The disclosed PIV5 vectors may be classed as single cycle vectors. Thus, a PIV5 genome derived product of this disclosure may be a single cycle vector (i.e. a PIV5 single cycle vector).


In one teaching, a PIV5 single cycle vector lacks, as compared to the wild-type PIV5genome, a functional copy of one or more of the wild-type PIV5 genes.


Without wishing to be bound by theory, although a single cycle vector can infect cells it cannot make infectious virus particles unless the missing protein(s) (encoded by the (functionally) deleted genes) are provided in trans during its replication. To facilitate this, helper cell-lines capable of (inducibly) expressing the missing protein(s) can be used. Expression of the missing protein may be inducible; for example expression may be induced by contact with, or addition of, an inducing agent.


In one teaching, a PIV5 vector of this disclosure may, relative to a wild-type PIV5 genome, comprise a (functionally) deleted F gene. A PIV5 vector which lacks the F gene may be referred to as single cycle vector and may be designated PIV5ΔF. While a PIV5ΔF vector can infect cells, it cannot make infectious virus particles unless the missing protein(s) (encoded by the (functionally) deleted genes) are provided during its replication. To facilitate this, helper cell-lines capable of (inducibly) expressing the missing protein(s) can be used. The helper cells in effect provide the missing protein(s) (encoded by the (functionally) deleted genes) in trans during replication. Without wishing to be bound by theory, it is suggested that PIV5ΔF vectors may be particularly useful where a high viral titre is preferred—for example for use in raising immune responses, inducing immune responses and/or for application in vaccine relate methods.


In one teaching, a PIV5 vector of this disclosure may, relative to a wild-type PIV5 genome comprise a (functionally) deleted M and F genes (thereby rendering it unable to express the M and F). A PIV5 vector which lacks the M and F genes may be referred to as single cycle vector and may be designated PIV5ΔM/F. As stated, a PIV5ΔM/F vector may be rescued by a helper cell line that expresses the missing (or deleted/functionally deleted) wild-type PIV5 genes in trans.


In one teaching, a PIV5 vector of this disclosure may, relative to a wild-type PIV5 genome comprise a (functionally) deleted M gene, F gene and HN gene (thereby rendering it unable to express the M, F and HN proteins). A PIV5 vector which lacks the M gene, F gene and HN gene may be referred to as single cycle vector and may be designated PIV5ΔM/F/HN. As stated, a PIV5ΔM/F/HN vector may be rescued by a helper cell line that expresses the missing (or deleted/functionally deleted) wild-type PIV5 genes in trans. In another teaching, a PIV5 vector of this disclosure may, relative to a wild-type PIV5 genome comprise (functionally) deleted M gene, F gene, P gene, L gene and HN gene (thereby rendering it unable to express the M, F, P, L and HN proteins). A PIV5 vector which lacks the M, F, P, L and HN gene may be referred to as single cycle vector and may be designated PIV5ΔM/F/P/L/HN. As stated, a PIV5ΔM/F/P/L/HN vector may be rescued by a helper cell line that expresses the missing (or deleted/functionally deleted) wild-type PIV5 genes in trans.


In a further teaching, a PIV5 vector of this disclosure may comprise, consist of or consist essentially of, a functional NP gene. Where the PIV5 vector comprises, consist of or consists essentially of a functional copy of the NP gene, any of the other (missing, deleted and/or functionally deleted) wild type PIV5 genes may (as described below) be provided in trans—for example by a helper cell which expresses those missing wild-type PIV5 genes (see description below). Without wishing to be bound by theory, it is suggested that by retaining the NP gene within the vector, the NP concentration builds up inside the helper cell and this facilitates the switch from “transcription mode” to a “replication mode”.


Any of the PIV5 vectors/single cycle vectors described herein, including for example PIV5ΔF and any PIV5 vector which lacks the M, F and HN genes, may further comprise a heterologous sequence for expression. The heterologous sequence may encode a therapeutic protein or a recombinant protein.


As such, the disclosure provides a PIV5 vector or PIV5 single cycle vector as described herein, comprising a heterologous sequence for expression in a cell, wherein relative to the wild-type PIV5 genome, the vector lacks one or more (functional) copies of a wild-type gene.


Without wishing to be bound by theory, it is suggested that the PIV5 vectors disclosed herein can establish persistent infections.


In order to make infectious particles, the vectors described herein, including the PIV5ΔF vectors and any PIV5ΔM/F/HN or PIV5ΔM/F/P/L/HN vectors, the missing PIV5 virus proteins may be provided in trans, for example through the use of helper cell lines. In the case of PIV5ΔF, only the F protein need be provided in trans. For PIV5ΔM/F/HN vectors the M, F and HN proteins need to be provided in trans. The present disclosure further provides helper cell lines which express the M and/or F and/or HN proteins (the exact helper cell PIV protein expression profile depending on the features of the corresponding PIV5 vector). These helper cell lines have been successfully used to rescue infectious particles that can in turn be used to infect cells in which the vector persists. Prior art methods of rescuing viral derived vectors may include methods which exploit the transient transfection of plasmids into cells. However, such methods result in a relatively low yield of “infectious” particles. In contrast, the yield infectious particles from a helper cell expressing the F protein is high (a high titre) similar to the wild type virus.


Any of the disclosed PIV5 vector(s)/PIV5 single cycle vector(s) may be used to deliver therapeutic proteins in vivo. Accordingly, disclosed is a method of administering a therapeutic protein, said method comprising administering a PIV5 vector/PIV5 single cycle vector according to this disclosure, which vector comprises a nucleic acid encoding the therapeutic protein for delivery. The method may be for in vivo and in vitro use. Where the method is for in vitro use, the administering step, may be replaced with a step in which a cell is contacted with a PIV5 vector or PIV5 single cycle vector of this disclosure.


The method may further require inducing the expression of the heterologous sequence.


In one teaching, PIV5 vectors of this disclosure and high titre PIV5 vectors, for example PIV5ΔF, can be grown in helper cell-lines. As stated, a helper cell line may (heterologously) express (via induction) the proteins which the PIV5 vector is unable to express. By way of example, where the vector is a PIV5ΔF vector, a helper cell may express the PIV5 F protein. This generates an infectious PIV5ΔF which can then be used to infect other cells (both in vitro and in vivo) to produce the required recombinant protein (for example an antibody). However, due to the lack of F protein expression, no infectious virus will be produced in these cells.


By way of a further example, where the vector lacks the M, F and HN genes, a helper cell may express the PIV5 M, F and HN proteins. This will generate an infectious PIV5 vector which can then be used to infect other cells (both in vitro and in vivo). However, due to the lack of M, F and HN protein expression, no infectious virus will be produced in these cells. In one teaching a vector of this disclosure (for example an Indel expression vector as described herein) expressing the relevant PIV5 viral protein (for example the F protein of PIV5) can be used as an alternative to a helper cell line.


A single cycle vector according to this disclosure, including, for example a PIV5ΔF vector is safe to use in any cell or system which does not (heterologously) express the necessary PIV proteins, for example (in the case of the PIV5ΔF vector), the PIV5 F protein. Indeed a single cycle vector according to this disclosure, including, for example a PIV5ΔF vector, is safe for use in patients with underlying health conditions and/or with cancer.


The single cycle vectors of this disclosure can be designed with an acute or persistent phenotype.


In another aspect, the invention provides a method of making a single cycle vector, said method comprising deleting or functionally deleting the F protein from the PIV genome.


This disclosure may provide helper cell lines. These helper cell lines may be engineered to express (potentially by induction) one or more of the PIV5 genes missing from the PIV vector. Thus the helper cell provides the PIV5 vector with the missing genes in trans.


A helper cell line may comprise any cell which is permissive to a PIV5 virus. For example, the helper cell may be a Vero cell.


A helper cell may express one or more PIV5 proteins. The PIV5 protein expression of the helper cell may correspond to the proteins that the PIV5 vector does not express. For example, a helper cell of this disclosure may be modified to express:

    • the PIV5 F protein; and/or
    • the PIV5 M protein; and/or
    • the PIV5 HN protein.


The disclosure provides a method of replicating a PIV5 vector of this disclosure, said method comprising culturing or replicating a PIV5 vector in a helper cell of this disclosure.


The disclosure provides a method of replicating a PIV5ΔF vector of this disclosure, said method comprising culturing or replicating a PIV5ΔF vector in a helper cell which expresses the PIV5 F protein.


The disclosure provides a method of replicating a PIV5ΔM/F/HN vector of this disclosure, said method comprising culturing or replicating a PIV5ΔM/F/HN vector in a helper cell which expresses the PIV5 M, F and HN protein.


In a further aspect the viral genome derived product is disabled helper paramyxovirus.


The viral genome derived product is disabled a defective interfering (DI) particle. DIs are subgenomic and often contain extensive deletions that render the DIs unable to complete a full replication cycle in the absence of a coinfecting, non-defective “helper” virus.


In one teaching, the viral genome derived product is a defective interfering (DI) particle derived from:

    • a Paramyxovirus;
    • PIV5; or
    • PIV5ΔF.


DIs derived from any of the above sources may be referred to as “copyback” DIs or “internal deletion” (Indel) DIs.


As such, this disclosure provides PIV5 derived copyback DIs.


The disclosure further provides PIV5 derived internal deletion (Indel) DIs.


In a copyback DI, the 3′ genomic promoter has been replaced by a sequence complementary to the 5′ antigenomic promoter; this is due to template switching from the antigenome to the nascent strand during synthesis of genomic RNA; as a consequence, the copyback DI cannot be transcribed. The termini of copyback DIs are thus complementary and form a dsRNA stem-loop structure when SDS treatment is used to dissociate the RNA genomes from encapsidating NP protein.


A PIV5 derived copyback DI of this disclosure may comprise the 3′ replication promoter of the PIV5 genome, duplicated and in the opposite orientation together with some of the L gene sequence.


A DI according to this disclosure may be obtainable by:

    • (i) passaging a wild type PIV5 in a cell; or
    • (ii) passaging:
      • a single cycle vector of this disclosure; and/or
      • a PIV5ΔM; and/or
      • a PIV5ΔF/M; and/or
      • a PIV5ΔF;
      • in a relevant helper F cell.


The term ‘relevant helper F cell’ may comprise any cell which expresses the necessary missing PIV5 wild type genes. For a PIV5ΔM vector a helper cell may express the PIV5 M gene in trans (to provide the PIV5 M protein); for a PIV5ΔF/M vector, a helper cell may express the PIV5 F and M genes in trans (to provide the PIV5 F and M proteins) and for a PIV5ΔF vector, a helper cell may express the PIV5 F gene (to provide the PIV5 F protein) in trans.


In one teaching, the passaging may be done at a high multiplicity of infection.


Additionally or alternatively (and again without being bound by theory), it has been noted that a copyback DI may be best or most efficiently produced using a PIV5 virus/vector (including any vector of this disclosure-for example a single cycle vector; a PIV5ΔM, a PIV5ΔF/M or a PIV5ΔF vector) having an acute but not persistent phenotype. It is noted that a switch between a virus/vector with a persistent to acute phenotype may be achieved through the use of a single nucleotide change (resulting in single or point amino acid changes). For example, the inventors note a serine to phenylalanine change at position 157 in the PIV5 P protein (as encoded by the PIV5 P gene) can change a PIV5 virus/vector from having a persistent phenotype to having an acute/lytic phenotype (a limited number of other changes can achieve the same switch). This is in contrast to methods or uses for the preparation of cell lines which constitutively produce recombinant proteins, those cell lines may comprise vectors (of this disclosure) with a persistent phenotype.


Accordingly, a DI according to this disclosure may be obtainable by:

    • (i) passaging a wild type PIV5 with an acute phenotype in a cell; or
    • (ii) passaging:
      • a single cycle vector with an acute phenotype of this disclosure; and/or
      • a PIV5ΔM with an acute phenotype; and/or
      • a PIV5ΔF/M with an acute phenotype; and/or
      • a PIV5ΔF with an acute phenotype;
    • in a relevant helper F-expressing cells.


DIs obtainable by the above-described passaging method, may comprise copyback DIs.


A PIV5 derived copyback DI obtainable by the disclosed method may comprise the 3′ replication promoter of the PIV5 genome, duplicated and in the opposite orientation together with some of the L gene sequence.


A copy back DI of this disclosure may act as a potent inducer of: innate immune responses, aspects and features of the innate immune system and, for example, IFN.


A copyback DI of this disclosure may be:

    • (i) for use in medicine;
    • (ii) for use as medicaments;
    • (iii) for use in the treatment and/or prevention of acute or chronic diseases and infections; and
    • (iv) for use in the treatment and prevention of cancer.
    • (v) for use as an adjuvant;
    • (vi) for use as a vaccine adjuvant;
    • (v) for use in modulating an immune response and/or an innate immune response.


The disclosure further provides a method of modulating, improving or augmenting the immune response to an antigen or vaccine, said method comprising immunising a subject with the vaccine or antigen and a DI of this disclosure.


Moreover, the disclosure provides a method of treating or preventing:

    • acute or chronic diseases and infections; or
    • cancer;
    • said method comprising administering a subject in need thereof, a therapeutically effective amount of a DI/copyback DI of this disclosure.


The term ‘subject’ may refer to any human or animal subject having or suspected of having any relevant disease, condition, infection or cancer. The term ‘subject’ may further embrace any human or animal subject predisposed or susceptible to any relevant disease, condition, infection or cancer.


It should be noted that Copyback DIs do not express any viral proteins (and cannot currently be used as expression vectors); they are generated by mistakes during virus replication. Therefore, and without wishing to be bound by theory, it is suggested that PIV5 copy-back DIs are safe to use in vivo, including in immunosuppressed individuals.


A PIV5 copy-back DI of this disclosure may be for use in the induction of an innate immune response both in vitro and in vivo. Without wishing to be bound by theory, the engagement of a PIV5 derived copy-back DI with pathogen recognition receptors (PRRs) activates a number of cellular kinases and transcription factors (e.g., IRF3, NF-κB) that regulate the expression of several cytokines, including, for example, IFNs, tumour necrosis factor (TNF), and interleukin 6 (IL-6), and can stimulate DC maturation and enhance antigen specific immunity to pathogen associated antigens.


In another aspect the viral genome derived product is an Indel vector (this may also be referred to as an Indel DI).


Indel vectors do not express any viral (PIV5) proteins but retain the 3′ and 5′ ends of the virus genome (with the Le and Tr sequences) and therefore possess at least the transcription and replication signals essential for virus transcription and replication.


Transcription and replication of the disclosed Indel vectors is dependent on additional viral proteins being expressed either in trans, for example in helper cell-lines, or by co-infection with helper viruses including, for example helper virus products derived from PIV5.


A potential advantage of such vectors is that they have a very high coding capacity. For example, the coding capacity of any of the PIV5 vectors described herein may include heterologous sequences in the region of 16-20 kb. One of skill will appreciate that the size of a heterologous insert may depend on the number and size of the PIV5 genes retained.


The disclosed ‘Indel’ vectors may be to express heterologous sequences (e.g. genes, or combination of genes) at sizes up to, for example 16-20 kb.


Thus in one teaching, the viral genome derived product is an Indel vector derived from a Paramyxovirus, for example, PIV5.


PIV5 derived Indel vector of this disclosure may comprise a nucleic acid sequence which, relative to a wild-type PIV5 genome, lacks all of the NP, P/V, M, F, SH, HN and/or L genes. As stated, a PIV5 Indel vector may retain (or comprise) the 3′ Le and 5′ Tr sequences of PIV5 viral genome (i.e. the ends comprising the Le and Tr sequences).


A PIV5 Indel vector may further comprise one or more heterologous nucleic acid sequences. The heterologous sequence(s) may encode recombinant and/or therapeutic proteins. The heterologous sequence(s) may be for expression in a cell. The heterologous sequence(s) may be inducibly expressible. A PIV5 derived Indel vector of this disclosure may comprise, or further comprise a nucleic acid sequence encoding a heterologous protein. It should be understood that the Indel vectors of this disclosure can be modified to receive almost any heterologous sequence encoding almost any sort of heterologous protein. For example, the Indel vectors of this disclosure may comprise, for example, heterologous nucleic acid sequences which encode any one or more of the following categories of protein:

    • antigens (including viral and/or bacterial antigens);
    • tumour specific antigens;
    • multivalent CTL antigens;
    • recombinant proteins (for expression);
    • components of the immune system;
    • immunomodulatory compounds;
    • antibodies (including fragments and/or parts thereof);
    • cytokines.


By way of example only, a PIV5 derived Indel vector of this disclosure may comprise a nucleic acid sequence encoding a SRAS CoV-2 antigen for example the SRAS-CoV-2 spike protein.


In a further example, the PIV5 derived Indel vector of this disclosure may comprise a nucleic acid sequence encoding interferon (IFN).


In a further teaching, a PIV5 derived Indel vector of this disclosure may comprise a nucleic acid sequence encoding all or part of an antibody. The PIV5 derived Indel vector may be modified to express the heavy and/or light chain of an antibody or any fragment(s) thereof. In one teaching, the PIV5 derived Indel vector may be modified to include nucleic acid encoding the heavy and/or the light chain(s) of the humanised anti-V5 mAb.


A PIV5 derived Indel vector of this disclosure may comprise or further comprise an internal ribosome entry site (IRES).


The PIV5 derived Indel vector of this disclosure may comprise or further comprise a nucleic acid sequence encoding a heterologous reporter moiety, for example an optically detectable reporter moiety such as a fluorescent protein. Examples may include nucleic acid sequences which encode fluorescence proteins such as mCherry and/or GFP.


A PIV5 derived Indel vector of this disclosure may comprise, or further comprise a nucleic acid sequence for use in a method of selection or enrichment. For example, A PIV5 derived Indel vector of this disclosure may comprise, or further comprise an antibiotic resistance gene. Examples may include genes which encode an enzyme which inactivates or neutralises an antibiotic. A PIV5 derived Indel vector of this disclosure may comprise, or further comprise a nucleic acid sequence encoding enzymes which provide blasticidine and/or puromycin resistance.


A PIV5 derived Indel vector of this disclosure may comprise or further comprise a nucleic acid encoding a reporter gene, for example an optically detectable moiety, a fluorescent protein. Examples may include nucleic acid sequences which encode fluorescence proteins such as mCherry and/or GFP.


A PIV5 derived Indel vector of this disclosure may comprise or further comprise an internal ribosome entry site (IRES).


An Indel DI of this disclosure may find application as an expression vector for in vitro and in vivo use. An Indel DI of this disclosure may be used in the production of recombinant/therapeutic proteins.


Without wishing to be bound by theory, Indel DIs do not encode any viral proteins and are thus unable to replicate or be packaged into infectious particles without the co-expression of the appropriate viral replication and/or structural proteins. These co-expressed and essential proteins can be provided by:

    • coinfecting with (non-defective) “helper” virus;
    • coinfection with mini-replicon vectors that express the replication proteins;
    • transient transfection with expression plasmids that express the required viral proteins; and/or
    • the provision of making helper cell-lines which express the appropriate viral proteins.


Helper cell-lines which inducibly co-express, for example, any of the M, F, NP, V, P, L and/or HN PIV5 proteins may facilitate the replication of any of the disclosed Indel DIs—in turn this will facilitate the expression of heterologous proteins in the absence of co-infecting virus.


The disclosure further provides helper cell-lines which inducibly co-express all the PIV5 viral proteins. Cell lines of this type may facilitate the replication and packaging of DIs in the absence of co-infecting virus.


The present disclosure provides the disclosed copyback DIs for use in (directly or indirectly) modulating gene expression. The expression of one or more of the following genes 49 genes (see table 1) may be modulated by a copyback DI of this disclosure. The modulation may be direct modulation or indirect modulation occurring via the action of multiple pathways and/or cytokines in response to the presence of a copyback vector of this disclosure.


The modulated gene expression may occur in a cell, for example a cancer cell. The modulated gene expression may occur in an adenocarcinomec human alveolar basal epithelial cell, for example an A549 cell.










TABLE 1





No
Gene
















1
KCNJ18


2
FAM45A


3
RSAD2


4
CYP2D6


5
IFNL2


6
TNFSF12-TN


7
IFNL1


8
C10orf32-AS


9
IFIT2


10
PLEKHA4


11
CH25H


12
IFNL4


13
DHX58


14
OASL


15
IFIT1


16
IFNB1


17
HCAR2


18
OAS2


19
FSBP


20
LRRN3


21
SAMD9L


22
IFIH1


23
XAF1


24
IFIT3


25
MX1


26
HCAR


27
GBP1


28
LRP2


29
TAC3


30
RAET1L


31
MX2


32
TNFSF10


33
IL6


34
CMPK2


35
GBP4


36
IDO1


37
CCL5


38
SAMD9


39
DDX58


40
ZC3HAV1


41
IFI27


42
IFI44/IFI44L


43
TNFSF13B


44
ISG15


45
HERC5


46
FAM65B


47
IFI27


48
IFNL3


49
DDX60









The present disclosure further provides a method of modulating the expression of any one or more of the above disclosed genes, said method comprising contacting the gene the expression of which is to be modulated, with a disclosed copyback DI.


The present disclosure further provides a (in vitro or in vivo) method of modulating the expression of any one or more of the above disclosed genes in a cell (for example a cancer cell, an adenocarcinoma human alveolar basal epithelial cell or an A549 cell), said method comprising contacting the cell with a disclosed copyback DI.


The term modulation may embrace any up or down regulation of the expression of any of the genes listed above. For example, the disclosed copyback DIs may be used to upregulate the expression of any one or more of the above listed genes.


Without wishing to be bound by theory, the disclosed copyback DIs may initiate innate signalling through the RIG-I/mda5 pathway; this may lead to the transcriptional activation of many cellular immune genes in addition to IFN genes.







DETAILED DESCRIPTION

The present invention will now be disclosed by reference to the following Figures which show:



FIG. 1: The Parainfluenza virus type 5 genome: PIV5 has a non-segmented, negative-sense RNA genome of 15,246 nucleotides (nt) containing seven tandemly arranged genes, that encode eight proteins, flanked by 3′-leader and 5′-trailer sequences at the genome ends. From the 3′-leader sequence, the genome encodes the nucleocapsid protein (NP), V protein (V), phosphoprotein (P), matrix protein (M), fusion protein (F), small hydrophobic protein (SH), haemagglutinin-neuraminidase (HN), and the large protein (L).



FIG. 2: Schematic diagram of the PIV5 virus particle (virion). The PIV5 genomic RNA is encapsidated by NP, forming a flexible helical nucleocapsid complex that is associated with the viral RNA-dependent RNA polymerase complex (vRdRP) consisting of L and P. Also associated with the nucleocapsid is the viral interferon antagonist, the V protein. The nucleocapsid is surrounded by viral envelope, through which protrude the HN, F and SH proteins; located on its inner surface is the matrix protein.



FIG. 3. Vero cells were or were not infected with PIV5.mCherry at a high moi and images taken 24 h p.i.



FIG. 4: The genomic structure of internal deletion and copyback DIs. 4b: In copyback DIs the 3′ replication promoter of the virus genome is duplicated (in the opposite orientation) together with some of the L gene sequence.



FIG. 5: Genome structure of PIV5ΔF compared to wild type (wt) PIV5.



FIG. 6: Inducible expression of the PIV-5 F protein by addition of doxycycline (Dox) to the culture medium of BSRT7.F helper cell-line (note: in this figure, the cells are stained red, not because they express mCherry, but because the expressed F protein was visualized by immunofluorescence using a Texas Red conjugated secondary antibody).



FIG. 7: Replication of rPIV5ΔF.mcherry in BSRT7.F helper cell lines. Helper cells expressing F were infected at a low multiplicity of infection and images taken at 1 and 3 days p.i. Note the increase in number of infected cells between 1 and 3 days post infection. The virus does not spread in cells unless they express F.



FIG. 8: A549pr(IFN-β).GFP reporter cells were infected with preparations of PIV5.mCherry containing low (vM0) or high (vM5) numbers of copyback DIs. Images of mCherry and GFP expression were taken at 24 h p.i. (Note expression of GFP is under the control of the IFN-β promoter.)



FIG. 9: As described for FIG. 8 except that the A549pr(IFN-β).GFP reporter cells were infected with preparations of PIV5ΔF.mCherry containing low (vM0) or high (vM5) numbers of copyback DIs.



FIG. 10: A549 IFN-β reporter cells infected with PIV5 containing high numbers of copyback DIs (see FIGS. 7 and 8) continue to activate innate immune signalling pathways more than 24 days post infection.



FIG. 11: Vero cells persistently infected with wt PIV5.mCherry continue to express mCherry after 6 passages.



FIG. 12: >95% of Hep2 cells persistently infected with PIV5ΔF.mCherry continue to express mCherry at passage 6.



FIG. 13: Cells infected with PIV5ΔF.mCherry make higher levels of mCherry than cells in which expression of mCherry is under a Dox inducible promoter. mCherry expression in a an mCherry inducible cell-line following its induction with Dox and in the same cell-line (in the absence of Dox induction) following with PIV5ΔF.mCherry.



FIG. 14: Example of genome structures of internal deletion vectors for the expression of heterologous/therapeutic proteins, including mCherry, GFP, heavy and light chains of the humanised anti-V5 mAb and interferon-A. Additional possible genes for cloning include tumour specific antigens, multivalent CTL antigens, recombinant proteins etc.



FIG. 15: Detailed genome structures of an internal deletion of vector we constructed for the expression of mCherry (and the spike protein of SARS.Cov2).



FIG. 16: Indel vectors can be rescued by co-infection with wild type (wt) PIV5 and express heterologous proteins as exemplified by expression of mCherry and GFP. Vero cells infected with wt PIV5 and Indel vectors expressing either mCherry or GFP.



FIG. 17: Indel vector expressing the F protein can support the replication of PIV5ΔF.mCherry viruses. Vero cells were co-infected with a low moi of Indel F and PIV5ΔF.mCherry. Note the increase in the number of mCherry positive cells between 1 and 3 days post infection. In the absence of heterologous expression of F by the Indel vector PIV5ΔF.mCherry does to spread from cell to cell.



FIG. 18: Cells can be co-infected with different Indels, thereby potential increasing the number of recombinant proteins expressed in individual cells. Vero cells were co-infected with Indel GFP (blasticidine) and Indel mCherry (puromycin) that had been rescued with wt PIV5. Co-expressing cells were isolated by culturing the co-infected cells in the presence of puromycin and blasticidine.



FIG. 19: Indel vectors constructed for the independent expression of the heavy and light chains of the humanised anti-V5 antibody.



FIG. 20: The humanised anti-V5 antibody produced by the Indel vectors is functional as demonstrated by its ability to immunestaining cells expressing a V5 tagged version of the L (see also FIG. 27). Cells were indirectly stained with the human anti-V5 antibody (red) made by Indel vectors and countered stained with DAPI (blue).



FIG. 21: A cell-lines in which M, F and HN are co-expressed following induction with Dox. Expression of M, F and HN were visualised by immunofluorescence using specific monoclonal antibodies.



FIG. 22: Mini-replicons (ΔM-HN) that express the replication proteins can be used as helper vectors for the rescue of Indel vectors, and can be co-packaged into infectious particles in the M, F and HN cell-line (FIG. 21) to infect other cells. Figure shows the rescue and packaging of mini replicon vector (ΔM-HN)+Indel mCherry (blasticidin) in BSRT7-M/F/HN cells+DOX (3 days post transfection).



FIG. 23: BSRT7-M, F and HN expressing cells infected with ΔM-HN+Indel mCherry vectors produced from cells as described in FIG. 22.



FIG. 24: Hep2.GFP cells infected with ΔM-HN+Indel mCherry (blasticidin) produced from BSRT7-M, F and HN cells. [Note GFP +ve cells that are also positive for mCherry confirm that the mini replicon and Indel.mCherry vectors have been packaged into infectious particle in the BSRT7-M, F and HN cell-line.



FIG. 25: Schematic diagrams of mini-replicon vectors that have, or are being constructed, for the expression of heterologous proteins in vitro and in vivo. Minireplicons expressing mCherry, IFN-λ or anti-V5mAb. Additional possible genes for cloning include tumour specific antigens, multivalent CTL antigens, recombinant proteins etc.



FIG. 26: A549 cells were, or were not, infected with a copyback DI-rich preparation of PIV5 in the presence of cycloheximide. At 6 h post infection the cells were harvested into Trizol and gene expression compared by high throughput sequencing (see also Table 1).



FIG. 27. Expression of the humanised anti-V5 antibody by a PIV5ΔF expression vector. CHO cells were infected at a high moi with PIV5ΔF.Hu anti-V5 and 3 days post infection the culture medium was collected. Panel a) Antibody present in the culture medium was captured on fixed and killed suspension Staphylococcus Cowan strain A and the heavy (IgH) and light (IgL) chains visualised by Coomassie Staining following SDS-PAGE (lane 3: lane 2 St A only, lane 1 molecular weight markers). Panel b), humanised anti-V5 antibody produced by PIV5ΔF. Hu anti-V5 vector is functional. BSRT7.L cells, in which approximately 30% of the cells express a V5-tagged version of the L protein following induction with Dox, was co-stained with human anti-V5 (red) and mouse anti-V5 (purple). Note the co-staining confirms that the human anti-V5 antibody is functional.


This disclosure provides:

    • PIV5ΔF copyback DIs (and similar approaches with other disabled helper paramyxoviruses) for therapeutic purposes, including vaccine adjuvants, cancer therapy and the treatment of certain acute and chronic infectious diseases.
    • PIV5 vectors which are able to establish persistent infections for the production of recombinant proteins in vitro and as means of delivering therapeutic proteins in vivo.
    • provides PIV5 internal deletion mutants as vectors for in vitro and in vivo production of recombinant/therapeutic proteins.
    • Internal DIs which express helper proteins, for example the PIV F protein, as method to complement deletion mutants of PIV5, for example PIV5ΔF, and for delivery of therapeutic proteins/vaccines.


      Generation of PIV5 mCherry Viruses


To further study the molecular biology of PIV5 and its interaction with cells we have generated a number of recombinant viruses that express mCherry facilitating the rapid and easy identification of infected cells (FIG. 3).


Defective Interfering Genomes of PIV5 and Other Paramyxoviruses

Paramyxoviruses, including PIV5, spontaneously generate defective interfering virus genomes (DIs) due to errors during replication. These DIs are subgenomic and contain deletions (often extensive) that render the DIs unable to complete a full replication cycle in the absence of a coinfecting, non-defective “helper” virus. Paramyxovirus DIs may be “internal deletion” or “copyback” and these two types of DIs differ considerably in their genome structures (FIG. 4a/b).


Internal deletion DIs retain the Le and Tr sequences of the genome and therefore possess transcription and replication signals and have been shown to generate viral translation products. In contrast, the 3′ genomic promoter in trailer copyback DI [DI(TrCB)] genomes has been replaced by a sequence complementary to the 5′ antigenomic promoter (and therefore cannot be transcribed) due to template switching from the antigenome to the nascent strand during synthesis of genomic RNA; the termini of DI(TrCB)s are thus complementary and form a dsRNA stem-loop structure when SDS treatment is used to dissociate the RNA genomes from encapsidating NP protein. This structure is thought to be responsible for the ability of DI(TrCB)s to act as potent inducers of IFN.


Copyback DIs are Powerful Inducers of Innate Immune Responses Both In Vitro and In Vivo.

Paramyxoviruses are poor activators of early innate immunity for two main reasons. First, they encode interferon (IFN) antagonists that can both inhibit the activation of the IFN-induction cascade and can block IFN signalling. In the case of PIV5, its IFN antagonist, the V protein, interacts with, and blocks the activity of melanoma differentiation-associated protein 5 (MDA5), as well as binding to the protein called laboratory of genetics and physiology 2 (LGP2) to negatively regulate retinoic acid-inducible gene I (RIG-I). In addition, PIV5 V targets STAT1 for proteasome-mediated degradation to block IFN-signalling.


Paramyxoviruses also tightly control virus transcription and replication, thereby limiting the production of pathogen-associated molecular patterns (PAMPs) that active pathogen recognition receptors (PRRs) and the IFN response. However, during replication paramyxoviruses make mistakes, including the generation of copyback DVGs. Copyback DVGs are powerful inducers of innate immune responses both in vitro and in vivo. DVG engagement of PRRs activates a number of cellular kinases and transcription factors (e.g., IRF3, NF-κB) that regulate (directly or indirectly) the expression of several cytokines, including IFNs, tumour necrosis factor (TNF), and interleukin 6 (IL-6), and can stimulate DC maturation and enhance antigen specific immunity to pathogen associated antigens.


To visualise the ability of viruses to induce innate immune responses we generated a cell-line that expresses GFP following activation of a number of innate intracellular responses, including the IFN pathway. Using this cell-line we showed that the IFN-induction cascade was only activated in a very few cells infected with preparations PIV5 that had few copyback DIs. In contrast, preparations of PIV5 rich in copyback DIs activate the IFN-response in most infected cells (FIG. 5).


Potential Therapeutic Uses of Paramyxovirus Copyback DIs.

Given the ability of paramyxovirus copyback DIs to induce powerful innate immune responses in vivo, it has been suggested that they may be used therapeutically in a variety of clinical settings, for example:

    • i. As vaccine adjuvant
    • ii. For inducing anti-tumour activity in cancer patients
    • iii. Induction of innate immune responses for the treatment of certain acute and persistent infections.


A disabled PIV5 vector of this disclosure may have a range of therapeutic purposes; this includes generation of copyback DIs for use in cancer patients. The fusion (F) protein of PIV5 is essential to initiate entry of the virus into cells for replication to occur. To develop a safe PIV5 vector that could be used in patients with underlying health issues, such as cancer patients, the F gene was deleted from PIV5, generating a vector termed PIV5ΔF (FIG. 5).


Whilst PIV5ΔF can infect cells it cannot make infectious virus particles unless the F protein is provided in trans during its replication. To facilitate this, helper cell-lines are provided. In these cell-lines, the expression of F is induced by the addition of Dox to the tissue culture medium (FIG. 6).


Infectious PIV5ΔF can be readily grown in these F-helper cell-lines (FIG. 7). Such infectious PIV5ΔF can then be used to infect other cells, both in vitro and in vivo. However, no infectious virus will be produced in these cells (due to the lack of expression of F).


Generation of Copyback DIs with wt PIV5 and PIV5ΔF


By passaging wt PIV5 in tissue culture cells, and PIV5ΔF in helper F-expressing tissue culture cells, at high multiplicities of infection, copyback DIs are generated that are powerful inducers of innate immune responses (FIGS. 8 and 9). Preparations of wt PIV5 and PIV5ΔF rich in copyback DIs may be used therapeutically in a number of clinical settings.


PIV5 Vector Uses

The disclosed PIV5 vectors able to establish persistent infections for the production of recombinant proteins in vitro and may be used to delivering therapeutic proteins in vivo.


There are a number of advantages over other (prior art) systems


In Vitro





    • High levels of expression of heterologous proteins in persistently infected cells.

    • Persistently infected cells contain many genomes, which if activated may lead to significantly enhanced expression.

    • Expression of multiple heterologous proteins in the same cell.

    • No problems with (cryptic) splicing of mRNA etc.

    • Can make vectors which do not produce infectious virus.

    • Once vectors have been generated easy to use widely in vitro and in vivo.





In Vivo





    • Potential to establish prolonged/persistent infections in vivo for production of heterologous proteins/long-lasting immunity (vaccines).

    • Can infect most cell types, including immune cells.

    • Can be manipulated to be powerful activators of innate immune responses.

    • No DNA involved in the expression of heterologous proteins in vivo.

    • Can make non replicating vectors for use in immunosuppressed patients.

    • PIV5 has already received regulatory approval for use in humans.





PIV5, unlike most other RNA viruses, can readily and immediately establish persistent infections in tissue culture cells. Persistently infected tissue culture cells can be readily passaged. Cell-lines can be readily made that persistently express heterologous proteins following infection with a variety of recombinant PIV5 viruses, including wt PIV5 and PIV5ΔF, exemplified by expression of mCherry, respectively (see FIGS. 11 and 12).


Development of PIV5 Internal Deletion Mutants as Vectors for In Vitro and In Vivo Production of Recombinant/Therapeutic Proteins.

Internal deletion (Indel) DIs retain the Le and Tr sequences of the genome and therefore possess transcription and replication signals and can therefore be developed as novel expression vectors for in vitro and in vivo production of recombinant/therapeutic proteins. Indel DIs do not encode any viral proteins and are thus unable to replicate or be packaged into infectious particles without the co-expression of the appropriate viral replication and structural proteins. These proteins can be provided by:

    • i. Coinfecting with non-defective “helper” virus.
    • ii. Coinfection with mini-replicon vectors that express the replication proteins
    • iii. Transient transfection with expression plasmids that express the required viral proteins.
    • iv. By making helper cell-lines expressing the appropriate viral proteins, e.g. the F protein facilitating the rescue of PIV5ΔF or other cell-lines which inducibly co-express the M, F, HN, NP, V, P or L proteins or any combinations thereof; these will facilitate the replication of DIs and the expression of heterologous proteins in the absence of co-infecting virus. Cell-lines that inducibly co-express all the viral proteins, will facilitate the replication and packaging of DIs in the absence of co-infecting virus.


      Expression of PIV5 F Protein from an Indel PIV5 Vector.


An Indel expression vector that express the F protein of PIV5 can be used to rescue PIV5ΔF.mCherry and may be an alternative method to using helper cell-lines for the rescue PIV5ΔF vectors for the production of recombinant/therapeutic proteins in vitro and in vivo.


Indel Vectors Can be Replicated in Cells Co-Infected with PIV5 Min-Replicons That Express the NP, P and L Proteins.


Mini replicons can replicate independently of helper virus as they express the replication proteins (NP, P and L) but they cannot be packaged into infectious virus particles as they do not express the structural M, F and HN proteins. However, mini-replicons can be rescued and packaged into infectious particles by transient expression of the M, F and HN proteins. Alternatively, disclosed are cell-lines which inducibly express the M, F and HN proteins (FIG. 21).












Sequences















pBH276ΔF.mCherry


4 configurations:


W3A (shown)


D100


F157


D100/F157


CATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATA


GGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGA


CTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCT


TACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGT


ATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGAC


CGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGC


AGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGT


GGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTC


GGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTG


CAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTG


ACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACC


TAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGA


CAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTG


CCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATG


ATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGA


GCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAG


TAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGC


TCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCAT


GTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGT


TATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCT


GTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCC


GGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTT


CTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCA


CCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAA


TGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATT


ATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAA


CAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCAT


GACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTCGCGCGTTTCGGTGATGACGGTG


AAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGA


CAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTATGCGGCATCAGA


GCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACC


GCATCAGGCTAATACGACTCACTATAGGGACCAAGGGGAAAATGAAGTGGTGACTCAAATCATCGAAG


ACCCTCGAGATTACATAGGTCCGGAACCTATGGCCTTCGTGACCGACCTCGAGTCAGAGTAGTTCAAT


AAGGACCTATCAAGTTTGGGCAATTTTTCGTCCCCGACACAAAAATGTCATCCGTGCTTAAAGCATAT


GAGCGATTCACGCTCACTCAAGAACTGCAAGATCAGAGTGAGGAAGGTACAATCCCACCTACAACACT


AAAACCGGTAATCAGGGTATTTATACTAACCTCTAATAACCCAGAGCTAAGATCCCGGCTTCTTCTAT


TCTGCCTACGGATTGTTCTCAGTAATGGTGCAAGGGATTCCCATCGCTTTGGAGCATTACTCACAATG


TTTTCGCTACCATCAGCCACAATGCTCAATCATGTCAAATTAGCTGACCAGTCACCAGAAGCTGATAT


CGAAAGGGTAGAGATCGATGGCTTTGAGGAGGGATCATTCCGCTTAATCCCCAATGCtCGTTCAGGTA


TGAGCCGTGGAGAGATCAATGCCTATGCTGCACTTGCAGAAGATCTACCTGACACACTAAACCATGCA


ACACCTTTCGTTGATTCCGAAGTCGAGGGAACTGCATGGGATGAGATTGAGACTTTCTTAGATATGTG


TTACAGTGTCCTAATGCAGGCATGGATAGTGACTTGCAAGTGCATGACTGCGCCAGACCAACCTGCTG


CTTCTATTGAGAAACGCCTGCAAAAATATCGTCAGCAAGGCAGGATCAACCCGAGATATCTCCTGCAA


CCGGAGGCTCGACGAATAATCCAGAATGTAATCCGGAAGGGAATGGTGGTCAGACATTTCCTCACCTT


TGAACTGCAGCTTGCCCGAGCACAAAGCCTTGTATCAAATAGGTATTATGCTATGGTAGGGGATGTTG


GAAAGTATATAGAGAATTGTGGAATGGGAGGCTTCTTTTTGACACTAAAATATGCATTAGGAACTAGA


TGGCCCACACTTGCTTTAGCTGCATTTTCAGGAGAGCTAACAAAGCTAAAGTCCCTCATGGCATTATA


CCAGACCCTTGGTGAGCAGGCCCGATATTTGGCCCTATTGGAGTCACCACATTTGATGGATTTTGCTG


CAGCAAACTACCCACTGCTATATAGCTATGCTATGGGAATAGGCTATGTGTTAGATGTCAACATGAGG


AACTACGCTTTCTCCAGATCATACATGAACAAGACATATTTCCAATTGGGAATGGAAACTGCAAGAAA


ACAACAGGGTGCAGTTGACATGAGGATGGCAGAAGATCTCGGTCTAACTCAAGCCGAACGCACCGAGA


TGGCAAATACACTTGCCAAATTGACCACAGCAAATCGAGGGGCAGACACCAGGGGAGGAGTCAACCCG


TTCTCATCTGTCACTGGGACAACTCAGGTGCCCGCTGCAGCAACAGGTGACACACTCGAGAGTTACAT


GGCAGCGGATCGACTGAGGCAGAGATATGCTGATGCAGGCACCCATGATGATGAGATGCCACCATTGG


AAGAGGAGGAAGAGGACGACACATCTGCAGGTCCACGCACTGGACCAACTCTTGAACAAGTGGCCTTG


GACATCCAGAACGCAGCAGTTGGAGCTCCCATCCATACAGATGACCTGAATGCCGCACTGGGTGATCT


TGACATCTAGACAATTCAGATCCCAATCTAAAATTGACATACCTAATTGATTAGTTAGATGGAACTAC


AGTGGATTCCATAAGGTTCCTGCCTACCATCGGCTTTAAAGAAAAAAATAGGCCCGGACGGGTTAGCA


ACAAGCGACTGCCGGTGCCAACAGCGCAATCCACAATCTACAATGGATCCCACTGATCTGAGCTTCTC


CCCAGATGAGATCAATAAGCTCATAGAGACAGGCCTGAATACTGTAGAGTATTTTACTTCCCAACAAG


TCACAGGAACATCCTCTCTTGGAAAGAATACAATACCACCAGGGGTCACAGGACTACTAACCAATGCT


GCAGAGGCAAAGATCCAAGAGTCAACTAACCATCAGAAGGGCTCAGTTGGTGGGGGTGCAAAACCAAA


GAAACCGCGACCAAAAATTGCCATTGTGCCAGCAGATGACAAAACAGTGCCCGGAAAGCCGATCCCAA


ACCCTCTATTAGGTCTGGACTCCACCCCGAGCACCCAAACTGTGCTTGATCTAAGTGGGAAAACATTA


CCATCAGGATCCTATAAGGGGGTTAAGCTTGCGAAATTTGGAAAAGAAAATCTGATGACACGGTTCAT


CGAGGAACCCAGAGAGAATCCTATCGCAACCAGTTCCCCCATCGATTTTAAGAGGGGCAGGGATACCG


GCGGGTTCCATAGAAGGGAGTACTCAATCGGATGGGTGGGAGATGAAGTCAAGGTCACTGAGTGGTGC


AATCCATCCTGTTCTCCAATCACCGCTGCAGCAAGGCGATTTGAATGCACTTGTCACCAGTGTCCAGT


CACTTGCTCTGAATGTGAACGAGATACTTAATACAGTGAGAAATTTGGACTCTCGGATGAATCAACTG


GAGACAAAAGTAGATCGCATTCTCTCATCTCAGTCTCTAATCCAGACCATCAAGAATGACATAGTTGG


ACTTAAAGCAGGGATGGCTACTTTAGAAGGAATGATTACAACTGTGAAAATCATGGACCCGGGAGTTC


CCAGTAATGTTACTGTGGAAGATGTACGCAAGACACTAAGTAACCATGCTGTTGTTGTGCCAGAATCA


TTCAATGATAGTTTCTTGACTCAATCTGAAGATGTAATTTCACTTGATGAGTTGGCTCGACCAACTGC


AACAAGTGTTAAGAAGATTGTCAGGAAGGTTCCTCCTCAGAAGGATCTGACTGGATTGAAGATTACAC


TAGAGCAATTGGCAAAGGATTGCATCAGCAAACCGAAGATGAGGGAAGAGTATCTCCTCAAAATCAAC


CAGGCTTCCAGTGAGGCTCAGCTAATTGACCTCAAGAAAGCAATCATCCGCAGTGCAATTTGATCAAG


AAACACCCAATTACACTACACTGGTATGACACTGTACTAACCCTGAGGGTTTTAGAAAAAACGATTAA


CGATAAATAAGCCCGAACACTACACACTACCTGAGGCAGCCATGCCATCCATCAGCATTCCCGCAGAC


CCCACCAATCCACGTCAATCAATAAAAGCGTTCCCAATTGTGATCAACAGTGATGGGGGTGAGAAAGG


CCGCTTGGTTAAACAACTACGCACAACCTACTTGAATGACCTAGATACTCATGAGCCACTGGTGACAT


TCATAAATACCTATGGATTCATCTACGAACAGGATCGGGGGAATACCATTGTCGGAGAGGATCAACTT


GGGAAGAAAAGAGAGGCTGTGACCGCTGCAATGGTTACCCTTGGATGTGGGCCTAATCTACCATCATT


AGGGAATGTCCTGGGACAACTGAGGGAATTCCAGGTCACTGTTAGGAAGACATCCAGCAAAGCGGAAG


AGATGGTCTTTGAAATTGTTAAGTATCCGAGAATATTTCGGGGTCATACATTAATCCAGAAAGGACTA


GTCTGTGTCTCCGCAGAAAAATTTGTTAAGTCACCAGGGAAAATACAATCTGGAATGGACTATCTCTT


CATTCCGACATTTCTGTCAGTGACTTACTGTCCAGCTGCAATCAAATTTCAGGTACCTGGCCCCATGT


TGAAAATGAGATCAAGATACACTCAGAGCTTACAACTTGAACTAATGATAAGAATCCTGTGTAAGCCC


GATTCGCCACTTATGAAGGTCCATACCCCTGACAAGGAGGGAAGAGGATGTCTTGTATCAGTATGGCT


GCATGTATGCAACATCTTCAAATCAGGAAACAAGAATGGCAGTGAGTGGCAGGAATACTGGATGAGAA


AGTGTGCTAACATGCAACTTGAAGTGTCGATTGCAGATATGTGGGGACCAACTATCATAATTCATGCC


AGAGGTCACATTCCCAAAAGTGCTAAGTTGTTTTTTGGAAAGGGTGGATGGAGCTGCCATCCACTTCA


CGAAGTTGTTCCAAGTGTCACTAAAACACTATGGTCCGTGGGCTGTGAGATTACAAAGGCGAAGGCAA


TAATACAAGAGAGTAGCATCTCTCTTCTCGTGGAGACTACTGACATCATAAGTCCAAAAGTCAAAATT


TCATCTAAGCATCGCCGCTTTGqGAAATCAAATTGGGGTCTGTTCAAGAAAACTAAATCACTGCCTAA


CCTGACGGAGCTGGAATGACTGACCTCTAATCGAGACTACACCGCCGCAAACTATAGGTGGGTGGTAC


CTCAGTGATTAATCTTGTAAGCACTGATCGTAGGCTACAACACACTAATATTATCCAGATTAGAGAGC


TTAATTAGCTCTGTATTAATAATAACACTACTATTCCAATAACTGGAATCACCAGCTTGATTTATCTC


CAAAATGATTCAAAGAAAACAAATCATATTAAGACTATCCTAAGGACCGAACCTAGTATTGAAAGAAC


CGTCTCGGTCAATCTAGGTAATCGAGCTGATACCGTCTCGGAAAGCTCAAATCATGCTGCCTGATCCG


GAAGATCCGGAAAGCAAGAAAGCTACAAGGAGAGCAGGAAACCTAATTATCTGCTTCCTATTCATCTT


CTTTCTGTTTGTAACCTTCATTGTTCCAACTCTAAGACACTTGCTGTCCTAACACCTGCTATAGGCTA


TCCACTGCATCATCTCTCCTGCCATACTTCCTACTCACATCATATCTATTTTAAAGAAAAAATAGGCC


CGAACACTAATCGTGCCGGCAGTGCCACTGCACACACAACACTACACATACAATACACTACAATGGTT


GCAGAAGATGCCCCTGTTAGGGCCACTTGCCGAGTATTATTTCGAACAACAACTTTAATCTTTCTATG


CACACTACTAGCATTAAGCATCTCTATCCTTTATGAGAGTTTAATAACCCAAAAGCAAATCATGAGCC


AAGCAGGCTCAACTGGATCTAATTCTGGATTAGGAAGTATCACTGATCTTCTTAATAATATTCTCTCT


GTCGCAAATCAGATTATATATAACTCTGCAGTCGCTCTACCTCTACAATTGGACACTCTTGAATCAAC


ACTCCTTACAGCCATTAAGTCTCTTCAAACCAGTGACAAGCTAGAACAGAACTGCTCGTGGAGTGCTG


CACTGATTAATGATAATAGATACATTAATGGCATCAATCAGTTCTATTTTTCAATTGCTGAGGGTCGC


AATCTGACACTTGGCCCACTTCTTAATATGCCTAGTTTCATTCCAACTGCCACGACACCAGAGGGCTG


CACCAGGATCCCATCATTCTCGCTCACTAAGACACACTGGTGTTATACACACAATGTTATCCTGAATG


GATGCCAGGATCATGTATCCTCAAATCAATTTGTTTCtATGGGAATCATTGAACCCACTTCTGCCGGG


TTTCCATTCTTTCGAACCCTAAAGACTCTATATCTCAGCGATGGGGTCAATCGTAAGAGCTGCTCTAT


CAGTACAGTTCCGGGGGGTTGTATGATGTACTGTTTTGTTTCTACTCAACCAGAGAGGGATGACTACT


TTTCTGCCGCTCCTCCAGAACAACGAATTATTATAATGTACTATAATGATACAATCGTGGAGCGCATA


ATTAATCCACCCGGGGTACTAGATGTATGGGCAACATTGAACCCAGGAACAGGAAGCGGGGTATATTA


TTTAGGTTGGGTGCTCTTTCCAATATATGGCGGCGTGATTAAAGGTACGAGTTTATGGAATAATCAAG


CAAATAAATACTTTATCCCCCAGATGGTTGCTGCTCTCTGCTCACAAAACCAGGCAACTCAAGTCCAA


AATGCTAAGTCATCATACTATAGCAGCTGGTTTGGCAATCGAATGATTCAGTCTGGGATCCTGGCATG


TCCTCTTCGACAGGATCTAACCAATGAGTGTTTAGTTCTGCCCTTTTCTAATGATCAGGTGCTTATGG


GTGCTGAAGGGAGATTATACATGTATGGTGACTCGGTGTATTACTATCAAAGAAGCAATAGTTGGTGG


CCTATGACCATGCTGTATAAGGTAACCATAACATTCACTAATGGTCAGCCATCTGCTATATCAGCTCA


GAATGTGCCCACACAGCAGGTCCCTAGACCTGGGACAGGAGACTGCTCTGCAACCAATAGATGTCCCG


GTTTTTGCTTGACAGGAGTGTATGCCGATGCCTGGTTACTGACCAACCCTTCGTCTACCAGTACATTT


GGATCAGAAGCAACCTTCACTGGTTCTTATCTCAACACAGCAACTCAGCGTATCAATCCGACGATGTA


TATCGCGAACAACACACAGATCATAAGCTCACAGCAATTTGGATCAAGCGGTCAAGAAGCAGCATATG


GCCACACAACtTGTTTTAGGGACACAGGCTCTGTTATGGTATACTGTATCTATATTATTGAATTGTCC


TCATCTCTCTTAGGACAATTTCAGATTGTCCCATTTATCCGTCAGGTGACACTATCCTAAAGGCAGAA


GCCTTCAGGTCTGACCCAGCCAATCAAAGCATTATACCAGACCATGGCCTACCATCGGCTTTAAAGAA


AAAAATAGGCCCGGACGGGTTAGCAACAAGCGGCGGCCGCAATGGTGAGCAAGGGCGAGGAGGATAAC


ATGGCCATCATCAAGGAGTTCATGCGCTTCAAGGTGCACATGGAGGGCTCCGTGAACGGCCACGAGTT


CGAGATCGAGGGCGAGGGCGAGGGCCGCCCCTACGAGGGCACCCAGACCGCCAAGCTGAAGGTGACCA


AGGGTGGCCCCCTGCCCTTCGCCTGGGACATCCTGTCCCCTCAGTTCATGTACGGCTCCAAGGCCTAC


GTGAAGCACCCCGCCGACATCCCCGACTACTTGAAGCTGTCCTTCCCCGAGGGCTTCAAGTGGGAGCG


CGTGATGAACTTCGAGGACGGCGGCGTGGTGACCGTGACCCAGGACTCCTCCCTGCAGGACGGCGAGT


TCATCTACAAGGTGAAGCTGCGCGGCACCAACTTCCCCTCCGACGGCCCCGTAATGCAGAAGAAGACC


ATGGGCTGGGAGGCCTCCTCCGAGCGGATGTACCCCGAGGACGGCGCCCTGAAGGGCGAGATCAAGCA


GAGGCTGAAGCTGAAGGACGGCGGCCACTACGACGCTGAGGTCAAGACCACCTACAAGGCCAAGAAGC


CCGTGCAGCTGCCCGGCGCCTACAACGTCAACATCAAGTTGGACATCACCTCCCACAACGAGGACTAC


ACCATCGTGGAACAGTACGAACGCGCCGAGGGCCGCCACTCCACCGGCGGCATGGACGAGCTGTACAA


GTAGGCGGCCGCCTAAGGTCGACTCATGGAATGCATACCAAACATTATTGACACTAATGACACACAAA


ATTGGTTTTAAGAAAAACCAAGAGAACAATAGGCCAGAATGGCTGGGTCTCGGGAGATATTACTCCCT


GAAGTCCATCTCAATTCACCAATTGTAAAGCATAAGCTATACTATTACATTCTACTTGGAAACCTCCC


AAATGAGATCGACCTTGACGATTTAGGTCCATTACATAATCAAAATTGGAATCAGATAGCACATGAAG


AGTCTAACTTAGCTCAACGCTTGGTAAATGTAAGAAATTTTCTAATTACCCACATCCCTGATCTTAGA


AAGGGCCATTGGCAAGAGTATGTCAATGTAATACTGTGGCCGCGAATTCTTCCCTTGATCCCGGATTT


TAAAATCAATGACCAATTGCCTCTGCTCAAAAATTGGGACAAGTTAGTTAAAGAATCATGTTCAGTAA


TCAATGCAGGTACTTCCCAGTGCATTCAGAATCTCAGCTATGGACTGACAGGTCGTGGGAACCTCTTT


ACACGATCACGTGAACTCTCTGGTGACCGCAGGGATATTGATCTTAAGACAGTTGTGGCAGCATGGCA


TGACTCAGACTGGAAAAGAATAAGTGATTTTTGGATTATGATCAAATTCCAGATGAGACAATTAATTG


TTAGGCAAACAGATCATAATGATTCTGATTTAATCACGTATATCGAAAATAGAGAAGGCATAATCATC


ATAACCCCTGAACTGGTAGCATTATTTAACACTGAGAATCATACACTAACATACATGACCTTTGAAAT


TGTACTGATGGTTTCAGATATGTACGAAGGTCGTCACAACATTTTATCACTATGCACAGTTAGCACTT


ACCTGAATCCTCTGAAGAAAAGAATAACATATTTATTGAGCCTTGTAGATAACTTAGCTTTTCAGATA


GGTGATGCTGTATATAACATAATTGCTTTGCTAGAATCCTTTGTATATGCACAGTTGCAAATGTCAGA


TCCCATCCCAGAACTCAGAGGACAATTCCATGCATTCGTATGTTCTGAGATTCTTGATGCACTAAGAG


GAACTAATAGTTTCACCCAGGATGAATTAAGAACTGTGACAACTAATTTGATATCCCCATTCCAAGAT


CTGACCCCAGATCTTACGGCTGAATTGCTCTGTATAATGAGGCTTTGGGGACACCCCATGCTCACTGC


CAGTCAAGCTGCAGGAAAGGTACGCGAGTCTATGTGTGCTGGAAAAGTATTAGACTTTCCCACCATTA


TGAAAACACTAGCCTTTTTCCATACTATTCTGATCAATGGATACAGGAGGAAGCATCATGGAGTATGG


CCACCCTTAAACTTACCGGGTAATGCTTCAAAGGGTCTCACGGAACTTATGAATGACAATACTGAAAT


AAGCTATGAATTCACACTTAAGCATTGGAAGGAAGTCTCTCTTATAAAATTCAAGAAATGTTTTGATG


CAGACGCAGGTGAGGAACTCAGTATATTTATGAAAGATAAGGCAATTAGTGCCCCAAAACAAGACTGG


ATGAGTGTGTTTAGAAGAAGCCTAATCAAACAGCGCCATCAGCATCATCAGGTCCCCCTACCAAATCC


ATTCAATCGACGGCTGTTGCTAAACTTTCTCGGAGATGACAAATTCGACCCGAATGTGGAGCTACAGT


ATGTAACATCAGGTGAGTATCTACATGATGACACGTTTTGTGCATCATATTCACTAAAAGAGAAGGAA


ATTAAACCTGATGGTCGAATTTTTGCAAAGTTGACTAAGAGAATGAGATCATGTCAAGTTATAGCAGA


ATCTCTTTTAGCGAACCATGCTGGGAAGTTAATGAAAGAGAATGGTGTTGTGATGAATCAGCTATCAT


TAACAAAATCACTATTAACAATGAGTCAGATTGGAATAATATCCGAGAAAGCTAGAAAGTCAACTCGA


GATAACATAAATCAACCTGGTTTCCAGAATATCCAGAGAAATAAATCACATCACTCCAAGCAAGTCAA


TCAGCGAGATCCAAGTGATGACTTTGAATTGGCAGCATCTTTTTTAACTACTGATCTCAAAAAATATT


GTTTACAATGGAGGTACCAGACAATTATCCCATTTGCTCAATCATTAAACAGAATGTATGGTTATCCT


CATCTCTTTGAGTGGATTCACTTACGGCTAATGCGTAGTACACTTTACGTGGGGGATCCCTTCAACCC


ACCAGCAGATACCAGTCAATTTGATCTAGATAAAGTAATTAATGGAGATATCTTCATTGTATCACCCA


GAGGTGGAATTGAAGGGCTGTGTCAAAAGGCTTGGACAATGATATCTATCGCTGTGATAATTCTATCT


GCCACAGAGTCTGGCACACGAGTAATGAGTATGGTGCAGGGAGATAATCAAGCAATTGCTGTCACCAC


ACGAGTACCAAGGAGCCTGCCGACTCTTGAGAAAAAGACTATTGCTTTTAGATCTTGTAATCTATTCT


TTGAGAGGTTAAAATGTAATAATTTTGGATTAGGTCACCATTTGAAAGAACAAGAGACTATCATTAGT


TCTCACTTCTTTGTTTATAGCAAGAGAATATTCTATCAGGGGAGGATTCTAACGCAAGCCTTAAAAAA


TGCTAGTAAGCTCTGCTTGACAGCTGATGTCCTAGGAGAATGCACCCAATCATCATGTTCTAATCTTG


CAACTACTGTCATGAGGTTAACTGAGAATGGTGTTGAAAAAGATATCTGTTTCTACTTGAATATCTAT


ATGACCATCAAACAGCTCTCCTATGATATCATCTTCCCTCAAGTGTCAATTCCTGGAGATCAGATCAC


ATTAGAATACATAAATAATCCACACCTGGTATCACGATTGGCTCTTTTGCCATCCCAGTTAGGAGGTC


TAAACTACCTGTCATGCAGTAGGCTGTTCAATCGAAACATAGGCGACCCGGTGGTTTCCGCAGTTGCA


GATCTTAAGAGATTAATTAAATCAGGATGTATGGATTACTGGATCCTTTATAACTTATTAGGGAGAAA


ACCGGGAAACGGCTCATGGGCTACTTTAGCAGCTGACCCGTACTCAATCAATATAGAGTATCAATACC


CTCCAACTACAGCTCTTAAGAGGCACACCCAACAAGCTCTGATGGAACTCAGTACGAATCCAATGTTA


CGTGGCATATTCTCTGACAATGCACAGGCAGAAGAAAATAACCTTGCTAGGTTTCTCCTGGATAGGGA


GGTGATCTTTCCGCGTGTAGCTCACATCATCATTGAGCAAACCAGTGTCGGGAGGAGAAAACAGATTC


AAGGATATTTGGATTCAACTAGATCGATAATGAGGAAATCACTAGAAATTAAGCCCTTATCCAATAGG


AAGCTTAATGAAATACTGGATTACAACATCAATTACCTAGCTTACAATTTGGCATTACTCAAGAATGC


TATTGAACCTCCGACTTATTTGAAGGCAATGACACTTGAAACATGTAGCATCGACATTGCAAGGAACC


TCCGGAAGCTCTCCTGGGCCCCACTCTTGGGTGGGAGAAATCTTGAAGGATTAGAGACGCCAGATCCC


ATTGAAATTACTGCAGGAGCATTAATTGTTGGATCGGGCTACTGTGAACAGTGTGCTGCAGGAGACAA


TCGATTCACATGGTTTTTCTTGCCATCTGGTATCGAGATAGGAGGGGATCCCCGTGATAATCCTCCTA


TCCGTGTACCGTACATTGGCTCCAGGACTGATGAGAGGAGGGTAGCCTCAATGGCATACATCAGGGGT


GCCTCGAGTAGCTTAAAAGCAGTTCTTAGACTGGCGGGAGTGTACATCTGGGCATTCGGAGATACTCT


GGAGAATTGGATAGATGCACTGGATTTGTCTCACACTAGAGTTAACATCACACTTGAACAGCTGCAAT


CCCTCACCCCACTTCCAACCTCTGCCAATCTAACCCATCGGTTGGATGATGGCACAACTACCCTAAAG


TTTACTCCTGCGAGCTCTTACACCTTTTCAAGTTTCACTCATATATCAAATGATGAGCAATACCTGAC


AATTAATGACAAAACTGCAGATTCAAATATAATCTACCAACAGTTAATGATCACTGGACTCGGAATCT


TAGAAACATGGAATAATCCCCCAATCAATAGAACATTCGAAGAATCTACCCTACATTTGCACACTGGT


GCATCATGTTGTGTCCGACCTGTGGACTCCTGCATTCTCTCAGAAGCATTAACAGTCAAGCCACATAT


TACAGTACCGTACAGCAATAAATTTGTATTTGATGAGGACCCGCTATCTGAATATGAAACTGCAAAAC


TGGAATCGTTATCATTCCAAGCCCAATTAGGCAACATTGATGCTGTAGATATGACAGGTAAATTAACA


TTATTGTCCCAATTCACTGCAAGGCAGATTATCAATGCAATCACTGGACTCGATGAGTCTGTCTCTCT


TACTAATGATGCCATTGTTGCATCAGACTATGTCTCCAATTGGATTAGTGAATGCATGTATACCAAAT


TAGATGAATTATTTATGTATTGTGGGTGGGAACTACTATTGGAACTATCCTATCAAATGTATTATCTG


AGGGTAGTTGGGTGGAGTAATATAGTGGATTATTCTTACATGATCTTGAGAAGAATCCCGGGTGCAGC


ATTAAACAATCTGGCATCTACATTAAGTCATCCAAAACTTTTCCGACGAGCTATCAACCTAGATATAG


TTGCCCCCTTAAATGCTCCTCATTTTGCATCTCTGGACTACATCAAGATGAGTGTGGATGCAATACTC


TGGGGCTGTAAAAGAGTCATCAATGTGCTCTCCAATGGAGGGGACTTAGAATTAGTTGTGACATCTGA


AGATAGCCTTATTCTCAGTGACCGATCCATGAATCTCATTGCAAGGAAATTAACTTTATTATCACTGA


TTCACCATAATGGTTTGGAACTACCAAAGATTAAGGGGTTCTCTCCTGATGAGAAGTGTTTCGCTTTG


ACAGAATTTTTGAGGAAAGTGGTGAACTCAGGGTTGAGTTCAATAGAGAACCTATCAAATTTTATGTA


CAATGTGGAGAACCCACGGCTTGCAGCATTCGCCAGCAACAATTACTACCTGACCAGAAAATTATTGA


ATTCAATACGAGATACTGAGTCGGGTCAAGTAGCAGTCACCTCATATTATGAATCATTAGAATATATT


GATAGTCTTAAGCTAACCCCACATGTGCCTGGCACCTCATGCATTGAGGATGATAGTCTATGTACAAA


TGATTACATAATCTGGATCATAGAGTCTAATGCAAACTTGGAGAAGTATCCAATTCCAAATAGCCCTG


AGGATGATTCCAATTTCCATAACTTTAAGTTGAATGCTCCATCGCACCATACCTTACGCCCATTAGGG


TTGTCATCAACTGCTTGGTATAAGGGTATAAGCTGCTGCAGGTACCTTGAGCGATTAAAGCTACCACA


AGGTGATCATTTATATATTGgAGAAGGTAGTGGTGCCAGTATGACAATCATAGAATACCTATTCCCAG


GAAGAAAGATATATTACAATTCTTTATTTAGTAGTGGTGACAATCCCCCACAAAGAAATTATGCACCA


ATGCCTACTCAGTTCATTGAGAGTGTCCCATACAAGCTCTGGCAAGCACACACAGATCAATATCCCGA


GATTTTTGAGGACTTCATCCCTCTATGGAACGGAAACGCCGCCATGACTGACATAGGAATGACAGCTT


GTGTAGAATTCATCATCAATCGAGTCGGCCCAAGGACTTGCAGTTTAGTACATGTAGATTTGGAATCA


AGTGCAAGCTTAAATCAACAATGCCTGTCAAAGCCGATAATTAATGCTATCATCACTGCTACAACTGT


TTTGTGCCCTCATGGGGTGCTTATTCTGAAATATAGTTGGTTGCCATTTACTAGATTTAGTACTTTGA


TCACTTTCTTATGGTGCTACTTTGAGAGAATCACTGTTCTTAGGAGCACATATTCTGATCCAGCTAAT


CATGAGGTTTATTTAATTTGTATCCTTGCCAACAACTTTGCATTCCAGACTGTCTCGCAGGCAACAGG


AATGGCGATGACTTTAACTGATCAAGGGTTTACTTTGATATCACCTGAAAGAATAAATCAGTATTGGG


ATGGTCACTTGAAGCAAGAACGTATCGTAGCAGAAGCAATTGATAAGGTGGTTCTAGGAGAAAATGCT


CTATTTAATTCGAGTGATAATGAATTAATTCTCAAATGTGGAGGGACACCAAATGCACGGAATCTCAT


CGATATCGAGCCAGTCGCAACTTTCATAGAATTTGAACAATTGATCTGCACAATGTTGACAACCCACT


TGAAGGAAATAATTGATATAACAAGGTCTGGAACCCAGGATTATGAAAGTTTATTACTCACTCCTTAC


AATTTAGGTCTTCTTGGTAAAATCAGTACGATAGTGAGATTATTAACAGAAAGGATTCTAAATCATAC


TATCAGGAATTGGTTGATCCTCCCACCTTCGCTCCGGATGATCGTGAAGCAGGACTTGGAATTCGGCA


TATTCAGGATTACTTCCATCCTCAATTCTGATCGGTTCCTGAAGCTTTCTCCAAATAGGAAATACTTG


ATTGCACAATTAACTGCAGGCTACATTAGGAAATTGATTGAGGGGGATTGCAATATCGATCTAACCAG


ACCTATCCAAAAGCAAATCTGGAAAGCATTAGGTTGTGTAGTCTATTGTCACGATCCAATGGATCAAA


GGGAGTCAACAGAGTTTATTGATATAAATATTAATGAAGAAATAGACCGCGGGATCGATGGCGAGGAA


ATCTAAACATATCAAGAATCAGAATTAGTTTAAGAAAAAAGAAGAGGATTAATCTTGGTTTTCCCCTT


GGTGGGTCGGCATGGCATCTCCACCTCCTCGCGGTCCGACCTGGGCATCCGAAGGAGGACGCACGTCC


ACTCGGATGGCTAAGGGAGCGGCCGGGGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGC


TGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTT


TGCTGAAAGGAGGAACTATATCCGGAT





PIV5 deltaF vector expressing hu anti V5 mAB- and mCherry


pBH276.P[D100/F157]ΔF-V5hAb-mCherry


CATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATA


GGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGA


CTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCT


TACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGT


ATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGAC


CGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGC


AGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGT


GGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTC


GGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTG


CAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTG


ACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACC


TAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGA


CAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTG


CCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATG


ATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGA


GCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAG


TAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGC


TCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCAT


GTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGT


TATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCT


GTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCC


GGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTT


CTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCA


CCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAA


TGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATT


ATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAA


CAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCAT


GACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTCGCGCGTTTCGGTGATGACGGTG


AAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGA


CAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTATGCGGCATCAGA


GCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACC


GCATCAGGCTAATACGACTCACTATAGGGACCAAGGGGAAAATGAAGTGGTGACTCAAATCATCGAAG


ACCCTCGAGATTACATAGGTCCGGAACCTATGGCCTTCGTGACCGACCTCGAGTCAGAGTAGTTCAAT


AAGGACCTATCAAGTTTGGGCAATTTTTCGTCCCCGACACAAAAATGTCATCCGTGCTTAAAGCATAT


GAGCGATTCACGCTCACTCAAGAACTGCAAGATCAGAGTGAGGAAGGTACAATCCCACCTACAACACT


AAAACCGGTAATCAGGGTATTTATACTAACCTCTAATAACCCAGAGCTAAGATCCCGGCTTCTTCTAT


TCTGCCTACGGATTGTTCTCAGTAATGGTGCAAGGGATTCCCATCGCTTTGGAGCATTACTCACAATG


TTTTCGCTACCATCAGCCACAATGCTCAATCATGTCAAATTAGCTGACCAGTCACCAGAAGCTGATAT


CGAAAGGGTAGAGATCGATGGCTTTGAGGAGGGATCATTCCGCTTAATCCCCAATGCtCGTTCAGGTA


TGAGCCGTGGAGAGATCAATGCCTATGCTGCACTTGCAGAAGATCTACCTGACACACTAAACCATGCA


ACACCTTTCGTTGATTCCGAAGTCGAGGGAACTGCATGGGATGAGATTGAGACTTTCTTAGATATGTG


TTACAGTGTCCTAATGCAGGCATGGATAGTGACTTGCAAGTGCATGACTGCGCCAGACCAACCTGCTG


CTTCTATTGAGAAACGCCTGCAAAAATATCGTCAGCAAGGCAGGATCAACCCGAGATATCTCCTGCAA


CCGGAGGCTCGACGAATAATCCAGAATGTAATCCGGAAGGGAATGGTGGTCAGACATTTCCTCACCTT


TGAACTGCAGCTTGCCCGAGCACAAAGCCTTGTATCAAATAGGTATTATGCTATGGTAGGGGATGTTG


GAAAGTATATAGAGAATTGTGGAATGGGAGGCTTCTTTTTGACACTAAAATATGCATTAGGAACTAGA


TGGCCCACACTTGCTTTAGCTGCATTTTCAGGAGAGCTAACAAAGCTAAAGTCCCTCATGGCATTATA


CCAGACCCTTGGTGAGCAGGCCCGATATTTGGCCCTATTGGAGTCACCACATTTGATGGATTTTGCTG


CAGCAAACTACCCACTGCTATATAGCTATGCTATGGGAATAGGCTATGTGTTAGATGTCAACATGAGG


AACTACGCTTTCTCCAGATCATACATGAACAAGACATATTTCCAATTGGGAATGGAAACTGCAAGAAA


ACAACAGGGTGCAGTTGACATGAGGATGGCAGAAGATCTCGGTCTAACTCAAGCCGAACGCACCGAGA


TGGCAAATACACTTGCCAAATTGACCACAGCAAATCGAGGGGCAGACACCAGGGGAGGAGTCAACCCG


TTCTCATCTGTCACTGGGACAACTCAGGTGCCCGCTGCAGCAACAGGTGACACACTCGAGAGTTACAT


GGCAGCGGATCGACTGAGGCAGAGATATGCTGATGCAGGCACCCATGATGATGAGATGCCACCATTGG


AAGAGGAGGAAGAGGACGACACATCTGCAGGTCCACGCACTGGACCAACTCTTGAACAAGTGGCCTTG


GACATCCAGAACGCAGCAGTTGGAGCTCCCATCCATACAGATGACCTGAATGCCGCACTGGGTGATCT


TGACATCTAGACAATTCAGATCCCAATCTAAAATTGACATACCTAATTGATTAGTTAGATGGAACTAC


AGTGGATTCCATAAGGTTCCTGCCTACCATCGGCTTTAAAGAAAAAAATAGGCCCGGACGGGTTAGCA


ACAAGCGACTGCCGGTGCCAACAGCGCAATCCACAATCTACAATGGATCCCACTGATCTGAGCTTCTC


CCCAGATGAGATCAATAAGCTCATAGAGACAGGCCTGAATACTGTAGAGTATTTTACTTCCCAACAAG


TCACAGGAACATCCTCTCTTGGAAAGAATACAATACCACCAGGGGTCACAGGACTACTAACCAATGCT


GCAGAGGCAAAGATCCAAGAGTCAACTAACCATCAGAAGGGCTCAGTTGGTGGGGGTGCAAAACCAAA


GAAACCGCGACCAAAAATTGCCATTGTGCCAGCAGATGACAAAACAGTGCCCGGAAAGCCGATCCCAG


ACCCTCTATTAGGTCTGGACTCCACCCCGAGCACCCAAACTGTGCTTGATCTAAGTGGGAAAACATTA


CCATCAGGATCCTATAAGGGGGTTAAGCTTGCGAAATTTGGAAAAGAAAATCTGATGACACGGTTCAT


CGAGGAACCCAGAGAGAATCCTATCGCAACCAGTTTCCCCATCGATTTTAAGAGGGGCAGGTATACCG


GCGGGTTCCATAGAAGGGAGTACTCAATCGGATGGGTGGGAGATGAAGTCAAGGTCACTGAGTGGTGC


AATCCATCCTGTTCTCCAATCACCGCTGCAGCAAGGCGATTTGAATGCACTTGTCACCAGTGTCCAGT


CACTTGCTCTGAATGTGAACGAGATACTTAATACAGTGAGAAATTTGGACTCTCGGATGAATCAACTG


GAGACAAAAGTAGATCGCATTCTCTCATCTCAGTCTCTAATCCAGACCATCAAGAATGACATAGTTGG


ACTTAAAGCAGGGATGGCTACTTTAGAAGGAATGATTACAACTGTGAAAATCATGGACCCGGGAGTTC


CCAGTAATGTTACTGTGGAAGATGTACGCAAGACACTAAGTAACCATGCTGTTGTTGTGCCAGAATCA


TTCAATGATAGTTTCTTGACTCAATCTGAAGATGTAATTTCACTTGATGAGTTGGCTCGACCAACTGC


AACAAGTGTTAAGAAGATTGTCAGGAAGGTTCCTCCTCAGAAGGATCTGACTGGATTGAAGATTACAC


TAGAGCAATTGGCAAAGGATTGCATCAGCAAACCGAAGATGAGGGAAGAGTATCTCCTCAAAATCAAC


CAGGCTTCCAGTGAGGCTCAGCTAATTGACCTCAAGAAAGCAATCATCCGCAGTGCAATTTGATCAAG


AAACACCCAATTACACTACACTGGTATGACACTGTACTAACCCTGAGGGTTTTAGAAAAAACGATTAA


CGATAAATAAGCCCGAACACTACACACTACCTGAGGCAGCCATGCCATCCATCAGCATTCCCGCAGAC


CCCACCAATCCACGTCAATCAATAAAAGCGTTCCCAATTGTGATCAACAGTGATGGGGGTGAGAAAGG


CCGCTTGGTTAAACAACTACGCACAACCTACTTGAATGACCTAGATACTCATGAGCCACTGGTGACAT


TCATAAATACCTATGGATTCATCTACGAACAGGATCGGGGGAATACCATTGTCGGAGAGGATCAACTT


GGGAAGAAAAGAGAGGCTGTGACCGCTGCAATGGTTACCCTTGGATGTGGGCCTAATCTACCATCATT


AGGGAATGTCCTGGGACAACTGAGGGAATTCCAGGTCACTGTTAGGAAGACATCCAGCAAAGCGGAAG


AGATGGTCTTTGAAATTGTTAAGTATCCGAGAATATTTCGGGGTCATACATTAATCCAGAAAGGACTA


GTCTGTGTCTCCGCAGAAAAATTTGTTAAGTCACCAGGGAAAATACAATCTGGAATGGACTATCTCTT


CATTCCGACATTTCTGTCAGTGACTTACTGTCCAGCTGCAATCAAATTTCAGGTACCTGGCCCCATGT


TGAAAATGAGATCAAGATACACTCAGAGCTTACAACTTGAACTAATGATAAGAATCCTGTGTAAGCCC


GATTCGCCACTTATGAAGGTCCATACCCCTGACAAGGAGGGAAGAGGATGTCTTGTATCAGTATGGCT


GCATGTATGCAACATCTTCAAATCAGGAAACAAGAATGGCAGTGAGTGGCAGGAATACTGGATGAGAA


AGTGTGCTAACATGCAACTTGAAGTGTCGATTGCAGATATGTGGGGACCAACTATCATAATTCATGCC


AGAGGTCACATTCCCAAAAGTGCTAAGTTGTTTTTTGGAAAGGGTGGATGGAGCTGCCATCCACTTCA


CGAAGTTGTTCCAAGTGTCACTAAAACACTATGGTCCGTGGGCTGTGAGATTACAAAGGCGAAGGCAA


TAATACAAGAGAGTAGCATCTCTCTTCTCGTGGAGACTACTGACATCATAAGTCCAAAAGTCAAAATT


TCATCTAAGCATCGCCGCTTTGqGAAATCAAATTGGGGTCTGTTCAAGAAAACTAAATCACTGCCTAA


CCTGACGGAGCTGGAATGACTGACCTCTAATCGAGACTACACCGCCGCAAACTATAGGTGGGTGGTAC


CTCAGTGATTAATCTTGTAAGCACTGATCGTAGGCTACAACACACTAATATTATCCAGATTAGAGAGC


TTAATTAGCTCTGTATTAATAATAACACTACTATTCCAATAACTGGAATCACCAGCTTGATTTATCTC


CAAAATGATTCAAAGAAAACAAATCATATTAAGACTATCCTAAGCACGAACCCATATCGTCCTTCAAA


TCATGGACCCCAAGGGCAGCCTGAGCTGGAGAATCCTGCTGTTCCTGAGCCTGGCCTTCGAGCTGAGC


TACGGCGACGTGCAGGTGGTGGAGAGCGGAGGCGGAGTGGTGCAGCCAGGCGGCAGCCTGAGACTGAG


CTGCGCTGCGAGTGGCTTCACCTTCAGCAGCTTCGGgATGCACTGGGTGAGGCAGGCACCCGGCAAGG


GCCTGGAGTGGGTGGCCTACATCAACACCGACAGCACCACCATCTACTACGCAGACAGCGTGAAGGGC


AGGTTCACCATCAGCAGGGACAACAGCAAGAACACCCTGTACCTGCAGATGAACTCTTTGCGGGCAGA


AGACACTGCCGTGTACTACTGCGCCAGTGCTGGCCCCTACTATGGCTTTGACTACTGGGGACAGGGCA


CCCTGGTGACCGTGAGCAGCGCTAGCACCAAGGGCCtCAGCGTGTTCCCTCTGGCCCCCAGCAGCAAG


AGCACCAGCGGCGGAACCGCCGCCCTGGGCTGCCTGGTGAAGGACTACTTCCCCGAGCCCGTGACCGT


GTCCTGGAACAGCGGCGCTCTGACCAGCGGAGTGCACACCTTCCCTGCCGTGCTGCAGAGCAGCGGCC


TGTACTCCCTGAGCAGCGTGGTGACCGTGCCCAGCAGCAGCCTGGGCACCCAGACCTACATCTGCAAC


GTGAACCACAAGCCCTCCAACACCAAGGTGGACAAGAAGGTGGAGCCTAAGAGCTGCGACAAGACCCA


CACCTGCCCTCCCTGCCCCGCCCCCGAGCTGCTGGGCGGACCCAGCGTGTTCCTGTTCCCTCCCAAGC


CCAAGGACACCCTGATGATCAGCCGCACCCCCGAGGTGACCTGCGTGGTGGTGGACGTGAGCCACGAG


GACCCCGAGGTGAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCACAACGCCAAGACCAAGCCTCG


GGAGGAGCAGTACAACTCCACCTACCGCGTGGTGAGCGTGCTGACCGTGCTGCACCAGGACTGGCTGA


ACGGCAAGGAGTACAAGTGCAAGGTGAGCAACAAGGCCCTGCCCGCTCCCATCGAGAAGACCATCAGC


AAGGCCAAGGGCCAGCCtCGGGAGCCTCAGGTGTACACCCTGCCCCCCAGCCGCGAAGAGATGACCAA


GAACCAGGTGAGCCTGACCTGCCTGGTGAAGGGCTTCTACCCCTCCGACATCGCCGTGGAGTGGGAGA


GCAACGGCCAGCCTGAGAACAACTACAAGACCACCCCTCCCGTGCTGGACAGCGACGGCAGCTTCTTC


CTGTACAGCAAGCTGACCGTGGACAAGTCCCGGTGGCAGCAGGGCAACGTGTTCAGCTGCAGCGTGAT


GCACGAGGCCCTGCACAACCACTACACCCAGAAGAGCCTGAGCCTGAGCCCCGGACGCGCAAAAAGAt


ctagaGAGGGCAGGGGAAGTCTTCTAACATGCGGGGACGTGGAGGAAAATCCCGGGCCtATGGAGACC


GACACCCTGCTGCTCTGGGTGCTGCTGCTCTGGGTGCCCGGCTCCACCGGAGACATCGTGATGACCCA


GAGTCCACTGAGCCTGCCCGTGACCCCCGGTGAGCCAGCCAGCATCAGCTGCAGGAGCAGCAAGAGCC


TGGTGCACAGCAACGGCATCACCTACCTGTACTGGTACGTGCAGAAGCCCGGACAGAGCCCCCAGTTG


CTCATTTATCAGATGAGCAGCCTGGCAAGCGGCGTGCCCGACAGGTTCAGCGGCTCCGGCAGCGGCAC


CGACTTCAGCCTGAAGATCAGCCGGGTGGAGGCCGAGGACGTGGGCGTGTACTACTGCGGCCAAATTC


TGGAGCTGCCCTTCACCTTCGGCCAGGGAACCAAGGTGGAGATCAAGCGGACCGTGGCCGCCCCCAGC


GTGTTCATCTTCCCTCCCAGCGACGAGCAGCTGAAGTCTGGCACCGCCAGCGTGGTGTGCCTGCTGAA


CAACTTCTACCCCCGCGAGGCCAAGGTGCAGTGGAAGGTGGACAACGCCCTGCAGAGCGGCAACAGCC


AGGAGAGCGTGACCGAGCAGGACTCCAAGGACAGCACCTACAGCCTGAGCAGCACCCTGACCCTGAGC


AAGGCCGACTACGAGAAGCACAAGGTGTACGCCTGCGAGGTGACCCACCAGGGACTGTCTAGCCCCGT


GACCAAGAGCTTCAACCGGGGCGAGTGCTAATGAGCATTCCACCACTCACGATCTGATCTCAGTGAGA


AAAATCAACCTGCAACTCTTGGAACAAGATAAGACAGTCATCCATTAGTAATTTTTAAGAAAAAAACG


ATAGGACCGAACCTagTATTGAAAGAACCGTCTCGGTCAATCTAGGTAATCGAGCTGATACCGTCTCG


GAAAGCTCAAATCATGCTGCCTGATCCGGAAGATCCGGAAAGCAAGAAAGCTACAAGGAGAGCAGGAA


ACCTAATTATCTGCTTCCTATTCATCTTCTTTCTGTTTGTAACCTTCATTGTTCCAACTCTAAGACAC


TTGCTGTCCTAACACCTGCTATAGGCTATCCACTGCATCATCTCTCCTGCCATACTTCCTACTCACAT


CATATCTATTTTAAAGAAAAAATAGGCCCGAACACTAATCGTGCCGGCAGTGCCACTGCACACACAAC


ACTACACATACAATACACTACAATGGTTGCAGAAGATGCCCCTGTTAGGGCCACTTGCCGAGTATTAT


TTCGAACAACAACTTTAATCTTTCTATGCACACTACTAGCATTAAGCATCTCTATCCTTTATGAGAGT


TTAATAACCCAAAAGCAAATCATGAGCCAAGCAGGCTCAACTGGATCTAATTCTGGATTAGGAAGTAT


CACTGATCTTCTTAATAATATTCTCTCTGTCGCAAATCAGATTATATATAACTCTGCAGTCGCTCTAC


CTCTACAATTGGACACTCTTGAATCAACACTCCTTACAGCCATTAAGTCTCTTCAAACCAGTGACAAG


CTAGAACAGAACTGCTCGTGGAGTGCTGCACTGATTAATGATAATAGATACATTAATGGCATCAATCA


GTTCTATTTTTCAATTGCTGAGGGTCGCAATCTGACACTTGGCCCACTTCTTAATATGCCTAGTTTCA


TTCCAACTGCCACGACACCAGAGGGCTGCACCAGGATCCCATCATTCTCGCTCACTAAGACACACTGG


TGTTATACACACAATGTTATCCTGAATGGATGCCAGGATCATGTATCCTCAAATCAATTTGTTTCtAT


GGGAATCATTGAACCCACTTCTGCCGGGTTTCCATTCTTTCGAACCCTAAAGACTCTATATCTCAGCG


ATGGGGTCAATCGTAAGAGCTGCTCTATCAGTACAGTTCCGGGGGGTTGTATGATGTACTGTTTTGTT


TCTACTCAACCAGAGAGGGATGACTACTTTTCTGCCGCTCCTCCAGAACAACGAATTATTATAATGTA


CTATAATGATACAATCGTGGAGCGCATAATTAATCCACCCGGGGTACTAGATGTATGGGCAACATTGA


ACCCAGGAACAGGAAGCGGGGTATATTATTTAGGTTGGGTGCTCTTTCCAATATATGGCGGCGTGATT


AAAGGTACGAGTTTATGGAATAATCAAGCAAATAAATACTTTATCCCCCAGATGGTTGCTGCTCTCTG


CTCACAAAACCAGGCAACTCAAGTCCAAAATGCTAAGTCATCATACTATAGCAGCTGGTTTGGCAATC


GAATGATTCAGTCTGGGATCCTGGCATGTCCTCTTCGACAGGATCTAACCAATGAGTGTTTAGTTCTG


CCCTTTTCTAATGATCAGGTGCTTATGGGTGCTGAAGGGAGATTATACATGTATGGTGACTCGGTGTA


TTACTATCAAAGAAGCAATAGTTGGTGGCCTATGACCATGCTGTATAAGGTAACCATAACATTCACTA


ATGGTCAGCCATCTGCTATATCAGCTCAGAATGTGCCCACACAGCAGGTCCCTAGACCTGGGACAGGA


GACTGCTCTGCAACCAATAGATGTCCCGGTTTTTGCTTGACAGGAGTGTATGCCGATGCCTGGTTACT


GACCAACCCTTCGTCTACCAGTACATTTGGATCAGAAGCAACCTTCACTGGTTCTTATCTCAACACAG


CAACTCAGCGTATCAATCCGACGATGTATATCGCGAACAACACACAGATCATAAGCTCACAGCAATTT


GGATCAAGCGGTCAAGAAGCAGCATATGGCCACACAACETGTTTTAGGGACACAGGCTCTGTTATGGT


ATACTGTATCTATATTATTGAATTGTCCTCATCTCTCTTAGGACAATTTCAGATTGTCCCATTTATCC


GTCAGGTGACACTATCCTAAAGGCAGAAGCCTTCAGGTCTGACCCAGCCAATCAAAGCATTATACCAG


ACCATGGCCTACCATCGGCTTTAAAGAAAAAAATAGGCCCGGACGGGTTAGCAACAAGCGGCGGCCGC


AATGGTGAGCAAGGGCGAGGAGGATAACATGGCCATCATCAAGGAGTTCATGCGCTTCAAGGTGCACA


TGGAGGGCTCCGTGAACGGCCACGAGTTCGAGATCGAGGGCGAGGGCGAGGGCCGCCCCTACGAGGGC


ACCCAGACCGCCAAGCTGAAGGTGACCAAGGGTGGCCCCCTGCCCTTCGCCTGGGACATCCTGTCCCC


TCAGTTCATGTACGGCTCCAAGGCCTACGTGAAGCACCCCGCCGACATCCCCGACTACTTGAAGCTGT


CCTTCCCCGAGGGCTTCAAGTGGGAGCGCGTGATGAACTTCGAGGACGGCGGCGTGGTGACCGTGACC


CAGGACTCCTCCCTGCAGGACGGCGAGTTCATCTACAAGGTGAAGCTGCGCGGCACCAACTTCCCCTC


CGACGGCCCCGTAATGCAGAAGAAGACCATGGGCTGGGAGGCCTCCTCCGAGCGGATGTACCCCGAGG


ACGGCGCCCTGAAGGGCGAGATCAAGCAGAGGCTGAAGCTGAAGGACGGCGGCCACTACGACGCTGAG


GTCAAGACCACCTACAAGGCCAAGAAGCCCGTGCAGCTGCCCGGCGCCTACAACGTCAACATCAAGTT


GGACATCACCTCCCACAACGAGGACTACACCATCGTGGAACAGTACGAACGCGCCGAGGGCCGCCACT


CCACCGGCGGCATGGACGAGCTGTACAAGTAGGCGGCCGCCTAAGGTCGACTCATGGAATGCATACCA


AACATTATTGACACTAATGACACACAAAATTGGTTTTAAGAAAAACCAAGAGAACAATAGGCCAGAAT


GGCTGGGTCTCGGGAGATATTACTCCCTGAAGTCCATCTCAATTCACCAATTGTAAAGCATAAGCTAT


ACTATTACATTCTACTTGGAAACCTCCCAAATGAGATCGACCTTGACGATTTAGGTCCATTACATAAT


CAAAATTGGAATCAGATAGCACATGAAGAGTCTAACTTAGCTCAACGCTTGGTAAATGTAAGAAATTT


TCTAATTACCCACATCCCTGATCTTAGAAAGGGCCATTGGCAAGAGTATGTCAATGTAATACTGTGGC


CGCGAATTCTTCCCTTGATCCCGGATTTTAAAATCAATGACCAATTGCCTCTGCTCAAAAATTGGGAC


AAGTTAGTTAAAGAATCATGTTCAGTAATCAATGCAGGTACTTCCCAGTGCATTCAGAATCTCAGCTA


TGGACTGACAGGTCGTGGGAACCTCTTTACACGATCACGTGAACTCTCTGGTGACCGCAGGGATATTG


ATCTTAAGACAGTTGTGGCAGCATGGCATGACTCAGACTGGAAAAGAATAAGTGATTTTTGGATTATG


ATCAAATTCCAGATGAGACAATTAATTGTTAGGCAAACAGATCATAATGATTCTGATTTAATCACGTA


TATCGAAAATAGAGAAGGCATAATCATCATAACCCCTGAACTGGTAGCATTATTTAACACTGAGAATC


ATACACTAACATACATGACCTTTGAAATTGTACTGATGGTTTCAGATATGTACGAAGGTCGTCACAAC


ATTTTATCACTATGCACAGTTAGCACTTACCTGAATCCTCTGAAGAAAAGAATAACATATTTATTGAG


CCTTGTAGATAACTTAGCTTTTCAGATAGGTGATGCTGTATATAACATAATTGCTTTGCTAGAATCCT


TTGTATATGCACAGTTGCAAATGTCAGATCCCATCCCAGAACTCAGAGGACAATTCCATGCATTCGTA


TGTTCTGAGATTCTTGATGCACTAAGAGGAACTAATAGTTTCACCCAGGATGAATTAAGAACTGTGAC


AACTAATTTGATATCCCCATTCCAAGATCTGACCCCAGATCTTACGGCTGAATTGCTCTGTATAATGA


GGCTTTGGGGACACCCCATGCTCACTGCCAGTCAAGCTGCAGGAAAGGTACGCGAGTCTATGTGTGCT


GGAAAAGTATTAGACTTTCCCACCATTATGAAAACACTAGCCTTTTTCCATACTATTCTGATCAATGG


ATACAGGAGGAAGCATCATGGAGTATGGCCACCCTTAAACTTACCGGGTAATGCTTCAAAGGGTCTCA


CGGAACTTATGAATGACAATACTGAAATAAGCTATGAATTCACACTTAAGCATTGGAAGGAAGTCTCT


CTTATAAAATTCAAGAAATGTTTTGATGCAGACGCAGGTGAGGAACTCAGTATATTTATGAAAGATAA


GGCAATTAGTGCCCCAAAACAAGACTGGATGAGTGTGTTTAGAAGAAGCCTAATCAAACAGCGCCATC


AGCATCATCAGGTCCCCCTACCAAATCCATTCAATCGACGGCTGTTGCTAAACTTTCTCGGAGATGAC


AAATTCGACCCGAATGTGGAGCTACAGTATGTAACATCAGGTGAGTATCTACATGATGACACGTTTTG


TGCATCATATTCACTAAAAGAGAAGGAAATTAAACCTGATGGTCGAATTTTTGCAAAGTTGACTAAGA


GAATGAGATCATGTCAAGTTATAGCAGAATCTCTTTTAGCGAACCATGCTGGGAAGTTAATGAAAGAG


AATGGTGTTGTGATGAATCAGCTATCATTAACAAAATCACTATTAACAATGAGTCAGATTGGAATAAT


ATCCGAGAAAGCTAGAAAGTCAACTCGAGATAACATAAATCAACCTGGTTTCCAGAATATCCAGAGAA


ATAAATCACATCACTCCAAGCAAGTCAATCAGCGAGATCCAAGTGATGACTTTGAATTGGCAGCATCT


TTTTTAACTACTGATCTCAAAAAATATTGTTTACAATGGAGGTACCAGACAATTATCCCATTTGCTCA


ATCATTAAACAGAATGTATGGTTATCCTCATCTCTTTGAGTGGATTCACTTACGGCTAATGCGTAGTA


CACTTTACGTGGGGGATCCCTTCAACCCACCAGCAGATACCAGTCAATTTGATCTAGATAAAGTAATT


AATGGAGATATCTTCATTGTATCACCCAGAGGTGGAATTGAAGGGCTGTGTCAAAAGGCTTGGACAAT


GATATCTATCGCTGTGATAATTCTATCTGCCACAGAGTCTGGCACACGAGTAATGAGTATGGTGCAGG


GAGATAATCAAGCAATTGCTGTCACCACACGAGTACCAAGGAGCCTGCCGACTCTTGAGAAAAAGACT


ATTGCTTTTAGATCTTGTAATCTATTCTTTGAGAGGTTAAAATGTAATAATTTTGGATTAGGTCACCA


TTTGAAAGAACAAGAGACTATCATTAGTTCTCACTTCTTTGTTTATAGCAAGAGAATATTCTATCAGG


GGAGGATTCTAACGCAAGCCTTAAAAAATGCTAGTAAGCTCTGCTTGACAGCTGATGTCCTAGGAGAA


TGCACCCAATCATCATGTTCTAATCTTGCAACTACTGTCATGAGGTTAACTGAGAATGGTGTTGAAAA


AGATATCTGTTTCTACTTGAATATCTATATGACCATCAAACAGCTCTCCTATGATATCATCTTCCCTC


AAGTGTCAATTCCTGGAGATCAGATCACATTAGAATACATAAATAATCCACACCTGGTATCACGATTG


GCTCTTTTGCCATCCCAGTTAGGAGGTCTAAACTACCTGTCATGCAGTAGGCTGTTCAATCGAAACAT


AGGCGACCCGGTGGTTTCCGCAGTTGCAGATCTTAAGAGATTAATTAAATCAGGATGTATGGATTACT


GGATCCTTTATAACTTATTAGGGAGAAAACCGGGAAACGGCTCATGGGCTACTTTAGCAGCTGACCCG


TACTCAATCAATATAGAGTATCAATACCCTCCAACTACAGCTCTTAAGAGGCACACCCAACAAGCTCT


GATGGAACTCAGTACGAATCCAATGTTACGTGGCATATTCTCTGACAATGCACAGGCAGAAGAAAATA


ACCTTGCTAGGTTTCTCCTGGATAGGGAGGTGATCTTTCCGCGTGTAGCTCACATCATCATTGAGCAA


ACCAGTGTCGGGAGGAGAAAACAGATTCAAGGATATTTGGATTCAACTAGATCGATAATGAGGAAATC


ACTAGAAATTAAGCCCTTATCCAATAGGAAGCTTAATGAAATACTGGATTACAACATCAATTACCTAG


CTTACAATTTGGCATTACTCAAGAATGCTATTGAACCTCCGACTTATTTGAAGGCAATGACACTTGAA


ACATGTAGCATCGACATTGCAAGGAACCTCCGGAAGCTCTCCTGGGCCCCACTCTTGGGTGGGAGAAA


TCTTGAAGGATTAGAGACGCCAGATCCCATTGAAATTACTGCAGGAGCATTAATTGTTGGATCGGGCT


ACTGTGAACAGTGTGCTGCAGGAGACAATCGATTCACATGGTTTTTCTTGCCATCTGGTATCGAGATA


GGAGGGGATCCCCGTGATAATCCTCCTATCCGTGTACCGTACATTGGCTCCAGGACTGATGAGAGGAG


GGTAGCCTCAATGGCATACATCAGGGGTGCCTCGAGTAGCTTAAAAGCAGTTCTTAGACTGGCGGGAG


TGTACATCTGGGCATTCGGAGATACTCTGGAGAATTGGATAGATGCACTGGATTTGTCTCACACTAGA


GTTAACATCACACTTGAACAGCTGCAATCCCTCACCCCACTTCCAACCTCTGCCAATCTAACCCATCG


GTTGGATGATGGCACAACTACCCTAAAGTTTACTCCTGCGAGCTCTTACACCTTTTCAAGTTTCACTC


ATATATCAAATGATGAGCAATACCTGACAATTAATGACAAAACTGCAGATTCAAATATAATCTACCAA


CAGTTAATGATCACTGGACTCGGAATCTTAGAAACATGGAATAATCCCCCAATCAATAGAACATTCGA


AGAATCTACCCTACATTTGCACACTGGTGCATCATGTTGTGTCCGACCTGTGGACTCCTGCATTCTCT


CAGAAGCATTAACAGTCAAGCCACATATTACAGTACCGTACAGCAATAAATTTGTATTTGATGAGGAC


CCGCTATCTGAATATGAAACTGCAAAACTGGAATCGTTATCATTCCAAGCCCAATTAGGCAACATTGA


TGCTGTAGATATGACAGGTAAATTAACATTATTGTCCCAATTCACTGCAAGGCAGATTATCAATGCAA


TCACTGGACTCGATGAGTCTGTCTCTCTTACTAATGATGCCATTGTTGCATCAGACTATGTCTCCAAT


TGGATTAGTGAATGCATGTATACCAAATTAGATGAATTATTTATGTATTGTGGGTGGGAACTACTATT


GGAACTATCCTATCAAATGTATTATCTGAGGGTAGTTGGGTGGAGTAATATAGTGGATTATTCTTACA


TGATCTTGAGAAGAATCCCGGGTGCAGCATTAAACAATCTGGCATCTACATTAAGTCATCCAAAACTT


TTCCGACGAGCTATCAACCTAGATATAGTTGCCCCCTTAAATGCTCCTCATTTTGCATCTCTGGACTA


CATCAAGATGAGTGTGGATGCAATACTCTGGGGCTGTAAAAGAGTCATCAATGTGCTCTCCAATGGAG


GGGACTTAGAATTAGTTGTGACATCTGAAGATAGCCTTATTCTCAGTGACCGATCCATGAATCTCATT


GCAAGGAAATTAACTTTATTATCACTGATTCACCATAATGGTTTGGAACTACCAAAGATTAAGGGGTT


CTCTCCTGATGAGAAGTGTTTCGCTTTGACAGAATTTTTGAGGAAAGTGGTGAACTCAGGGTTGAGTT


CAATAGAGAACCTATCAAATTTTATGTACAATGTGGAGAACCCACGGCTTGCAGCATTCGCCAGCAAC


AATTACTACCTGACCAGAAAATTATTGAATTCAATACGAGATACTGAGTCGGGTCAAGTAGCAGTCAC


CTCATATTATGAATCATTAGAATATATTGATAGTCTTAAGCTAACCCCACATGTGCCTGGCACCTCAT


GCATTGAGGATGATAGTCTATGTACAAATGATTACATAATCTGGATCATAGAGTCTAATGCAAACTTG


GAGAAGTATCCAATTCCAAATAGCCCTGAGGATGATTCCAATTTCCATAACTTTAAGTTGAATGCTCC


ATCGCACCATACCTTACGCCCATTAGGGTTGTCATCAACTGCTTGGTATAAGGGTATAAGCTGCTGCA


GGTACCTTGAGCGATTAAAGCTACCACAAGGTGATCATTTATATATTGqAGAAGGTAGTGGTGCCAGT


ATGACAATCATAGAATACCTATTCCCAGGAAGAAAGATATATTACAATTCTTTATTTAGTAGTGGTGA


CAATCCCCCACAAAGAAATTATGCACCAATGCCTACTCAGTTCATTGAGAGTGTCCCATACAAGCTCT


GGCAAGCACACACAGATCAATATCCCGAGATTTTTGAGGACTTCATCCCTCTATGGAACGGAAACGCC


GCCATGACTGACATAGGAATGACAGCTTGTGTAGAATTCATCATCAATCGAGTCGGCCCAAGGACTTG


CAGTTTAGTACATGTAGATTTGGAATCAAGTGCAAGCTTAAATCAACAATGCCTGTCAAAGCCGATAA


TTAATGCTATCATCACTGCTACAACTGTTTTGTGCCCTCATGGGGTGCTTATTCTGAAATATAGTTGG


TTGCCATTTACTAGATTTAGTACTTTGATCACTTTCTTATGGTGCTACTTTGAGAGAATCACTGTTCT


TAGGAGCACATATTCTGATCCAGCTAATCATGAGGTTTATTTAATTTGTATCCTTGCCAACAACTTTG


CATTCCAGACTGTCTCGCAGGCAACAGGAATGGCGATGACTTTAACTGATCAAGGGTTTACTTTGATA


TCACCTGAAAGAATAAATCAGTATTGGGATGGTCACTTGAAGCAAGAACGTATCGTAGCAGAAGCAAT


TGATAAGGTGGTTCTAGGAGAAAATGCTCTATTTAATTCGAGTGATAATGAATTAATTCTCAAATGTG


GAGGGACACCAAATGCACGGAATCTCATCGATATCGAGCCAGTCGCAACTTTCATAGAATTTGAACAA


TTGATCTGCACAATGTTGACAACCCACTTGAAGGAAATAATTGATATAACAAGGTCTGGAACCCAGGA


TTATGAAAGTTTATTACTCACTCCTTACAATTTAGGTCTTCTTGGTAAAATCAGTACGATAGTGAGAT


TATTAACAGAAAGGATTCTAAATCATACTATCAGGAATTGGTTGATCCTCCCACCTTCGCTCCGGATG


ATCGTGAAGCAGGACTTGGAATTCGGCATATTCAGGATTACTTCCATCCTCAATTCTGATCGGTTCCT


GAAGCTTTCTCCAAATAGGAAATACTTGATTGCACAATTAACTGCAGGCTACATTAGGAAATTGATTG


AGGGGGATTGCAATATCGATCTAACCAGACCTATCCAAAAGCAAATCTGGAAAGCATTAGGTTGTGTA


GTCTATTGTCACGATCCAATGGATCAAAGGGAGTCAACAGAGTTTATTGATATAAATATTAATGAAGA


AATAGACCGCGGGATCGATGGCGAGGAAATCTAAACATATCAAGAATCAGAATTAGTTTAAGAAAAAA


GAAGAGGATTAATCTTGGTTTTCCCCTTGGTGGGTCGGCATGGCATCTCCACCTCCTCGCGGTCCGAC


CTGGGCATCCGAAGGAGGACGCACGTCCACTCGGATGGCTAAGGGAGCGGCCGGGGATCCGGCTGCTA


ACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGG


GCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGATGGAATCACCAGCT


TGATTTATCTCCAAAATGATTCAAAGAAAACAAATCATATTAAGACTATCCTAAGCACGAACCCATAT


CGTCCTTCAAATCATGGACCCCAAGGGCAGCCTGAGCTGGAGAATCCTGCTGTTCCTGAGCCTGGCCT


TCGAGCTGAGCTACGGCGACGTGCAGGTGGTGGAGAGCGGAGGCGGAGTGGTGCAGCCAGGCGGCAGC


CTGAGACTGAGCTGCGCTGCGAGTGGCTTCACCTTCAGCAGCTTCGGgATGCACTGGGTGAGGCAGGC


ACCCGGCAAGGGCCTGGAGTGGGTGGCCTACATCAACACCGACAGCACCACCATCTACTACGCAGACA


GCGTGAAGGGCAGGTTCACCATCAGCAGGGACAACAGCAAGAACACCCTGTACCTGCAGATGAACTCT


TTGCGGGCAGAAGACACTGCCGTGTACTACTGCGCCAGTGCTGGCCCCTACTATGGCTTTGACTACTG


GGGACAGGGCACCCTGGTGACCGTGAGCAGCGCTAGCACCAAGGGCCtCAGCGTGTTCCCTCTGGCCC


CCAGCAGCAAGAGCACCAGCGGCGGAACCGCCGCCCTGGGCTGCCTGGTGAAGGACTACTTCCCCGAG


CCCGTGACCGTGTCCTGGAACAGCGGCGCTCTGACCAGCGGAGTGCACACCTTCCCTGCCGTGCTGCA


GAGCAGCGGCCTGTACTCCCTGAGCAGCGTGGTGACCGTGCCCAGCAGCAGCCTGGGCACCCAGACCT


ACATCTGCAACGTGAACCACAAGCCCTCCAACACCAAGGTGGACAAGAAGGTGGAGCCTAAGAGCTGC


GACAAGACCCACACCTGCCCTCCCTGCCCCGCCCCCGAGCTGCTGGGCGGACCCAGCGTGTTCCTGTT


CCCTCCCAAGCCCAAGGACACCCTGATGATCAGCCGCACCCCCGAGGTGACCTGCGTGGTGGTGGACG


TGAGCCACGAGGACCCCGAGGTGAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCACAACGCCAAG


ACCAAGCCTCGGGAGGAGCAGTACAACTCCACCTACCGCGTGGTGAGCGTGCTGACCGTGCTGCACCA


GGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTGAGCAACAAGGCCCTGCCCGCTCCCATCGAGA


AGACCATCAGCAAGGCCAAGGGCCAGCCtCGGGAGCCTCAGGTGTACACCCTGCCCCCCAGCCGCGAA


GAGATGACCAAGAACCAGGTGAGCCTGACCTGCCTGGTGAAGGGCTTCTACCCCTCCGACATCGCCGT


GGAGTGGGAGAGCAACGGCCAGCCTGAGAACAACTACAAGACCACCCCTCCCGTGCTGGACAGCGACG


GCAGCTTCTTCCTGTACAGCAAGCTGACCGTGGACAAGTCCCGGTGGCAGCAGGGCAACGTGTTCAGC


TGCAGCGTGATGCACGAGGCCCTGCACAACCACTACACCCAGAAGAGCCTGAGCCTGAGCCCCGGACG


CGCAAAAAGAtctagaGAGGGCAGGGGAAGTCTTCTAACATGCGGGGACGTGGAGGAAAATCCCGGGC


CtATGGAGACCGACACCCTGCTGCTCTGGGTGCTGCTGCTCTGGGTGCCCGGCTCCACCGGAGACATC


GTGATGACCCAGAGTCCACTGAGCCTGCCCGTGACCCCCGGTGAGCCAGCCAGCATCAGCTGCAGGAG


CAGCAAGAGCCTGGTGCACAGCAACGGCATCACCTACCTGTACTGGTACGTGCAGAAGCCCGGACAGA


GCCCCCAGTTGCTCATTTATCAGATGAGCAGCCTGGCAAGCGGCGTGCCCGACAGGTTCAGCGGCTCC


GGCAGCGGCACCGACTTCAGCCTGAAGATCAGCCGGGTGGAGGCCGAGGACGTGGGCGTGTACTACTG


CGGCCAAATTCTGGAGCTGCCCTTCACCTTCGGCCAGGGAACCAAGGTGGAGATCAAGCGGACCGTGG


CCGCCCCCAGCGTGTTCATCTTCCCTCCCAGCGACGAGCAGCTGAAGTCTGGCACCGCCAGCGTGGTG


TGCCTGCTGAACAACTTCTACCCCCGCGAGGCCAAGGTGCAGTGGAAGGTGGACAACGCCCTGCAGAG


CGGCAACAGCCAGGAGAGCGTGACCGAGCAGGACTCCAAGGACAGCACCTACAGCCTGAGCAGCACCC


TGACCCTGAGCAAGGCCGACTACGAGAAGCACAAGGTGTACGCCTGCGAGGTGACCCACCAGGGACTG


TCTAGCCCCGTGACCAAGAGCTTCAACCGGGGCGAGTGCTAATGAGCATTCCACCACTCACGATCTGA


TCTCAGTGAGAAAAATCAACCTGCAACTCTTGGAACAAGATAAGACAGTCATCCATTAGTAATTTTTA


AGAAAAAAACGATAGGACCGAACCT





PIV mini-replicon sequence: pBH276 “minigenome”


CATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATA


GGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGA


CTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCT


TACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGT


ATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGAC


CGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGC


AGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGT


GGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTC


GGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTG


CAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTG


ACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACC


TAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGA


CAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTG


CCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATG


ATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGA


GCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAG


TAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGC


TCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCAT


GTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGT


TATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCT


GTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCC


GGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTT


CTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCA


CCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAA


TGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATT


ATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAA


CAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCAT


GACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTCGCGCGTTTCGGTGATGACGGTG


AAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGA


CAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTATGCGGCATCAGA


GCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACC


GCATCAGGCTAATACGACTCACTATAGGGACCAAGGGGAAAATGAAGTGGTGACTCAAATCATCGAAG


ACCCTCGAGATTACATAGGTCCGGAACCTATGGCCTTCGTGACCGACCTCGAGTCAGAGTAGTTCAAT


AAGGACCTATCAAGTTTGGGCAATTTTTCGTCCCCGACACAAAAATGTCATCCGTGCTTAAAGCATAT


GAGCGATTCACGCTCACTCAAGAACTGCAAGATCAGAGTGAGGAAGGTACAATCCCACCTACAACACT


AAAACCGGTAATCAGGGTATTTATACTAACCTCTAATAACCCAGAGCTAAGATCCCGGCTTCTTCTAT


TCTGCCTACGGATTGTTCTCAGTAATGGTGCAAGGGATTCCCATCGCTTTGGAGCATTACTCACAATG


TTTTCGCTACCATCAGCCACAATGCTCAATCATGTCAAATTAGCTGACCAGTCACCAGAAGCTGATAT


CGAAAGGGTAGAGATCGATGGCTTTGAGGAGGGATCATTCCGCTTAATCCCCAATGCtCGTTCAGGTA


TGAGCCGTGGAGAGATCAATGCCTATGCTGCACTTGCAGAAGATCTACCTGACACACTAAACCATGCA


ACACCTTTCGTTGATTCCGAAGTCGAGGGAACTGCATGGGATGAGATTGAGACTTTCTTAGATATGTG


TTACAGTGTCCTAATGCAGGCATGGATAGTGACTTGCAAGTGCATGACTGCGCCAGACCAACCTGCTG


CTTCTATTGAGAAACGCCTGCAAAAATATCGTCAGCAAGGCAGGATCAACCCGAGATATCTCCTGCAA


CCGGAGGCTCGACGAATAATCCAGAATGTAATCCGGAAGGGAATGGTGGTCAGACATTTCCTCACCTT


TGAACTGCAGCTTGCCCGAGCACAAAGCCTTGTATCAAATAGGTATTATGCTATGGTAGGGGATGTTG


GAAAGTATATAGAGAATTGTGGAATGGGAGGCTTCTTTTTGACACTAAAATATGCATTAGGAACTAGA


TGGCCCACACTTGCTTTAGCTGCATTTTCAGGAGAGCTAACAAAGCTAAAGTCCCTCATGGCATTATA


CCAGACCCTTGGTGAGCAGGCCCGATATTTGGCCCTATTGGAGTCACCACATTTGATGGATTTTGCTG


CAGCAAACTACCCACTGCTATATAGCTATGCTATGGGAATAGGCTATGTGTTAGATGTCAACATGAGG


AACTACGCTTTCTCCAGATCATACATGAACAAGACATATTTCCAATTGGGAATGGAAACTGCAAGAAA


ACAACAGGGTGCAGTTGACATGAGGATGGCAGAAGATCTCGGTCTAACTCAAGCCGAACGCACCGAGA


TGGCAAATACACTTGCCAAATTGACCACAGCAAATCGAGGGGCAGACACCAGGGGAGGAGTCAACCCG


TTCTCATCTGTCACTGGGACAACTCAGGTGCCCGCTGCAGCAACAGGTGACACACTCGAGAGTTACAT


GGCAGCGGATCGACTGAGGCAGAGATATGCTGATGCAGGCACCCATGATGATGAGATGCCACCATTGG


AAGAGGAGGAAGAGGACGACACATCTGCAGGTCCACGCACTGGACCAACTCTTGAACAAGTGGCCTTG


GACATCCAGAACGCAGCAGTTGGAGCTCCCATCCATACAGATGACCTGAATGCCGCACTGGGTGATCT


TGACATCTAGACAATTCAGATCCCAATCTAAAATTGACATACCTAATTGATTAGTTAGATGGAACTAC


AGTGGATTCCATAAGGTTCCTGCCTACCATCGGCTTTAAAGAAAAAAATAGGCCCGGACGGGTTAGCA


ACAAGCGACTGCCGGTGCCAACAGCGCAATCCACAATCTACAATGGATCCCACTGATCTGAGCTTCTC


CCCAGATGAGATCAATAAGCTCATAGAGACAGGCCTGAATACTGTAGAGTATTTTACTTCCCAACAAG


TCACAGGAACATCCTCTCTTGGAAAGAATACAATACCACCAGGGGTCACAGGACTACTAACCAATGCT


GCAGAGGCAAAGATCCAAGAGTCAACTAACCATCAGAAGGGCTCAGTTGGTGGGGGTGCAAAACCAAA


GAAACCGCGACCAAAAATTGCCATTGTGCCAGCAGATGACAAAACAGTGCCCGGAAAGCCGATCCCAA


ACCCTCTATTAGGTCTGGACTCCACCCCGAGCACCCAAACTGTGCTTGATCTAAGTGGGAAAACATTA


CCATCAGGATCCTATAAGGGGGTTAAGCTTGCGAAATTTGGAAAAGAAAATCTGATGACACGGTTCAT


CGAGGAACCCAGAGAGAATCCTATCGCAACCAGTTCCCCCATCGATTTTAAGAGGGGCAGGGATACCG


GCGGGTTCCATAGAAGGGAGTACTCAATCGGATGGGTGGGAGATGAAGTCAAGGTCACTGAGTGGTGC


AATCCATCCTGTTCTCCAATCACCGCTGCAGCAAGGCGATTTGAATGCACTTGTCACCAGTGTCCAGT


CACTTGCTCTGAATGTGAACGAGATACTTAATACAGTGAGAAATTTGGACTCTCGGATGAATCAACTG


GAGACAAAAGTAGATCGCATTCTCTCATCTCAGTCTCTAATCCAGACCATCAAGAATGACATAGTTGG


ACTTAAAGCAGGGATGGCTACTTTAGAAGGAATGATTACAACTGTGAAAATCATGGACCCGGGAGTTC


CCAGTAATGTTACTGTGGAAGATGTACGCAAGACACTAAGTAACCATGCTGTTGTTGTGCCAGAATCA


TTCAATGATAGTTTCTTGACTCAATCTGAAGATGTAATTTCACTTGATGAGTTGGCTCGACCAACTGC


AACAAGTGTTAAGAAGATTGTCAGGAAGGTTCCTCCTCAGAAGGATCTGACTGGATTGAAGATTACAC


TAGAGCAATTGGCAAAGGATTGCATCAGCAAACCGAAGATGAGGGAAGAGTATCTCCTCAAAATCAAC


CAGGCTTCCAGTGAGGCTCAGCTAATTGACCTCAAGAAAGCAATCATCCGCAGTGCAATTTGATCAAG


AAACACCCAATTACACTACACTGGTATGACACTGTACTAACCCTGAGGGTTTTAGAAAAAACgcCAAG


AGAACAATAGGCCAGAATGGCTGGGTCTCGGGAGATATTACTCCCTGAAGTCCATCTCAATTCACCAA


TTGTAAAGCATAAGCTATACTATTACATTCTACTTGGAAACCTCCCAAATGAGATCGACCTTGACGAT


TTAGGTCCATTACATAATCAAAATTGGAATCAGATAGCACATGAAGAGTCTAACTTAGCTCAACGCTT


GGTAAATGTAAGAAATTTTCTAATTACCCACATCCCTGATCTTAGAAAGGGCCATTGGCAAGAGTATG


TCAATGTAATACTGTGGCCGCGAATTCTTCCCTTGATCCCGGATTTTAAAATCAATGACCAATTGCCT


CTGCTCAAAAATTGGGACAAGTTAGTTAAAGAATCATGTTCAGTAATCAATGCAGGTACTTCCCAGTG


CATTCAGAATCTCAGCTATGGACTGACAGGTCGTGGGAACCTCTTTACACGATCACGTGAACTCTCTG


GTGACCGCAGGGATATTGATCTTAAGACAGTTGTGGCAGCATGGCATGACTCAGACTGGAAAAGAATA


AGTGATTTTTGGATTATGATCAAATTCCAGATGAGACAATTAATTGTTAGGCAAACAGATCATAATGA


TTCTGATTTAATCACGTATATCGAAAATAGAGAAGGCATAATCATCATAACCCCTGAACTGGTAGCAT


TATTTAACACTGAGAATCATACACTAACATACATGACCTTTGAAATTGTACTGATGGTTTCAGATATG


TACGAAGGTCGTCACAACATTTTATCACTATGCACAGTTAGCACTTACCTGAATCCTCTGAAGAAAAG


AATAACATATTTATTGAGCCTTGTAGATAACTTAGCTTTTCAGATAGGTGATGCTGTATATAACATAA


TTGCTTTGCTAGAATCCTTTGTATATGCACAGTTGCAAATGTCAGATCCCATCCCAGAACTCAGAGGA


CAATTCCATGCATTCGTATGTTCTGAGATTCTTGATGCACTAAGAGGAACTAATAGTTTCACCCAGGA


TGAATTAAGAACTGTGACAACTAATTTGATATCCCCATTCCAAGATCTGACCCCAGATCTTACGGCTG


AATTGCTCTGTATAATGAGGCTTTGGGGACACCCCATGCTCACTGCCAGTCAAGCTGCAGGAAAGGTA


CGCGAGTCTATGTGTGCTGGAAAAGTATTAGACTTTCCCACCATTATGAAAACACTAGCCTTTTTCCA


TACTATTCTGATCAATGGATACAGGAGGAAGCATCATGGAGTATGGCCACCCTTAAACTTACCGGGTA


ATGCTTCAAAGGGTCTCACGGAACTTATGAATGACAATACTGAAATAAGCTATGAATTCACACTTAAG


CATTGGAAGGAAGTCTCTCTTATAAAATTCAAGAAATGTTTTGATGCAGACGCAGGTGAGGAACTCAG


TATATTTATGAAAGATAAGGCAATTAGTGCCCCAAAACAAGACTGGATGAGTGTGTTTAGAAGAAGCC


TAATCAAACAGCGCCATCAGCATCATCAGGTCCCCCTACCAAATCCATTCAATCGACGGCTGTTGCTA


AACTTTCTCGGAGATGACAAATTCGACCCGAATGTGGAGCTACAGTATGTAACATCAGGTGAGTATCT


ACATGATGACACGTTTTGTGCATCATATTCACTAAAAGAGAAGGAAATTAAACCTGATGGTCGAATTT


TTGCAAAGTTGACTAAGAGAATGAGATCATGTCAAGTTATAGCAGAATCTCTTTTAGCGAACCATGCT


GGGAAGTTAATGAAAGAGAATGGTGTTGTGATGAATCAGCTATCATTAACAAAATCACTATTAACAAT


GAGTCAGATTGGAATAATATCCGAGAAAGCTAGAAAGTCAACTCGAGATAACATAAATCAACCTGGTT


TCCAGAATATCCAGAGAAATAAATCACATCACTCCAAGCAAGTCAATCAGCGAGATCCAAGTGATGAC


TTTGAATTGGCAGCATCTTTTTTAACTACTGATCTCAAAAAATATTGTTTACAATGGAGGTACCAGAC


AATTATCCCATTTGCTCAATCATTAAACAGAATGTATGGTTATCCTCATCTCTTTGAGTGGATTCACT


TACGGCTAATGCGTAGTACACTTTACGTGGGGGATCCCTTCAACCCACCAGCAGATACCAGTCAATTT


GATCTAGATAAAGTAATTAATGGAGATATCTTCATTGTATCACCCAGAGGTGGAATTGAAGGGCTGTG


TCAAAAGGCTTGGACAATGATATCTATCGCTGTGATAATTCTATCTGCCACAGAGTCTGGCACACGAG


TAATGAGTATGGTGCAGGGAGATAATCAAGCAATTGCTGTCACCACACGAGTACCAAGGAGCCTGCCG


ACTCTTGAGAAAAAGACTATTGCTTTTAGATCTTGTAATCTATTCTTTGAGAGGTTAAAATGTAATAA


TTTTGGATTAGGTCACCATTTGAAAGAACAAGAGACTATCATTAGTTCTCACTTCTTTGTTTATAGCA


AGAGAATATTCTATCAGGGGAGGATTCTAACGCAAGCCTTAAAAAATGCTAGTAAGCTCTGCTTGACA


GCTGATGTCCTAGGAGAATGCACCCAATCATCATGTTCTAATCTTGCAACTACTGTCATGAGGTTAAC


TGAGAATGGTGTTGAAAAAGATATCTGTTTCTACTTGAATATCTATATGACCATCAAACAGCTCTCCT


ATGATATCATCTTCCCTCAAGTGTCAATTCCTGGAGATCAGATCACATTAGAATACATAAATAATCCA


CACCTGGTATCACGATTGGCTCTTTTGCCATCCCAGTTAGGAGGTCTAAACTACCTGTCATGCAGTAG


GCTGTTCAATCGAAACATAGGCGACCCGGTGGTTTCCGCAGTTGCAGATCTTAAGAGATTAATTAAAT


CAGGATGTATGGATTACTGGATCCTTTATAACTTATTAGGGAGAAAACCGGGAAACGGCTCATGGGCT


ACTTTAGCAGCTGACCCGTACTCAATCAATATAGAGTATCAATACCCTCCAACTACAGCTCTTAAGAG


GCACACCCAACAAGCTCTGATGGAACTCAGTACGAATCCAATGTTACGTGGCATATTCTCTGACAATG


CACAGGCAGAAGAAAATAACCTTGCTAGGTTTCTCCTGGATAGGGAGGTGATCTTTCCGCGTGTAGCT


CACATCATCATTGAGCAAACCAGTGTCGGGAGGAGAAAACAGATTCAAGGATATTTGGATTCAACTAG


ATCGATAATGAGGAAATCACTAGAAATTAAGCCCTTATCCAATAGGAAGCTTAATGAAATACTGGATT


ACAACATCAATTACCTAGCTTACAATTTGGCATTACTCAAGAATGCTATTGAACCTCCGACTTATTTG


AAGGCAATGACACTTGAAACATGTAGCATCGACATTGCAAGGAACCTCCGGAAGCTCTCCTGGGCCCC


ACTCTTGGGTGGGAGAAATCTTGAAGGATTAGAGACGCCAGATCCCATTGAAATTACTGCAGGAGCAT


TAATTGTTGGATCGGGCTACTGTGAACAGTGTGCTGCAGGAGACAATCGATTCACATGGTTTTTCTTG


CCATCTGGTATCGAGATAGGAGGGGATCCCCGTGATAATCCTCCTATCCGTGTACCGTACATTGGCTC


CAGGACTGATGAGAGGAGGGTAGCCTCAATGGCATACATCAGGGGTGCCTCGAGTAGCTTAAAAGCAG


TTCTTAGACTGGCGGGAGTGTACATCTGGGCATTCGGAGATACTCTGGAGAATTGGATAGATGCACTG


GATTTGTCTCACACTAGAGTTAACATCACACTTGAACAGCTGCAATCCCTCACCCCACTTCCAACCTC


TGCCAATCTAACCCATCGGTTGGATGATGGCACAACTACCCTAAAGTTTACTCCTGCGAGCTCTTACA


CCTTTTCAAGTTTCACTCATATATCAAATGATGAGCAATACCTGACAATTAATGACAAAACTGCAGAT


TCAAATATAATCTACCAACAGTTAATGATCACTGGACTCGGAATCTTAGAAACATGGAATAATCCCCC


AATCAATAGAACATTCGAAGAATCTACCCTACATTTGCACACTGGTGCATCATGTTGTGTCCGACCTG


TGGACTCCTGCATTCTCTCAGAAGCATTAACAGTCAAGCCACATATTACAGTACCGTACAGCAATAAA


TTTGTATTTGATGAGGACCCGCTATCTGAATATGAAACTGCAAAACTGGAATCGTTATCATTCCAAGC


CCAATTAGGCAACATTGATGCTGTAGATATGACAGGTAAATTAACATTATTGTCCCAATTCACTGCAA


GGCAGATTATCAATGCAATCACTGGACTCGATGAGTCTGTCTCTCTTACTAATGATGCCATTGTTGCA


TCAGACTATGTCTCCAATTGGATTAGTGAATGCATGTATACCAAATTAGATGAATTATTTATGTATTG


TGGGTGGGAACTACTATTGGAACTATCCTATCAAATGTATTATCTGAGGGTAGTTGGGTGGAGTAATA


TAGTGGATTATTCTTACATGATCTTGAGAAGAATCCCGGGTGCAGCATTAAACAATCTGGCATCTACA


TTAAGTCATCCAAAACTTTTCCGACGAGCTATCAACCTAGATATAGTTGCCCCCTTAAATGCTCCTCA


TTTTGCATCTCTGGACTACATCAAGATGAGTGTGGATGCAATACTCTGGGGCTGTAAAAGAGTCATCA


ATGTGCTCTCCAATGGAGGGGACTTAGAATTAGTTGTGACATCTGAAGATAGCCTTATTCTCAGTGAC


CGATCCATGAATCTCATTGCAAGGAAATTAACTTTATTATCACTGATTCACCATAATGGTTTGGAACT


ACCAAAGATTAAGGGGTTCTCTCCTGATGAGAAGTGTTTCGCTTTGACAGAATTTTTGAGGAAAGTGG


TGAACTCAGGGTTGAGTTCAATAGAGAACCTATCAAATTTTATGTACAATGTGGAGAACCCACGGCTT


GCAGCATTCGCCAGCAACAATTACTACCTGACCAGAAAATTATTGAATTCAATACGAGATACTGAGTC


GGGTCAAGTAGCAGTCACCTCATATTATGAATCATTAGAATATATTGATAGTCTTAAGCTAACCCCAC


ATGTGCCTGGCACCTCATGCATTGAGGATGATAGTCTATGTACAAATGATTACATAATCTGGATCATA


GAGTCTAATGCAAACTTGGAGAAGTATCCAATTCCAAATAGCCCTGAGGATGATTCCAATTTCCATAA


CTTTAAGTTGAATGCTCCATCGCACCATACCTTACGCCCATTAGGGTTGTCATCAACTGCTTGGTATA


AGGGTATAAGCTGCTGCAGGTACCTTGAGCGATTAAAGCTACCACAAGGTGATCATTTATATATTGgA


GAAGGTAGTGGTGCCAGTATGACAATCATAGAATACCTATTCCCAGGAAGAAAGATATATTACAATTC


TTTATTTAGTAGTGGTGACAATCCCCCACAAAGAAATTATGCACCAATGCCTACTCAGTTCATTGAGA


GTGTCCCATACAAGCTCTGGCAAGCACACACAGATCAATATCCCGAGATTTTTGAGGACTTCATCCCT


CTATGGAACGGAAACGCCGCCATGACTGACATAGGAATGACAGCTTGTGTAGAATTCATCATCAATCG


AGTCGGCCCAAGGACTTGCAGTTTAGTACATGTAGATTTGGAATCAAGTGCAAGCTTAAATCAACAAT


GCCTGTCAAAGCCGATAATTAATGCTATCATCACTGCTACAACTGTTTTGTGCCCTCATGGGGTGCTT


ATTCTGAAATATAGTTGGTTGCCATTTACTAGATTTAGTACTTTGATCACTTTCTTATGGTGCTACTT


TGAGAGAATCACTGTTCTTAGGAGCACATATTCTGATCCAGCTAATCATGAGGTTTATTTAATTTGTA


TCCTTGCCAACAACTTTGCATTCCAGACTGTCTCGCAGGCAACAGGAATGGCGATGACTTTAACTGAT


CAAGGGTTTACTTTGATATCACCTGAAAGAATAAATCAGTATTGGGATGGTCACTTGAAGCAAGAACG


TATCGTAGCAGAAGCAATTGATAAGGTGGTTCTAGGAGAAAATGCTCTATTTAATTCGAGTGATAATG


AATTAATTCTCAAATGTGGAGGGACACCAAATGCACGGAATCTCATCGATATCGAGCCAGTCGCAACT


TTCATAGAATTTGAACAATTGATCTGCACAATGTTGACAACCCACTTGAAGGAAATAATTGATATAAC


AAGGTCTGGAACCCAGGATTATGAAAGTTTATTACTCACTCCTTACAATTTAGGTCTTCTTGGTAAAA


TCAGTACGATAGTGAGATTATTAACAGAAAGGATTCTAAATCATACTATCAGGAATTGGTTGATCCTC


CCACCTTCGCTCCGGATGATCGTGAAGCAGGACTTGGAATTCGGCATATTCAGGATTACTTCCATCCT


CAATTCTGATCGGTTCCTGAAGCTTTCTCCAAATAGGAAATACTTGATTGCACAATTAACTGCAGGCT


ACATTAGGAAATTGATTGAGGGGGATTGCAATATCGATCTAACCAGACCTATCCAAAAGCAAATCTGG


AAAGCATTAGGTTGTGTAGTCTATTGTCACGATCCAATGGATCAAAGGGAGTCAACAGAGTTTATTGA


TATAAATATTAATGAAGAAATAGACCGCGGGATCGATGGCGAGGAAATCTAAACATATCAAGAATCAG


AATTAGTTTAAGAAAAAAGAAGAGGATTAATCTTGGTTTTCCCCTTGGTGGGTCGGCATGGCATCTCC


ACCTCCTCGCGGTCCGACCTGGGCATCCGAAGGAGGACGCACGTCCACTCGGATGGCTAAGGGAGCGG


CCGGGGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAA


CTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATC


CGGAT





Indel IRES-mCh-2A-Puro insert in T7 promoter orientation


CATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATA


GGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGA


CTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCT


TACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGT


ATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGAC


CGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGC


AGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGT


GGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTC


GGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTG


CAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTG


ACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACC


TAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGA


CAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTG


CCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATG


ATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGA


GCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAG


TAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGC


TCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCAT


GTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGT


TATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCT


GTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCC


GGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTT


CTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCA


CCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAA


TGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATT


ATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAA


CAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCAT


GACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTCGCGCGTTTCGGTGATGACGGTG


AAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGA


CAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTATGCGGCATCAGA


GCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACC


GCATCAGGCTAATACGACTCACTATAGGGACCAAGGGGAAAACCAAGATTAATCCTCTTCTTTTTTCT


TAAACTAATTCTGATTCTTGATATGTTTAGATTTCCTCGCCATCGATCCCGCGGTCTATTTCTgcTCA


GGCACCGGGCTTGCGGGTCATGCACCAGGTGCGCGGTCCTTCGGGCACCTCGACGTCGGCGGTGACGG


TGAAGCCGAGCCGCTCGTAGAAGGGGAGGTTGCGGGGCGCGGAGGTCTCCAGGAAGGCGGGCACCCCG


GCGCGCTCGGCCGCCTCCACTCCGGGGAGCACGACGGCGCTGCCCAGACCCTTGCCCTGGTGGTCGGG


CGAGACTCCGACGGTGGCCAGGAACCACGCGGGCTCCTTGGGCCGGTGCGGCGCCAGGAGGCCTTCCA


TCTGTTGCTGCGCGGCCAGCCGGGAACCGCTCAACTCGGCCATGCGCGGGCCGATCTCGGCGAACACC


GCCCCCGCTTCGACGCTCTCCGGCGTGGTCCAGACCGCCACCGCGGCGCCGTCGTCCGCGACCCACAC


CTTGCCGATGTCGAGCCCGACGCGCGTGAGGAAGAGTTCTTGCAGCTCGGTGACCCGCTCGATGTGGC


GGTCCGGATCGACGGTGTGGCGCGTGGCGGGGTAGTCGGCGAACGCGGCGGCGAGGGTGCGTACGGCC


CTGGGGACGTCGTCGCGGGTGGCGAGGCGCACCGTGGGCTTGTACTCGGTCATTGGGCCAGGATTCTC


CTCGACGTCACCGCATGTTAGCAGACTTCCTCTGCCCTCTCCCTTGTACAGCTCGTCCATGCCGCCGG


TGGAGTGGCGGCCCTCGGCGCGTTCGTACTGTTCCACGATGGTGTAGTCCTCGTTGTGGGAGGTGATG


TCCAACTTGATGTTGACGTTGTAGGCGCCGGGCAGCTGCACGGGCTTCTTGGCCTTGTAGGTGGTCTT


GACCTCAGCGTCGTAGTGGCCGCCGTCCTTCAGCTTCAGCCTCTGCTTGATCTCGCCCTTCAGGGCGC


CGTCCTCGGGGTACATCCGCTCGGAGGAGGCCTCCCAGCCCATGGTCTTCTTCTGCATTACGGGGCCG


TCGGAGGGGAAGTTGGTGCCGCGCAGCTTCACCTTGTAGATGAACTCGCCGTCCTGCAGGGAGGAGTC


CTGGGTCACGGTCACCACGCCGCCGTCCTCGAAGTTCATCACGCGCTCCCACTTGAAGCCCTCGGGGA


AGGACAGCTTCAAGTAGTCGGGGATGTCGGCGGGGTGCTTCACGTAGGCCTTGGAGCCGTACATGAAC


TGAGGGGACAGGATGTCCCAGGCGAAGGGCAGGGGGCCACCCTTGGTCACCTTCAGCTTGGCGGTCTG


GGTGCCCTCGTAGGGGCGGCCCTCGCCCTCGCCCTCGATCTCGAACTCGTGGCCGTTCACGGAGCCCT


CCATGTGCACCTTGAAGCGCATGAACTCCTTGATGATGGCCATGTTATCCTCCTCGCCCTTGCTCACC


ATcacacAATTCGCTTTATGATAACAATCTGTGATTGTCACCATAAGCAGCCACAATAAAATAAAAGG


AAACACGGACACCCAAAGTAGTCGGTTCCGCCACGGACTTGCGCGTTACGACAGGCCAATCACTGGTT


TGTGACCACCTGCTCCGAGGTTGGGATTAGCCGCATTCAGGGGCCGGAGGATTCTTATGTAGCTCAAT


AGGCTCTTCACACCTTGTTCACAACTAGCGTCCCATGGCGTTAGCCATAGGTAGGCCGCCAACGCAGC


CTGGACCACCGTCACCGGTGAGGGATGTCCAGACTCATCAGCCTAAGCTACACTCTGGGGTTGAGTGC


TGAGCGCAACGCATCGAAGATTCCGAGGTGGTACTGGGCTTCTCGAAGTACATAAGCGGATAACGGAT


CCGTCGCTTTCAACCACGCAAGCAGTCTATACGACATCACCGGGGAAACAGAAGTGCTTGTTCGTGGT


GGTACTGGTTTGTACCCCCTTCTATTGAACTTGGTTTTGTGCGTCTAAGTTACGGGAAGGGAGTATAA


AACAGGCGTACAAGGGTACCGCAATACCGGAGTACTAGCCGCCACGTGGGCCTCTGGGGTGGGTACAA


CCCCAGAGCTGTTTTAAGCTAACTACTCTGACTCGAGGTCGGTCACGAAGGCCATAGGTTCCGGACCT


ATGTAATCTCGAGGGTCTTCGATGATTTGAGTCACCACTTCATTTTCCCCTTGGTGGGTCGGCATGGC


ATCTCCACCTCCTCGCGGTCCGACCTGGGCATCCGAAGGAGGACGCACGTCCACTCGGATGGCTAAGG


GAGCGGCCGGGGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAG


CAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAAC


TATATCCGGAT





pIndel-IRES-PIV5-F-2A-Puro


CATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATA


GGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGA


CTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCT


TACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGT


ATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGAC


CGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGC


AGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGT


GGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTC


GGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTG


CAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTG


ACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACC


TAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGA


CAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTG


CCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATG


ATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGA


GCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAG


TAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGC


TCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCAT


GTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGT


TATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCT


GTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCC


GGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTT


CTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCA


CCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAA


TGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATT


ATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAA


CAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCAT


GACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTCGCGCGTTTCGGTGATGACGGTG


AAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGA


CAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTATGCGGCATCAGA


GCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACC


GCATCAGGCTAATACGACTCACTATAGGGACCAAGGGGAAAACCAAGATTAATCCTCTTCTTTTTTCT


TAAACTAATTCTGATTCTTGATATGTTTAGATTTCCTCGCCATCGATCCCGCGGTCTATTTCTgcTCA


GGCACCGGGCTTGCGGGTCATGCACCAGGTGCGCGGTCCTTCGGGCACCTCGACGTCGGCGGTGACGG


TGAAGCCGAGCCGCTCGNAGAAGGGGAGGTTGCGGGGCGCGGAGGTCTCCAGGAAGGCGGGCACCCCG


GCGCGCTCGGCCGCCTCCACTCCGGGGAGCACGACGGCGCTGCCCAGACCCTTGCCCTGGTGGTCGGG


CGAGACTCCGACGGTGGCCAGGAACCACGCGGGCTCCTTGGGCCGGTGCGGCGCCAGGAGGCCTTCCA


TCTGTTGCTGCGCGGCCAGCCGGGAACCGCTCAACTCGGCCATGCGCGGGCCGATCTCGGCGAACACC


GCCCCCGCTTCGACGCTCTCCGGCGTGGTCCAGACCGCCACCGCGGCGCCGTCGTCCGCGACCCACAC


CTTGCCGATGTCGAGCCCGACGCGCGTGAGGAAGAGTTCTTGCAGCTCGGTGACCCGCTCGATGTGGC


GGTCCGGATCGACGGTGTGGCGCGTGGCGGGGTAGTCGGCGAACGCGGCGGCGAGGGTGCGTACGGCC


CTGGGGACGTCGTCGCGGGTGGCGAGGCGCACCGTGGGCTTGTACTCGGTCATTGGGCCAGGATTCTC


CTCGACGTCACCGCATGTTAGCAGACTTCCTCTGCCCTCTCCCTTGTGGTACACGAAGTTTTCCATTC


TATTTCTGTTGGCCACCACGATGGTCAGCAGCTTCCACACCACCACACTCAGCAGAATGATCAGGATC


AAGCCCAGAGATCCCAGACAAATGGCGATGATGCTCAGCACGGAGGTGGTGGTGGCGCTTGTGATGGC


GCTCAGGTAGGTGTCGCTTTGAGCCAGGTGCTGCAGGGCATCGCTCAGGGACTTGTTCACGGCGGCCA


GGTTCTGAGAGATATCCAGAGGGTCGATGCTCAGGATCTGGCTGCTTTCCAGCTTAATGGTGCTGTTG


TAGGTCACGTTGGCCAGCTGTGTGATGGTGAACCGCAGGTTATCCAGCTGCAGGGAGACGCACTTATA


CATATCGATCACTGTCACGGGGGAGCTGCTAGGCTGCAAAATCACAGCGGCTGGCTGCATGCATTTAC


ACAGCATGCTCCGGCAGTTGGCGTAAACGATGCCGTCGAACAGCACGAATCTGGTCAGAAAAGAGCCC


ACCACTGGGCTGAAGGTACATCTTGTCAGGTTGCCTTGCAGGCAGGCCATTGTGTCGTCAGACAGCAC


TTGGGCGTCGTTGTATCTGCAGTACACTGTATTAGGGGTGATGGTGCACTGAGAGGCAGGATAAGCCT


GGATCAGGCTGCCGGTCACCATCACTCTGGTTGGCAGCTGGGCCATCACCTCCTGGTTGTTGATAAAA


GCGCTGATTGTAGCCAGGTCGATGATCTGGGTGGCAGGCTGGACTGTCAGTGTAGGCAGCTCGATCTT


GATGACCATCTGCATGTATGTCAGGTCCAGGCCCACGATCTGTCCTGTCAGCAGGCCGGAGCTCAGCA


GCTCGGCGGCGCTGATCTGGGTGTTGAAGCTCTTCTCGACCACTGTAGGCAGGGTAGAGCCGAGCAGG


ATTCTCAGGGCCTGGATGGTGATAGGGCTCAGGGGGGGGTTGGTGATCTGGTTGTGGAAGATTGTGGT


CAGTTCAGTCAGGTACAGGTTCAGGATGCTTCCGATGATGGCGTCCTGAGCTTTACAATTAGCAGCTG


TGATGGCAGGAGACACCACGCTATTGATATGATCCTGCACGGCCTGCACGGCGGTGCCCAGGCTCTGG


GTAGCTTGAACCACGTCGGCCACTGCGGCGTTGGTTTTCTGGATGGCGTTCTTCAGGTTCAGGATAGC


AGCGGCGTTCTCATTGGCCTTGACCAGGGCCACGGCGGCGGTCACCTGGGCGGCGGTGGCCACGCCGA


GAGCGGCCAGGCCGATCACCACTCCGGCGAACCTTCTCCGCCGTCTTGTGGGGATCAGCTGGTTCCGG


ATGGTTTCCAGGTTCTCGCCGATGGGCTGAAGCAGCTTTGTCACGGTGGCATTGTAGGAGCTGATGCT


GGTGATGTTGCAGCCGCTGATGGGAGAATCGATGGTAGGCATCAGCTTAACCACGATGAAGGCGCTAG


AGGCCTCGGTGTAGTACATCAGCTGGCGCACATTGGTAGGGATCACTCCAATCTGCATGAGAGCGGCG


GGGTCCAGAGAGCCGGCGCCGGCGAGCAGGCAGCTTACCACCAGAAATTGTATGATTGTGCCCATcaA


ATTCGCTTTATGATAACAATCTGTGATTGTCACCATAAGCAGCCACAATAAAATAAAAGGAAACACGG


ACACCCAAAGTAGTCGGTTCCGCCACGGACTTGCGCGTTACGACAGGCCAATCACTGGTTTGTGACCA


CCTGCTCCGAGGTTGGGATTAGCCGCATTCAGGGGCCGGAGGATTCTTATGTAGCTCAATAGGCTCTT


CACACCTTGTTCACAACTAGCGTCCCATGGCGTTAGCCATAGGTAGGCCGCCAACGCAGCCTGGACCA


CCGTCACCGGTGAGGGATGTCCAGACTCATCAGCCTAAGCTACACTCTGGGGTTGAGTGCTGAGCGCA


ACGCATCGAAGATTCCGAGGTGGTACTGGGCTTCTCGAAGTACATAAGCGGATAACGGATCCGTCGCT


TTCAACCACGCAAGCAGTCTATACGACATCACCGGGGAAACAGAAGTGCTTGTTCGTGGTGGTACTGG


TTTGTACCCCCTTCTATTGAACTTGGTTTTGTGCGTCTAAGTTACGGGAAGGGAGTATAAAACAGGCG


TACAAGGGTACCGCAATACCGGAGTACTAGCCGCCACGTGGGCCTCTGGGGTGGGTACAACCCCAGAG


CTGTTTTAAGCTAACTACTCTGACTCGAGGTCGGTCACGAAGGCCATAGGTTCCGGACCTATGTAATC


TCGAGGGTCTTCGATGATTTGAGTCACCACTTCATTTTCCCCTTGGTGGGTCGGCATGGCATCTCCAC


CTCCTCGCGGTCCGACCTGGGCATCCGAAGGAGGACGCACGTCCACTCGGATGGCTAAGGGAGCGGCC


GGGGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACT


AGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCG


GAT





pIndel: IRES-SpikeΔCtV5-2A-Puro


CATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATA


GGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGA


CTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCT


TACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGT


ATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGAC


CGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGC


AGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGT


GGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTC


GGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTG


CAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTG


ACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACC


TAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGA


CAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTG


CCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATG


ATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGA


GCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAG


TAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGC


TCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCAT


GTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGT


TATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCT


GTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCC


GGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTT


CTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCA


CCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAA


TGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATT


ATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAA


CAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCAT


GACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTCGCGCGTTTCGGTGATGACGGTG


AAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGA


CAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTATGCGGCATCAGA


GCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACC


GCATCAGGCTAATACGACTCACTATAGGGACCAAGGGGAAAACCAAGATTAATCCTCTTCTTTTTTCT


TAAACTAATTCTGATTCTTGATATGTTTAGATTTCCTCGCCATCGATCCCGCGGTCTATTTCTgcgcT


CAGGCACCGGGCTTGCGGGTCATGCACCAGGTGCGCGGTCCTTCGGGCACCTCGACGTCGGCGGTGAC


GGTGAAGCCGAGCCGCTCGTAGAAGGGGAGGTTGCGGGGCGCGGAGGTCTCCAGGAAGGCGGGCACCC


CGGCGCGCTCGGCCGCCTCCACTCCGGGGAGCACGACGGCGCTGCCCAGACCCTTGCCCTGGTGGTCG


GGCGAGACTCCGACGGTGGCCAGGAACCACGCGGGCTCCTTGGGCCGGTGCGGCGCCAGGAGGCCTTC


CATCTGTTGCTGCGCGGCCAGCCGGGAACCGCTCAACTCGGCCATGCGCGGGCCGATCTCGGCGAACA


CCGCCCCCGCTTCGACGCTCTCCGGCGTGGTCCAGACCGCCACCGCGGCGCCGTCGTCCGCGACCCAC


ACCTTGCCGATGTCGAGCCCGACGCGCGTGAGGAAGAGTTCTTGCAGCTCGGTGACCCGCTCGATGTG


GCGGTCCGGATCGACGGTGTGGCGCGTGGCGGGGTAGTCGGCGAACGCGGCGGCGAGGGTGCGTACGG


CCCTGGGGACGTCGTCGCGGGTGGCGAGGCGCACCGTGGGCTTGTACTCGGTCATTGGGCCAGGATTC


TCCTCGACGTCACCGCATGTTAGCAGACTTCCTCTGCCCTCTCCGGTGCTATCCAGGCCCAGCAGCGG


GTTCGGAATCGGTTTGCCACTGGTCATACAGCAAAGCATAATTGTCACCATTACTATGGCAATCAAGC


CAGCTATAAAACCTAGCCAAATGTACCATGGCCATTTTATATACTGCTCATACTTTCCAAGTTCTTGG


AGATCGATGAGAGATTCATTTAAATTCTTGGCAACCTCATTGAGGCGGTCAATTTCTTTTTGAATGTT


TACAACTGAAGCATTAATGCCAGAGATGTCACCTAAATCAACATCTGGTGATGTATGATTCTTAAAAT


ATTTATCTAACTCCTCCTTGAATGAGTCTAATTCAGGTTGCAAAGGATCATAAACTGTGTTGTTGACA


ATTCCTATTACAACATCACAGTTACCAGACACAAATGTGTTGTCTGTAGTAATGATTTGTGGTTCATA


AAAATTCCTTTGTGTTACAAACCAGTGTGTGCCATTTGAAACAAAGACACCTTCACGAGGAAAGTGTG


CTTTTCCATCATGACAAATGGCAGGAGCAGTTGTGAAGTTCTTTTCTTGTGCAGGGACATAAGTCACA


TGCAAGAAGACTACACCATGAGGTGCTGACTGAGGGAAGGACATAAGATGATAGCCCTTTCCACAAAA


ATCAACTCTTTTTGATTGTCCAAGTACACACTCTGACATTTTAGTAGCAGCAAGATTAGCAGAAGCTC


TGATTTCTGCAGCTCTAATTAATTGTTGAGTCACATATGTCTGCAAACTTTGAAGTCTGCCTGTGATC


AACCTATCAATTTGCACTTCAGCCTCAACTTTGTCAAGACGTGAAAGGATATCATTTAAAACACTTGA


AATTGCACCAAAATTGGAGCTAAGTTGTTTAACAAGCGTGTTTAAAGCTTGTGCATTTTGGTTGACCA


CATCTTGAAGTTTTCCAAGTGCACTTGCTGTGGAAGAAAGTGAGTCTTGAATTTTGCCAATAGCACTA


TTAAATTGGTTGGCAATCAATTTTTGGTTCTCATAGAGAACATTCTGTGTAACTCCAATACCATTAAA


CCTATAAGCCATTTGCATAGCAAATGGTATTTGTAATGCAGCACCTGCACCAAAGGTCCAACCAGAAG


TGATTGTACCCGCTAACAGTGCAGAAGTGTATTGAGCAATCATTTCATCTGTGAGCAAAGGTGGCAAA


ACAGTAAGGCCGTTAAACTTTTGTGCACAAATGAGGTCTCTAGCAGCAATATCACCAAGGCAATCACC


ATATTGTTTGATGAAGCCAGCATCTGCAAGTGTCACTTTGTTGAAAAGTAGATCTTCAATAAATGACC


TCTTGCTTGGTTTTGATGGATCTGGTAATATTTGTGAAAAATTAAAACCACCAAAATCTTTAATTGGT


GGTGTTTTGTAAATTTGTTTGACTTGTGCAAAAACTTCTTGGGTGTTTTTGTCTTGTTCAACAGCTAT


TCCAGTTAAAGCACGGTTTAATTGTGTACAAAAACTGCCATATTGCAACAAAAGATTGCTGCATTCAG


TTGAATCACCACAAATGTACATTGTACAATCTACTGATGTCTTGGTCATAGACACTGGTAGAATTTCT


GTGGTAACACTAATAGTAAAATTTGTGGGTATGGCAATAGAGTTATTAGAGTAAGCAACTGAATTTTC


TGCACCAAGTGACATAGTGTAGGCAATGATGGATTGACTAGCTACACTACGTGCCCGCCGAGGAGAAT


TAGTCTGAGTCTGATAACTAGCGCATATACCTGCACCAATGGGTATGTCACACTCATATGAGTTGTTG


ACATGTTCAGCCCCTATTAAACAGCCTGCACGTGTTTGAAAAACATTAGAACCTGTAGAATAAACACG


CCAAGTAGGAGTAAGTTGATCTGCATGAATAGCAACAGGGACTTCTGTGCAGTTAACATCCTGATAAA


GAACAGCAACCTGGTTAGAAGTATTTGTTCCTGGTGTTATAACACTGACACCACCAAAAGAACATGGT


GTAATGTCAAGAATCTCAAGTGTCTGTGGATCACGGACAGCATCAGTAGTGTCAGCAATGTCTCTGCC


AAATTGTTGGAAAGGCAGAAACTTTTTGTTAGACTCAGTAAGAACACCTGTGCCTGTTAAACCATTGA


AGTTGAAATTGACACATTTGTTTTTAACCAAATTAGTAGACTTTTTAGGTCCACAAACAGTTGCTGGT


GCATGTAGAAGTTCAAAAGAAAGTACTACTACTCTGTATGGTTGGTAACCAACACCATTAGTGGGTTG


GAAACCATATGATTGTAAAGGAAAGTAACAATTAAAACCTTCAACACCATTACAAGGTGTGCTACCGG


CCTGATAGATTTCAGTTGAAATATCTCTCTCAAAAGGTTTGAGATTAGACTTCCTAAACAATCTATAC


AGGTAATTATAATTACCACCAACCTTAGAATCAAGATTGTTAGAqTTCCAAGCTATAACGCAGCCTGT


AAAATCATCTGGTAATTTATAATTATAATCAGCAATCTTTCCAGTTTGCCCTGGAGCGATTTGTCTGA


CTTCATCACCTCTAATTACAAATGAATCTGCATAGACATTAGTAAAGCAGAGATCATTTAATTTAGTA


GGAGACACTCCATAACACTTAAAAGTGGAAAATGATGCGGAATTATATAGGACAGAATAATCAGCAAC


ACAGTTGCTGATTCTCTTCCTGTTCCAAGCATAAACAGATGCAAATCTGGTGGCGTTAAAAACTTCAC


CAAAAGGGCACAAGTTTGTAATATTAGGAAATCTAACAATAGATTCTGTTGGTTGGACTCTAAAGTTA


GAAGTTTGATAGATTCCTTTTTCTACAGTGAAGGATTTCAACGTACACTTTGTTTCTGAGAGAGGGTC


AAGTGCACAGTCTACAGCATCTGTAATGGTTCCATTTTCATTATATTTTAATAGAAAAGTCCTAGGTT


GAAGATAACCCACATAATAAGCTGCAGCACCAGCTGTCCAACCTGAAGAAGAATCACCAGGAGTCAAA


TAACTTCTATGTAAAGCAAGTAAAGTTTGAAACCTAGTGATGTTAATACCTATTGGCAAATCTACCAA


TGGTTCTAAAGCCGAAAAACCCTGAGGGAGATCACGCACTAAATTAATAGGCGTGTGCTTAGAATATA


TTTTAAAATAACCATCAATATTCTTAAACACAAATTCCCTAAGATTTTTGAAATTACCCTGTTTTCCT


TCAAGGTCCATAAGAAAAGGCTGAGAGACATATTCAAAAGTGCAATTATTCGCACTAGAATAAACTCT


GAACTCACTTTCCATCCAACTTTTGTTGTTTTTGTGGTAATAAACACCCAAAAATGGATCATTACAAA


ATTGAAATTCACAGACTTTAATAACAACATTAGTAGCGTTATTAACAATAAGTAGGGACTGGGTCTTC


GAATCTAAAGTAGTACCAAAAATCCAGCCTCTTATTATGTTAGACTTCTCAGTGGAAGCAAAATAAAC


ACCATCATTAAATGGTAGGACAGGGTTATCAAACCTCTTAGTACCATTGGTCCCAGAGACATGTATAG


CATGGAACCAAGTAACATTGGAAAAGAAAGGTAAGAACAAGTCCTGAGTTGAATGTAAAACTGAGGAT


CTGAAAACTTTGTCAGGGTAATAAACACCACGTGTGAAAGAATTAGTGTATGCAGGGGGTAATTGAGT


TCTGGTTGTAAGATTAACACACTGACTAGAGACTAGCGGCAATAAAACAAGAAAAACAAACATAATTC


GCTTTATGATAACAATCTGTGATTGTCACCATAAGCAGCCACAATAAAATAAAAGGAAACACGGACAC


CCAAAGTAGTCGGTTCCGCCACGGACTTGCGCGTTACGACAGGCCAATCACTGGTTTGTGACCACCTG


CTCCGAGGTTGGGATTAGCCGCATTCAGGGGCCGGAGGATTCTTATGTAGCTCAATAGGCTCTTCACA


CCTTGTTCACAACTAGCGTCCCATGGCGTTAGCCATAGGTAGGCCGCCAACGCAGCCTGGACCACCGT


CACCGGTGAGGGATGTCCAGACTCATCAGCCTAAGCTACACTCTGGGGTTGAGTGCTGAGCGCAACGC


ATCGAAGATTCCGAGGTGGTACTGGGCTTCTCGAAGTACATAAGCGGATAACGGATCCGTCGCTTTCA


ACCACGCAAGCAGTCTATACGACATCACCGGGGAAACAGAAGTGCTTGTTCGTGGTGGTACTGGTTTG


TACCCCCTTCTATTGAACTTGGTTTTGTGCGTCTAAGTTACGGGAAGGGAGTATAAAACAGGCGTACA


AGGGTACCGCAATACCGGAGTACTAGCCGCCACGTGGGCCTCTGGGGTGGGTACAACCCCAGAGCTGT


TTTAAGCTAACTACTCTGACTCGAGGTCGGTCACGAAGGCCATAGGTTCCGGACCTATGTAATCTCGA


GGGTCTTCGATGATTTGAGTCACCACTTCATTTTCCCCTTGGTGGGTCGGCATGGCATCTCCACCTCC


TCGCGGTCCGACCTGGGCATCCGAAGGAGGACGCACGTCCACTCGGATGGCTAAGGGAGCGGCCGGGG


ATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCA


TAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGAT





pIndel: IRES-mCh-2A-Puro


CATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATA


GGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGA


CTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCT


TACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGT


ATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGAC


CGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGC


AGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGT


GGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTC


GGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTG


CAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTG


ACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACC


TAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGA


CAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTG


CCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATG


ATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGA


GCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAG


TAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGC


TCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCAT


GTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGT


TATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCT


GTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCC


GGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTT


CTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCA


CCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAA


TGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATT


ATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAA


CAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCAT


GACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTCGCGCGTTTCGGTGATGACGGTG


AAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGA


CAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTATGCGGCATCAGA


GCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACC


GCATCAGGCTAATACGACTCACTATAGGGACCAAGGGGAAAACCAAGATTAATCCTCTTCTTTTTTCT


TAAACTAATTCTGATTCTTGATATGTTTAGATTTCCTCGCCATCGATCCCGCGGTCTATTTCTgcTCA


GGCACCGGGCTTGCGGGTCATGCACCAGGTGCGCGGTCCTTCGGGCACCTCGACGTCGGCGGTGACGG


TGAAGCCGAGCCGCTCGTAGAAGGGGAGGTTGCGGGGCGCGGAGGTCTCCAGGAAGGCGGGCACCCCG


GCGCGCTCGGCCGCCTCCACTCCGGGGAGCACGACGGCGCTGCCCAGACCCTTGCCCTGGTGGTCGGG


CGAGACTCCGACGGTGGCCAGGAACCACGCGGGCTCCTTGGGCCGGTGCGGCGCCAGGAGGCCTTCCA


TCTGTTGCTGCGCGGCCAGCCGGGAACCGCTCAACTCGGCCATGCGCGGGCCGATCTCGGCGAACACC


GCCCCCGCTTCGACGCTCTCCGGCGTGGTCCAGACCGCCACCGCGGCGCCGTCGTCCGCGACCCACAC


CTTGCCGATGTCGAGCCCGACGCGCGTGAGGAAGAGTTCTTGCAGCTCGGTGACCCGCTCGATGTGGC


GGTCCGGATCGACGGTGTGGCGCGTGGCGGGGTAGTCGGCGAACGCGGCGGCGAGGGTGCGTACGGCC


CTGGGGACGTCGTCGCGGGTGGCGAGGCGCACCGTGGGCTTGTACTCGGTCATTGGGCCAGGATTCTC


CTCGACGTCACCGCATGTTAGCAGACTTCCTCTGCCCTCTCCCTTGTACAGCTCGTCCATGCCGCCGG


TGGAGTGGCGGCCCTCGGCGCGTTCGTACTGTTCCACGATGGTGTAGTCCTCGTTGTGGGAGGTGATG


TCCAACTTGATGTTGACGTTGTAGGCGCCGGGCAGCTGCACGGGCTTCTTGGCCTTGTAGGTGGTCTT


GACCTCAGCGTCGTAGTGGCCGCCGTCCTTCAGCTTCAGCCTCTGCTTGATCTCGCCCTTCAGGGCGC


CGTCCTCGGGGTACATCCGCTCGGAGGAGGCCTCCCAGCCCATGGTCTTCTTCTGCATTACGGGGCCG


TCGGAGGGGAAGTTGGTGCCGCGCAGCTTCACCTTGTAGATGAACTCGCCGTCCTGCAGGGAGGAGTC


CTGGGTCACGGTCACCACGCCGCCGTCCTCGAAGTTCATCACGCGCTCCCACTTGAAGCCCTCGGGGA


AGGACAGCTTCAAGTAGTCGGGGATGTCGGCGGGGTGCTTCACGTAGGCCTTGGAGCCGTACATGAAC


TGAGGGGACAGGATGTCCCAGGCGAAGGGCAGGGGGCCACCCTTGGTCACCTTCAGCTTGGCGGTCTG


GGTGCCCTCGTAGGGGCGGCCCTCGCCCTCGCCCTCGATCTCGAACTCGTGGCCGTTCACGGAGCCCT


CCATGTGCACCTTGAAGCGCATGAACTCCTTGATGATGGCCATGTTATCCTCCTCGCCCTTGCTCACC


ATcacacAATTCGCTTTATGATAACAATCTGTGATTGTCACCATAAGCAGCCACAATAAAATAAAAGG


AAACACGGACACCCAAAGTAGTCGGTTCCGCCACGGACTTGCGCGTTACGACAGGCCAATCACTGGTT


TGTGACCACCTGCTCCGAGGTTGGGATTAGCCGCATTCAGGGGCCGGAGGATTCTTATGTAGCTCAAT


AGGCTCTTCACACCTTGTTCACAACTAGCGTCCCATGGCGTTAGCCATAGGTAGGCCGCCAACGCAGC


CTGGACCACCGTCACCGGTGAGGGATGTCCAGACTCATCAGCCTAAGCTACACTCTGGGGTTGAGTGC


TGAGCGCAACGCATCGAAGATTCCGAGGTGGTACTGGGCTTCTCGAAGTACATAAGCGGATAACGGAT


CCGTCGCTTTCAACCACGCAAGCAGTCTATACGACATCACCGGGGAAACAGAAGTGCTTGTTCGTGGT


GGTACTGGTTTGTACCCCCTTCTATTGAACTTGGTTTTGTGCGTCTAAGTTACGGGAAGGGAGTATAA


AACAGGCGTACAAGGGTACCGCAATACCGGAGTACTAGCCGCCACGTGGGCCTCTGGGGTGGGTACAA


CCCCAGAGCTGTTTTAAGCTAACTACTCTGACTCGAGGTCGGTCACGAAGGCCATAGGTTCCGGACCT


ATGTAATCTCGAGGGTCTTCGATGATTTGAGTCACCACTTCATTTTCCCCTTGGTGGGTCGGCATGGC


ATCTCCACCTCCTCGCGGTCCGACCTGGGCATCCGAAGGAGGACGCACGTCCACTCGGATGGCTAAGG


GAGCGGCCGGGGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAG


CAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAAC


TATATCCGGAT





Indel NP-mCh-2A-Blast insert in T7 promoter orientation


CATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATA


GGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGA


CTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCT


TACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGT


ATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGAC


CGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGC


AGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGT


GGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTC


GGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTG


CAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTG


ACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACC


TAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGA


CAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTG


CCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATG


ATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGA


GCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAG


TAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGC


TCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCAT


GTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGT


TATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCT


GTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCC


GGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTT


CTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCA


CCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAA


TGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATT


ATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAA


CAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCAT


GACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTCGCGCGTTTCGGTGATGACGGTG


AAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGA


CAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTATGCGGCATCAGA


GCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACC


GCATCAGGCTAATACGACTCACTATAGGGACCAAGGGGAAAACCAAGATTAATCCTCTTCTTTTTTCT


TAAACTAATTCTGATTCTTGATATGTTTAGATTTCCTCGCCATCGATCCCGCGGTCTATTTCTggggc


TTAGCCCTCCCACACATAACCAGAGGGCAGCAATTCACGAATCCCAACTGCCGTCGGCTGTCCATCAC


TGTCCTTCACTATGGCTTTGATCCCAGGATGCAGATCGAGAAGCACCTGTCGGCACCGTCCGCAGGGG


CTCAAGATGCCCCTGTTCTCATTTCCGATCGCGACGATACAAGTCAGGTTGCCAGCTGCCGCAGCAGC


AGCAGTGCCCAGCACCACGAGTTCTGCACAAGGTCCCCCAGTAAAATGATATACATTGACACCAGTGA


AGATGCGGCCGTCGCTAGAGAGAGCTGCGCTGGCGACGCTGTAGTCTTCAGAGATGGGGATGCTGTTG


ATTGTAGCCGTTGCTCTTTCAATGAGGGTGGATTCTTCTTGAGACAAAGGCTTGGCCATTGGGCCAGG


ATTCTCCTCGACGTCACCGCATGTTAGCAGACTTCCTCTGCCCTCTCCCTTGTACAGCTCGTCCATGC


CGCCGGTGGAGTGGCGGCCCTCGGCGCGTTCGTACTGTTCCACGATGGTGTAGTCCTCGTTGTGGGAG


GTGATGTCCAACTTGATGTTGACGTTGTAGGCGCCGGGCAGCTGCACGGGCTTCTTGGCCTTGTAGGT


GGTCTTGACCTCAGCGTCGTAGTGGCCGCCGTCCTTCAGCTTCAGCCTCTGCTTGATCTCGCCCTTCA


GGGCGCCGTCCTCGGGGTACATCCGCTCGGAGGAGGCCTCCCAGCCCATGGTCTTCTTCTGCATTACG


GGGCCGTCGGAGGGGAAGTTGGTGCCGCGCAGCTTCACCTTGTAGATGAACTCGCCGTCCTGCAGGGA


GGAGTCCTGGGTCACGGTCACCACGCCGCCGTCCTCGAAGTTCATCACGCGCTCCCACTTGAAGCCCT


CGGGGAAGGACAGCTTCAAGTAGTCGGGGATGTCGGCGGGGTGCTTCACGTAGGCCTTGGAGCCGTAC


ATGAACTGAGGGGACAGGATGTCCCAGGCGAAGGGCAGGGGGCCACCCTTGGTCACCTTCAGCTTGGC


GGTCTGGGTGCCCTCGTAGGGGCGGCCCTCGCCCTCGCCCTCGATCTCGAACTCGTGGCCGTTCACGG


AGCCCTCCATGTGCACCTTGAAGCGCATGAACTCCTTGATGATGGCCATGTTATCCTCCTCGCCCTTG


CTCACCATTGTAGATTGTGGATTGCGCTGTTGGCACCGGCAGTCGCTTGTTGCTAACCCGTCCGGGCC


TATTTTTTTCTTTAAAGCCGATGGTAGGCAGGAACCTTATGGAATCCACTGTAGTTCCATCTAACTAA


TCAATTAGGTATGTCAATTTTAGATTGGGATCTGAATTGTCTAGATGTCAAGATCACCCAGTGCGGCA


TTCAGGTCATCTGTATGGATGGGAGCTCCAACTGCTGCGTTCTGGATGTCCAAGGCCACTTGTTCAAG


AGTTGGTCCAGTGCGTGGACCTGCAGATGTGTCGTCCTCTTCCTCCTCTTCCAATGGTGGCATCTCAT


CATCATGGGTGCCTGCATCAGCATATCTCTGCCTCAGTCGATCCGCTGCCATGTAACTCTCGAGTGTG


TCACCTGTTGCTGCAGCGGGCACCTGAGTTGTCCCAGTGACAGATGAGAACGGGTTGACTCCTCCCCT


GGTGTCTGCCCCTCGATTTGCTGTGGTCAATTTGGCAAGTGTATTTGCCATCTCGGTGCGTTCGGCTT


GAGTTAGACCGAGATCTTCTGCCATCCTCATGTCAACTGCACCCTGTTGTTTTCTTGCAGTTTCCATT


CCCAATTGGAAATATGTCTTGTTCATGTATGATCTGGAGAAAGCGTAGTTCCTCATGTTGACATCTAA


CACATAGCCTATTCCCATAGCATAGCTATATAGCAGTGGGTAGTTTGCTGCAGCAAAATCCATCAAAT


GTGGTGACTCCAATAGGGCCAAATATCGGGCCTGCTCACCAAGGGTCTGGTATAATGCCATGAGGGAC


TTTAGCTTTGTTAGCTCTCCTGAAAATGCAGCTAAAGCAAGTGTGGGCCATCTAGTTCCTAATGCATA


TTTTAGTGTCAAAAAGAAGCCTCCCATTCCACAATTCTCTATATACTTTCCAACATCCCCTACCATAG


CATAATACCTATTTGATACAAGGCTTTGTGCTCGGGCAAGCTGCAGTTCAAAGGTGAGGAAATGTCTG


ACCACCATTCCCTTCCGGATTACATTCTGGATTATTCGTCGAGCCTCCGGTTGCAGGAGATATCTCGG


GTTGATCCTGCCTTGCTGACGATATTTTTGCAGGCGTTTCTCAATAGAAGCAGCAGGTTGGTCTGGCG


CAGTCATGCACTTGCAAGTCACTATCCATGCCTGCATTAGGACACTGTAACACATATCTAAGAAAGTC


TCAATCTCATCCCATGCAGTTCCCTCGACTTCGGAATCAACGAAAGGTGTTGCATGGTTTAGTGTGTC


AGGTAGATCTTCTGCAAGTGCAGCATAGGCATTGATCTCTCCACGGCTCATACCTGAACGaGCATTGG


GGATTAAGCGGAATGATCCCTCCTCAAAGCCATCGATCTCTACCCTTTCGATATCAGCTTCTGGTGAC


TGGTCAGCTAATTTGACATGATTGAGCATTGTGGCTGATGGTAGCGAAAACATTGTGAGTAATGCTCC


AAAGCGATGGGAATCCCTTGCACCATTACTGAGAACAATCCGTAGGCAGAATAGAAGAAGCCGGGATC


TTAGCTCTGGGTTATTAGAGGTTAGTATAAATACCCTGATTACCGGTTTTAGTGTTGTAGGTGGGATT


GTACCTTCCTCACTCTGATCTTGCAGTTCTTGAGTGAGCGTGAATCGCTCATATGCTTTAAGCACGGA


TGACATTTTTGTGTCGGGGACGAAAAATTGCCCAAACTTGATAGGTCCTTATTGAACTACTCTGACTC


GAGGTCGGTCACGAAGGCCATAGGTTCCGGACCTATGTAATCTCGAGGGTCTTCGATGATTTGAGTCA


CCACTTCATTTTCCCCTTGGTGGGTCGGCATGGCATCTCCACCTCCTCGCGGTCCGACCTGGGCATCC


GAAGGAGGACGCACGTCCACTCGGATGGCTAAGGGAGCGGCCGGGGATCCGGCTGCTAACAAAGCCCG


AAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAAC


GGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGAT





NP primers (use minigenome vector)to make NP: NP-P intergenic region and P UTR


1. mCherry-NP-top


CCTCCTCGCCCTTGCTCACCATTGTAGATTGTGGATTGCGC





2. NP-genomic prom-low


CCGACCTCGAGTCAGAGTAGTTCAATAAGGACCTATCAAGTTTGGG





PCR primers to remove IRES from InDel-IRES-mCherry-2A-Blast vector for


subsequent insertion of NP


3. InDel-delta IRES-mCherry rev


ATGGTGAGCAAGGGCGAGGAG





4. InDel-delta IRES-mCherry for


ACTACTCTGACTCGAGGTCGG


Run PCR using Phusion polymerase and re-ligate.





PCR primers to make InDel-NP-mCherry-2A-Blast


5. NP-genomic prom-top


CCCAAACTTGATAGGTCCTTATTGAACTACTCTGACTCGAGGTCGG





6. mCherry-NP-low


GCGCAATCCACAATCTACAATGGTGAGCAAGGGCGAGGAGG








Claims
  • 1. A product derived from the PIV5 genome comprising the 3′ replication promoter of the PIV5 genome, duplicated and in the opposite orientation together with some of the L gene sequence.
  • 2. The product of claim 1, obtainable by: (i) passaging a wild type PIV5 in a cell; or(ii) passaging PIV5ΔF in a cell which expresses the PIV F protein.
  • 3. The product of claim 2, wherein the passaging is done at a high multiplicity of infection.
  • 4. A PIV5 derived Indel vector comprising a nucleic acid sequence which, relative to a wild-type PIV5 genome, lacks the NP, P/V, M, F, SH, HN and/or L genes.
  • 5. The PIV5 Indel vector of claim 4, wherein the Indel vector retains or comprises the 3′ Le and 5′ Tr sequences of PIV5 viral genome.
  • 6. The PIV5 derived Indel vector of claim 4, wherein the vector further comprises a heterologous sequence for expression.
  • 7. The PIV5 derived Indel vector of claim 6, wherein the heterologous sequences encodes or provides any one or more of the following categories of protein: (i) antigens (including viral and/or bacterial antigens);(ii) tumour specific antigens;(iii) multivalent CTL antigens;(iv) recombinant proteins (for expression);(v) components of the immune system;(vi) immunomodulatory compounds;(vii) antibodies (including fragments and/or parts thereof); and(viii) cytokines.
  • 8. (canceled)
  • 9. A vector derived from the parainfluenza virus 5 (PIV5) genome wherein relative to a wild-type PIV5 genome, the vector comprises one or more deleted or functionally deleted wild-type PIV5 genes.
  • 10. (canceled)
  • 11. The vector of claim 9, wherein the vector further comprises a heterologous sequence for expression.
  • 12. The vector of claim 11, wherein the heterologous sequence encodes or provides any one or more of the following categories of protein: (i) antigens (including viral and/or bacterial antigens);(ii) tumour specific antigens;(iii) multivalent CTL antigens;(iv) recombinant proteins (for expression);(v) components of the immune system;(vii) immunomodulatory compounds;(viii) antibodies (including fragments and/or parts thereof);(ix) cytokines.
  • 13. The vector of claim 9, wherein the vector comprises the deletion or functional deletion of: the F gene; and/orthe M gene; and/orthe HN gene.
  • 14. The vector of claim 9, wherein the vector lacks a functional copy of the PIV5 F gene.
  • 15. The vector of claim 9, wherein the vector lacks a functional copy of the PIV5 F and M genes.
  • 16. The vector of claim 9, wherein the vector lacks functional copies of the PIV5 M, F and HN genes.
  • 17. A method of (i) of replicating a PIV5 vector, said method comprising, contacting a PIV5 vector with a helper cell.
  • 18. The method of claim 17, wherein the helper cell is permissive to a PIV5 virus.
  • 19. The method of claim 17, wherein the helper cell is a cell which expresses the gene or genes deleted or functionally deleted from the vector.
  • 20. A cell modified to express the: (i) PIV5 F protein; and/or(ii) the PIV5 M protein; and/or(iii) the PIV5 HN protein.
  • 21. A method of modulating, improving or augmenting an immune response to an antigen or vaccine, said method comprising immunising a subject with the vaccine or antigen and a vector or product according to claim 11.
  • 22. An immunogenic composition comprising an antigen and a vector or product according to claim 11.
  • 23. A method of treating or preventing: acute or chronic diseases and infections; orcancer;
  • 24. A method of modulating gene expression in a cell, said method comprising contacting the cell with a product according to claim 1.
  • 25. The method of claim 24, wherein one or more of the genes listed in Table 1 can be (directly or indirectly) modulated:
Priority Claims (1)
Number Date Country Kind
2209861.0 Jul 2022 GB national
PCT Information
Filing Document Filing Date Country Kind
PCT/GB2023/051766 7/5/2023 WO