VIRTUAL ANALOG TO DIGITAL CONVERTER

Information

  • Patent Application
  • 20130214956
  • Publication Number
    20130214956
  • Date Filed
    February 08, 2013
    11 years ago
  • Date Published
    August 22, 2013
    11 years ago
Abstract
The disclosure relates to analog to digital converters, in particular to logical circuit blocks, a system and a method, which provide functionality of an additional analog to digital converter. In accordance with an aspect of the disclosure, there is provided a logical circuit block, which is configured to be connected to a plurality of ADCs each including a plurality of input pins connected to a plurality of analog input channels. The logical circuit block is further configured to cause one ADC of the plurality of ADCs to perform an ADC conversion of an analog input signal received via a particular analog input channel of the plurality of analog input channels to which an input pin of the one ADC is connected.
Description
FIELD

The disclosure relates to analog to digital converters, in particular to logical circuit blocks, a system and a method, that provide functionality of an additional analog to digital converter.


BACKGROUND

Microcontrollers often comprise analog to digital converters (ADCs) which convert an analog voltage applied to their input pin to a digital value. In particular, a successive approximation (SAR) ADC comprises an input multiplexer that allows selection of an analog input channel from a plurality of analog input channels connected to the input pins of the ADC.


In many applications, an analog input signal of an input channel may be measured by two different ADCs depending on respective application requirements. In this case, however, the measurement result will fall off in quality.


On the one hand, an ADC input itself represents a load for the analog signal source and, on the other hand, the multiplexer itself represents a capacitance whose charge has to be changed when changing between different input signals. Additionally, leakage current may degrade the measurement result.


An additional error may occur when two ADCs simultaneously measure the same analog signal, e.g. when the two measurements temporarily overlap. Then, the signal source will “see” a doubled load during the overlap, that will degrade the measurement result.


In some specific applications, a large number of analog inputs, e.g. 50 analog inputs, have to be measured by ADCs. In such cases, the large number of inputs is divided between several ADCs to keep the capacitance of the multiplexer small, which also allows to measure more than one signal at a time.


Such applications also often require capability of a background scan, i.e. capability to separately test or scan all or some of the plurality of analog channels. In case this background scan is carried out by means of an additional ADC, the individual analog inputs are connected to two multiplexers (of the two different ADCs) which leads to a degradation of conversion quality. Additionally, a rather complex synchronization of the ADCs would be required to avoid overlap of sampling of the ADCs, i.e. to avoid two ADCs sampling the same signal at the same time. Furthermore, an analog multiplexer having many inputs is rather large and may lead to substantial leakage current.


Therefore, there e.g. exists a need for an apparatus and a method that provide the functionality of an additional ADC while avoiding degradation of conversion quality.


SUMMARY

In accordance with an aspect of the disclosure, there is provided a logical circuit block, which is configured to be connected to a plurality of ADCs each comprising a plurality of input pins connected to a plurality of analog input channels. The logical circuit block is further configured to cause one ADC of the plurality of ADCs to perform an ADC conversion of an analog input signal received via a particular analog input channel of the plurality of analog input channels to which an input pin of the one ADC is connected.


In accordance with a further aspect of the disclosure, there is provided a method comprising sending, by a logical circuit block, a request to one analog digital converter (ADC) of a plurality of ADCs to cause the one ADC to perform an ADC conversion. The method further comprises performing, by the one ADC, the ADC conversion and sending the result of the ADC conversion to the logical circuit block.


Further features, aspects and advantages of the present disclosure will become apparent from the following detailed description of the disclosure made with reference to the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWING

The accompanying drawing is included to provide a further understanding of the present disclosure and is incorporated in and constitutes a part of this specification. The drawing illustrates an embodiment of the present disclosure and together with the description serves to explain the principles of the disclosure. Other embodiments of the present disclosure and many of the intended advantages of the present disclosure will be readily appreciated as they become better understood by reference to the following detailed description.



FIG. 1 exemplarily shows a simplified schematic diagram of a system according to an embodiment of the disclosure.





DETAILED DESCRIPTION

In the following detailed description, reference is made to the accompanying drawings, which form a part hereof, and in which is shown by way of illustration specific embodiments in which the disclosure may be practiced. It is to be understood that other embodiments may be utilized and structural or other changes may be made without departing from the scope of the present disclosure. The following detailed description, therefore, is not to be taken in a limiting sense, and the scope of the present disclosure is defined by the appended claims.


It is suggested to introduce a “virtual ADC” (VADC) to avoid input multiplexers of multiple ADCs being connected in parallel to the same pin. Such a VADC is not a physical ADC connected in parallel to an input pin, but a logical circuit block that “borrows” input pins or rather input channels from another physical ADC. That is, the VADC requests conversion of analog input signals of a specific analog input channel from an ADC that has an input pin connected to this specific analog input channel.


This approach has two main advantages: On the one hand, an individual analog input channel is only connected to one multiplexer and, on the other hand, the risk of a possible overlap of two conversions that would distort measurement results is eliminated.



FIG. 1 shows a simplified schematic diagram of a system according to an embodiment of the disclosure.


The system depicted in FIG. 1 comprises a plurality of ADCs 10a and 10b, a plurality of analog input channels 30 connected to input pins of the plurality of ADCs 10a and 10b, and a VADC 20 connected to the plurality of ADCs 10a and 10b via connection 25.


Each ADC of the plurality of ADCs 10a and 10b comprises a converter 11a/11b and a multiplexer 12a/12b having its inputs connected to the plurality of analog input channels 30 via respective input pins and its output connected to an input of the converter 11a/11b.


Each ADC of the plurality of ADCs 10a and 10b further comprises a control interface for receiving ADC conversion requests from the VADC 20: The VADC sends a request to one ADC of the plurality of ADCs 10a and 10b that causes the one ADC to perform a requested ADC conversion. The request of the VADC 20 may comprise information identifying one specific analog input channel of the plurality of input channels 30 and cause the one ADC to perform an ADC conversion of analog signals received via the one specific analog input channel that is connected to an input pin of the one ADC.


The ADCs which are connected to a VADC advantageously support a priority scheme. For this, the control interface of each ADC may advantageously comprise programmable priority controlling means configured to decide on the priority of requests, i.e. decide whether VADC requests have a higher or lower priority than requests received directly by the respective ADC.


A background scan of a plurality of analog input channels is one possible application for which the VADC shown in FIG. 1 may advantageously be used. The background scan may include all input channels or a subset of the plurality of input channels. For this, the VADC may comprise circuitry configured to select specific input channels which are to be included in the background scan. With respect to the abovementioned priority scheme, the requests sent by the VADC to the ADCs when performing a background scan may have a lower priority than requests received directly by the ADCs. Thus, the programmable priority controlling means of an ADC which received two requests in a certain time may cause the ADC to process a request received directly by the ADC prior to a request sent by the VADC.


However, a VADC may be used for many other applications, for example, for handling conversions of analog signals of a great number of input channels. This can be easily accomplished by the VADC requesting the signal conversions from ADCs which are connected to these input channels.


Accordingly, embodiments of the present disclosure allow to implement the functionality of an additional ADC without actually including an additional physical ADC by temporarily “borrowing” input channels from existent ADCs. Such a virtual VADC can be used (and programmed) in the same way as an additional “physical” ADC connected in parallel. However, the VADC, which is a logical block configured to request another ADC to perform a required ADC conversion, obviates the need for an additional ADC connected in parallel to already existing ADCs and also the need for additional multiplexers. Accordingly, the VADC, when employed in a background scan, for example, provides a solution advantageous with respect to chip area and additionally avoiding a loss of ADC conversion quality.


It is also possible to provide a hybrid ADC. A physical ADC having its “own” input pins connected to analog input channels is additionally enabled to “borrow” a number of input pins/channels from other ADCs, i.e. the hybrid ADC can additionally cause another ADC to perform an ADC conversion of analog signals received via an analog input channel connected to an input pin of the other ADC. Thus, the control circuitry of the hybrid ADC can manage or handle more input channels than actually connected to the input pins of the physical ADC by “borrowing” input channels from other ADCs.


Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that a variety of alternate and/or equivalent implementations may be substituted for the specific embodiments shown and described without departing from the scope of the present disclosure. This application is intended to cover any adaptations or variations of the specific embodiments discussed herein. Therefore, it is intended that this disclosure be limited only by the claims and the equivalents thereof.

Claims
  • 1. A logical circuit block, which is configured to be connected to a plurality of analog digital converters (ADCs) each comprising a plurality of input pins connected to a plurality of analog input channels, wherein the logical circuit block is further configured to cause one ADC of the plurality of ADCs to perform an ADC conversion of an analog input signal received via a particular analog input channel of the plurality of analog input channels to which an input pin of the one ADC is connected.
  • 2. The logical circuit block of claim 1, wherein the logical circuit block is further configured to send a request to a control interface of the one ADC of the plurality of ADCs to cause the one ADC to perform an ADC conversion of analog input signals received via the particular analog input channel connected to an input pin of the one ADC, wherein the request comprises information identifying the particular analog input channel.
  • 3. The logical circuit block of claim 2, wherein the request sent by the logical circuit block has a higher priority than a priority of other requests for ADC conversions received by the one ADC directly.
  • 4. The logical circuit block of claim 2, wherein the request sent by the logical circuit block has a lower priority than a priority of other requests for ADC conversions received by the one ADC directly.
  • 5. The logical circuit block of claim 1, wherein the logical circuit block is further configured to receive a result of the ADC conversion performed by the one ADC.
  • 6. The logical circuit block of claim 1, wherein the logical circuit block is comprised in another ADC of the plurality of ADCs different from the one ADC.
  • 7. A logical circuit block configured to perform a background scan of at least a subset of a plurality of analog input channels, wherein the logical circuit block is configured to be connected to a plurality of analog digital converters (ADCs) each comprising a plurality of input pins connected to the plurality of analog input channels, and wherein the logical circuit block is further configured to request ADC conversions of selected analog input signals received by the plurality of ADCs from the plurality of analog input channels.
  • 8. The logical circuit block of claim 7, wherein the logical circuit block is further configured to send a request to a control interface of one ADC of the plurality of ADCs to cause the one ADC to perform an ADC conversion of analog input signals received via a particular analog input channel of the plurality of analog input channels that is connected to an input pin of the one ADC, wherein the request comprises information identifying the particular analog input channel.
  • 9. The logical circuit block of claim 8, wherein the request sent by the logical circuit block during a background scan has a lower priority than a priority of other requests for ADC conversions received by the one ADC directly.
  • 10. The logical circuit block of claim 8, wherein the logical circuit block is further configured to receive a result of the ADC conversion performed by the one ADC.
  • 11. The logical circuit block of claim 7, wherein the logical circuit block is comprised in one ADC of the plurality of ADCs and is configured to cause another ADC to perform an ADC conversion of analog input signals received via a particular analog input channel connected to an input pin of the other ADC.
  • 12. A system, comprising: a plurality of analog digital converters (ADCs) each comprising a control interface and a plurality of input pins configured to be connected to a plurality of analog input channels; anda logical circuit block connected to the plurality of ADCs and configured to request an ADC conversion of a particular analog input channel from one ADC of the plurality of ADCs that has an input pin configured to be connected to the particular analog input channel.
  • 13. The system of claim 12, wherein the logical circuit block is further configured to send a request to the control interface of the one ADC of the plurality of ADCs to cause the one ADC to perform an ADC conversion of analog input signals received via the particular analog input channel when connected to the input pin of the one ADC, wherein the request comprises information identifying the particular analog input channel.
  • 14. The system of claim 13, wherein the control interface of the one ADC comprises programmable priority controlling means configured to decide which request of two received requests has a higher priority, wherein the two received requests include the request sent by the logical circuit block and another request for an ADC conversion received by the one ADC directly.
  • 15. The system of claim 12, wherein the logical circuit block is further configured to receive a result of the ADC conversion performed by the one ADC.
  • 16. The system of claim 12, wherein the logical circuit block is further configured to perform a background scan of at least a subset of the plurality of analog input channels to which the pluralities of input pins of the plurality of ADCs are configured to be connected.
  • 17. A system, comprising: a plurality of analog digital converters (ADCs) each comprising a control interface and a plurality of input pins configured to be connected to a plurality of analog input channels; andwherein one ADC of the plurality of ADCs comprises a logical circuit block which is connected to the other ADCs of the plurality of ADCs and is configured to request an ADC conversion of a particular analog input channel from another ADC of the plurality of ADCs that has an input pin configured to be connected to the particular analog input channel.
  • 18. The system of claim 17, wherein the logical circuit block is further configured to send a request to the control interface of the other ADC of the plurality of ADCs to cause the other ADC to perform an ADC conversion of analog input signals received via the particular analog input channel when connected to the input pin of the other ADC, wherein the request comprises information identifying the particular analog input channel.
  • 19. The system of claim 18, wherein the control interface of the one ADC comprises programmable priority controlling means configured to decide which request of two received requests has a higher priority, wherein the two received requests include the request sent by the logical circuit block and another request for an ADC conversion received by the one ADC directly.
  • 20. The system of claim 17, wherein the logical circuit block is further configured to receive a result of the ADC conversion performed by the other ADC.
  • 21. The system of claim 17, wherein the logical circuit block is further configured to perform a background scan of at least a subset of the plurality of analog input channels to which the pluralities of input pins of the plurality of ADCs are connected.
  • 22. A method, comprising: sending, by a logical circuit block, a request to one analog digital converter (ADC) of a plurality of ADCs to cause the one ADC to perform an ADC conversion; andperforming, by the one ADC, the ADC conversion and sending the result of the ADC conversion to the logical circuit block.
  • 23. The method of claim 22, wherein the request comprises information identifying a particular analog input channel and the one ADC of the plurality of ADCs is caused to perform an ADC conversion of analog input signals received via the particular analog input channel connected to an input pin of the one ADC.
  • 24. The method of claim 22, further comprising performing, by the logical circuit block, a background scan of at least a subset of a plurality of analog input channels to which the plurality of ADCs are connected.
  • 25. The method of claim 24, wherein the request sent by the logical circuit block has a lower priority than a priority of other requests for ADC conversions received by the one ADC directly, provided that the request sent by the logical circuit block is part of the background scan.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority to U.S. Provisional Patent Application 61/600,824 filed on Feb. 20, 2012, entitled “Virtual Analog to Digital Converter”, the contents of which are hereby incorporated by reference.

Provisional Applications (1)
Number Date Country
61600824 Feb 2012 US