1. Field
The present disclosure relates generally to intelligent automated assistants and, more specifically, to techniques for triggering intelligent automated assistants.
2. Description of Related Art
Intelligent automated assistants (or virtual assistants) provide beneficial interfaces between human users and electronic devices. Exemplary virtual assistants allow users to interact with devices or systems using natural language in spoken and/or text forms. A user can provide a spoken input containing a user request to a virtual assistant operating on an electronic device. The virtual assistant interprets the user's intent from the spoken input and operationalizes the user's intent into one or more tasks. The tasks can then be performed by executing one or more services of the electronic device, thereby returning relevant output responsive to the user request.
As virtual assistant become increasingly sophisticated, it can be desirable to call upon their assistance under increasing numbers of usage scenarios. Efficient techniques for triggering a virtual assistant are thus helpful. Additionally, in situations where virtual assistants are executing on battery-powered portable electronic devices, efficient techniques for triggering virtual assistant while conserving battery-power are particularly helpful.
In accordance with some embodiments, a method of triggering a virtual assistant on an electronic device comprises: at an electronic device with a display, a microphone, and an input device: while the display is on, receiving user input via the input device, the user input meeting a predetermined condition; in accordance with receiving the user input meeting the predetermined condition, sampling audio input received via the microphone; determining whether the audio input comprises a spoken trigger; and in accordance with a determination that audio input comprises the spoken trigger, triggering a virtual assistant session.
In accordance with some embodiments, a method of triggering a virtual assistant on an electronic device comprises: at an electronic device with a display and a microphone: detecting a software event meeting a predetermined condition; in accordance with a determination that the software event meeting the condition is detected, sampling audio input received via the microphone; determining whether audio input received via the microphone comprises a spoken trigger; and in accordance with a determination that the audio input comprises the spoken trigger, triggering a virtual assistant session.
In accordance with some embodiments, a method of triggering a virtual assistant on an electronic device comprises: at an electronic device with a display, a microphone, and an input device: receiving user input via the input device, the user input meeting a predetermined condition; in accordance with receiving the user input meeting the predetermined condition, sampling audio input received via the microphone; determining whether the audio input comprises a spoken trigger; in accordance with a determination that audio input comprises the spoken trigger: triggering a virtual assistant session, and providing a haptic output.
In accordance with some embodiments, a method of triggering a virtual assistant on an electronic device comprises: at an electronic device with a display and a microphone: sampling audio input received via the microphone and determining whether the audio input represents a task; while sampling audio input, receiving instruction to cease sampling of audio input; providing output acknowledging the received instruction to cease the sampling of audio input; and after providing the output, continuing the sampling of audio input and determining whether the audio input comprises a task, for a duration, then ceasing the sampling of audio input.
In accordance with some embodiments, an electronic device comprises: a display; one or more processors; a memory; and one or more programs, wherein the one or more programs are stored in memory and configured to be executed by the one or more processors, the one or more programs including instructions for: while the display is on, receiving user input via an input device, the user input meeting a predetermined condition; in accordance with receiving the user input meeting the predetermined condition, sampling audio input received via a microphone; determining whether the audio input comprises a spoken trigger; and in accordance with a determination that audio input comprises the spoken trigger, triggering a virtual assistant session.
In accordance with some embodiments, an electronic device comprises: a display; one or more processors; a memory; and one or more programs, wherein the one or more programs are stored in memory and configured to be executed by the one or more processors, the one or more programs including instructions for: detecting a software event meeting a predetermined condition; in accordance with a determination that the software event meeting the condition is detected, sampling audio input received via a microphone; determining whether audio input received via the microphone comprises a spoken trigger; and in accordance with a determination that the audio input comprises the spoken trigger, triggering a virtual assistant session.
In accordance with some embodiments, an electronic device comprises: a display; one or more processors; a memory; and one or more programs, wherein the one or more programs are stored in memory and configured to be executed by the one or more processors, the one or more programs including instructions for: receiving user input via the input device, the user input meeting a predetermined condition; in accordance with receiving the user input meeting the predetermined condition, sampling audio input received via a microphone; determining whether the audio input comprises a spoken trigger; in accordance with a determination that audio input comprises the spoken trigger: triggering a virtual assistant session, and providing a haptic output.
In accordance with some embodiments, an electronic device comprises: a display; one or more processors; a memory; and one or more programs, wherein the one or more programs are stored in memory and configured to be executed by the one or more processors, the one or more programs including instructions for: sampling audio input received via a microphone and determine whether the audio input represents a task; while sampling audio input, receiving instruction to cease sampling of audio input; providing output acknowledging the received instruction to cease the sampling of audio input; and after providing the output, continuing the sampling of audio input and determining whether the audio input comprises a task, for a duration, then cease the sampling of audio input.
In accordance with some embodiments, a non-transitory computer readable storage medium stores one or more programs, the one or more programs comprising instructions, which when executed by an electronic device with a display, a microphone, and an input device, cause the electronic device to: while the display is on, receive user input via the input device, the user input meeting a predetermined condition; in accordance with receiving the user input meeting the predetermined condition, sample audio input received via the microphone; determine whether the audio input comprises a spoken trigger; and in accordance with a determination that audio input comprises the spoken trigger, trigger a virtual assistant session.
In accordance with some embodiments, a non-transitory computer readable storage medium stores one or more programs, the one or more programs comprising instructions, which when executed by an electronic device with a display, a microphone, and an input device, cause the electronic device to: detect a software event meeting a predetermined condition; in accordance with a determination that the software event meeting the condition is detected, sample audio input received via the microphone; determine whether audio input received via the microphone comprises a spoken trigger; and in accordance with a determination that the audio input comprises the spoken trigger, trigger a virtual assistant session.
In accordance with some embodiments, a non-transitory computer readable storage medium stores one or more programs, the one or more programs comprising instructions, which when executed by an electronic device with a display, a microphone, and an input device, cause the electronic device to: receive user input via the input device, the user input meeting a predetermined condition; in accordance with receiving the user input meeting the predetermined condition, sample audio input received via the microphone; determine whether the audio input comprises a spoken trigger; in accordance with a determination that audio input comprises the spoken trigger: trigger a virtual assistant session, and provide a haptic output.
In accordance with some embodiments, a non-transitory computer readable storage medium stores one or more programs, the one or more programs comprising instructions, which when executed by an electronic device with a display, a microphone, and an input device, cause the electronic device to: sample audio input received via the microphone and determine whether the audio input represents a task; while sampling audio input, receive instruction to cease sampling of audio input; provide output acknowledging the received instruction to cease the sampling of audio input; and after providing the output, continue the sampling of audio input and determine whether the audio input comprises a task, for a duration, then cease the sampling of audio input.
In accordance with some embodiments, an electronic device comprises: while a displaying means is on, means for receiving user input via the input device, the user input meeting a predetermined condition; means for, in accordance with receiving the user input meeting the predetermined condition, sampling audio input received via a microphone; means for determining whether the audio input comprises a spoken trigger; and means for, in accordance with a determination that audio input comprises the spoken trigger, triggering a virtual assistant session.
In accordance with some embodiments, an electronic device comprises: means for detecting a software event meeting a predetermined condition; means for, in accordance with a determination that the software event meeting the condition is detected, sampling audio input received via a microphone; means for determining whether audio input received via the microphone comprises a spoken trigger; and means for, in accordance with a determination that the audio input comprises the spoken trigger, triggering a virtual assistant session.
In accordance with some embodiments, an electronic device comprises: means for receiving user input via an input device, the user input meeting a predetermined condition; means for, in accordance with receiving the user input meeting the predetermined condition, sampling audio input received via a microphone; means for determining whether the audio input comprises a spoken trigger; means for, in accordance with a determination that audio input comprises the spoken trigger: triggering a virtual assistant session, and providing a haptic output.
In accordance with some embodiments, an electronic device comprises: means for sampling audio input received via a microphone and determining whether the audio input represents a task; means for, while sampling audio input, receiving instruction to cease sampling of audio input; means for providing output acknowledging the received instruction to cease the sampling of audio input; and means for, after providing the output, continuing the sampling of audio input and determining whether the audio input comprises a task, for a duration, then ceasing the sampling of audio input.
In accordance with some embodiments, an electronic device comprises: a display; a microphone; an input device; and a processing unit coupled to the display, the microphone, and the input device, the processing unit configured to: while the display is on, receive user input via the input device, the user input meeting a predetermined condition; in accordance with receiving the user input meeting the predetermined condition, sample audio input received via the microphone; determine whether the audio input comprises a spoken trigger; and in accordance with a determination that audio input comprises the spoken trigger, trigger a virtual assistant session.
In accordance with some embodiments, an electronic device comprises: a display; a microphone; and a processing unit coupled to the display, the microphone, and the input device, the processing unit configured to: detect a software event meeting a predetermined condition; in accordance with a determination that the software event meeting the condition is detected, sample audio input received via the microphone; determine whether audio input received via the microphone comprises a spoken trigger; and in accordance with a determination that the audio input comprises the spoken trigger, trigger a virtual assistant session.
In accordance with some embodiments, an electronic device comprises: a display; a microphone; an input device; and a processing unit coupled to the display, the microphone, and the input device, the processing unit configured to: receive user input via the input device, the user input meeting a predetermined condition; in accordance with receiving the user input meeting the predetermined condition, sample audio input received via the microphone; determine whether the audio input comprises a spoken trigger; in accordance with a determination that audio input comprises the spoken trigger: trigger a virtual assistant session, and provide a haptic output.
In accordance with some embodiments, an electronic device comprises: a display; a microphone; a input device and a processing unit coupled to the display, the microphone, and the input device, the processing unit configured to: sample audio input received via the microphone and determine whether the audio input represents a task; while sampling audio input, receive instruction to cease sampling of audio input; provide output acknowledging the received instruction to cease the sampling of audio input; and after providing the output, continue the sampling of audio input and determine whether the audio input comprises a task, for a duration, then cease the sampling of audio input.
In accordance with some embodiments, a transitory computer readable storage medium stores one or more programs, the one or more programs comprising instructions, which when executed by an electronic device with a display, a microphone, and an input device, cause the electronic device to: while the display is on, receive user input via the input device, the user input meeting a predetermined condition; in accordance with receiving the user input meeting the predetermined condition, sample audio input received via the microphone; determine whether the audio input comprises a spoken trigger; and in accordance with a determination that audio input comprises the spoken trigger, trigger a virtual assistant session.
In accordance with some embodiments, a transitory computer readable storage medium stores one or more programs, the one or more programs comprising instructions, which when executed by an electronic device with a display, a microphone, and an input device, cause the electronic device to: detect a software event meeting a predetermined condition; in accordance with a determination that the software event meeting the condition is detected, sample audio input received via the microphone; determine whether audio input received via the microphone comprises a spoken trigger; and in accordance with a determination that the audio input comprises the spoken trigger, trigger a virtual assistant session.
In accordance with some embodiments, a transitory computer readable storage medium stores one or more programs, the one or more programs comprising instructions, which when executed by an electronic device with a display, a microphone, and an input device, cause the electronic device to: receive user input via the input device, the user input meeting a predetermined condition; in accordance with receiving the user input meeting the predetermined condition, sample audio input received via the microphone; determine whether the audio input comprises a spoken trigger; in accordance with a determination that audio input comprises the spoken trigger: trigger a virtual assistant session, and provide a haptic output.
In accordance with some embodiments, a transitory computer readable storage medium stores one or more programs, the one or more programs comprising instructions, which when executed by an electronic device with a display, a microphone, and an input device, cause the electronic device to: sample audio input received via the microphone and determine whether the audio input represents a task; while sampling audio input, receive instruction to cease sampling of audio input; provide output acknowledging the received instruction to cease the sampling of audio input; and after providing the output, continue the sampling of audio input and determine whether the audio input comprises a task, for a duration, then cease the sampling of audio input.
Executable instructions for performing these functions are, optionally, included in a non-transitory computer-readable storage medium or other computer program product configured for execution by one or more processors. Executable instructions for performing these functions are, optionally, included in a transitory computer-readable storage medium or other computer program product configured for execution by one or more processors.
For a better understanding of the various described embodiments, reference should be made to the Description of Embodiments below, in conjunction with the following drawings in which like reference numerals refer to corresponding parts throughout the figures.
In the following description of the disclosure and embodiments, reference is made to the accompanying drawings in which it is shown by way of illustration specific embodiments that can be practiced. It is to be understood that other embodiments and examples can be practiced and changes can be made without departing from the scope of the disclosure.
Virtual assistant services can be computationally intensive. For example, a virtual assistant optionally samples audio input from a user by activating a microphone, its associated circuitry, and corresponding software processes, thereby drawing computing resources. There is a need for electronic devices that provide virtual assistant services to employ techniques that reduce processor and associated battery power draw, such that computing resources otherwise wasted on processing unnecessary user inputs are conserved while providing an effective virtual assistant interface.
Below,
Although the following description uses terms “first,” “second,” etc. to describe various elements, these elements should not be limited by the terms. These terms are only used to distinguish one element from another. For example, a first input could be termed a second input, and, similarly, a second input could be termed a first input, without departing from the scope of the various described examples. The first input and the second input can both be outputs and, in some cases, can be separate and different inputs.
The terminology used in the description of the various described examples herein is for the purpose of describing particular examples only and is not intended to be limiting. As used in the description of the various described examples and the appended claims, the singular forms “a”, “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “includes,” “including,” “comprises,” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
The term “if” is, optionally, construed to mean “when” or “upon” or “in response to determining” or “in response to detecting,” depending on the context. Similarly, the phrase “if it is determined” or “if [a stated condition or event] is detected” is, optionally, construed to mean “upon determining” or “in response to determining” or “upon detecting [the stated condition or event]” or “in response to detecting [the stated condition or event],” depending on the context.
1. System and Environment
Specifically, a digital assistant can be capable of accepting a user request at least partially in the form of a natural language command, request, statement, narrative, and/or inquiry. Typically, the user request can seek either an informational answer or performance of a task by the digital assistant. A satisfactory response to the user request can be a provision of the requested informational answer, a performance of the requested task, or a combination of the two. For example, a user can ask the digital assistant a question, such as “Where am I right now?” Based on the user's current location, the digital assistant can answer, “You are in Central Park near the west gate.” The user can also request the performance of a task, for example, “Please invite my friends to my girlfriend's birthday party next week.” In response, the digital assistant can acknowledge the request by saying “Yes, right away,” and then send a suitable calendar invite on behalf of the user to each of the user's friends listed in the user's electronic address book. During performance of a requested task, the digital assistant can sometimes interact with the user in a continuous dialogue involving multiple exchanges of information over an extended period of time. There are numerous other ways of interacting with a digital assistant to request information or performance of various tasks. In addition to providing verbal responses and taking programmed actions, the digital assistant can also provide responses in other visual or audio forms, e.g., as text, alerts, music, videos, animations, etc.
As shown in
In some examples, DA server 106 can include client-facing I/O interface 112, one or more processing modules 114, data and models 116, and I/O interface to external services 118. The client-facing I/O interface 112 can facilitate the client-facing input and output processing for DA server 106. One or more processing modules 114 can utilize data and models 116 to process speech input and determine the user's intent based on natural language input. Further, one or more processing modules 114 perform task execution based on inferred user intent. In some examples, DA server 106 can communicate with external services 120 through network(s) 110 for task completion or information acquisition. I/O interface to external services 118 can facilitate such communications.
User device 104 can be any suitable electronic device. For example, user devices can be a portable multifunctional device (e.g., device 200, described below with reference to
Examples of communication network(s) 110 can include local area networks (LAN) and wide area networks (WAN), e.g., the Internet. Communication network(s) 110 can be implemented using any known network protocol, including various wired or wireless protocols, such as, for example, Ethernet, Universal Serial Bus (USB), FIREWIRE, Global System for Mobile Communications (GSM), Enhanced Data GSM Environment (EDGE), code division multiple access (CDMA), time division multiple access (TDMA), Bluetooth, Wi-Fi, voice over Internet Protocol (VoIP), Wi-MAX, or any other suitable communication protocol.
Server system 108 can be implemented on one or more standalone data processing apparatus or a distributed network of computers. In some examples, server system 108 can also employ various virtual devices and/or services of third-party service providers (e.g., third-party cloud service providers) to provide the underlying computing resources and/or infrastructure resources of server system 108.
In some examples, user device 104 can communicate with DA server 106 via second user device 122. Second user device 122 can be similar or identical to user device 104. For example, second user device 122 can be similar to any one of devices 200, 400, or 600, described below with reference to
In some examples, user device 104 can be configured to communicate abbreviated requests for data to second user device 122 to reduce the amount of information transmitted from user device 104. Second user device 122 can be configured to determine supplemental information to add to the abbreviated request to generate a complete request to transmit to DA server 106. This system architecture can advantageously allow user device 104 having limited communication capabilities and/or limited battery power (e.g., a watch or a similar compact electronic device) to access services provided by DA server 106 by using second user device 122, having greater communication capabilities and/or battery power (e.g., a mobile phone, laptop computer, tablet computer, or the like), as a proxy to DA server 106. While only two user devices 104 and 122 are shown in
Although the digital assistant shown in
2. Electronic Devices
Attention is now directed toward embodiments of electronic devices for implementing the client-side portion of a digital assistant.
As used in the specification and claims, the term “intensity” of a contact on a touch-sensitive surface refers to the force or pressure (force per unit area) of a contact (e.g., a finger contact) on the touch-sensitive surface, or to a substitute (proxy) for the force or pressure of a contact on the touch-sensitive surface. The intensity of a contact has a range of values that includes at least four distinct values and more typically includes hundreds of distinct values (e.g., at least 256). Intensity of a contact is, optionally, determined (or measured) using various approaches and various sensors or combinations of sensors. For example, one or more force sensors underneath or adjacent to the touch-sensitive surface are, optionally, used to measure force at various points on the touch-sensitive surface. In some implementations, force measurements from multiple force sensors are combined (e.g., a weighted average) to determine an estimated force of a contact. Similarly, a pressure-sensitive tip of a stylus is, optionally, used to determine a pressure of the stylus on the touch-sensitive surface. Alternatively, the size of the contact area detected on the touch-sensitive surface and/or changes thereto, the capacitance of the touch-sensitive surface proximate to the contact and/or changes thereto, and/or the resistance of the touch-sensitive surface proximate to the contact and/or changes thereto are, optionally, used as a substitute for the force or pressure of the contact on the touch-sensitive surface. In some implementations, the substitute measurements for contact force or pressure are used directly to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is described in units corresponding to the substitute measurements). In some implementations, the substitute measurements for contact force or pressure are converted to an estimated force or pressure, and the estimated force or pressure is used to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is a pressure threshold measured in units of pressure). Using the intensity of a contact as an attribute of a user input allows for user access to additional device functionality that may otherwise not be accessible by the user on a reduced-size device with limited real estate for displaying affordances (e.g., on a touch-sensitive display) and/or receiving user input (e.g., via a touch-sensitive display, a touch-sensitive surface, or a physical/mechanical control such as a knob or a button).
As used in the specification and claims, the term “tactile output” refers to physical displacement of a device relative to a previous position of the device, physical displacement of a component (e.g., a touch-sensitive surface) of a device relative to another component (e.g., housing) of the device, or displacement of the component relative to a center of mass of the device that will be detected by a user with the user's sense of touch. For example, in situations where the device or the component of the device is in contact with a surface of a user that is sensitive to touch (e.g., a finger, palm, or other part of a user's hand), the tactile output generated by the physical displacement will be interpreted by the user as a tactile sensation corresponding to a perceived change in physical characteristics of the device or the component of the device. For example, movement of a touch-sensitive surface (e.g., a touch-sensitive display or trackpad) is, optionally, interpreted by the user as a “down click” or “up click” of a physical actuator button. In some cases, a user will feel a tactile sensation such as an “down click” or “up click” even when there is no movement of a physical actuator button associated with the touch-sensitive surface that is physically pressed (e.g., displaced) by the user's movements. As another example, movement of the touch-sensitive surface is, optionally, interpreted or sensed by the user as “roughness” of the touch-sensitive surface, even when there is no change in smoothness of the touch-sensitive surface. While such interpretations of touch by a user will be subject to the individualized sensory perceptions of the user, there are many sensory perceptions of touch that are common to a large majority of users. Thus, when a tactile output is described as corresponding to a particular sensory perception of a user (e.g., an “up click,” a “down click,” “roughness”), unless otherwise stated, the generated tactile output corresponds to physical displacement of the device or a component thereof that will generate the described sensory perception for a typical (or average) user.
It should be appreciated that device 200 is only one example of a portable multifunction device, and that device 200 optionally has more or fewer components than shown, optionally combines two or more components, or optionally has a different configuration or arrangement of the components. The various components shown in
Memory 202 optionally includes one or more computer-readable storage mediums. The computer-readable storage mediums is, optionally, tangible and non-transitory. Memory 202 optionally includes high-speed random access memory and optionally includes non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices. Memory controller 222 optionally controls access to memory 202 by other components of device 200.
In some examples, a non-transitory computer-readable storage medium of memory 202 can be used to store instructions (e.g., for performing aspects of methods 1200, 1300, 1400, or 1500, described below) for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions. In other examples, the instructions (e.g., for performing aspects of methods 1200, 1300, 1400, or 1500, described below) can be stored on a non-transitory computer-readable storage medium (not shown) of the server system 108 or can be divided between the non-transitory computer-readable storage medium of memory 202 and the non-transitory computer-readable storage medium of server system 108. In the context of this document, a “non-transitory computer-readable storage medium” can be any medium that can contain or store the program for use by or in connection with the instruction execution system, apparatus, or device.
Peripherals interface 218 can be used to couple input and output peripherals of the device to CPU 220 and memory 202. The one or more processors 220 run or execute various software programs and/or sets of instructions stored in memory 202 to perform various functions for device 200 and to process data. In some embodiments, peripherals interface 218, CPU 220, and memory controller 222 is, optionally, implemented on a single chip, such as chip 204. In some other embodiments, they are, optionally, be implemented on separate chips.
RF (radio frequency) circuitry 208 receives and sends RF signals, also called electromagnetic signals. RF circuitry 208 converts electrical signals to/from electromagnetic signals and communicates with communications networks and other communications devices via the electromagnetic signals. RF circuitry 208 optionally includes well-known circuitry for performing these functions, including but not limited to an antenna system, an RF transceiver, one or more amplifiers, a tuner, one or more oscillators, a digital signal processor, a CODEC chipset, a subscriber identity module (SIM) card, memory, and so forth. RF circuitry 208 optionally communicates with networks, such as the Internet, also referred to as the World Wide Web (WWW), an intranet and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN) and/or a metropolitan area network (MAN), and other devices by wireless communication. The RF circuitry 208 optionally includes well-known circuitry for detecting near field communication (NFC) fields, such as by a short-range communication radio. The wireless communication optionally uses any of a plurality of communications standards, protocols, and technologies, including but not limited to Global System for Mobile Communications (GSM), Enhanced Data GSM Environment (EDGE), high-speed downlink packet access (HSDPA), high-speed uplink packet access (HSUPA), Evolution, Data-Only (EV-DO), HSPA, HSPA+, Dual-Cell HSPA (DC-HSPDA), long term evolution (LTE), near field communication (NFC), wideband code division multiple access (W-CDMA), code division multiple access (CDMA), time division multiple access (TDMA), Bluetooth, Bluetooth Low Energy (BTLE), Wireless Fidelity (Wi-Fi) (e.g., IEEE 802.11a, IEEE 802.11b, IEEE 802.11g, IEEE 802.11n, and/or IEEE 802.11ac), voice over Internet Protocol (VoIP), Wi-MAX, a protocol for e mail (e.g., Internet message access protocol (IMAP) and/or post office protocol (POP)), instant messaging (e.g., extensible messaging and presence protocol (XMPP), Session Initiation Protocol for Instant Messaging and Presence Leveraging Extensions (SIMPLE), Instant Messaging and Presence Service (IMPS)), and/or Short Message Service (SMS), or any other suitable communication protocol, including communication protocols not yet developed as of the filing date of this document.
Audio circuitry 210, speaker 211, and microphone 213 provide an audio interface between a user and device 200. Audio circuitry 210 receives audio data from peripherals interface 218, converts the audio data to an electrical signal, and transmits the electrical signal to speaker 211. Speaker 211 converts the electrical signal to human-audible sound waves. Audio circuitry 210 also receives electrical signals converted by microphone 213 from sound waves. Audio circuitry 210 converts the electrical signal to audio data and transmits the audio data to peripherals interface 218 for processing. Audio data is, optionally, retrieved from and/or transmitted to memory 202 and/or RF circuitry 208 by peripherals interface 218. In some embodiments, audio circuitry 210 also includes a headset jack (e.g., 312,
I/O subsystem 206 couples input/output peripherals on device 200, such as touch screen 212 and other input control devices 216, to peripherals interface 218. I/O subsystem 206 optionally includes display controller 256, optical sensor controller 258, intensity sensor controller 259, haptic feedback controller 261, and one or more input controllers 260 for other input or control devices. The one or more input controllers 260 receive/send electrical signals from/to other input control devices 216. The other input control devices 216 optionally include physical buttons (e.g., push buttons, rocker buttons, etc.), dials, slider switches, joysticks, click wheels, and so forth. In some alternate embodiments, input controller(s) 260 are, optionally, coupled to any (or none) of the following: a keyboard, an infrared port, a USB port, and a pointer device such as a mouse. The one or more buttons (e.g., 308,
A quick press of the push button optionally disengages a lock of touch screen 212 or begin a process that uses gestures on the touch screen to unlock the device, as described in U.S. patent application Ser. No. 11/322,549, “Unlocking a Device by Performing Gestures on an Unlock Image,” filed Dec. 23, 2005, U.S. Pat. No. 7,657,849, which is hereby incorporated by reference in its entirety. A longer press of the push button (e.g., 306) optionally turns power to device 200 on or off. The functionality of one or more of the buttons are, optionally, user customizable. Touch screen 212 is used to implement virtual or soft buttons and one or more soft keyboards.
Touch-sensitive display 212 provides an input interface and an output interface between the device and a user. Display controller 256 receives and/or sends electrical signals from/to touch screen 212. Touch screen 212 displays visual output to the user. The visual output optionally includes graphics, text, icons, video, and any combination thereof (collectively termed “graphics”). In some embodiments, some or all of the visual output optionally correspond to user-interface objects.
Touch screen 212 has a touch-sensitive surface, sensor, or set of sensors that accepts input from the user based on haptic and/or tactile contact. Touch screen 212 and display controller 256 (along with any associated modules and/or sets of instructions in memory 202) detect contact (and any movement or breaking of the contact) on touch screen 212 and convert the detected contact into interaction with user-interface objects (e.g., one or more soft keys, icons, web pages, or images) that are displayed on touch screen 212. In an exemplary embodiment, a point of contact between touch screen 212 and the user corresponds to a finger of the user.
Touch screen 212 optionally uses LCD (liquid crystal display) technology, LPD (light emitting polymer display) technology, or LED (light emitting diode) technology, although other display technologies are used in other embodiments. Touch screen 212 and display controller 256 optionally detect contact and any movement or breaking thereof using any of a plurality of touch sensing technologies now known or later developed, including but not limited to capacitive, resistive, infrared, and surface acoustic wave technologies, as well as other proximity sensor arrays or other elements for determining one or more points of contact with touch screen 212. In an exemplary embodiment, projected mutual capacitance sensing technology is used, such as that found in the iPhone® and iPod Touch® from Apple Inc. of Cupertino, Calif.
A touch-sensitive display in some embodiments of touch screen 212 is, optionally, analogous to the multi-touch sensitive touchpads described in the following U.S. Pat. No. 6,323,846 (Westerman et al.), U.S. Pat. No. 6,570,557 (Westerman et al.), and/or U.S. Pat. No. 6,677,932 (Westerman), and/or U.S. Patent Publication 2002/0015024A1, each of which is hereby incorporated by reference in its entirety. However, touch screen 212 displays visual output from device 200, whereas touch-sensitive touchpads do not provide visual output.
A touch-sensitive display in some embodiments of touch screen 212 is described in the following applications: (1) U.S. patent application Ser. No. 11/381,313, “Multipoint Touch Surface Controller,” filed May 2, 2006; (2) U.S. patent application Ser. No. 10/840,862, “Multipoint Touchscreen,” filed May 6, 2004; (3) U.S. patent application Ser. No. 10/903,964, “Gestures For Touch Sensitive Input Devices,” filed Jul. 30, 2004; (4) U.S. patent application Ser. No. 11/048,264, “Gestures For Touch Sensitive Input Devices,” filed Jan. 31, 2005; (5) U.S. patent application Ser. No. 11/038,590, “Mode-Based Graphical User Interfaces For Touch Sensitive Input Devices,” filed Jan. 18, 2005; (6) U.S. patent application Ser. No. 11/228,758, “Virtual Input Device Placement On A Touch Screen User Interface,” filed Sep. 16, 2005; (7) U.S. patent application Ser. No. 11/228,700, “Operation Of A Computer With A Touch Screen Interface,” filed Sep. 16, 2005; (8) U.S. patent application Ser. No. 11/228,737, “Activating Virtual Keys Of A Touch-Screen Virtual Keyboard,” filed Sep. 16, 2005; and (9) U.S. patent application Ser. No. 11/367,749, “Multi-Functional Hand-Held Device,” filed Mar. 3, 2006. All of these applications are incorporated by reference herein in their entirety.
Touch screen 212 optionally has a video resolution in excess of 100 dpi. In some embodiments, the touch screen has a video resolution of approximately 160 dpi. The user optionally makes contact with touch screen 212 using any suitable object or appendage, such as a stylus, a finger, and so forth. In some embodiments, the user interface is designed to work primarily with finger-based contacts and gestures, which can be less precise than stylus-based input due to the larger area of contact of a finger on the touch screen. In some embodiments, the device translates the rough finger-based input into a precise pointer/cursor position or command for performing the actions desired by the user.
In some embodiments, in addition to the touch screen, device 200 optionally includes a touchpad (not shown) for activating or deactivating particular functions. In some embodiments, the touchpad is a touch-sensitive area of the device that, unlike the touch screen, does not display visual output. The touchpad is, optionally, a touch-sensitive surface that is separate from touch screen 212 or an extension of the touch-sensitive surface formed by the touch screen.
Device 200 also includes power system 262 for powering the various components. Power system 262 optionally includes a power management system, one or more power sources (e.g., battery, alternating current (AC)), a recharging system, a power failure detection circuit, a power converter or inverter, a power status indicator (e.g., a light-emitting diode (LED)) and any other components associated with the generation, management and distribution of power in portable devices.
Device 200 optionally also include one or more optical sensors 264.
Device 200 optionally also includes one or more contact intensity sensors 265.
Device 200 optionally also includes one or more proximity sensors 266.
Device 200 optionally also includes one or more tactile output generators 267.
Device 200 optionally also includes one or more accelerometers 268.
In some embodiments, the software components stored in memory 202 include operating system 226, communication module (or set of instructions) 228, contact/motion module (or set of instructions) 230, graphics module (or set of instructions) 232, text input module (or set of instructions) 234, Global Positioning System (GPS) module (or set of instructions) 235, Digital Assistant Client Module 229, and applications (or sets of instructions) 236. Further, memory 202 can store data and models, such as user data and models 231. Furthermore, in some embodiments, memory 202 (
Operating system 226 (e.g., Darwin, RTXC, LINUX, UNIX, OS X, iOS, WINDOWS, or an embedded operating system such as VxWorks) includes various software components and/or drivers for controlling and managing general system tasks (e.g., memory management, storage device control, power management, etc.) and facilitates communication between various hardware and software components.
Communication module 228 facilitates communication with other devices over one or more external ports 224 and also includes various software components for handling data received by RF circuitry 208 and/or external port 224. External port 224 (e.g., Universal Serial Bus (USB), FIREWIRE, etc.) is adapted for coupling directly to other devices or indirectly over a network (e.g., the Internet, wireless LAN, etc.). In some embodiments, the external port is a multi-pin (e.g., 30-pin) connector that is the same as, or similar to and/or compatible with, the 30-pin connector used on iPod® (trademark of Apple Inc.) devices.
Contact/motion module 230 optionally detects contact with touch screen 212 (in conjunction with display controller 256) and other touch-sensitive devices (e.g., a touchpad or physical click wheel). Contact/motion module 230 includes various software components for performing various operations related to detection of contact, such as determining if contact has occurred (e.g., detecting a finger-down event), determining an intensity of the contact (e.g., the force or pressure of the contact or a substitute for the force or pressure of the contact), determining if there is movement of the contact and tracking the movement across the touch-sensitive surface (e.g., detecting one or more finger-dragging events), and determining if the contact has ceased (e.g., detecting a finger-up event or a break in contact). Contact/motion module 230 receives contact data from the touch-sensitive surface. Determining movement of the point of contact, which is represented by a series of contact data, optionally includes determining speed (magnitude), velocity (magnitude and direction), and/or an acceleration (a change in magnitude and/or direction) of the point of contact. These operations are, optionally, applied to single contacts (e.g., one finger contacts) or to multiple simultaneous contacts (e.g., “multitouch”/multiple finger contacts). In some embodiments, contact/motion module 230 and display controller 256 detect contact on a touchpad.
In some embodiments, contact/motion module 230 uses a set of one or more intensity thresholds to determine whether an operation has been performed by a user (e.g., to determine whether a user has “clicked” on an icon). In some embodiments, at least a subset of the intensity thresholds are determined in accordance with software parameters (e.g., the intensity thresholds are not determined by the activation thresholds of particular physical actuators and can be adjusted without changing the physical hardware of device 200). For example, a mouse “click” threshold of a trackpad or touch screen display can be set to any of a large range of predefined threshold values without changing the trackpad or touch screen display hardware. Additionally, in some implementations, a user of the device is provided with software settings for adjusting one or more of the set of intensity thresholds (e.g., by adjusting individual intensity thresholds and/or by adjusting a plurality of intensity thresholds at once with a system-level click “intensity” parameter).
Contact/motion module 230 optionally detects a gesture input by a user. Different gestures on the touch-sensitive surface have different contact patterns (e.g., different motions, timings, and/or intensities of detected contacts). Thus, a gesture is, optionally, detected by detecting a particular contact pattern. For example, detecting a finger tap gesture includes detecting a finger-down event followed by detecting a finger-up (liftoff) event at the same position (or substantially the same position) as the finger-down event (e.g., at the position of an icon). As another example, detecting a finger swipe gesture on the touch-sensitive surface includes detecting a finger-down event followed by detecting one or more finger-dragging events, and subsequently followed by detecting a finger-up (liftoff) event.
Graphics module 232 includes various known software components for rendering and displaying graphics on touch screen 212 or other display, including components for changing the visual impact (e.g., brightness, transparency, saturation, contrast, or other visual property) of graphics that are displayed. As used herein, the term “graphics” includes any object that can be displayed to a user, including, without limitation, text, web pages, icons (such as user-interface objects including soft keys), digital images, videos, animations, and the like.
In some embodiments, graphics module 232 stores data representing graphics to be used. Each graphic is, optionally, assigned a corresponding code. Graphics module 232 receives, from applications etc., one or more codes specifying graphics to be displayed along with, if necessary, coordinate data and other graphic property data, and then generates screen image data to output to display controller 256.
Haptic feedback module 233 includes various software components for generating instructions used by tactile output generator(s) 267 to produce tactile outputs at one or more locations on device 200 in response to user interactions with device 200. In some embodiments, event monitor 271 sends requests to the peripherals interface 218 at predetermined intervals. In response, peripherals interface 218 transmits event information. In other embodiments, peripherals interface 218 transmits event information only when there is a significant event (e.g., receiving an input above a predetermined noise threshold and/or for more than a predetermined duration).
Text input module 234, which is, optionally, a component of graphics module 232, provides soft keyboards for entering text in various applications (e.g., contacts 237, e mail 240, IM 241, browser 247, and any other application that needs text input).
GPS module 235 determines the location of the device and provides this information for use in various applications (e.g., to telephone 238 for use in location-based dialing; to camera 243 as picture/video metadata; and to applications that provide location-based services such as weather widgets, local yellow page widgets, and map/navigation widgets).
Digital assistant client module 229 can include various client-side digital assistant instructions to provide the client-side functionalities of the digital assistant. For example, digital assistant client module 229 can be capable of accepting voice input (e.g., speech input), text input, touch input, and/or gestural input through various user interfaces (e.g., microphone 213, accelerometer(s) 268, touch-sensitive display system 212, optical sensor(s) 229, other input control devices 216, etc.) of portable multifunction device 200. Digital assistant client module 229 can also be capable of providing output in audio (e.g., speech output), visual, and/or tactile forms through various output interfaces (e.g., speaker 211, touch-sensitive display system 212, tactile output generator(s) 267, etc.) of portable multifunction device 200. For example, output can be provided as voice, sound, alerts, text messages, menus, graphics, videos, animations, vibrations, and/or combinations of two or more of the above. During operation, digital assistant client module 229 can communicate with DA server 106 using RF circuitry 208.
User data and models 231 can include various data associated with the user (e.g., user-specific vocabulary data, user preference data, user-specified name pronunciations, data from the user's electronic address book, to-do lists, shopping lists, etc.) to provide the client-side functionalities of the digital assistant. Further, user data and models 231 can includes various models (e.g., speech recognition models, statistical language models, natural language processing models, ontology, task flow models, service models, etc.) for processing user input and determining user intent.
In some examples, digital assistant client module 229 can utilize the various sensors, subsystems, and peripheral devices of portable multifunction device 200 to gather additional information from the surrounding environment of the portable multifunction device 200 to establish a context associated with a user, the current user interaction, and/or the current user input. In some examples, digital assistant client module 229 can provide the contextual information or a subset thereof with the user input to DA server 106 to help infer the user's intent. In some examples, the digital assistant can also use the contextual information to determine how to prepare and deliver outputs to the user. Contextual information can be referred to as context data.
In some examples, the contextual information that accompanies the user input can include sensor information, e.g., lighting, ambient noise, ambient temperature, images or videos of the surrounding environment, etc. In some examples, the contextual information can also include the physical state of the device, e.g., device orientation, device location, device temperature, power level, speed, acceleration, motion patterns, cellular signals strength, etc. In some examples, information related to the software state of DA server 106, e.g., running processes, installed programs, past and present network activities, background services, error logs, resources usage, etc., and of portable multifunction device 200 can be provided to DA server 106 as contextual information associated with a user input.
In some examples, the digital assistant client module 229 can selectively provide information (e.g., user data 231) stored on the portable multifunction device 200 in response to requests from DA server 106. In some examples, digital assistant client module 229 can also elicit additional input from the user via a natural language dialogue or other user interfaces upon request by DA server 106. Digital assistant client module 229 can pass the additional input to DA server 106 to help DA server 106 in intent deduction and/or fulfillment of the user's intent expressed in the user request.
A more detailed description of a digital assistant is described below with reference to
Applications 236 optionally include the following modules (or sets of instructions), or a subset or superset thereof:
Examples of other applications 236 that are, optionally, stored in memory 202 include other word processing applications, other image editing applications, drawing applications, presentation applications, JAVA-enabled applications, encryption, digital rights management, voice recognition, and voice replication.
In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, contacts module 237 are, optionally, used to manage an address book or contact list (e.g., stored in application internal state 292 of contacts module 237 in memory 202 or memory 470), including: adding name(s) to the address book; deleting name(s) from the address book; associating telephone number(s), e-mail address(es), physical address(es) or other information with a name; associating an image with a name; categorizing and sorting names; providing telephone numbers or e-mail addresses to initiate and/or facilitate communications by telephone 238, video conference module 239, e-mail 240, or IM 241; and so forth.
In conjunction with RF circuitry 208, audio circuitry 210, speaker 211, microphone 213, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, telephone module 238 are, optionally, used to enter a sequence of characters corresponding to a telephone number, access one or more telephone numbers in contacts module 237, modify a telephone number that has been entered, dial a respective telephone number, conduct a conversation, and disconnect or hang up when the conversation is completed. As noted above, the wireless communication optionally uses any of a plurality of communications standards, protocols, and technologies.
In conjunction with RF circuitry 208, audio circuitry 210, speaker 211, microphone 213, touch screen 212, display controller 256, optical sensor 264, optical sensor controller 258, contact/motion module 230, graphics module 232, text input module 234, contacts module 237, and telephone module 238, video conference module 239 includes executable instructions to initiate, conduct, and terminate a video conference between a user and one or more other participants in accordance with user instructions.
In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, e-mail client module 240 includes executable instructions to create, send, receive, and manage e-mail in response to user instructions. In conjunction with image management module 244, e-mail client module 240 makes it very easy to create and send e-mails with still or video images taken with camera module 243.
In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, the instant messaging module 241 includes executable instructions to enter a sequence of characters corresponding to an instant message, to modify previously entered characters, to transmit a respective instant message (for example, using a Short Message Service (SMS) or Multimedia Message Service (MMS) protocol for telephony-based instant messages or using XMPP, SIMPLE, or IMPS for Internet-based instant messages), to receive instant messages, and to view received instant messages. In some embodiments, transmitted and/or received instant messages optionally include graphics, photos, audio files, video files and/or other attachments as are supported in an MMS and/or an Enhanced Messaging Service (EMS). As used herein, “instant messaging” refers to both telephony-based messages (e.g., messages sent using SMS or MMS) and Internet-based messages (e.g., messages sent using XMPP, SIMPLE, or IMPS).
In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, GPS module 235, map module 254, and music player module, workout support module 242 includes executable instructions to create workouts (e.g., with time, distance, and/or calorie burning goals); communicate with workout sensors (sports devices); receive workout sensor data; calibrate sensors used to monitor a workout; select and play music for a workout; and display, store, and transmit workout data.
In conjunction with touch screen 212, display controller 256, optical sensor(s) 264, optical sensor controller 258, contact/motion module 230, graphics module 232, and image management module 244, camera module 243 includes executable instructions to capture still images or video (including a video stream) and store them into memory 202, modify characteristics of a still image or video, or delete a still image or video from memory 202.
In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, and camera module 243, image management module 244 includes executable instructions to arrange, modify (e.g., edit), or otherwise manipulate, label, delete, present (e.g., in a digital slide show or album), and store still and/or video images.
In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, browser module 247 includes executable instructions to browse the Internet in accordance with user instructions, including searching, linking to, receiving, and displaying web pages or portions thereof, as well as attachments and other files linked to web pages.
In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, e-mail client module 240, and browser module 247, calendar module 248 includes executable instructions to create, display, modify, and store calendars and data associated with calendars (e.g., calendar entries, to-do lists, etc.) in accordance with user instructions.
In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, and browser module 247, widget modules 249 are mini-applications that are, optionally, downloaded and used by a user (e.g., weather widget 249-1, stocks widget 249-2, calculator widget 249-3, alarm clock widget 249-4, and dictionary widget 249-5) or created by the user (e.g., user-created widget 249-6). In some embodiments, a widget includes an HTML (Hypertext Markup Language) file, a CSS (Cascading Style Sheets) file, and a JavaScript file. In some embodiments, a widget includes an XML (Extensible Markup Language) file and a JavaScript file (e.g., Yahoo! Widgets).
In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, and browser module 247, the widget creator module 250 are, optionally, used by a user to create widgets (e.g., turning a user-specified portion of a web page into a widget).
In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, search module 251 includes executable instructions to search for text, music, sound, image, video, and/or other files in memory 202 that match one or more search criteria (e.g., one or more user-specified search terms) in accordance with user instructions.
In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, audio circuitry 210, speaker 211, RF circuitry 208, and browser module 247, video and music player module 252 includes executable instructions that allow the user to download and play back recorded music and other sound files stored in one or more file formats, such as MP3 or AAC files, and executable instructions to display, present, or otherwise play back videos (e.g., on touch screen 212 or on an external, connected display via external port 224). In some embodiments, device 200 optionally includes the functionality of an MP3 player, such as an iPod (trademark of Apple Inc.).
In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, notes module 253 includes executable instructions to create and manage notes, to-do lists, and the like in accordance with user instructions.
In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, GPS module 235, and browser module 247, map module 254 are, optionally, used to receive, display, modify, and store maps and data associated with maps (e.g., driving directions, data on stores and other points of interest at or near a particular location, and other location-based data) in accordance with user instructions.
In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, audio circuitry 210, speaker 211, RF circuitry 208, text input module 234, e-mail client module 240, and browser module 247, online video module 255 includes instructions that allow the user to access, browse, receive (e.g., by streaming and/or download), play back (e.g., on the touch screen or on an external, connected display via external port 224), send an e-mail with a link to a particular online video, and otherwise manage online videos in one or more file formats, such as H.264. In some embodiments, instant messaging module 241, rather than e-mail client module 240, is used to send a link to a particular online video. Additional description of the online video application can be found in U.S. Provisional Patent Application No. 60/936,562, “Portable Multifunction Device, Method, and Graphical User Interface for Playing Online Videos,” filed Jun. 20, 2007, and U.S. patent application Ser. No. 11/968,067, “Portable Multifunction Device, Method, and Graphical User Interface for Playing Online Videos,” filed Dec. 31, 2007, the contents of which are hereby incorporated by reference in their entirety.
Each of the above-identified modules and applications corresponds to a set of executable instructions for performing one or more functions described above and the methods described in this application (e.g., the computer-implemented methods and other information processing methods described herein). These modules (e.g., sets of instructions) need not be implemented as separate software programs, procedures, or modules, and thus various subsets of these modules are, optionally, combined or otherwise rearranged in various embodiments. For example, video player module are, optionally, combined with music player module into a single module (e.g., video and music player module 252,
In some embodiments, device 200 is a device where operation of a predefined set of functions on the device is performed exclusively through a touch screen and/or a touchpad. By using a touch screen and/or a touchpad as the primary input control device for operation of device 200, the number of physical input control devices (such as push buttons, dials, and the like) on device 200 is, optionally, reduced.
The predefined set of functions that are performed exclusively through a touch screen and/or a touchpad optionally include navigation between user interfaces. In some embodiments, the touchpad, when touched by the user, navigates device 200 to a main, home, or root menu from any user interface that is displayed on device 200. In such embodiments, a “menu button” is implemented using a touchpad. In some other embodiments, the menu button is a physical push button or other physical input control device instead of a touchpad.
Event sorter 270 receives event information and determines the application 236-1 and application view 291 of application 236-1 to which to deliver the event information. Event sorter 270 includes event monitor 271 and event dispatcher module 274. In some embodiments, application 236-1 includes application internal state 292, which indicates the current application view(s) displayed on touch-sensitive display 212 when the application is active or executing. In some embodiments, device/global internal state 257 is used by event sorter 270 to determine which application(s) is (are) currently active, and application internal state 292 is used by event sorter 270 to determine application views 291 to which to deliver event information.
In some embodiments, application internal state 292 includes additional information, such as one or more of: resume information to be used when application 236-1 resumes execution, user interface state information that indicates information being displayed or that is ready for display by application 236-1, a state queue for enabling the user to go back to a prior state or view of application 236-1, and a redo/undo queue of previous actions taken by the user.
Event monitor 271 receives event information from peripherals interface 218. Event information includes information about a sub-event (e.g., a user touch on touch-sensitive display 212, as part of a multi-touch gesture). Peripherals interface 218 transmits information it receives from I/O subsystem 206 or a sensor, such as proximity sensor 266, accelerometer(s) 268, and/or microphone 213 (through audio circuitry 210). Information that peripherals interface 218 receives from I/O subsystem 206 includes information from touch-sensitive display 212 or a touch-sensitive surface.
In some embodiments, event sorter 270 also includes a hit view determination module 272 and/or an active event recognizer determination module 273.
Hit view determination module 272 provides software procedures for determining where a sub-event has taken place within one or more views when touch-sensitive display 212 displays more than one view. Views are made up of controls and other elements that a user can see on the display.
Another aspect of the user interface associated with an application is a set of views, sometimes herein called application views or user interface windows, in which information is displayed and touch-based gestures occur. The application views (of a respective application) in which a touch is detected optionally correspond to programmatic levels within a programmatic or view hierarchy of the application. For example, the lowest level view in which a touch is detected is, optionally, called the hit view, and the set of events that are recognized as proper inputs are, optionally, determined based, at least in part, on the hit view of the initial touch that begins a touch-based gesture.
Hit view determination module 272 receives information related to sub events of a touch-based gesture. When an application has multiple views organized in a hierarchy, hit view determination module 272 identifies a hit view as the lowest view in the hierarchy which should handle the sub-event. In most circumstances, the hit view is the lowest level view in which an initiating sub-event occurs (e.g., the first sub-event in the sequence of sub-events that form an event or potential event). Once the hit view is identified by the hit view determination module 272, the hit view typically receives all sub-events related to the same touch or input source for which it was identified as the hit view.
Active event recognizer determination module 273 determines which view or views within a view hierarchy should receive a particular sequence of sub-events. In some embodiments, active event recognizer determination module 273 determines that only the hit view should receive a particular sequence of sub-events. In other embodiments, active event recognizer determination module 273 determines that all views that include the physical location of a sub-event are actively involved views, and therefore determines that all actively involved views should receive a particular sequence of sub-events. In other embodiments, even if touch sub-events were entirely confined to the area associated with one particular view, views higher in the hierarchy would still remain as actively involved views.
Event dispatcher module 274 dispatches the event information to an event recognizer (e.g., event recognizer 280). In embodiments including active event recognizer determination module 273, event dispatcher module 274 delivers the event information to an event recognizer determined by active event recognizer determination module 273. In some embodiments, event dispatcher module 274 stores in an event queue the event information, which is retrieved by a respective event receiver 282.
In some embodiments, operating system 226 includes event sorter 270. Alternatively, application 236-1 includes event sorter 270. In yet other embodiments, event sorter 270 is a stand-alone module, or a part of another module stored in memory 202, such as contact/motion module 230.
In some embodiments, application 236-1 includes a plurality of event handlers 290 and one or more application views 291, each of which includes instructions for handling touch events that occur within a respective view of the application's user interface. Each application view 291 of the application 236-1 includes one or more event recognizers 280. Typically, a respective application view 291 includes a plurality of event recognizers 280. In other embodiments, one or more of event recognizers 280 are part of a separate module, such as a user interface kit (not shown) or a higher level object from which application 236-1 inherits methods and other properties. In some embodiments, a respective event handler 290 includes one or more of: data updater 276, object updater 277, GUI updater 278, and/or event data 279 received from event sorter 270. Event handler 290 optionally utilizes or calls data updater 276, object updater 277, or GUI updater 278 to update the application internal state 292. Alternatively, one or more of the application views 291 include one or more respective event handlers 290. Also, in some embodiments, one or more of data updater 276, object updater 277, and GUI updater 278 are included in a respective application view 291.
A respective event recognizer 280 receives event information (e.g., event data 279) from event sorter 270 and identifies an event from the event information. Event recognizer 280 includes event receiver 282 and event comparator 284. In some embodiments, event recognizer 280 also includes at least a subset of: metadata 283, and event delivery instructions 288 (which optionally include sub-event delivery instructions).
Event receiver 282 receives event information from event sorter 270. The event information includes information about a sub-event, for example, a touch or a touch movement. Depending on the sub-event, the event information also includes additional information, such as location of the sub-event. When the sub-event concerns motion of a touch, the event information optionally also includes speed and direction of the sub-event. In some embodiments, events include rotation of the device from one orientation to another (e.g., from a portrait orientation to a landscape orientation, or vice versa), and the event information includes corresponding information about the current orientation (also called device attitude) of the device.
Event comparator 284 compares the event information to predefined event or sub-event definitions and, based on the comparison, determines an event or sub event, or determines or updates the state of an event or sub-event. In some embodiments, event comparator 284 includes event definitions 286. Event definitions 286 contain definitions of events (e.g., predefined sequences of sub-events), for example, event 1 (287-1), event 2 (287-2), and others. In some embodiments, sub-events in an event (287) include, for example, touch begin, touch end, touch movement, touch cancellation, and multiple touching. In one example, the definition for event 1 (287-1) is a double tap on a displayed object. The double tap, for example, comprises a first touch (touch begin) on the displayed object for a predetermined phase, a first liftoff (touch end) for a predetermined phase, a second touch (touch begin) on the displayed object for a predetermined phase, and a second liftoff (touch end) for a predetermined phase. In another example, the definition for event 2 (287-2) is a dragging on a displayed object. The dragging, for example, comprises a touch (or contact) on the displayed object for a predetermined phase, a movement of the touch across touch-sensitive display 212, and liftoff of the touch (touch end). In some embodiments, the event also includes information for one or more associated event handlers 290.
In some embodiments, event definition 287 includes a definition of an event for a respective user-interface object. In some embodiments, event comparator 284 performs a hit test to determine which user-interface object is associated with a sub-event. For example, in an application view in which three user-interface objects are displayed on touch-sensitive display 212, when a touch is detected on touch-sensitive display 212, event comparator 284 performs a hit test to determine which of the three user-interface objects is associated with the touch (sub-event). If each displayed object is associated with a respective event handler 290, the event comparator uses the result of the hit test to determine which event handler 290 should be activated. For example, event comparator 284 selects an event handler associated with the sub-event and the object triggering the hit test.
In some embodiments, the definition for a respective event (287) also includes delayed actions that delay delivery of the event information until after it has been determined whether the sequence of sub-events does or does not correspond to the event recognizer's event type.
When a respective event recognizer 280 determines that the series of sub-events do not match any of the events in event definitions 286, the respective event recognizer 280 enters an event impossible, event failed, or event ended state, after which it disregards subsequent sub-events of the touch-based gesture. In this situation, other event recognizers, if any, that remain active for the hit view continue to track and process sub-events of an ongoing touch-based gesture.
In some embodiments, a respective event recognizer 280 includes metadata 283 with configurable properties, flags, and/or lists that indicate how the event delivery system should perform sub-event delivery to actively involved event recognizers. In some embodiments, metadata 283 includes configurable properties, flags, and/or lists that indicate how event recognizers optionally interact, or are optionally enabled to interact, with one another. In some embodiments, metadata 283 includes configurable properties, flags, and/or lists that indicate whether sub-events are delivered to varying levels in the view or programmatic hierarchy.
In some embodiments, a respective event recognizer 280 activates event handler 290 associated with an event when one or more particular sub-events of an event are recognized. In some embodiments, a respective event recognizer 280 delivers event information associated with the event to event handler 290. Activating an event handler 290 is distinct from sending (and deferred sending) sub-events to a respective hit view. In some embodiments, event recognizer 280 throws a flag associated with the recognized event, and event handler 290 associated with the flag catches the flag and performs a predefined process.
In some embodiments, event delivery instructions 288 include sub-event delivery instructions that deliver event information about a sub-event without activating an event handler. Instead, the sub-event delivery instructions deliver event information to event handlers associated with the series of sub-events or to actively involved views. Event handlers associated with the series of sub-events or with actively involved views receive the event information and perform a predetermined process.
In some embodiments, data updater 276 creates and updates data used in application 236-1. For example, data updater 276 updates the telephone number used in contacts module 237, or stores a video file used in video player module. In some embodiments, object updater 277 creates and updates objects used in application 236-1. For example, object updater 277 creates a new user-interface object or updates the position of a user-interface object. GUI updater 278 updates the GUI. For example, GUI updater 278 prepares display information and sends it to graphics module 232 for display on a touch-sensitive display.
In some embodiments, event handler(s) 290 includes or has access to data updater 276, object updater 277, and GUI updater 278. In some embodiments, data updater 276, object updater 277, and GUI updater 278 are included in a single module of a respective application 236-1 or application view 291. In other embodiments, they are included in two or more software modules.
It shall be understood that the foregoing discussion regarding event handling of user touches on touch-sensitive displays also applies to other forms of user inputs to operate multifunction devices 200 with input devices, not all of which are initiated on touch screens. For example, mouse movement and mouse button presses, optionally coordinated with single or multiple keyboard presses or holds; contact movements such as taps, drags, scrolls, etc. on touchpads; pen stylus inputs; movement of the device; oral instructions; detected eye movements; biometric inputs; and/or any combination thereof are optionally utilized as inputs corresponding to sub-events which define an event to be recognized.
Device 200 also optionally includes one or more physical buttons, such as “home” or menu button 304. As described previously, menu button 304 is, optionally, used to navigate to any application 236 in a set of applications that are, optionally, executed on device 200. Alternatively, in some embodiments, the menu button is implemented as a soft key in a GUI displayed on touch screen 212.
In some embodiments, device 200 includes touch screen 212, menu button 304, push button 306 for powering the device on/off and locking the device, volume adjustment button(s) 308, subscriber identity module (SIM) card slot 310, headset jack 312, and docking/charging external port 224. Push button 306 is, optionally, used to turn the power on/off on the device by depressing the button and holding the button in the depressed state for a predefined time interval; to lock the device by depressing the button and releasing the button before the predefined time interval has elapsed; and/or to unlock the device or initiate an unlock process. In an alternative embodiment, device 200 also accepts verbal input for activation or deactivation of some functions through microphone 213. Device 200 also, optionally, includes one or more contact intensity sensors 265 for detecting intensity of contacts on touch screen 212 and/or one or more tactile output generators 267 for generating tactile outputs for a user of device 200.
Each of the above-identified elements in
Attention is now directed towards embodiments of user interfaces that is, optionally, implemented on, for example, portable multifunction device 200.
Signal strength indicator(s) 502 for wireless communication(s), such as cellular and Wi-Fi signals;
Time 504;
Bluetooth indicator 505;
Battery status indicator 506;
Tray 508 with icons for frequently used applications, such as:
Icons for other applications, such as:
It should be noted that the icon labels illustrated in
Although some of the examples which follow will be given with reference to inputs on touch screen display 212 (where the touch-sensitive surface and the display are combined), in some embodiments, the device detects inputs on a touch-sensitive surface that is separate from the display, as shown in
Additionally, while the following examples are given primarily with reference to finger inputs (e.g., finger contacts, finger tap gestures, finger swipe gestures), it should be understood that, in some embodiments, one or more of the finger inputs are replaced with input from another input device (e.g., a mouse-based input or stylus input). For example, a swipe gesture is, optionally, replaced with a mouse click (e.g., instead of a contact) followed by movement of the cursor along the path of the swipe (e.g., instead of movement of the contact). As another example, a tap gesture is, optionally, replaced with a mouse click while the cursor is located over the location of the tap gesture (e.g., instead of detection of the contact followed by ceasing to detect the contact). Similarly, when multiple user inputs are simultaneously detected, it should be understood that multiple computer mice are, optionally, used simultaneously, or a mouse and finger contacts are, optionally, used simultaneously.
Exemplary techniques for detecting and processing touch intensity are found, for example, in related applications: International Patent Application Serial No. PCT/US2013/040061, titled “Device, Method, and Graphical User Interface for Displaying User Interface Objects Corresponding to an Application,” filed May 8, 2013, and International Patent Application Serial No. PCT/US2013/069483, titled “Device, Method, and Graphical User Interface for Transitioning Between Touch Input to Display Output Relationships,” filed Nov. 11, 2013, each of which is hereby incorporated by reference in their entirety.
In some embodiments, device 600 has one or more input mechanisms 606 and 608. Input mechanisms 606 and 608, if included, can be physical. Examples of physical input mechanisms include push buttons and rotatable mechanisms. In some embodiments, device 600 has one or more attachment mechanisms. Such attachment mechanisms, if included, can permit attachment of device 600 with, for example, hats, eyewear, earrings, necklaces, shirts, jackets, bracelets, watch straps, chains, trousers, belts, shoes, purses, backpacks, and so forth. These attachment mechanisms permit device 600 to be worn by a user.
Input mechanism 608 is, optionally, a microphone, in some examples. Personal electronic device 600 optionally includes various sensors, such as GPS sensor 632, accelerometer 634, directional sensor 640 (e.g., compass), gyroscope 636, motion sensor 638, and/or a combination thereof, all of which can be operatively connected to I/O section 614.
Memory 618 of personal electronic device 600 can be a non-transitory computer-readable storage medium, for storing computer-executable instructions, which, when executed by one or more computer processors 616, for example, can cause the computer processors to perform the techniques described below, including methods 1200, 1300, 1400, or 1500 (
As used here, the term “affordance” refers to a user-interactive graphical user interface object that is, optionally, displayed on the display screen of devices 200, 400, and/or 600 (
As used herein, the term “focus selector” refers to an input element that indicates a current part of a user interface with which a user is interacting. In some implementations that include a cursor or other location marker, the cursor acts as a “focus selector” so that when an input (e.g., a press input) is detected on a touch-sensitive surface (e.g., touchpad 455 in
As used in the specification and claims, the term “characteristic intensity” of a contact refers to a characteristic of the contact based on one or more intensities of the contact. In some embodiments, the characteristic intensity is based on multiple intensity samples. The characteristic intensity is, optionally, based on a predefined number of intensity samples, or a set of intensity samples collected during a predetermined time period (e.g., 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10 seconds) relative to a predefined event (e.g., after detecting the contact, prior to detecting liftoff of the contact, before or after detecting a start of movement of the contact, prior to detecting an end of the contact, before or after detecting an increase in intensity of the contact, and/or before or after detecting a decrease in intensity of the contact). A characteristic intensity of a contact is, optionally based on one or more of: a maximum value of the intensities of the contact, a mean value of the intensities of the contact, an average value of the intensities of the contact, a top 10 percentile value of the intensities of the contact, a value at the half maximum of the intensities of the contact, a value at the 90 percent maximum of the intensities of the contact, or the like. In some embodiments, the duration of the contact is used in determining the characteristic intensity (e.g., when the characteristic intensity is an average of the intensity of the contact over time). In some embodiments, the characteristic intensity is compared to a set of one or more intensity thresholds to determine whether an operation has been performed by a user. For example, the set of one or more intensity thresholds optionally includes a first intensity threshold and a second intensity threshold. In this example, a contact with a characteristic intensity that does not exceed the first threshold results in a first operation, a contact with a characteristic intensity that exceeds the first intensity threshold and does not exceed the second intensity threshold results in a second operation, and a contact with a characteristic intensity that exceeds the second threshold results in a third operation. In some embodiments, a comparison between the characteristic intensity and one or more thresholds is used to determine whether or not to perform one or more operations (e.g., whether to perform a respective operation or forgo performing the respective operation) rather than being used to determine whether to perform a first operation or a second operation.
In some embodiments, a portion of a gesture is identified for purposes of determining a characteristic intensity. For example, a touch-sensitive surface optionally receives a continuous swipe contact transitioning from a start location and reaching an end location, at which point the intensity of the contact increases. In this example, the characteristic intensity of the contact at the end location is, optionally, based on only a portion of the continuous swipe contact, and not the entire swipe contact (e.g., only the portion of the swipe contact at the end location). In some embodiments, a smoothing algorithm is, optionally, applied to the intensities of the swipe contact prior to determining the characteristic intensity of the contact. For example, the smoothing algorithm optionally includes one or more of: an unweighted sliding-average smoothing algorithm, a triangular smoothing algorithm, a median filter smoothing algorithm, and/or an exponential smoothing algorithm. In some circumstances, these smoothing algorithms eliminate narrow spikes or dips in the intensities of the swipe contact for purposes of determining a characteristic intensity.
The intensity of a contact on the touch-sensitive surface is, optionally, characterized relative to one or more intensity thresholds, such as a contact-detection intensity threshold, a light press intensity threshold, a deep press intensity threshold, and/or one or more other intensity thresholds. In some embodiments, the light press intensity threshold corresponds to an intensity at which the device will perform operations typically associated with clicking a button of a physical mouse or a trackpad. In some embodiments, the deep press intensity threshold corresponds to an intensity at which the device will perform operations that are different from operations typically associated with clicking a button of a physical mouse or a trackpad. In some embodiments, when a contact is detected with a characteristic intensity below the light press intensity threshold (e.g., and above a nominal contact-detection intensity threshold below which the contact is no longer detected), the device will move a focus selector in accordance with movement of the contact on the touch-sensitive surface without performing an operation associated with the light press intensity threshold or the deep press intensity threshold. Generally, unless otherwise stated, these intensity thresholds are consistent between different sets of user interface figures.
An increase of characteristic intensity of the contact from an intensity below the light press intensity threshold to an intensity between the light press intensity threshold and the deep press intensity threshold is sometimes referred to as a “light press” input. An increase of characteristic intensity of the contact from an intensity below the deep press intensity threshold to an intensity above the deep press intensity threshold is sometimes referred to as a “deep press” input. An increase of characteristic intensity of the contact from an intensity below the contact-detection intensity threshold to an intensity between the contact-detection intensity threshold and the light press intensity threshold is sometimes referred to as detecting the contact on the touch-surface. A decrease of characteristic intensity of the contact from an intensity above the contact-detection intensity threshold to an intensity below the contact-detection intensity threshold is sometimes referred to as detecting liftoff of the contact from the touch-surface. In some embodiments, the contact-detection intensity threshold is zero. In some embodiments, the contact-detection intensity threshold is greater than zero.
In some embodiments described herein, one or more operations are performed in response to detecting a gesture that includes a respective press input or in response to detecting the respective press input performed with a respective contact (or a plurality of contacts), where the respective press input is detected based at least in part on detecting an increase in intensity of the contact (or plurality of contacts) above a press-input intensity threshold. In some embodiments, the respective operation is performed in response to detecting the increase in intensity of the respective contact above the press-input intensity threshold (e.g., a “down stroke” of the respective press input). In some embodiments, the press input includes an increase in intensity of the respective contact above the press-input intensity threshold and a subsequent decrease in intensity of the contact below the press-input intensity threshold, and the respective operation is performed in response to detecting the subsequent decrease in intensity of the respective contact below the press-input threshold (e.g., an “up stroke” of the respective press input).
In some embodiments, the device employs intensity hysteresis to avoid accidental inputs sometimes termed “jitter,” where the device defines or selects a hysteresis intensity threshold with a predefined relationship to the press-input intensity threshold (e.g., the hysteresis intensity threshold is X intensity units lower than the press-input intensity threshold or the hysteresis intensity threshold is 75%, 90%, or some reasonable proportion of the press-input intensity threshold). Thus, in some embodiments, the press input includes an increase in intensity of the respective contact above the press-input intensity threshold and a subsequent decrease in intensity of the contact below the hysteresis intensity threshold that corresponds to the press-input intensity threshold, and the respective operation is performed in response to detecting the subsequent decrease in intensity of the respective contact below the hysteresis intensity threshold (e.g., an “up stroke” of the respective press input). Similarly, in some embodiments, the press input is detected only when the device detects an increase in intensity of the contact from an intensity at or below the hysteresis intensity threshold to an intensity at or above the press-input intensity threshold and, optionally, a subsequent decrease in intensity of the contact to an intensity at or below the hysteresis intensity, and the respective operation is performed in response to detecting the press input (e.g., the increase in intensity of the contact or the decrease in intensity of the contact, depending on the circumstances).
For ease of explanation, the descriptions of operations performed in response to a press input associated with a press-input intensity threshold or in response to a gesture including the press input are, optionally, triggered in response to detecting either: an increase in intensity of a contact above the press-input intensity threshold, an increase in intensity of a contact from an intensity below the hysteresis intensity threshold to an intensity above the press-input intensity threshold, a decrease in intensity of the contact below the press-input intensity threshold, and/or a decrease in intensity of the contact below the hysteresis intensity threshold corresponding to the press-input intensity threshold. Additionally, in examples where an operation is described as being performed in response to detecting a decrease in intensity of a contact below the press-input intensity threshold, the operation is, optionally, performed in response to detecting a decrease in intensity of the contact below a hysteresis intensity threshold corresponding to, and lower than, the press-input intensity threshold.
3. Digital Assistant System
Digital assistant system 700 can include memory 702, one or more processors 704, input/output (I/O) interface 706, and network communications interface 708. These components can communicate with one another over one or more communication buses or signal lines 710.
In some examples, memory 702 can include a non-transitory computer-readable medium, such as high-speed random access memory and/or a non-volatile computer-readable storage medium (e.g., one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices).
In some examples, I/O interface 706 can couple input/output devices 716 of digital assistant system 700, such as displays, keyboards, touch screens, and microphones, to user interface module 722. I/O interface 706, in conjunction with user interface module 722, can receive user inputs (e.g., voice input, keyboard inputs, touch inputs, etc.) and processes them accordingly. In some examples, e.g., when the digital assistant is implemented on a standalone user device, digital assistant system 700 can include any of the components and I/O communication interfaces described with respect to devices 200, 400, or 600 in
In some examples, the network communications interface 708 can include wired communication port(s) 712 and/or wireless transmission and reception circuitry 714. The wired communication port(s) can receive and send communication signals via one or more wired interfaces, e.g., Ethernet, Universal Serial Bus (USB), FIREWIRE, etc. The wireless circuitry 714 can receive and send RF signals and/or optical signals from/to communications networks and other communications devices. The wireless communications can use any of a plurality of communications standards, protocols, and technologies, such as GSM, EDGE, CDMA, TDMA, Bluetooth, Wi-Fi, VoIP, Wi-MAX, or any other suitable communication protocol. Network communications interface 708 can enable communication between digital assistant system 700 with networks, such as the Internet, an intranet, and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN), and/or a metropolitan area network (MAN), and other devices.
In some examples, memory 702, or the computer-readable storage media of memory 702, can store programs, modules, instructions, and data structures including all or a subset of: operating system 718, communications module 720, user interface module 722, one or more applications 724, and digital assistant module 726. In particular, memory 702, or the computer-readable storage media of memory 702, can store instructions for performing methods 1200, 1300, 1400, or 1500, described below. One or more processors 704 can execute these programs, modules, and instructions, and reads/writes from/to the data structures.
Operating system 718 (e.g., Darwin, RTXC, LINUX, UNIX, iOS, OS X, WINDOWS, or an embedded operating system such as VxWorks) can include various software components and/or drivers for controlling and managing general system tasks (e.g., memory management, storage device control, power management, etc.) and facilitates communications between various hardware, firmware, and software components.
Communications module 720 can facilitate communications between digital assistant system 700 with other devices over network communications interface 708. For example, communications module 720 can communicate with RF circuitry 208 of electronic devices such as devices 200, 400, and 600 shown in
User interface module 722 can receive commands and/or inputs from a user via I/O interface 706 (e.g., from a keyboard, touch screen, pointing device, controller, and/or microphone), and generate user interface objects on a display. User interface module 722 can also prepare and deliver outputs (e.g., speech, sound, animation, text, icons, vibrations, haptic feedback, light, etc.) to the user via the I/O interface 706 (e.g., through displays, audio channels, speakers, touch-pads, etc.).
Applications 724 can include programs and/or modules that are configured to be executed by one or more processors 704. For example, if the digital assistant system is implemented on a standalone user device, applications 724 can include user applications, such as games, a calendar application, a navigation application, or an email application. If digital assistant system 700 is implemented on a server, applications 724 can include resource management applications, diagnostic applications, or scheduling applications, for example.
Memory 702 can also store digital assistant module 726 (or the server portion of a digital assistant). In some examples, digital assistant module 726 can include the following sub-modules, or a subset or superset thereof: input/output processing module 728, speech-to-text (STT) processing module 730, natural language processing module 732, dialogue flow processing module 734, task flow processing module 736, service processing module 738, and speech synthesis module 740. Each of these modules can have access to one or more of the following systems or data and models of the digital assistant module 726, or a subset or superset thereof: ontology 760, vocabulary index 744, user data 748, task flow models 754, service models 756, and ASR systems.
In some examples, using the processing modules, data, and models implemented in digital assistant module 726, the digital assistant can perform at least some of the following: converting speech input into text; identifying a user's intent expressed in a natural language input received from the user; actively eliciting and obtaining information needed to fully infer the user's intent (e.g., by disambiguating words, games, intentions, etc.); determining the task flow for fulfilling the inferred intent; and executing the task flow to fulfill the inferred intent.
In some examples, as shown in
STT processing module 730 can include one or more ASR systems. The one or more ASR systems can process the speech input that is received through I/O processing module 728 to produce a recognition result. Each ASR system can include a front-end speech pre-processor. The front-end speech pre-processor can extract representative features from the speech input. For example, the front-end speech pre-processor can perform a Fourier transform on the speech input to extract spectral features that characterize the speech input as a sequence of representative multi-dimensional vectors. Further, each ASR system can include one or more speech recognition models (e.g., acoustic models and/or language models) and can implement one or more speech recognition engines. Examples of speech recognition models can include Hidden Markov Models, Gaussian-Mixture Models, Deep Neural Network Models, n-gram language models, and other statistical models. Examples of speech recognition engines can include the dynamic time warping based engines and weighted finite-state transducers (WFST) based engines. The one or more speech recognition models and the one or more speech recognition engines can be used to process the extracted representative features of the front-end speech pre-processor to produce intermediate recognitions results (e.g., phonemes, phonemic strings, and sub-words), and ultimately, text recognition results (e.g., words, word strings, or sequence of tokens). In some examples, the speech input can be processed at least partially by a third-party service or on the user's device (e.g., device 104, 200, 400, or 600) to produce the recognition result. Once STT processing module 730 produces recognition results containing a text string (e.g., words, or sequence of words, or sequence of tokens), the recognition result can be passed to natural language processing module 732 for intent deduction.
More details on the speech-to-text processing are described in U.S. Utility application Ser. No. 13/236,942 for “Consolidating Speech Recognition Results,” filed on Sep. 20, 2011, the entire disclosure of which is incorporated herein by reference.
In some examples, STT processing module 730 can include and/or access a vocabulary of recognizable words via phonetic alphabet conversion module 731. Each vocabulary word can be associated with one or more candidate pronunciations of the word represented in a speech recognition phonetic alphabet. In particular, the vocabulary of recognizable words can include a word that is associated with a plurality of candidate pronunciations. For example, the vocabulary optionally includes the word “tomato” that is associated with the candidate pronunciations of and . Further, vocabulary words can be associated with custom candidate pronunciations that are based on previous speech inputs from the user. Such custom candidate pronunciations can be stored in STT processing module 730 and can be associated with a particular user via the user's profile on the device. In some examples, the candidate pronunciations for words can be determined based on the spelling of the word and one or more linguistic and/or phonetic rules. In some examples, the candidate pronunciations can be manually generated, e.g., based on known canonical pronunciations.
In some examples, the candidate pronunciations can be ranked based on the commonness of the candidate pronunciation. For example, the candidate pronunciation can be ranked higher than , because the former is a more commonly used pronunciation (e.g., among all users, for users in a particular geographical region, or for any other appropriate subset of users). In some examples, candidate pronunciations can be ranked based on whether the candidate pronunciation is a custom candidate pronunciation associated with the user. For example, custom candidate pronunciations can be ranked higher than canonical candidate pronunciations. This can be useful for recognizing proper nouns having a unique pronunciation that deviates from canonical pronunciation. In some examples, candidate pronunciations can be associated with one or more speech characteristics, such as geographic origin, nationality, or ethnicity. For example, the candidate pronunciation can be associated with the United States, whereas the candidate pronunciation can be associated with Great Britain. Further, the rank of the candidate pronunciation can be based on one or more characteristics (e.g., geographic origin, nationality, ethnicity, etc.) of the user stored in the user's profile on the device. For example, it can be determined from the user's profile that the user is associated with the United States. Based on the user being associated with the United States, the candidate pronunciation (associated with the United States) can be ranked higher than the candidate pronunciation (associated with Great Britain). In some examples, one of the ranked candidate pronunciations can be selected as a predicted pronunciation (e.g., the most likely pronunciation).
When a speech input is received, STT processing module 730 can be used to determine the phonemes corresponding to the speech input (e.g., using an acoustic model), and then attempt to determine words that match the phonemes (e.g., using a language model). For example, if STT processing module 730 can first identify the sequence of phonemes corresponding to a portion of the speech input, it can then determine, based on vocabulary index 744, that this sequence corresponds to the word “tomato.”
In some examples, STT processing module 730 can use approximate matching techniques to determine words in an utterance. Thus, for example, the STT processing module 730 can determine that the sequence of phonemes corresponds to the word “tomato,” even if that particular sequence of phonemes is not one of the candidate sequence of phonemes for that word.
Natural language processing module 732 (“natural language processor”) of the digital assistant can take the sequence of words or tokens (“token sequence”) generated by STT processing module 730, and attempt to associate the token sequence with one or more “actionable intents” recognized by the digital assistant. An “actionable intent” can represent a task that can be performed by the digital assistant, and can have an associated task flow implemented in task flow models 754. The associated task flow can be a series of programmed actions and steps that the digital assistant takes in order to perform the task. The scope of a digital assistant's capabilities can be dependent on the number and variety of task flows that have been implemented and stored in task flow models 754, or in other words, on the number and variety of “actionable intents” that the digital assistant recognizes. The effectiveness of the digital assistant, however, can also be dependent on the assistant's ability to infer the correct “actionable intent(s)” from the user request expressed in natural language.
In some examples, in addition to the sequence of words or tokens obtained from STT processing module 730, natural language processing module 732 can also receive contextual information associated with the user request, e.g., from I/O processing module 728. The natural language processing module 732 can optionally use the contextual information to clarify, supplement, and/or further define the information contained in the token sequence received from STT processing module 730. The contextual information can include, for example, user preferences, hardware, and/or software states of the user device, sensor information collected before, during, or shortly after the user request, prior interactions (e.g., dialogue) between the digital assistant and the user, and the like. As described herein, contextual information can be dynamic, and can change with time, location, content of the dialogue, and other factors.
In some examples, the natural language processing can be based on, e.g., ontology 760. Ontology 760 can be a hierarchical structure containing many nodes, each node representing either an “actionable intent” or a “property” relevant to one or more of the “actionable intents” or other “properties.” As noted above, an “actionable intent” can represent a task that the digital assistant is capable of performing, i.e., it is “actionable” or can be acted on. A “property” can represent a parameter associated with an actionable intent or a sub-aspect of another property. A linkage between an actionable intent node and a property node in ontology 760 can define how a parameter represented by the property node pertains to the task represented by the actionable intent node.
In some examples, ontology 760 can be made up of actionable intent nodes and property nodes. Within ontology 760, each actionable intent node can be linked to one or more property nodes either directly or through one or more intermediate property nodes. Similarly, each property node can be linked to one or more actionable intent nodes either directly or through one or more intermediate property nodes. For example, as shown in
In addition, property nodes “cuisine,” “price range,” “phone number,” and “location” can be sub-nodes of the property node “restaurant,” and can each be linked to the “restaurant reservation” node (i.e., the actionable intent node) through the intermediate property node “restaurant.” For another example, as shown in
An actionable intent node, along with its linked concept nodes, can be described as a “domain.” In the present discussion, each domain can be associated with a respective actionable intent, and refers to the group of nodes (and the relationships there between) associated with the particular actionable intent. For example, ontology 760 shown in
While
In some examples, ontology 760 can include all the domains (and hence actionable intents) that the digital assistant is capable of understanding and acting upon. In some examples, ontology 760 can be modified, such as by adding or removing entire domains or nodes, or by modifying relationships between the nodes within the ontology 760.
In some examples, nodes associated with multiple related actionable intents can be clustered under a “super domain” in ontology 760. For example, a “travel” super-domain can include a cluster of property nodes and actionable intent nodes related to travel. The actionable intent nodes related to travel can include “airline reservation,” “hotel reservation,” “car rental,” “get directions,” “find points of interest,” and so on. The actionable intent nodes under the same super domain (e.g., the “travel” super domain) can have many property nodes in common. For example, the actionable intent nodes for “airline reservation,” “hotel reservation,” “car rental,” “get directions,” and “find points of interest” can share one or more of the property nodes “start location,” “destination,” “departure date/time,” “arrival date/time,” and “party size.”
In some examples, each node in ontology 760 can be associated with a set of words and/or phrases that are relevant to the property or actionable intent represented by the node. The respective set of words and/or phrases associated with each node can be the so-called “vocabulary” associated with the node. The respective set of words and/or phrases associated with each node can be stored in vocabulary index 744 in association with the property or actionable intent represented by the node. For example, returning to
Natural language processing module 732 can receive the token sequence (e.g., a text string) from STT processing module 730, and determine what nodes are implicated by the words in the token sequence. In some examples, if a word or phrase in the token sequence is found to be associated with one or more nodes in ontology 760 (via vocabulary index 744), the word or phrase can “trigger” or “activate” those nodes. Based on the quantity and/or relative importance of the activated nodes, natural language processing module 732 can select one of the actionable intents as the task that the user intended the digital assistant to perform. In some examples, the domain that has the most “triggered” nodes can be selected. In some examples, the domain having the highest confidence value (e.g., based on the relative importance of its various triggered nodes) can be selected. In some examples, the domain can be selected based on a combination of the number and the importance of the triggered nodes. In some examples, additional factors are considered in selecting the node as well, such as whether the digital assistant has previously correctly interpreted a similar request from a user.
User data 748 can include user-specific information, such as user-specific vocabulary, user preferences, user address, user's default and secondary languages, user's contact list, and other short-term or long-term information for each user. In some examples, natural language processing module 732 can use the user-specific information to supplement the information contained in the user input to further define the user intent. For example, for a user request “invite my friends to my birthday party,” natural language processing module 732 can be able to access user data 748 to determine who the “friends” are and when and where the “birthday party” would be held, rather than requiring the user to provide such information explicitly in his/her request.
Other details of searching an ontology based on a token string is described in U.S. Utility application Ser. No. 12/341,743 for “Method and Apparatus for Searching Using An Active Ontology,” filed Dec. 22, 2008, the entire disclosure of which is incorporated herein by reference.
In some examples, once natural language processing module 732 identifies an actionable intent (or domain) based on the user request, natural language processing module 732 can generate a structured query to represent the identified actionable intent. In some examples, the structured query can include parameters for one or more nodes within the domain for the actionable intent, and at least some of the parameters are populated with the specific information and requirements specified in the user request. For example, the user says “Make me a dinner reservation at a sushi place at 7.” In this case, natural language processing module 732 can be able to correctly identify the actionable intent to be “restaurant reservation” based on the user input. According to the ontology, a structured query for a “restaurant reservation” domain optionally includes parameters such as {Cuisine}, {Time}, {Date}, {Party Size}, and the like. In some examples, based on the speech input and the text derived from the speech input using STT processing module 730, natural language processing module 732 can generate a partial structured query for the restaurant reservation domain, where the partial structured query includes the parameters {Cuisine=“Sushi”} and {Time=“7 pm”}. However, in this example, the user's utterance contains insufficient information to complete the structured query associated with the domain. Therefore, other necessary parameters such as {Party Size} and {Date} are, optionally, not specified in the structured query based on the information currently available. In some examples, natural language processing module 732 can populate some parameters of the structured query with received contextual information. For example, in some examples, if the user requested a sushi restaurant “near me,” natural language processing module 732 can populate a {location} parameter in the structured query with GPS coordinates from the user device.
In some examples, natural language processing module 732 can pass the generated structured query (including any completed parameters) to task flow processing module 736 (“task flow processor”). Task flow processing module 736 can be configured to receive the structured query from natural language processing module 732, complete the structured query, if necessary, and perform the actions required to “complete” the user's ultimate request. In some examples, the various procedures necessary to complete these tasks can be provided in task flow models 754. In some examples, task flow models 754 can include procedures for obtaining additional information from the user and task flows for performing actions associated with the actionable intent.
As described above, in order to complete a structured query, task flow processing module 736 optionally need to initiate additional dialogue with the user in order to obtain additional information, and/or disambiguate potentially ambiguous utterances. When such interactions are necessary, task flow processing module 736 can invoke dialogue flow processing module 734 to engage in a dialogue with the user. In some examples, dialogue flow processing module 734 can determine how (and/or when) to ask the user for the additional information and receives and processes the user responses. The questions can be provided to and answers can be received from the users through I/O processing module 728. In some examples, dialogue flow processing module 734 can present dialogue output to the user via audio and/or visual output, and receives input from the user via spoken or physical (e.g., clicking) responses. Continuing with the example above, when task flow processing module 736 invokes dialogue flow processing module 734 to determine the “party size” and “date” information for the structured query associated with the domain “restaurant reservation,” dialogue flow processing module 734 can generate questions such as “For how many people?” and “On which day?” to pass to the user. Once answers are received from the user, dialogue flow processing module 734 can then populate the structured query with the missing information, or pass the information to task flow processing module 736 to complete the missing information from the structured query.
Once task flow processing module 736 has completed the structured query for an actionable intent, task flow processing module 736 can proceed to perform the ultimate task associated with the actionable intent. Accordingly, task flow processing module 736 can execute the steps and instructions in the task flow model according to the specific parameters contained in the structured query. For example, the task flow model for the actionable intent of “restaurant reservation” can include steps and instructions for contacting a restaurant and actually requesting a reservation for a particular party size at a particular time. For example, using a structured query such as: {restaurant reservation, restaurant=ABC Café, date=3/12/2012, time=7 pm, party size=5}, task flow processing module 736 can perform the steps of: (1) logging onto a server of the ABC Café or a restaurant reservation system such as OPENTABLE®, (2) entering the date, time, and party size information in a form on the website, (3) submitting the form, and (4) making a calendar entry for the reservation in the user's calendar.
In some examples, task flow processing module 736 can employ the assistance of service processing module 738 (“service processing module”) to complete a task requested in the user input or to provide an informational answer requested in the user input. For example, service processing module 738 can act on behalf of task flow processing module 736 to make a phone call, set a calendar entry, invoke a map search, invoke or interact with other user applications installed on the user device, and invoke or interact with third-party services (e.g., a restaurant reservation portal, a social networking website, a banking portal, etc.). In some examples, the protocols and application programming interfaces (API) required by each service can be specified by a respective service model among service models 756. Service processing module 738 can access the appropriate service model for a service and generate requests for the service in accordance with the protocols and APIs required by the service according to the service model.
For example, if a restaurant has enabled an online reservation service, the restaurant can submit a service model specifying the necessary parameters for making a reservation and the APIs for communicating the values of the necessary parameter to the online reservation service. When requested by task flow processing module 736, service processing module 738 can establish a network connection with the online reservation service using the web address stored in the service model, and send the necessary parameters of the reservation (e.g., time, date, party size) to the online reservation interface in a format according to the API of the online reservation service.
In some examples, natural language processing module 732, dialogue flow processing module 734, and task flow processing module 736 can be used collectively and iteratively to infer and define the user's intent, obtain information to further clarify and refine the user intent, and finally generate a response (i.e., an output to the user, or the completion of a task) to fulfill the user's intent. The generated response can be a dialogue response to the speech input that at least partially fulfills the user's intent. Further, in some examples, the generated response can be output as a speech output. In these examples, the generated response can be sent to speech synthesis module 740 (e.g., speech synthesizer) where it can be processed to synthesize the dialogue response in speech form. In yet other examples, the generated response can be data content relevant to satisfying a user request in the speech input.
Speech synthesis module 740 can be configured to synthesize speech outputs for presentation to the user. Speech synthesis module 740 synthesizes speech outputs based on text provided by the digital assistant. For example, the generated dialogue response can be in the form of a text string. Speech synthesis module 740 can convert the text string to an audible speech output. Speech synthesis module 740 can use any appropriate speech synthesis technique in order to generate speech outputs from text, including, but not limited, to concatenative synthesis, unit selection synthesis, diphone synthesis, domain-specific synthesis, formant synthesis, articulatory synthesis, hidden Markov model (HMM) based synthesis, and sinewave synthesis. In some examples, speech synthesis module 740 can be configured to synthesize individual words based on phonemic strings corresponding to the words. For example, a phonemic string can be associated with a word in the generated dialogue response. The phonemic string can be stored in metadata associated with the word. Speech synthesis model 740 can be configured to directly process the phonemic string in the metadata to synthesize the word in speech form.
In some examples, instead of (or in addition to) using speech synthesis module 740, speech synthesis can be performed on a remote device (e.g., the server system 108), and the synthesized speech can be sent to the user device for output to the user. For example, this can occur in some implementations where outputs for a digital assistant are generated at a server system. And because server systems generally have more processing power or resources than a user device, it can be possible to obtain higher quality speech outputs than would be practical with client-side synthesis.
Additional details on digital assistants can be found in the U.S. Utility application Ser. No. 12/987,982, entitled “Intelligent Automated Assistant,” filed Jan. 10, 2011, and U.S. Utility application Ser. No. 13/251,088, entitled “Generating and Processing Task Items That Represent Tasks to Perform,” filed Sep. 30, 2011, the entire disclosures of which are incorporated herein by reference.
Attention is now directed towards embodiments of techniques and associated user interfaces (“UI”) for triggering (e.g., initiating) a virtual assistant that are, optionally, implemented on an electronic device with a display and a touch-sensitive surface.
4. Exemplary Techniques for Triggering a Virtual Assistant
In accordance with touch screen 804 powering on, device 800 also begins to sample audio input through its microphone to listen for spoken input from user 802.
In the illustrated example, the spoken trigger is the phrase of “Hey Siri.” Thus, spoken instruction 810, when sampled by device 800, causes device 800 to trigger a virtual assistant service. However, instruction 810 does not contain additional language representing a user request, beyond the trigger phrase. Thus, device 800 awaits further spoken input upon trigger the virtual assistant service by continuing to sample audio input. While awaiting additional input, device 800 optionally displays indication 812 prompting user 802 for further instructions.
In this way, device 800 activates the microphone, associated circuitry, and corresponding software processes for sampling audio input for a virtual assistant based on whether the device has detected a particular usage condition. This technique allows device 800 to disable certain electronic circuitry (e.g., microphone circuitry) and/or reduce execution of computer instructions (e.g., an associated processor power consumption) at times when a user is less likely to be providing active, cognitive input to the device—such as when the device is lowered and its display is powered off—thereby reducing overall power consumption by the device. Restated, the technical benefit of battery conservation is achieved through the notion that a user is less likely to provide spoken input while the device is outside certain usage conditions, in some embodiments.
In the illustrated example, spoken instructions 910 contains both a spoken trigger (e.g., “hey Siri”) and natural language input (e.g., “tell the sender I can't chat right now”) that the virtual assistant can operationalize into computing tasks. For example, the task is to send a brief reply to the sender of incoming message 912. Turning to
This technique of powering-on the microphone of device 900 in accordance with software events detected by the device, as illustrated by
In the illustrated example of
Turning to
This technique of powering-on a device's microphone to process a user's spoken input under some usage conditions while the touch screen remains off, described with reference to
As seen in
In some embodiments, however, even as device 1100 indicates to the user that the virtual assistant session has ended, its microphone continues to sample audio input for the user's spoken instructions for some time. In some embodiments, the on-going audio sampling occurs for a predetermined amount of time (e.g., eight seconds). In some embodiments, the on-going audio sampling occurs until an additional user input is received, such as a touch input on touch screen 1104, activation of an application, so forth. Additional techniques for identifying a duration for which the sampling of audio input continues are described with reference to
Turning to
This technique of continuing to sample audio input for a time after a user has ended a virtual assistant (as opposed to turning off the microphone immediately) is beneficial. Consider, for instance, the situation in which a user's cancellation of the virtual assistant (e.g., at
As another example, consider the situation in which a user's cancellation of the virtual assistant would have delayed the device's ability to process the user's subsequent spoken input by requiring the device to power-cycle its microphone and associated circuitry. The above-described techniques permit electronic device 1100 to respond to the user while avoiding the delay caused by power cycle, thereby improving response times. These benefits impart a higher-quality user experience to device 1100, and are particularly helpful for portable devices where design compromises are made between processing power and battery consumption.
Turning to
As seen in
Turning to
As seen in
Although the examples of
6. Exemplary Processes for Triggering a Virtual Assistant
At block 1202, while the electronic device's display is on, the device detects user input via an input component of the device. At block 1204, the device determines if the input meets a predetermined condition. If the input meets a predetermined condition, processing proceeds to 1206 where the device samples audio input received via its microphone. If the input does not meet the predetermined condition, processing returns to block 1202, where the device optionally detects another user input.
In some embodiments, the predetermined condition is that the display screen of the device is on. The device determines whether the display is on, for example, by determining whether its backlight is lit.
In some embodiments, the predetermined condition is a movement of the device, such as a lifting of the device into a viewing position (as seen in
In the exemplary lifting movement depicted in
Additional detail regarding techniques for determining raising gestures of an electronic device are described in, e.g., U.S. Provisional Patent Application Ser. No. 62/026,532, titled “Raise Gesture Detection in a Device,” filed Jul. 18, 2014, the content of which is hereby incorporated by reference. For brevity, the content of the application is not repeated here.
In some embodiments, the predetermined condition is activation of an input device such as a mechanical button, touch-sensitive button, rotatable input device, so forth. In some embodiments, the predetermined condition is a touch on touch-sensitive surface or touch screen (such as touch screen 804 shown in
Optionally, at block 1204, the device determines whether it is operating in a predetermined mode where its audio output is muted (e.g., a “do not disturb”). If the device is operating is such a mode, processing returns to block 1202, meaning that the device foregoes sampling audio for triggering a virtual assistant.
In some embodiments, sampling audio at block 1206 involves powering on a microphone of the device. In some examples, sampling audio involves powering on additional electronics circuitry to perform signal processing. In some examples, sampling audio involves passing audio input received from the microphone to software recognition algorithms that are being executed on one or more processors of the device.
Having sampled audio input at block 1206, the device proceeds to block 1208, where it determines whether the sampled audio input comprises a spoken trigger for triggering a virtual assistant. If the sampled audio input contains the spoken trigger, processing proceeds to block 1210 where the device triggers a virtual assistant session (such as by displaying user interface 812 shown in
If the sampled audio input does not contain the spoken trigger, processing proceeds to block 1212, where the device determines whether to continue to sample audio input. If the device is to continue sampling audio input, processing returns to block 1206 where audio sampling continues. If the device is to cease sampling of audio input, processing proceeds to block 1214 where audio sampling is stopped.
In some embodiments, the device ceases to sample audio input after the device's display is turned off. In some embodiments, the devices ceases to sample audio input after sampling for a threshold duration of time, such as a duration of eight seconds. In some embodiments, the device ceases to sample audio after detecting activation of an input device such as a mechanical button, touch-sensitive button, rotatable input device, so forth. In some embodiments, the device ceases to sample audio after detecting activation of an input device such as a touch on touch-sensitive surface or touch screen.
In some embodiments, the device ceases to sample audio input after an intervening input is received, such as a user input to invoke another application installed on the device. In some embodiments, the device ceases to sample audio based on an amount of lowering of the device during a time interval, the amount of lowering determined from an accelerometer of the electronic device. In some embodiment, the device ceases to sample audio based on smoothness of a lowering of the electronic device during a time interval, the smoothness of the lowering determined from an accelerometer of the device. In some embodiment, the device ceases to sample audio input after identifying an audio endpoint in the audio input. Exemplary end points include those indicating that the received audio input is too low in volume to be near-field speech (as opposed to background noise), unlikely to be human speech, a stop in the user's spoken input, so forth.
In some embodiments, the device ceases sampling of audio ceases at block 1214 by powering off the microphone of the device. In some embodiments, sampling of audio ceases by powering off associated circuitry that performs microphone signal processing. In some embodiments, sampling audio ceases by not processing audio input received from the microphone through software recognition algorithms. Optionally, at block 1214, the device provides one or more of a haptic, audio, and visual output indicating the end of the audio sampling.
It should be understood that the particular order in which the operations in
At block 1302, the electronic device detects a software event. At block 1304, the device determines whether the software event meets a predetermined condition. If the software event meets the predetermined condition, processing proceeds to block 1306, and the device begins sampling audio input received via its microphone. If the software event does not meet the predetermined condition, processing returns to block 1302, where the device optionally detects another software event.
In the illustration of
In some embodiments, the predetermined condition is that the software event is an event triggered by an external source. Exemplary software events triggered by external sources include incoming calls (e.g., voice- or video-based, cellular or WiFi-based calls), messages (e.g., e-mail, text message SMS, multimedia message, iMessage, so forth) calendar invitations, so forth. Exemplary software events triggered by external sources also include application-based notifications and alerts, such as alerts indicating the availability of newly available information on a web site or service.
In some embodiments, the predetermined condition is that the software event indicates that a virtual assistant session is active on the device.
Optionally, at block 1304, the device determines whether it is operating in a predetermined mode where its audio output is muted (e.g., a “do not disturb”). If the device is operating is such a mode, processing returns to block 1302, meaning that the device foregoes sampling audio for triggering a virtual assistant.
Optionally, at block 1304, the device determines its display screen is on. The device determines whether the display is on, for example, by determining whether its backlight is lit. If the device's display is off, processing returns to block 1302, meaning that the device foregoes sampling audio for triggering a virtual assistant.
Having sampled audio input at block 1306, the device proceeds to block 1308, where it determines whether the sampled audio input includes a spoken trigger for triggering a virtual assistant. If the sampled audio input contains the spoken trigger, processing proceeds to block 1310 where the device triggers a virtual assistant session and, optionally, executes tasks based on the user's spoken input (as can been seen in the exemplary illustrations of
If the sampled audio input does not contain the spoken trigger, processing proceeds to block 1312, where the device determines whether to continue to sample audio input. If the device is to continue sampling audio input, processing returns to block 1306 where audio sampling continues. If the device is to cease sampling of audio input, processing proceeds to block 1314 where audio sampling is stopped.
In some embodiments, the device ceases to sample audio input after the device's display is turned off. In some embodiments, the devices ceases to sample audio input after sampling for a threshold duration of time, such as a duration of eight seconds. In some embodiments, the device ceases to sample audio after detecting activation of an input device such as a mechanical button, touch-sensitive button, rotatable input device, so forth. In some embodiments, the device ceases to sample audio after detecting activation of an input device such as a touch on touch-sensitive surface or touch screen.
In some embodiments, the device ceases to sample audio input after an intervening input is received, such as a user input to invoke another application installed on the device. In some embodiments, the device ceases to sample audio based on an amount of lowering of the device during a time interval, the amount of lowering determined from an accelerometer of the electronic device. In some embodiments, the device ceases to sample audio based on smoothness of a lowering of the electronic device during a time interval, the smoothness of the lowering determined from an accelerometer of the device. In some embodiments, the device ceases to sample audio input after identifying an audio endpoint in the audio input. Exemplary end points include those indicating that the received audio input is too low in volume to be near-field speech (as opposed to background noise), unlikely to be human speech, a stop in the user's spoken input, so forth.
In some embodiments, the device ceases sampling of audio ceases at block 1314 by powering off the microphone of the device. In some embodiments, sampling of audio ceases by powering off associated circuitry that performs microphone signal processing. In some embodiments, sampling audio ceases by not processing audio input received from the microphone through software recognition algorithms. Optionally, at block 1314, the device provides one or more of a haptic, audio, and visual output indicating the end of the audio sampling.
It should be understood that the particular order in which the operations in
At block 1402, the device detects user input via an input component of the device. At block 1404, the device determines if the input meets a predetermined condition. If the input meets a predetermined condition, processing proceeds to 1406 where the device samples audio input received via its microphone. If the input does not meet the predetermined condition, processing returns to block 1402, where the device optionally detects another user input.
In some embodiments, the predetermined condition is that the device receives the user input while its display is off. The device determines whether the display is off, for example, by determining whether its backlight is lit.
In some embodiments, the predetermined condition is a movement of the device, such as a lifting of the device into a viewing position (e.g., as seen in
In some embodiments, the predetermined condition is activation of an input device such as a mechanical button, touch-sensitive button, rotatable input device, so forth. In some examples, the predetermined condition is a touch on touch-sensitive surface or touch screen.
Optionally, at block 1404, the device determines whether it is operating in a predetermined mode where its audio output is muted (e.g., a “do not disturb”). If the device is operating is such a mode, processing returns to block 1402, meaning that the device foregoes sampling audio for triggering a virtual assistant.
In some embodiments, sampling audio at block 1406 involves powering on a microphone of the device. In some embodiments, sampling audio involves powering on additional electronics circuitry to perform signal processing. In some embodiments, sampling audio involves passing audio input received from the microphone to software recognition algorithms that are being executed on one or more processors of the device.
In some embodiments, the device proceeds from block 1402 (where the input is detected) to block 1406 (where audio sampling occurs) without turning on its display (e.g., by not turning on the backlight of the display). Optionally, the device provides at least one of a haptic and audio output at block 1406 without powering on its display. In some embodiments, the device provides a visual output from a light source other than its display as it starts to sample audio input.
Having sampled audio input at block 1406, the device proceeds to block 1408, where it determines whether sampled audio input comprises a spoken trigger for triggering a virtual assistant. If the sampled audio input contains the spoken trigger, processing proceeds to block 1410 where the device triggers a virtual assistant session. In some embodiments, the spoken trigger is a predetermined phrase, such as “hey Siri.”
In some embodiments, the device proceeds from block 1402 (where the input is detected) to block 1408 (where the virtual assistant is triggered) while the display of the device remains off (e.g., by not turning on the backlight of the display). In some embodiments, the device provides at least one of a haptic and audio output as it triggers the virtual assistant at block 1410. In some embodiments, the device provides a visual output from a light source other than its display as it triggers the virtual assistant at block 1410.
If the sampled audio input does not contain the spoken trigger, processing proceeds to block 1412, where the device determines whether to continue to sample audio input. If the device is to continue sampling audio input, processing returns to block 1406 where audio sampling continues. If the device is to cease sampling of audio input, processing proceeds to block 1414 where audio sampling is stopped.
In some embodiments, the devices ceases to sample audio input after sampling for a threshold duration of time, such as a duration of eight seconds. In some embodiments, the device ceases to sample audio after detecting activation of an input device such as a mechanical button, touch-sensitive button, rotatable input device, so forth. In some embodiments, the device ceases to sample audio after detecting activation of an input device such as a touch on touch-sensitive surface or touch screen.
In some embodiments, the device ceases to sample audio input after an intervening input is received, such as a user input to invoke another application installed on the device. In some embodiments, the device ceases to sample audio based on an amount of lowering of the device during a time interval, the amount of lowering determined from an accelerometer of the electronic device. In some embodiments, the device ceases to sample audio based on smoothness of a lowering of the electronic device during a time interval, the smoothness of the lowering determined from an accelerometer of the device. In some embodiments, the device ceases to sample audio input after identifying an audio endpoint in the audio input. Exemplary end points include those indicating that the received audio input is too low in volume to be near-field speech (as opposed to background noise), unlikely to be human speech, a stop in the user's spoken input, so forth.
In some embodiments, the device ceases sampling of audio ceases at block 1414 by powering off the microphone of the device. In some embodiments, sampling of audio ceases by powering off associated circuitry that performs microphone signal processing. In some embodiments, sampling audio ceases by not processing audio input received from the microphone through software recognition algorithms.
Optionally, the device provides at least one of a haptic and audio output as it ceases to sample audio input without turning on its display. In some embodiments, the device provides a visual output from a light source other than its display as it ceases to sample audio input.
It should be understood that the particular order in which the operations in
At block 1502, the electronic device samples audio input and determines whether the audio input represents an executable task, for example, a user request that is provided in spoken natural language. While sampling audio input, the device can provide a UI indicating of the sampling, such as screen 1106 of
In some embodiments, sampling of audio input occurs when the device's display is powered on, for example, when the backlight of the display is lit. In some embodiments, the device samples audio input responsive to a movement meeting a predetermined condition, such as a lifting of the device into a viewing position (as seen in
In some embodiments, the predetermined condition is activation of an input device such as a mechanical button, touch-sensitive button, rotatable input device, so forth. In some embodiments, the predetermined condition is a touch on touch-sensitive surface or touch screen.
At block 1504, while sampling audio input, the electronic device receives an instruction to cease sampling of audio input. In some embodiments, the device is adapted to receive instruction to cease sampling of audio input from a user of the device. The instruction can be received as a spoken instruction via the microphone of the device, for example. Also, the instruction can be received by detecting activation of an input device such as a touch on touch-sensitive surface or touch screen, such as a touch on affordance 1108 in
In some embodiments, the device is adapted to receive instruction to cease sampling of audio input from another electronic device external to the device. The instruction can be received through a communication medium such as cellular communication, Bluetooth communication, WiFi communication, or the like.
In some embodiments, at block 1504, the device prompts the user for spoken input. In some embodiments, at block 1504, the device determines whether the audio input represents a request, and in accordance with determining whether the audio input represents a task, the device: determines a user intent based on at least a portion of the audio input; identifies and executes the task based on the user intent; and provides at least one of a haptic, audio, and visual output representing execution of the task.
At block 1506, responsive to the instruction to cease sampling of audio input, the device provides an output acknowledgement. The acknowledgement reports to the user that the virtual assistant has been canceled, for example. In some embodiments, the acknowledgement involves one or more of a haptic, audio, and visual output. In some embodiments, the acknowledgement involves turning the display off, as seen in
In some embodiments, after receiving the instruction to cease sampling of audio input at block 1504 and after providing the acknowledgement at block 1506, processing proceeds to block 1508, where the device continues to sample audio input and determines whether the audio input includes a user task, for some limited time (after which the device ceases to sample audio input).
In some embodiments, the device ceases to sample audio input after the device's display is turned off. In some embodiments, the devices ceases to sample audio input after continuing to sample for a threshold duration of time, such as a duration of eight seconds. In some embodiments, the device ceases to sample audio after detecting activation of an input device such as a mechanical button, touch-sensitive button, rotatable input device, so forth. In some embodiments, the device ceases to sample audio after detecting activation of an input device such as a touch on touch-sensitive surface or touch screen.
In some embodiments, the device ceases to sample audio input after an intervening input is received, such as a user input to invoke another application installed on the device. In some embodiments, the device ceases to sample audio based on an amount of lowering of the device during a time interval, the amount of lowering determined from an accelerometer of the electronic device. In some embodiments, the device ceases to sample audio based on smoothness of a lowering of the electronic device during a time interval, the smoothness of the lowering determined from an accelerometer of the device. In some embodiments, the device ceases to sample audio input after identifying an audio endpoint in the audio input. Exemplary end points include those indicating that the received audio input is too low in volume to be near-field speech (as opposed to background noise), unlikely to be human speech, a stop in the user's spoken input, so forth.
In some embodiments, after receiving the instruction to cease sampling of audio input 1504, the device determines whether the instruction to cease sampling of audio input originates from a user or an external device. In accordance with a determination that the audio input originated from an external device, the device ceases to sample audio input immediately.
In some embodiments, the device ceases sampling of audio ceases at block 1506 by powering off the microphone of the device. In some embodiments, sampling of audio ceases by powering off associated circuitry that performs microphone signal processing. In some embodiments, sampling audio ceases by not processing audio input received from the microphone through software recognition algorithms. Optionally, at block 1506, the device provides one or more of a haptic, audio, and visual output indicating the end of the audio sampling.
It should be understood that the particular order in which the operations in
At block 2102, while a predetermined service such as a virtual assistant is executing on the device, the device detects a user's natural language input such as spoken input. At block 2104, the device operationalizes the user's input by identifying one or more computing tasks to be performed. At block 2106, while performing the one or more tasks, the device powers down its display screen (e.g., by turning off the backlight of the screen). At block 2108, after completing the one or more computing tasks, the device provides a haptic and/or audio output.
It should be understood that the particular order in which the operations in
It is noted that the sampling of audio input at blocks 1206, 1306, 1406, and 1502 (
In accordance with some embodiments,
As shown in
In some embodiments, processing unit 1614 is configured to: while the display is on, receive (e.g., with display enabling unit 1616) user input via the input device, the user input meeting a predetermined condition; in accordance with receiving the user input meeting the predetermined condition (e.g., with input detection unit 1618), sample audio input (e.g., with audio sampling unit 1620) received via the microphone (e.g., from microphone unit 1606); determine whether the audio input comprises a spoken trigger (e.g., with audio processing unit 1622); and in accordance with a determination that audio input comprises the spoken trigger (e.g., with audio processing unit 1622), trigger a virtual assistant session (e.g., with virtual assistant service unit 1624).
In some embodiments, the predetermined condition is based on an amount of lifting of the electronic device during a time interval, the amount of lifting determined from an accelerometer of the electronic device (e.g., movement sensor unit 1608). In some embodiments, the predetermined condition is based on smoothness of a lifting of the electronic device during a time interval, the smoothness of the lifting determined from an accelerometer of the electronic device (e.g., movement sensor unit 1608). In some embodiments, the predetermined condition comprises a minimum period of dwell time in a position in accordance with the lifting of the electronic device. In some embodiments, the predetermined condition comprises detecting (e.g., input detection unit 1618) activation of a button of the electronic device (e.g., input device unit 1610).
In some embodiments, the predetermined condition comprises detecting touch input on a touch-sensitive surface of the electronic device (e.g., touch-sensitive surface unit 1604).
In some embodiments, the processing unit is further configured to: determine (e.g., with display enabling unit 1616) whether the display is on; the sampling of audio input (e.g., with audio sampling unit 1620) occurs in accordance with a determination that the display is on. In some embodiments, the processing unit is further configured to: in accordance with determining whether the display is on, determine whether the backlight of the display is on (e.g., with display enabling unit 1616).
In some embodiments, the processing unit is further configured to: cease the sampling of audio input after the sampling of audio input has occurred for a predetermined duration of time (e.g., with audio sampling unit 1620).
In some embodiments, the user input meeting a predetermined condition is a first user input meeting a first predetermined condition, and processing unit 1614 is further configured to: while sampling audio input (e.g., with audio sampling unit 1620) in accordance with receiving the first user input, receiving a second user input (e.g., with input detection unit 1618) meeting a second predetermined condition; and in accordance with receiving the second user input meeting the second predetermined condition, ceasing (e.g., with audio sampling unit 1620) the sampling of audio input.
In some embodiments, the second predetermined condition is based on an amount of lowering of the electronic device during a time interval, the amount of lowering determined from an accelerometer of the electronic device (e.g., with movement sensor unit 1608).
In some embodiments, the first predetermined condition is based on smoothness of a lowering of the electronic device during a time interval, the smoothness of the lowering determined from an accelerometer of the electronic device (e.g., with movement sensor unit 1608).
In some embodiments, the second predetermined condition comprises detecting (e.g., with input detection unit 1618) activation of a button of the electronic device. In some embodiments, the second predetermined condition comprises detecting touch input on a touch-sensitive surface of the electronic device.
In some embodiments, processing unit 1614 is further configured to: while sampling audio input in accordance with receiving the user input meeting the predetermined condition (e.g., with audio sampling unit 1620), determining whether the display is off (e.g., with display enabling unit 1616); and in accordance with a determination that the display is off, ceasing (e.g., with audio sampling unit 1620) the sampling of audio input.
In some embodiments, processing unit 1614 is further configured to: while sampling audio input in accordance with receiving the user input meeting the predetermined condition (e.g., with audio sampling unit 1620), identifying an audio endpoint in the audio input (e.g., with audio processing unit 1622); and in response to identifying the audio endpoint, ceasing (e.g., with audio sampling unit 1620) the sampling of audio input.
In some embodiments, processing unit 1614 is further configured to: in accordance with ceasing to sample audio input, causing a haptic output (e.g., with feedback enabling unit 1626 and/or feedback unit 1612).
In some embodiments, processing unit 1614 is further configured to: in accordance with triggering the virtual assistant session (e.g., with virtual assistant service unit 1624), prompting (e.g., with display enabling unit 1616 and/or feedback enabling unit 1626) a user for spoken input (e.g., with display unit 1602 and/or feedback unit 1612).
In some embodiments, the audio input comprises the spoken trigger and additional input, and processing unit 1614 is further configured to, in accordance with triggering the virtual assistant session: determining a user intent based on at least the additional input in the audio input, and executing a task associated with the user intent (e.g., with virtual assistant service unit 1624).
In some embodiments, processing unit 1614 is further configured to: in accordance with a determination that the electronic device is operating in a predetermined mode (e.g., with virtual assistant service unit 1624), forgoing sampling of audio input (e.g., with audio sampling unit 1620), even after receiving the user input meeting the predetermined condition while the display is on.
In some embodiments, operation in the predetermined mode comprises muting audio output of the electronic device. In some embodiments, the spoken trigger comprises comprise a predetermined phrase.
The operations described above with respect to
It is understood by persons of skill in the art that the functional blocks described in
In accordance with some embodiments,
As shown in
In some embodiments, processing unit 1714 is configured to: detect a software event (e.g., with software event detection unit 1728) meeting a predetermined condition; in accordance with a determination that the software event meeting the condition is detected, sample audio input (e.g., with audio sampling unit 1620) received via the microphone (e.g., microphone unit 1706); determine (e.g., with audio processing unit 1722) whether audio input received via the microphone comprises a spoken trigger; and in accordance with a determination that the audio input comprises the spoken trigger, trigger a virtual assistant session (e.g., with virtual assistant service unit 1724).
In some embodiments, the predetermined condition is that the software event is an event triggered by an application of the electronic device. In some embodiments, the predetermined condition comprises the software event representing a notification. In some embodiments, the predetermined condition comprises the software event representing a calendar notification.
In some embodiments, the predetermined condition comprises the software event representing an incoming calendar invitation from an external device. In some embodiments, the predetermined condition comprises the software event representing an incoming transmission, the transmission triggered from an external device. In some embodiments, the predetermined condition comprises the software event representing an incoming phone call from an external device. In some embodiments, the predetermined condition comprises the software event representing an incoming text or multimedia message from an external device.
In some embodiments, processing unit 1714 is further configured to: in accordance with triggering a virtual assistant session, initiating (e.g., with virtual assistant service unit 1624) a response addressed to the external device. An exemplary response is a reply to an incoming message, such as text message 916 in
In some embodiments, processing unit 1714 is further configured to: determining (e.g., with display enabling unit 1716) whether the display is on, and wherein the sampling of audio input (e.g., with audio sampling unit 1720) occurs in accordance with a determination that the display is on.
In some embodiments, processing unit 1714 is further configured to: in accordance with determining whether the display is on (e.g., with display enabling unit 1716), determining (e.g., with display enabling unit 1716) whether the backlight of the display is on.
In some embodiments, processing unit 1714 is further configured to: cease the sampling of audio input (e.g., with audio sampling unit 1720) after the sampling of audio input has occurred for a predetermined duration of time.
In some embodiments, the user input meeting a predetermined condition is a first user input meeting a first predetermined condition, and processing unit 1714 is further configured to: while sampling audio input (e.g., with audio sampling unit 1720) in accordance with receiving the first user input, receiving (e.g., with input detection unit 1718) a second user input meeting a second predetermined condition; and in accordance with receiving the second user input meeting the second predetermined condition, ceasing (e.g., with audio sampling unit 1720) the sampling of audio input.
In some embodiments, the second predetermined condition is based on an amount of lowering of the electronic device during a time interval, the amount of lowering determined from an accelerometer (e.g., with movement sensor unit 1708) of the electronic device. In some embodiments, the first predetermined condition is based on smoothness of a lowering of the electronic device during a time interval, the smoothness of the lowering determined from an accelerometer (e.g., with movement sensor unit 1708) of the electronic device.
In some embodiments, the second predetermined condition comprises detecting activation (e.g., with input detection unit 1718) of a button (e.g., with input device unit 1710) of the electronic device. In some embodiments, the second predetermined condition comprises detecting touch input on a touch-sensitive surface (e.g., with touch-sensitive surface unit 1704) of the electronic device.
In some embodiments, processing unit 1714 is further configured to: while sampling audio input (e.g., with audio sampling unit 1720) in accordance with receiving the user input meeting the predetermined condition, determining (e.g., with display enabling unit 1716) whether the display is off; and in accordance with a determination that the display is off, ceasing the sampling of audio input (e.g., with audio sampling unit 1720).
In some embodiments, processing unit 1714 is further configured to: while sampling audio input (e.g., with audio sampling unit 1720) in accordance with receiving the user input meeting the predetermined condition, identifying (e.g., with audio processing unit 1722) an audio endpoint in the audio input; and in response to identifying the audio endpoint, ceasing the sampling of audio input (e.g., with audio sampling unit 1720).
In some embodiments, processing unit 1714 is in accordance with ceasing to sample audio input, causing (e.g., with feedback enabling unit 1726) a haptic output (e.g., with feedback unit 1712).
In some embodiments, processing unit 1714 is in accordance with triggering the virtual assistant session, prompting (e.g., with display enabling unit 1716 and/or feedback enabling unit 1726) a user for spoken input (e.g., with display unit 1702 and/or feedback unit 1712).
In some embodiments, the audio input comprises the spoken trigger and additional input, and processing unit 1714 is further configured to: in accordance with triggering the virtual assistant session (e.g., with virtual assistant service unit 1724): determining (e.g., with virtual assistant service unit 1724) a user intent based on at least the additional input in the audio input, and executing (e.g., with virtual assistant service unit 1724) a task associated with the user intent.
In some embodiments, processing unit 1714 is further configured to: in accordance with a determination that the electronic device is operating in a predetermined mode (e.g., with virtual assistant service unit 1724), forgoing sampling of audio input (e.g., with audio sampling unit 1720), even after receiving (e.g., with input detection unit 1718) user input meeting the predetermined condition while the display is on.
In some embodiments, operation in the predetermined mode comprises muting audio output of the electronic device. In some embodiments, the spoken trigger comprises comprise a predetermined phrase, such as “hey Siri.”
The operations described above with respect to
It is understood by persons of skill in the art that the functional blocks described in
In accordance with some embodiments,
As shown in
In some embodiments, processing unit 1814 is configured to: receive (e.g., with input detection unit 1818) user input via the input device, the user input meeting a predetermined condition; in accordance with receiving the user input meeting the predetermined condition, sampling audio input (e.g., with audio sampling unit 1820) received via the microphone; determining (e.g., with audio processing unit 1822) whether the audio input comprises a spoken trigger; in accordance with a determination that audio input comprises the spoken trigger: triggering (e.g., with virtual assistant service unit 1824) a virtual assistant session and causing a haptic output (e.g., with feedback unit 1826).
In some embodiments, processing unit 1814 is further configured to: in accordance with receiving the user input meeting a predetermined condition, receiving the user input (e.g., with input detection unit 1818) while the display is off.
In some embodiments, processing unit 1814 is further configured toe: in accordance with triggering the virtual assistant session, triggering the virtual assistant session (e.g., with virtual assistant service unit 1824) without turning on a backlight of the display
In some embodiments, the predetermined condition is based on an amount of lifting of the electronic device during a time interval, the amount of lifting determined from an accelerometer of the electronic device (e.g., with movement unit 1808). In some embodiments, the predetermined condition is based on smoothness of a lifting of the electronic device during a time interval, the smoothness of the lifting determined from an accelerometer of the electronic device (e.g., with movement unit 1808). In some embodiments, the predetermined condition comprises a minimum period of dwell time in a position in accordance with the lifting of the electronic device.
In some embodiments, the predetermined condition comprises detecting activation of a button of the electronic device (e.g., with input detection unit 1818). In some embodiments, the predetermined condition comprises detecting touch input on a touch-sensitive surface of the electronic device.
In some embodiments, processing unit 1814 is further configured to, ceasing the sampling of audio input (e.g., with audio sampling unit 1820) after the sampling of audio input has occurred for a predetermined duration of time.
In some embodiments, the user input meeting a predetermined condition is a first user input meeting a first predetermined condition, and processing unit 1814 is further configured to: while sampling audio input (e.g., with audio sampling unit 1820) in accordance with receiving the first user input, receiving a second user input (e.g., with input detection unit 1818) meeting a second predetermined condition; and in accordance with receiving the second user input meeting the second predetermined condition, ceasing the sampling of audio input (e.g., with audio sampling unit 1820).
In some embodiments, the second predetermined condition is based on an amount of lowering of the electronic device during a time interval, the amount of lowering determined from an accelerometer (e.g., with movement unit 1808) of the electronic device. In some embodiments, the first predetermined condition is based on smoothness of a lowering of the electronic device during a time interval, the smoothness of the lowering determined from an accelerometer (e.g., with movement unit 1808) of the electronic device.
In some embodiments, the second predetermined condition comprises detecting (e.g., with input detection unit 1818) activation of a button (e.g., with input device unit 1810) of the electronic device. In some embodiments, the second predetermined condition comprises detecting (e.g., with input detection unit 1818) touch input on a touch-sensitive surface (e.g., with touch-sensitive surface unit 1804) of the electronic device.
In some embodiments, processing unit 1814 is further configured to, while sampling audio input (e.g., with audio sampling unit 1820) in accordance with receiving the user input meeting the predetermined condition, identifying (e.g., with audio processing unit 1822) an audio endpoint in the audio input; and in response to identifying the audio endpoint, ceasing the sampling of audio input (e.g., with audio sampling unit 1820).
In some embodiments, processing unit 1814 is further configured to, in accordance with ceasing to sample audio input (e.g., with audio sampling unit 1820), providing a causing output (e.g., with feedback unit 1826). In some embodiments, processing unit 1814 is further configured to, in accordance with triggering the virtual assistant session (e.g., with virtual assistant service unit 1824), prompting (e.g., with display enabling unit 1816 and/or feedback enabling unit 1826) a user for spoken input (e.g., with display unit 1802 and/or feedback unit 1812).
In some embodiments, the audio input comprises the spoken trigger and additional input, and processing unit 1814 is further configured to: in accordance with triggering the virtual assistant session (e.g., with virtual assistant service unit 1824): determining (e.g., with virtual assistant service unit 1824) a user intent based on at least the additional input in the audio input, and executing a task associated with the user intent (e.g., with virtual assistant service unit 1824).
In some embodiments, processing unit 1814 is further configured to, in accordance with a determination that the electronic device is operating in a predetermined mode, forgoing sampling of audio input (e.g., with audio sampling unit 1820), even after receiving (e.g., with input detection unit 1818) the user input (e.g., with touch-sensitive surface unit 1804 or input device unit 1810) meeting the predetermined condition while the display is on.
In some embodiments, operation in the predetermined mode comprises muting audio output of the electronic device. In some embodiments, the spoken trigger comprises comprise a predetermined phrase, such as “hey Siri.”
The operations described above with respect to
It is understood by persons of skill in the art that the functional blocks described in
In accordance with some embodiments,
As shown in
In some embodiments, processing unit 1914 is configured to: sample (e.g., with audio sampling unit 1920) audio input received via the microphone and determine (e.g., with audio processing unit 1922) whether the audio input represents a task; while sampling audio input (e.g., with audio sampling unit 1920), receive (e.g., with input detection unit 1918) instruction to cease sampling of audio input; provide (e.g., with feedback unit 1926) output acknowledging the received instruction to cease the sampling of audio input; and after providing the output, continue to sample audio input (e.g., with audio sampling unit 1920) and determine (e.g., with audio processing unit 1922) whether the audio input comprises a task, for a duration, then cease the sampling of audio input (e.g., with audio sampling unit 1920).
In some embodiments, processing unit 1914 is further configured to, in accordance with sampling audio input (e.g., with audio sampling unit 1920), sample (e.g., with audio sampling unit 1920) audio input while the display is on.
In some embodiments, processing unit 1914 is further configured to, in accordance with providing (e.g., with feedback unit 1926) the output acknowledging the received instruction to end the sampling of audio input, cause (e.g., with feedback unit 1926) a haptic output (e.g., with feedback unit 1912).
In some embodiments, processing unit 1914 is further configured to, in accordance with providing (e.g., with feedback unit 1926) the output acknowledging the received instruction to end the sampling of audio input, provide (e.g., with feedback unit 1926) an audio output (e.g., with feedback unit 1912).
In some embodiments, processing unit 1914 is further configured to, in accordance with the sampling (e.g., with audio sampling unit 1920) of audio received via the microphone, prompt a user for spoken input (e.g., with display enabling unit 1916 and display unit 1902, and/or with feedback enabling unit 1926 and feedback unit 1912).
In some embodiments, processing unit 1914 is further configured to, in accordance with determining (e.g., with virtual assistant service unit 1924) whether the audio input represents a task, determine (e.g., with virtual assistant service unit 1924) a user intent based on at least a portion of the audio input; identify and execute the task based on the user intent (e.g., with virtual assistant service unit 1924); and cause (e.g., with feedback unit 1926) haptic output (e.g., with feedback unit 1912) representing execution of the task.
In some embodiments, processing unit 1914 is further configured to, determine (e.g., with input detection unit 1918) whether the received instruction to cease sampling of audio input is received from a user via the electronic device or is received from an external device; where the continued sampling of audio input (e.g., with audio sampling unit 1920) and determining (e.g., with audio processing unit 1922) of whether the audio input comprises a task for a duration after receiving the instruction to cease sampling occurs in accordance with a determination that the received instruction is received from a user via the electronic device; and in accordance with a determination that the received instruction is received from an external device, the device ceases the sampling of audio input (e.g., with audio sampling unit 1920) responsive to the received instruction.
In some embodiments, the spoken trigger comprises comprise a predetermined phrase, such as “hey Siri.”
The operations described above with respect to
It is understood by persons of skill in the art that the functional blocks described in
Although the disclosure and examples have been fully described with reference to the accompanying figures, it is to be noted that various changes and modifications will become apparent to those skilled in the art. Such changes and modifications are to be understood as being included within the scope of the disclosure and examples as defined by the appended claims.
This application claims the benefit of priority of U.S. Provisional Patent Application Ser. No. 62/129,932, titled “VIRTUAL ASSISTANT ACTIVATION,” filed Mar. 8, 2015. The content of this application is hereby incorporated by reference in its entirety. This application is related to U.S. Provisional Patent Application Ser. No. 62/026,532, titled “Raise Gesture Detection in a Device,” filed Jul. 18, 2014; and U.S. patent application Ser. No. 12/987,982, titled “Intelligent Automated Assistant,” filed Jan. 10, 2011. The content of these applications is hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1559320 | Hirsh | Oct 1925 | A |
2180522 | Henne | Nov 1939 | A |
2495222 | Bierig | Jan 1950 | A |
3704345 | Coker et al. | Nov 1972 | A |
3710321 | Rubenstein | Jan 1973 | A |
3787542 | Gallagher et al. | Jan 1974 | A |
3828132 | Flanagan et al. | Aug 1974 | A |
3979557 | Schulman et al. | Sep 1976 | A |
4013085 | Wright | Mar 1977 | A |
4081631 | Feder | Mar 1978 | A |
4090216 | Constable | May 1978 | A |
4107784 | Van Bemmelen | Aug 1978 | A |
4108211 | Tanaka | Aug 1978 | A |
4159536 | Kehoe et al. | Jun 1979 | A |
4181821 | Pirz et al. | Jan 1980 | A |
4204089 | Key et al. | May 1980 | A |
4241286 | Gordon | Dec 1980 | A |
4253477 | Eichman | Mar 1981 | A |
4278838 | Antonov | Jul 1981 | A |
4282405 | Taguchi | Aug 1981 | A |
4310721 | Manley et al. | Jan 1982 | A |
4332464 | Bartulis et al. | Jun 1982 | A |
4348553 | Baker et al. | Sep 1982 | A |
4384169 | Mozer et al. | May 1983 | A |
4386345 | Narveson et al. | May 1983 | A |
4433377 | Eustis et al. | Feb 1984 | A |
4451849 | Fuhrer | May 1984 | A |
4485439 | Rothstein | Nov 1984 | A |
4495644 | Parks et al. | Jan 1985 | A |
4513379 | Wilson et al. | Apr 1985 | A |
4513435 | Sakoe et al. | Apr 1985 | A |
4555775 | Pike | Nov 1985 | A |
4577343 | Oura | Mar 1986 | A |
4586158 | Brendle | Apr 1986 | A |
4587670 | Levinson et al. | May 1986 | A |
4589022 | Prince et al. | May 1986 | A |
4611346 | Bednar et al. | Sep 1986 | A |
4615081 | Lindahl | Oct 1986 | A |
4618984 | Das et al. | Oct 1986 | A |
4642790 | Minshull et al. | Feb 1987 | A |
4653021 | Takagi | Mar 1987 | A |
4654875 | Srihari et al. | Mar 1987 | A |
4655233 | Laughlin | Apr 1987 | A |
4658425 | Julstrom | Apr 1987 | A |
4670848 | Schramm | Jun 1987 | A |
4677570 | Taki | Jun 1987 | A |
4680429 | Murdock et al. | Jul 1987 | A |
4680805 | Scott | Jul 1987 | A |
4686522 | Hernandez et al. | Aug 1987 | A |
4688195 | Thompson et al. | Aug 1987 | A |
4692941 | Jacks et al. | Sep 1987 | A |
4698625 | McCaskill et al. | Oct 1987 | A |
4709390 | Atal et al. | Nov 1987 | A |
4713775 | Scott et al. | Dec 1987 | A |
4718094 | Bahl et al. | Jan 1988 | A |
4724542 | Williford | Feb 1988 | A |
4726065 | Froessl | Feb 1988 | A |
4727354 | Lindsay | Feb 1988 | A |
RE32632 | Atkinson | Mar 1988 | E |
4736296 | Katayama et al. | Apr 1988 | A |
4750122 | Kaji et al. | Jun 1988 | A |
4754489 | Bokser | Jun 1988 | A |
4755811 | Slavin et al. | Jul 1988 | A |
4776016 | Hansen | Oct 1988 | A |
4783804 | Juang et al. | Nov 1988 | A |
4783807 | Marley | Nov 1988 | A |
4785413 | Atsumi | Nov 1988 | A |
4790028 | Ramage | Dec 1988 | A |
4797930 | Goudie | Jan 1989 | A |
4802223 | Lin et al. | Jan 1989 | A |
4803729 | Baker | Feb 1989 | A |
4807752 | Chodorow | Feb 1989 | A |
4811243 | Racine | Mar 1989 | A |
4813074 | Marcus | Mar 1989 | A |
4819271 | Bahl et al. | Apr 1989 | A |
4827518 | Feustel et al. | May 1989 | A |
4827520 | Zeinstra | May 1989 | A |
4829576 | Porter | May 1989 | A |
4829583 | Monroe et al. | May 1989 | A |
4831551 | Schalk et al. | May 1989 | A |
4833712 | Bahl et al. | May 1989 | A |
4833718 | Sprague | May 1989 | A |
4837798 | Cohen et al. | Jun 1989 | A |
4837831 | Gillick et al. | Jun 1989 | A |
4839853 | Deerwester et al. | Jun 1989 | A |
4852168 | Sprague | Jul 1989 | A |
4862504 | Nomura | Aug 1989 | A |
4875187 | Smith | Oct 1989 | A |
4878230 | Murakami et al. | Oct 1989 | A |
4887212 | Zamora et al. | Dec 1989 | A |
4896359 | Yamamoto et al. | Jan 1990 | A |
4903305 | Gillick et al. | Feb 1990 | A |
4905163 | Garber et al. | Feb 1990 | A |
4908867 | Silverman | Mar 1990 | A |
4914586 | Swinehart et al. | Apr 1990 | A |
4914590 | Loatman et al. | Apr 1990 | A |
4918723 | Iggulden et al. | Apr 1990 | A |
4926491 | Maeda et al. | May 1990 | A |
4928307 | Lynn | May 1990 | A |
4931783 | Atkinson | Jun 1990 | A |
4935954 | Thompson et al. | Jun 1990 | A |
4939639 | Lee et al. | Jul 1990 | A |
4941488 | Marxer et al. | Jul 1990 | A |
4944013 | Gouvianakis et al. | Jul 1990 | A |
4945504 | Nakama et al. | Jul 1990 | A |
4953106 | Gansner et al. | Aug 1990 | A |
4955047 | Morganstein et al. | Sep 1990 | A |
4965763 | Zamora | Oct 1990 | A |
4972462 | Shibata | Nov 1990 | A |
4974191 | Amirghodsi et al. | Nov 1990 | A |
4975975 | Filipski | Dec 1990 | A |
4977598 | Doddington et al. | Dec 1990 | A |
4980916 | Zinser | Dec 1990 | A |
4985924 | Matsuura | Jan 1991 | A |
4992972 | Brooks et al. | Feb 1991 | A |
4994966 | Hutchins | Feb 1991 | A |
4994983 | Landell et al. | Feb 1991 | A |
5001774 | Lee | Mar 1991 | A |
5003577 | Ertz et al. | Mar 1991 | A |
5007095 | Nara et al. | Apr 1991 | A |
5007098 | Kumagai | Apr 1991 | A |
5010574 | Wang | Apr 1991 | A |
5016002 | Levanto | May 1991 | A |
5020112 | Chou | May 1991 | A |
5021971 | Lindsay | Jun 1991 | A |
5022081 | Hirose et al. | Jun 1991 | A |
5027110 | Chang et al. | Jun 1991 | A |
5027406 | Roberts et al. | Jun 1991 | A |
5027408 | Kroeker et al. | Jun 1991 | A |
5029211 | Ozawa | Jul 1991 | A |
5031217 | Nishimura | Jul 1991 | A |
5032989 | Tornetta | Jul 1991 | A |
5033087 | Bahl et al. | Jul 1991 | A |
5040218 | Vitale et al. | Aug 1991 | A |
5046099 | Nishimura | Sep 1991 | A |
5047614 | Bianco | Sep 1991 | A |
5047617 | Shepard et al. | Sep 1991 | A |
5050215 | Nishimura | Sep 1991 | A |
5053758 | Cornett et al. | Oct 1991 | A |
5054084 | Tanaka et al. | Oct 1991 | A |
5057915 | Von Kohorn | Oct 1991 | A |
5067158 | Arjmand | Nov 1991 | A |
5067503 | Stile | Nov 1991 | A |
5072452 | Brown et al. | Dec 1991 | A |
5075896 | Wilcox et al. | Dec 1991 | A |
5079723 | Herceg et al. | Jan 1992 | A |
5083119 | Trevett et al. | Jan 1992 | A |
5083268 | Hemphill et al. | Jan 1992 | A |
5086792 | Chodorow | Feb 1992 | A |
5090012 | Kajiyama et al. | Feb 1992 | A |
5091790 | Silverberg | Feb 1992 | A |
5091945 | Kleijn | Feb 1992 | A |
5103498 | Lanier et al. | Apr 1992 | A |
5109509 | Katayama et al. | Apr 1992 | A |
5111423 | Kopec, Jr. et al. | May 1992 | A |
5119079 | Hube et al. | Jun 1992 | A |
5122951 | Kamiya | Jun 1992 | A |
5123103 | Ohtaki et al. | Jun 1992 | A |
5125022 | Hunt et al. | Jun 1992 | A |
5125030 | Nomura et al. | Jun 1992 | A |
5127043 | Hunt et al. | Jun 1992 | A |
5127053 | Koch | Jun 1992 | A |
5127055 | Larkey | Jun 1992 | A |
5128672 | Kaehler | Jul 1992 | A |
5133011 | McKiel, Jr. | Jul 1992 | A |
5133023 | Bokser | Jul 1992 | A |
5142584 | Ozawa | Aug 1992 | A |
5144875 | Nakada | Sep 1992 | A |
5148541 | Lee et al. | Sep 1992 | A |
5153913 | Kandefer et al. | Oct 1992 | A |
5157610 | Asano et al. | Oct 1992 | A |
5157779 | Washburn et al. | Oct 1992 | A |
5161102 | Griffin et al. | Nov 1992 | A |
5163809 | Akgun et al. | Nov 1992 | A |
5164900 | Bernath | Nov 1992 | A |
5164982 | Davis | Nov 1992 | A |
5165007 | Bahl et al. | Nov 1992 | A |
5167004 | Netsch et al. | Nov 1992 | A |
5175536 | Aschliman et al. | Dec 1992 | A |
5175803 | Yeh | Dec 1992 | A |
5175814 | Anick et al. | Dec 1992 | A |
5179627 | Sweet et al. | Jan 1993 | A |
5179652 | Rozmanith et al. | Jan 1993 | A |
5194950 | Murakami et al. | Mar 1993 | A |
5195034 | Garneau et al. | Mar 1993 | A |
5195167 | Bahl et al. | Mar 1993 | A |
5197005 | Shwartz et al. | Mar 1993 | A |
5199077 | Wilcox et al. | Mar 1993 | A |
5201034 | Matsuura et al. | Apr 1993 | A |
5202952 | Gillick et al. | Apr 1993 | A |
5208862 | Ozawa | May 1993 | A |
5210689 | Baker et al. | May 1993 | A |
5212638 | Bernath | May 1993 | A |
5212821 | Gorin et al. | May 1993 | A |
5216747 | Hardwick et al. | Jun 1993 | A |
5218700 | Beechick | Jun 1993 | A |
5220629 | Kosaka et al. | Jun 1993 | A |
5220639 | Lee | Jun 1993 | A |
5220657 | Bly et al. | Jun 1993 | A |
5222146 | Bahl et al. | Jun 1993 | A |
5230036 | Akamine et al. | Jul 1993 | A |
5231670 | Goldhor et al. | Jul 1993 | A |
5235680 | Bijnagte | Aug 1993 | A |
5237502 | White et al. | Aug 1993 | A |
5241619 | Schwartz et al. | Aug 1993 | A |
5252951 | Tannenbaum et al. | Oct 1993 | A |
5253325 | Clark | Oct 1993 | A |
5255386 | Prager | Oct 1993 | A |
5257387 | Richek et al. | Oct 1993 | A |
5260697 | Barrett et al. | Nov 1993 | A |
5266931 | Tanaka | Nov 1993 | A |
5266949 | Rossi | Nov 1993 | A |
5267345 | Brown et al. | Nov 1993 | A |
5268990 | Cohen et al. | Dec 1993 | A |
5274771 | Hamilton et al. | Dec 1993 | A |
5274818 | Vasilevsky et al. | Dec 1993 | A |
5276616 | Kuga et al. | Jan 1994 | A |
5276794 | Lamb, Jr. | Jan 1994 | A |
5278980 | Pedersen et al. | Jan 1994 | A |
5282265 | Rohra Suda et al. | Jan 1994 | A |
5283818 | Klausner et al. | Feb 1994 | A |
5287448 | Nicol et al. | Feb 1994 | A |
5289562 | Mizuta et al. | Feb 1994 | A |
RE34562 | Murakami et al. | Mar 1994 | E |
5291286 | Murakami et al. | Mar 1994 | A |
5293254 | Eschbach | Mar 1994 | A |
5293448 | Honda | Mar 1994 | A |
5293452 | Picone et al. | Mar 1994 | A |
5296642 | Konishi | Mar 1994 | A |
5297170 | Eyuboglu et al. | Mar 1994 | A |
5297194 | Hunt et al. | Mar 1994 | A |
5299125 | Baker et al. | Mar 1994 | A |
5299284 | Roy | Mar 1994 | A |
5301109 | Landauer et al. | Apr 1994 | A |
5303406 | Hansen et al. | Apr 1994 | A |
5305205 | Weber et al. | Apr 1994 | A |
5305421 | Li | Apr 1994 | A |
5305768 | Gross et al. | Apr 1994 | A |
5309359 | Katz et al. | May 1994 | A |
5315689 | Kanazawa et al. | May 1994 | A |
5317507 | Gallant | May 1994 | A |
5317647 | Pagallo | May 1994 | A |
5325297 | Bird et al. | Jun 1994 | A |
5325298 | Gallant | Jun 1994 | A |
5325462 | Farrett | Jun 1994 | A |
5326270 | Ostby et al. | Jul 1994 | A |
5327342 | Roy | Jul 1994 | A |
5327498 | Hamon | Jul 1994 | A |
5329608 | Bocchieri et al. | Jul 1994 | A |
5333236 | Bahl et al. | Jul 1994 | A |
5333266 | Boaz et al. | Jul 1994 | A |
5333275 | Wheatley et al. | Jul 1994 | A |
5335011 | Addeo et al. | Aug 1994 | A |
5335276 | Thompson et al. | Aug 1994 | A |
5341293 | Vertelney et al. | Aug 1994 | A |
5341466 | Perlin et al. | Aug 1994 | A |
5345536 | Hoshimi et al. | Sep 1994 | A |
5349645 | Zhao | Sep 1994 | A |
5353374 | Wilson et al. | Oct 1994 | A |
5353376 | Oh et al. | Oct 1994 | A |
5353377 | Kuroda et al. | Oct 1994 | A |
5353408 | Kato et al. | Oct 1994 | A |
5353432 | Richak et al. | Oct 1994 | A |
5357431 | Nakada et al. | Oct 1994 | A |
5367640 | Hamilton et al. | Nov 1994 | A |
5369575 | Lamberti et al. | Nov 1994 | A |
5369577 | Kadashevich et al. | Nov 1994 | A |
5371853 | Kao et al. | Dec 1994 | A |
5371901 | Reed et al. | Dec 1994 | A |
5373566 | Murdock | Dec 1994 | A |
5377103 | Lamberti et al. | Dec 1994 | A |
5377301 | Rosenberg et al. | Dec 1994 | A |
5377303 | Firman | Dec 1994 | A |
5384671 | Fisher | Jan 1995 | A |
5384892 | Strong | Jan 1995 | A |
5384893 | Hutchins | Jan 1995 | A |
5386494 | White | Jan 1995 | A |
5386556 | Hedin et al. | Jan 1995 | A |
5390236 | Klausner et al. | Feb 1995 | A |
5390279 | Strong | Feb 1995 | A |
5390281 | Luciw et al. | Feb 1995 | A |
5392419 | Walton | Feb 1995 | A |
5396625 | Parkes | Mar 1995 | A |
5400434 | Pearson | Mar 1995 | A |
5404295 | Katz et al. | Apr 1995 | A |
5406305 | Shimomura et al. | Apr 1995 | A |
5408060 | Muurinen | Apr 1995 | A |
5412756 | Bauman et al. | May 1995 | A |
5412804 | Krishna | May 1995 | A |
5412806 | Du et al. | May 1995 | A |
5418951 | Damashek | May 1995 | A |
5422656 | Allard et al. | Jun 1995 | A |
5424947 | Nagao et al. | Jun 1995 | A |
5425108 | Hwang et al. | Jun 1995 | A |
5428731 | Powers, III | Jun 1995 | A |
5434777 | Luciw | Jul 1995 | A |
5440615 | Caccuro et al. | Aug 1995 | A |
5442598 | Haikawa et al. | Aug 1995 | A |
5442780 | Takanashi et al. | Aug 1995 | A |
5444823 | Nguyen | Aug 1995 | A |
5449368 | Kuzmak | Sep 1995 | A |
5450523 | Zhao | Sep 1995 | A |
5455888 | Iyengar et al. | Oct 1995 | A |
5457768 | Tsuboi et al. | Oct 1995 | A |
5459488 | Geiser | Oct 1995 | A |
5463696 | Beernink et al. | Oct 1995 | A |
5463725 | Henckel et al. | Oct 1995 | A |
5465401 | Thompson | Nov 1995 | A |
5469529 | Bimbot et al. | Nov 1995 | A |
5471611 | McGregor | Nov 1995 | A |
5473728 | Luginbuhl et al. | Dec 1995 | A |
5475587 | Anick et al. | Dec 1995 | A |
5475796 | Iwata | Dec 1995 | A |
5477447 | Luciw et al. | Dec 1995 | A |
5477448 | Golding et al. | Dec 1995 | A |
5477451 | Brown et al. | Dec 1995 | A |
5479488 | Lennig et al. | Dec 1995 | A |
5481739 | Staats | Jan 1996 | A |
5483261 | Yasutake | Jan 1996 | A |
5485372 | Golding et al. | Jan 1996 | A |
5485543 | Aso | Jan 1996 | A |
5488204 | Mead et al. | Jan 1996 | A |
5488727 | Agrawal et al. | Jan 1996 | A |
5490234 | Narayan | Feb 1996 | A |
5491758 | Bellegarda et al. | Feb 1996 | A |
5491772 | Hardwick et al. | Feb 1996 | A |
5493677 | Balogh et al. | Feb 1996 | A |
5495604 | Harding et al. | Feb 1996 | A |
5497319 | Chong et al. | Mar 1996 | A |
5500903 | Gulli | Mar 1996 | A |
5500905 | Martin et al. | Mar 1996 | A |
5500937 | Thompson-Rohrlich | Mar 1996 | A |
5502774 | Bellegarda et al. | Mar 1996 | A |
5502790 | Yi | Mar 1996 | A |
5502791 | Nishimura et al. | Mar 1996 | A |
5515475 | Gupta et al. | May 1996 | A |
5521816 | Roche et al. | May 1996 | A |
5524140 | Klausner et al. | Jun 1996 | A |
5533182 | Bates et al. | Jul 1996 | A |
5535121 | Roche et al. | Jul 1996 | A |
5536902 | Serra et al. | Jul 1996 | A |
5537317 | Schabes et al. | Jul 1996 | A |
5537618 | Boulton et al. | Jul 1996 | A |
5537647 | Hermansky et al. | Jul 1996 | A |
5543588 | Bisset et al. | Aug 1996 | A |
5543897 | Altrieth, III | Aug 1996 | A |
5544264 | Bellegarda et al. | Aug 1996 | A |
5548507 | Martino et al. | Aug 1996 | A |
5555343 | Luther | Sep 1996 | A |
5555344 | Zunkler | Sep 1996 | A |
5559301 | Bryan, Jr. et al. | Sep 1996 | A |
5559945 | Beaudet et al. | Sep 1996 | A |
5564446 | Wiltshire | Oct 1996 | A |
5565888 | Selker | Oct 1996 | A |
5568536 | Tiller et al. | Oct 1996 | A |
5568540 | Greco et al. | Oct 1996 | A |
5570324 | Geil | Oct 1996 | A |
5572576 | Klausner et al. | Nov 1996 | A |
5574823 | Hassanein et al. | Nov 1996 | A |
5574824 | Slyh et al. | Nov 1996 | A |
5577135 | Grajski et al. | Nov 1996 | A |
5577164 | Kaneko et al. | Nov 1996 | A |
5577241 | Spencer | Nov 1996 | A |
5578808 | Taylor | Nov 1996 | A |
5579037 | Tahara et al. | Nov 1996 | A |
5579436 | Chou et al. | Nov 1996 | A |
5581484 | Prince | Dec 1996 | A |
5581652 | Abe et al. | Dec 1996 | A |
5581655 | Cohen et al. | Dec 1996 | A |
5583993 | Foster et al. | Dec 1996 | A |
5584024 | Shwartz | Dec 1996 | A |
5586540 | Marzec et al. | Dec 1996 | A |
5594641 | Kaplan et al. | Jan 1997 | A |
5596260 | Moravec et al. | Jan 1997 | A |
5596676 | Swaminathan et al. | Jan 1997 | A |
5596994 | Bro | Jan 1997 | A |
5608624 | Luciw | Mar 1997 | A |
5608698 | Yamanoi et al. | Mar 1997 | A |
5608841 | Tsuboka | Mar 1997 | A |
5610812 | Schabes et al. | Mar 1997 | A |
5613036 | Strong | Mar 1997 | A |
5613122 | Burnard et al. | Mar 1997 | A |
5615378 | Nishino et al. | Mar 1997 | A |
5615384 | Allard et al. | Mar 1997 | A |
5616876 | Cluts | Apr 1997 | A |
5617386 | Choi | Apr 1997 | A |
5617507 | Lee et al. | Apr 1997 | A |
5617539 | Ludwig et al. | Apr 1997 | A |
5619583 | Page et al. | Apr 1997 | A |
5619694 | Shimazu | Apr 1997 | A |
5621859 | Schwartz et al. | Apr 1997 | A |
5621903 | Luciw et al. | Apr 1997 | A |
5627939 | Huang et al. | May 1997 | A |
5634084 | Malsheen et al. | May 1997 | A |
5636325 | Farrett | Jun 1997 | A |
5638425 | Meador, III et al. | Jun 1997 | A |
5638489 | Tsuboka | Jun 1997 | A |
5638523 | Mullet et al. | Jun 1997 | A |
5640487 | Lau et al. | Jun 1997 | A |
5642464 | Yue et al. | Jun 1997 | A |
5642466 | Narayan | Jun 1997 | A |
5642519 | Martin | Jun 1997 | A |
5644656 | Akra et al. | Jul 1997 | A |
5644727 | Atkins | Jul 1997 | A |
5644735 | Luciw et al. | Jul 1997 | A |
5649060 | Ellozy et al. | Jul 1997 | A |
5652828 | Silverman | Jul 1997 | A |
5652884 | Palevich | Jul 1997 | A |
5652897 | Linebarger et al. | Jul 1997 | A |
5661787 | Pocock | Aug 1997 | A |
5664055 | Kroon | Sep 1997 | A |
5664206 | Murow et al. | Sep 1997 | A |
5670985 | Cappels, Sr. et al. | Sep 1997 | A |
5675819 | Schuetze | Oct 1997 | A |
5678039 | Hinks et al. | Oct 1997 | A |
5682475 | Johnson et al. | Oct 1997 | A |
5682539 | Conrad et al. | Oct 1997 | A |
5684513 | Decker | Nov 1997 | A |
5687077 | Gough, Jr. | Nov 1997 | A |
5689287 | Mackinlay et al. | Nov 1997 | A |
5689616 | Li | Nov 1997 | A |
5689618 | Gasper et al. | Nov 1997 | A |
5692205 | Berry et al. | Nov 1997 | A |
5696962 | Kupiec | Dec 1997 | A |
5699082 | Marks et al. | Dec 1997 | A |
5701400 | Amado | Dec 1997 | A |
5706442 | Anderson et al. | Jan 1998 | A |
5708659 | Rostoker et al. | Jan 1998 | A |
5708822 | Wical | Jan 1998 | A |
5710886 | Christensen et al. | Jan 1998 | A |
5710922 | Alley et al. | Jan 1998 | A |
5712949 | Kato et al. | Jan 1998 | A |
5712957 | Waibel et al. | Jan 1998 | A |
5715468 | Budzinski | Feb 1998 | A |
5717877 | Orton et al. | Feb 1998 | A |
5721827 | Logan et al. | Feb 1998 | A |
5721949 | Smith et al. | Feb 1998 | A |
5724406 | Juster | Mar 1998 | A |
5724985 | Snell et al. | Mar 1998 | A |
5726672 | Hernandez et al. | Mar 1998 | A |
5727950 | Cook et al. | Mar 1998 | A |
5729694 | Holzrichter et al. | Mar 1998 | A |
5729704 | Stone et al. | Mar 1998 | A |
5732216 | Logan et al. | Mar 1998 | A |
5732390 | Katayanagi et al. | Mar 1998 | A |
5732395 | Silverman | Mar 1998 | A |
5734750 | Arai et al. | Mar 1998 | A |
5734791 | Acero et al. | Mar 1998 | A |
5736974 | Selker | Apr 1998 | A |
5737487 | Bellegarda et al. | Apr 1998 | A |
5737609 | Reed et al. | Apr 1998 | A |
5737734 | Schultz | Apr 1998 | A |
5739451 | Winksy et al. | Apr 1998 | A |
5740143 | Suetomi | Apr 1998 | A |
5742705 | Parthasarathy | Apr 1998 | A |
5742736 | Haddock | Apr 1998 | A |
5745116 | Pisutha-Arnond | Apr 1998 | A |
5745843 | Wetters et al. | Apr 1998 | A |
5745873 | Braida et al. | Apr 1998 | A |
5748512 | Vargas | May 1998 | A |
5748974 | Johnson | May 1998 | A |
5749071 | Silverman | May 1998 | A |
5749081 | Whiteis | May 1998 | A |
5751906 | Silverman | May 1998 | A |
5757358 | Osga | May 1998 | A |
5757979 | Hongo et al. | May 1998 | A |
5758079 | Ludwig et al. | May 1998 | A |
5758083 | Singh et al. | May 1998 | A |
5758314 | McKenna | May 1998 | A |
5759101 | Von Kohorn | Jun 1998 | A |
5761640 | Kalyanswamy et al. | Jun 1998 | A |
5765131 | Stentiford et al. | Jun 1998 | A |
5765168 | Burrows | Jun 1998 | A |
5771276 | Wolf | Jun 1998 | A |
5774834 | Visser | Jun 1998 | A |
5774855 | Foti et al. | Jun 1998 | A |
5774859 | Houser et al. | Jun 1998 | A |
5777614 | Ando et al. | Jul 1998 | A |
5778405 | Ogawa | Jul 1998 | A |
5790978 | Olive et al. | Aug 1998 | A |
5794050 | Dahlgren et al. | Aug 1998 | A |
5794182 | Manduchi et al. | Aug 1998 | A |
5794207 | Walker et al. | Aug 1998 | A |
5794237 | Gore, Jr. | Aug 1998 | A |
5797008 | Burrows | Aug 1998 | A |
5799268 | Boguraev | Aug 1998 | A |
5799269 | Schabes et al. | Aug 1998 | A |
5799276 | Komissarchik et al. | Aug 1998 | A |
5801692 | Muzio et al. | Sep 1998 | A |
5802466 | Gallant et al. | Sep 1998 | A |
5802526 | Fawcett et al. | Sep 1998 | A |
5812697 | Sakai et al. | Sep 1998 | A |
5812698 | Platt et al. | Sep 1998 | A |
5815142 | Allard et al. | Sep 1998 | A |
5815225 | Nelson | Sep 1998 | A |
5818142 | Edleblute et al. | Oct 1998 | A |
5818451 | Bertram et al. | Oct 1998 | A |
5818924 | King et al. | Oct 1998 | A |
5822288 | Shinada | Oct 1998 | A |
5822720 | Bookman et al. | Oct 1998 | A |
5822730 | Roth et al. | Oct 1998 | A |
5822743 | Gupta et al. | Oct 1998 | A |
5825349 | Meier et al. | Oct 1998 | A |
5825352 | Bisset et al. | Oct 1998 | A |
5825881 | Colvin, Sr. | Oct 1998 | A |
5826261 | Spencer | Oct 1998 | A |
5828768 | Eatwell et al. | Oct 1998 | A |
5828999 | Bellegarda et al. | Oct 1998 | A |
5832433 | Yashchin et al. | Nov 1998 | A |
5832435 | Silverman | Nov 1998 | A |
5833134 | Ho et al. | Nov 1998 | A |
5835077 | Dao et al. | Nov 1998 | A |
5835079 | Shieh | Nov 1998 | A |
5835721 | Donahue et al. | Nov 1998 | A |
5835732 | Kikinis et al. | Nov 1998 | A |
5835893 | Ushioda | Nov 1998 | A |
5839106 | Bellegarda | Nov 1998 | A |
5841902 | Tu | Nov 1998 | A |
5842165 | Raman et al. | Nov 1998 | A |
5845255 | Mayaud | Dec 1998 | A |
5848410 | Walls et al. | Dec 1998 | A |
5850480 | Scanlon | Dec 1998 | A |
5850629 | Holm et al. | Dec 1998 | A |
5854893 | Ludwig et al. | Dec 1998 | A |
5855000 | Waibel et al. | Dec 1998 | A |
5857184 | Lynch | Jan 1999 | A |
5859636 | Pandit | Jan 1999 | A |
5860063 | Gorin et al. | Jan 1999 | A |
5860064 | Henton | Jan 1999 | A |
5860075 | Hashizume et al. | Jan 1999 | A |
5862223 | Walker et al. | Jan 1999 | A |
5862233 | Poletti | Jan 1999 | A |
5864806 | Mokbel et al. | Jan 1999 | A |
5864815 | Rozak et al. | Jan 1999 | A |
5864844 | James et al. | Jan 1999 | A |
5864855 | Ruocco et al. | Jan 1999 | A |
5864868 | Contois | Jan 1999 | A |
5867799 | Lang et al. | Feb 1999 | A |
5870710 | Ozawa et al. | Feb 1999 | A |
5873056 | Liddy et al. | Feb 1999 | A |
5873064 | De et al. | Feb 1999 | A |
5875427 | Yamazaki | Feb 1999 | A |
5875429 | Douglas | Feb 1999 | A |
5875437 | Atkins | Feb 1999 | A |
5876396 | Lo et al. | Mar 1999 | A |
5877751 | Kanemitsu et al. | Mar 1999 | A |
5877757 | Baldwin et al. | Mar 1999 | A |
5878393 | Hata et al. | Mar 1999 | A |
5878394 | Muhling | Mar 1999 | A |
5878396 | Henton | Mar 1999 | A |
5880411 | Gillespie et al. | Mar 1999 | A |
5880731 | Liles et al. | Mar 1999 | A |
5884039 | Ludwig et al. | Mar 1999 | A |
5884323 | Hawkins et al. | Mar 1999 | A |
5890117 | Silverman | Mar 1999 | A |
5890122 | Van et al. | Mar 1999 | A |
5891180 | Greeninger et al. | Apr 1999 | A |
5893126 | Drews et al. | Apr 1999 | A |
5893132 | Huffman et al. | Apr 1999 | A |
5895448 | Vysotsky et al. | Apr 1999 | A |
5895464 | Bhandari et al. | Apr 1999 | A |
5895466 | Goldberg et al. | Apr 1999 | A |
5896321 | Miller et al. | Apr 1999 | A |
5896500 | Ludwig et al. | Apr 1999 | A |
5899972 | Miyazawa et al. | May 1999 | A |
5905498 | Diament et al. | May 1999 | A |
5909666 | Gould et al. | Jun 1999 | A |
5912951 | Checchio et al. | Jun 1999 | A |
5912952 | Brendzel | Jun 1999 | A |
5913193 | Huang et al. | Jun 1999 | A |
5915001 | Uppaluru et al. | Jun 1999 | A |
5915236 | Gould et al. | Jun 1999 | A |
5915238 | Tjaden | Jun 1999 | A |
5915249 | Spencer | Jun 1999 | A |
5917487 | Ulrich | Jun 1999 | A |
5918303 | Yamaura et al. | Jun 1999 | A |
5920327 | Seidensticker, Jr. | Jul 1999 | A |
5920837 | Gould et al. | Jul 1999 | A |
5923757 | Hocker et al. | Jul 1999 | A |
5924068 | Richard et al. | Jul 1999 | A |
5926769 | Valimaa et al. | Jul 1999 | A |
5926789 | Barbara et al. | Jul 1999 | A |
5930408 | Seto | Jul 1999 | A |
5930751 | Cohrs et al. | Jul 1999 | A |
5930754 | Karaali et al. | Jul 1999 | A |
5930769 | Rose | Jul 1999 | A |
5930783 | Li et al. | Jul 1999 | A |
5933477 | Wu | Aug 1999 | A |
5933806 | Beyerlein et al. | Aug 1999 | A |
5933822 | Braden-Harder et al. | Aug 1999 | A |
5936926 | Yokouchi et al. | Aug 1999 | A |
5937163 | Lee et al. | Aug 1999 | A |
5940811 | Norris | Aug 1999 | A |
5940841 | Schmuck et al. | Aug 1999 | A |
5941944 | Messerly | Aug 1999 | A |
5943043 | Furuhata et al. | Aug 1999 | A |
5943049 | Matsubara et al. | Aug 1999 | A |
5943052 | Allen et al. | Aug 1999 | A |
5943429 | Haendal et al. | Aug 1999 | A |
5943443 | Itonori et al. | Aug 1999 | A |
5943670 | Prager | Aug 1999 | A |
5946647 | Miller et al. | Aug 1999 | A |
5948040 | DeLorme et al. | Sep 1999 | A |
5949961 | Sharman | Sep 1999 | A |
5950123 | Schwelb et al. | Sep 1999 | A |
5952992 | Helms | Sep 1999 | A |
5953541 | King et al. | Sep 1999 | A |
5956021 | Kubota et al. | Sep 1999 | A |
5956699 | Wong et al. | Sep 1999 | A |
5960394 | Gould et al. | Sep 1999 | A |
5960422 | Prasad | Sep 1999 | A |
5963208 | Dolan et al. | Oct 1999 | A |
5963924 | Williams et al. | Oct 1999 | A |
5963964 | Nielsen | Oct 1999 | A |
5966126 | Szabo | Oct 1999 | A |
5970446 | Goldberg et al. | Oct 1999 | A |
5970474 | LeRoy et al. | Oct 1999 | A |
5973612 | Deo et al. | Oct 1999 | A |
5973676 | Kawakura | Oct 1999 | A |
5974146 | Randle et al. | Oct 1999 | A |
5977950 | Rhyne | Nov 1999 | A |
5982352 | Pryor | Nov 1999 | A |
5982891 | Ginter et al. | Nov 1999 | A |
5982902 | Terano | Nov 1999 | A |
5983179 | Gould et al. | Nov 1999 | A |
5983216 | Kirsch et al. | Nov 1999 | A |
5987132 | Rowney | Nov 1999 | A |
5987140 | Rowney et al. | Nov 1999 | A |
5987401 | Trudeau | Nov 1999 | A |
5987404 | Della Pietra et al. | Nov 1999 | A |
5987440 | O'Neil et al. | Nov 1999 | A |
5990887 | Redpath et al. | Nov 1999 | A |
5991441 | Jourjine | Nov 1999 | A |
5995460 | Takagi et al. | Nov 1999 | A |
5995590 | Brunet et al. | Nov 1999 | A |
5998972 | Gong | Dec 1999 | A |
5999169 | Lee | Dec 1999 | A |
5999895 | Forest | Dec 1999 | A |
5999908 | Abelow | Dec 1999 | A |
5999927 | Tukey et al. | Dec 1999 | A |
6006274 | Hawkins et al. | Dec 1999 | A |
6009237 | Hirabayashi et al. | Dec 1999 | A |
6011585 | Anderson | Jan 2000 | A |
6014428 | Wolf | Jan 2000 | A |
6016471 | Kuhn et al. | Jan 2000 | A |
6017219 | Adams, Jr. et al. | Jan 2000 | A |
6018705 | Gaudet | Jan 2000 | A |
6018711 | French-St. George et al. | Jan 2000 | A |
6020881 | Naughton et al. | Feb 2000 | A |
6023536 | Visser | Feb 2000 | A |
6023676 | Erell | Feb 2000 | A |
6023684 | Pearson | Feb 2000 | A |
6024288 | Gottlich et al. | Feb 2000 | A |
6026345 | Shah et al. | Feb 2000 | A |
6026375 | Hall et al. | Feb 2000 | A |
6026388 | Liddy et al. | Feb 2000 | A |
6026393 | Gupta et al. | Feb 2000 | A |
6029132 | Kuhn et al. | Feb 2000 | A |
6029135 | Krasle | Feb 2000 | A |
6035267 | Watanabe et al. | Mar 2000 | A |
6035303 | Baer et al. | Mar 2000 | A |
6035336 | Lu et al. | Mar 2000 | A |
6038533 | Buchsbaum et al. | Mar 2000 | A |
6040824 | Maekawa et al. | Mar 2000 | A |
6041023 | Lakhansingh | Mar 2000 | A |
6047255 | Williamson | Apr 2000 | A |
6047300 | Walfish et al. | Apr 2000 | A |
6052654 | Gaudet et al. | Apr 2000 | A |
6052656 | Suda et al. | Apr 2000 | A |
6054990 | Tran | Apr 2000 | A |
6055514 | Wren | Apr 2000 | A |
6055531 | Bennett et al. | Apr 2000 | A |
6064767 | Muir et al. | May 2000 | A |
6064951 | Park et al. | May 2000 | A |
6064959 | Young et al. | May 2000 | A |
6064960 | Bellegarda et al. | May 2000 | A |
6064963 | Gainsboro | May 2000 | A |
6067519 | Lowry | May 2000 | A |
6069648 | Suso et al. | May 2000 | A |
6070138 | Iwata | May 2000 | A |
6070139 | Miyazawa et al. | May 2000 | A |
6070140 | Tran | May 2000 | A |
6070147 | Harms et al. | May 2000 | A |
6073033 | Campo | Jun 2000 | A |
6073036 | Heikkinen et al. | Jun 2000 | A |
6073097 | Gould et al. | Jun 2000 | A |
6076051 | Messerly et al. | Jun 2000 | A |
6076060 | Lin et al. | Jun 2000 | A |
6076088 | Paik et al. | Jun 2000 | A |
6078885 | Beutnagel | Jun 2000 | A |
6078914 | Redfern | Jun 2000 | A |
6081750 | Hoffberg et al. | Jun 2000 | A |
6081774 | de Hita et al. | Jun 2000 | A |
6081780 | Lumelsky | Jun 2000 | A |
6085204 | Chijiwa et al. | Jul 2000 | A |
6088671 | Gould et al. | Jul 2000 | A |
6088731 | Kiraly et al. | Jul 2000 | A |
6092036 | Hamann et al. | Jul 2000 | A |
6092043 | Squires et al. | Jul 2000 | A |
6094649 | Bowen et al. | Jul 2000 | A |
6097391 | Wilcox | Aug 2000 | A |
6101468 | Gould et al. | Aug 2000 | A |
6101470 | Eide et al. | Aug 2000 | A |
6105865 | Hardesty | Aug 2000 | A |
6108627 | Sabourin | Aug 2000 | A |
6108640 | Slotznick | Aug 2000 | A |
6111562 | Downs et al. | Aug 2000 | A |
6111572 | Blair et al. | Aug 2000 | A |
6115686 | Chung et al. | Sep 2000 | A |
6116907 | Baker et al. | Sep 2000 | A |
6119101 | Peckover | Sep 2000 | A |
6121960 | Carroll et al. | Sep 2000 | A |
6122340 | Darley et al. | Sep 2000 | A |
6122614 | Kahn et al. | Sep 2000 | A |
6122616 | Henton | Sep 2000 | A |
6122647 | Horowitz et al. | Sep 2000 | A |
6125284 | Moore et al. | Sep 2000 | A |
6125346 | Nishimura et al. | Sep 2000 | A |
6125356 | Brockman et al. | Sep 2000 | A |
6129582 | Wilhite et al. | Oct 2000 | A |
6138098 | Shieber et al. | Oct 2000 | A |
6138158 | Boyle et al. | Oct 2000 | A |
6141642 | Oh | Oct 2000 | A |
6141644 | Kuhn et al. | Oct 2000 | A |
6144377 | Oppermann et al. | Nov 2000 | A |
6144380 | Shwarts et al. | Nov 2000 | A |
6144938 | Surace et al. | Nov 2000 | A |
6144939 | Pearson et al. | Nov 2000 | A |
6151401 | Annaratone | Nov 2000 | A |
6154551 | Frenkel | Nov 2000 | A |
6154720 | Onishi et al. | Nov 2000 | A |
6157935 | Tran et al. | Dec 2000 | A |
6161084 | Messerly et al. | Dec 2000 | A |
6161087 | Wightman et al. | Dec 2000 | A |
6161944 | Leman | Dec 2000 | A |
6163769 | Acero et al. | Dec 2000 | A |
6163809 | Buckley | Dec 2000 | A |
6167369 | Schulze | Dec 2000 | A |
6169538 | Nowlan et al. | Jan 2001 | B1 |
6172948 | Keller et al. | Jan 2001 | B1 |
6173194 | Vanttila | Jan 2001 | B1 |
6173251 | Ito et al. | Jan 2001 | B1 |
6173261 | Arai et al. | Jan 2001 | B1 |
6173263 | Conkie | Jan 2001 | B1 |
6173279 | Levin et al. | Jan 2001 | B1 |
6177905 | Welch | Jan 2001 | B1 |
6177931 | Alexander et al. | Jan 2001 | B1 |
6179432 | Zhang et al. | Jan 2001 | B1 |
6182028 | Karaali et al. | Jan 2001 | B1 |
6185533 | Holm et al. | Feb 2001 | B1 |
6188391 | Seely et al. | Feb 2001 | B1 |
6188967 | Kurtzberg et al. | Feb 2001 | B1 |
6188999 | Moody | Feb 2001 | B1 |
6191939 | Burnett | Feb 2001 | B1 |
6192253 | Charlier et al. | Feb 2001 | B1 |
6192340 | Abecassis | Feb 2001 | B1 |
6195641 | Loring et al. | Feb 2001 | B1 |
6199076 | Logan et al. | Mar 2001 | B1 |
6205456 | Nakao | Mar 2001 | B1 |
6208044 | Viswanadham et al. | Mar 2001 | B1 |
6208932 | Ohmura et al. | Mar 2001 | B1 |
6208956 | Motoyama | Mar 2001 | B1 |
6208964 | Sabourin | Mar 2001 | B1 |
6208967 | Pauws et al. | Mar 2001 | B1 |
6208971 | Bellegarda et al. | Mar 2001 | B1 |
6212564 | Harter et al. | Apr 2001 | B1 |
6216102 | Martino et al. | Apr 2001 | B1 |
6216131 | Liu et al. | Apr 2001 | B1 |
6217183 | Shipman | Apr 2001 | B1 |
6222347 | Gong | Apr 2001 | B1 |
6226403 | Parthasarathy | May 2001 | B1 |
6226533 | Akahane | May 2001 | B1 |
6226614 | Mizuno et al. | May 2001 | B1 |
6226655 | Borman et al. | May 2001 | B1 |
6230322 | Saib et al. | May 2001 | B1 |
6232539 | Looney et al. | May 2001 | B1 |
6232966 | Kurlander | May 2001 | B1 |
6233545 | Datig | May 2001 | B1 |
6233547 | Denber et al. | May 2001 | B1 |
6233559 | Balakrishnan | May 2001 | B1 |
6233578 | Machihara et al. | May 2001 | B1 |
6237025 | Ludwig et al. | May 2001 | B1 |
6240303 | Katzur | May 2001 | B1 |
6243681 | Guji et al. | Jun 2001 | B1 |
6246981 | Papineni et al. | Jun 2001 | B1 |
6248946 | Dwek | Jun 2001 | B1 |
6249606 | Kiraly et al. | Jun 2001 | B1 |
6259436 | Moon et al. | Jul 2001 | B1 |
6259826 | Pollard et al. | Jul 2001 | B1 |
6260011 | Heckerman et al. | Jul 2001 | B1 |
6260013 | Sejnoha | Jul 2001 | B1 |
6260016 | Holm et al. | Jul 2001 | B1 |
6260024 | Shkedy | Jul 2001 | B1 |
6266098 | Cove et al. | Jul 2001 | B1 |
6266637 | Donovan et al. | Jul 2001 | B1 |
6268859 | Andresen et al. | Jul 2001 | B1 |
6269712 | Zentmyer | Aug 2001 | B1 |
6271835 | Hoeksma | Aug 2001 | B1 |
6272456 | De Campos | Aug 2001 | B1 |
6272464 | Kiraz et al. | Aug 2001 | B1 |
6275795 | Tzirkel-Hancock | Aug 2001 | B1 |
6275824 | O'Flaherty et al. | Aug 2001 | B1 |
6278443 | Amro et al. | Aug 2001 | B1 |
6278970 | Milner | Aug 2001 | B1 |
6282507 | Horiguchi et al. | Aug 2001 | B1 |
6285785 | Bellegarda et al. | Sep 2001 | B1 |
6285786 | Seni et al. | Sep 2001 | B1 |
6289085 | Miyashita et al. | Sep 2001 | B1 |
6289124 | Okamoto | Sep 2001 | B1 |
6289301 | Higginbotham et al. | Sep 2001 | B1 |
6289353 | Hazlehurst et al. | Sep 2001 | B1 |
6292772 | Kantrowitz | Sep 2001 | B1 |
6292778 | Sukkar | Sep 2001 | B1 |
6295390 | Kobayashi et al. | Sep 2001 | B1 |
6295541 | Bodnar et al. | Sep 2001 | B1 |
6297818 | Ulrich et al. | Oct 2001 | B1 |
6298314 | Blackadar et al. | Oct 2001 | B1 |
6298321 | Karlov et al. | Oct 2001 | B1 |
6300947 | Kanevsky | Oct 2001 | B1 |
6304844 | Pan et al. | Oct 2001 | B1 |
6304846 | George et al. | Oct 2001 | B1 |
6307548 | Flinchem et al. | Oct 2001 | B1 |
6308149 | Gaussier et al. | Oct 2001 | B1 |
6310610 | Beaton et al. | Oct 2001 | B1 |
6311157 | Strong | Oct 2001 | B1 |
6311189 | deVries et al. | Oct 2001 | B1 |
6317237 | Nakao et al. | Nov 2001 | B1 |
6317594 | Gossman et al. | Nov 2001 | B1 |
6317707 | Bangalore et al. | Nov 2001 | B1 |
6317831 | King | Nov 2001 | B1 |
6321092 | Fitch et al. | Nov 2001 | B1 |
6321179 | Glance et al. | Nov 2001 | B1 |
6323846 | Westerman et al. | Nov 2001 | B1 |
6324499 | Lewis et al. | Nov 2001 | B1 |
6324502 | Handel et al. | Nov 2001 | B1 |
6324512 | Junqua et al. | Nov 2001 | B1 |
6324514 | Matulich et al. | Nov 2001 | B2 |
6330538 | Breen | Dec 2001 | B1 |
6331867 | Eberhard et al. | Dec 2001 | B1 |
6332175 | Birrell et al. | Dec 2001 | B1 |
6334103 | Surace et al. | Dec 2001 | B1 |
6335722 | Tani et al. | Jan 2002 | B1 |
6336365 | Blackadar et al. | Jan 2002 | B1 |
6336727 | Kim | Jan 2002 | B1 |
6340937 | Stepita-Klauco | Jan 2002 | B1 |
6341316 | Kloba et al. | Jan 2002 | B1 |
6343267 | Kuhn et al. | Jan 2002 | B1 |
6345240 | Havens | Feb 2002 | B1 |
6345250 | Martin | Feb 2002 | B1 |
6351522 | Vitikainen | Feb 2002 | B1 |
6351762 | Ludwig et al. | Feb 2002 | B1 |
6353442 | Masui | Mar 2002 | B1 |
6353794 | Davis et al. | Mar 2002 | B1 |
6356287 | Ruberry et al. | Mar 2002 | B1 |
6356854 | Schubert et al. | Mar 2002 | B1 |
6356864 | Foltz et al. | Mar 2002 | B1 |
6356905 | Gershman et al. | Mar 2002 | B1 |
6357147 | Darley et al. | Mar 2002 | B1 |
6359572 | Vale | Mar 2002 | B1 |
6359970 | Burgess | Mar 2002 | B1 |
6360227 | Aggarwal et al. | Mar 2002 | B1 |
6360237 | Schulz et al. | Mar 2002 | B1 |
6363348 | Besling et al. | Mar 2002 | B1 |
6366883 | Campbell et al. | Apr 2002 | B1 |
6366884 | Bellegarda et al. | Apr 2002 | B1 |
6374217 | Bellegarda | Apr 2002 | B1 |
6377530 | Burrows | Apr 2002 | B1 |
6377925 | Greene, Jr. et al. | Apr 2002 | B1 |
6377928 | Saxena et al. | Apr 2002 | B1 |
6381593 | Yano et al. | Apr 2002 | B1 |
6385586 | Dietz | May 2002 | B1 |
6385662 | Moon et al. | May 2002 | B1 |
6389114 | Dowens et al. | May 2002 | B1 |
6397183 | Baba et al. | May 2002 | B1 |
6397186 | Bush et al. | May 2002 | B1 |
6400806 | Uppaluru | Jun 2002 | B1 |
6401065 | Kanevsky et al. | Jun 2002 | B1 |
6405169 | Kondo et al. | Jun 2002 | B1 |
6405238 | Votipka | Jun 2002 | B1 |
6408272 | White et al. | Jun 2002 | B1 |
6411924 | De Hita et al. | Jun 2002 | B1 |
6411932 | Molnar et al. | Jun 2002 | B1 |
6415250 | Van Den Akker | Jul 2002 | B1 |
6417873 | Fletcher et al. | Jul 2002 | B1 |
6421305 | Gioscia et al. | Jul 2002 | B1 |
6421672 | McAllister et al. | Jul 2002 | B1 |
6421707 | Miller | Jul 2002 | B1 |
6424944 | Hikawa | Jul 2002 | B1 |
6430551 | Thelen et al. | Aug 2002 | B1 |
6434522 | Tsuboka | Aug 2002 | B1 |
6434524 | Weber | Aug 2002 | B1 |
6434604 | Harada et al. | Aug 2002 | B1 |
6437818 | Ludwig et al. | Aug 2002 | B1 |
6438523 | Oberteuffer et al. | Aug 2002 | B1 |
6442518 | Van Thong et al. | Aug 2002 | B1 |
6442523 | Siegel | Aug 2002 | B1 |
6446076 | Burkey et al. | Sep 2002 | B1 |
6448485 | Barile | Sep 2002 | B1 |
6448986 | Smith | Sep 2002 | B1 |
6449620 | Draper et al. | Sep 2002 | B1 |
6453281 | Walters et al. | Sep 2002 | B1 |
6453292 | Ramaswamy et al. | Sep 2002 | B2 |
6453315 | Weissman et al. | Sep 2002 | B1 |
6456616 | Rantanen | Sep 2002 | B1 |
6456972 | Gladstein et al. | Sep 2002 | B1 |
6460015 | Hetherington et al. | Oct 2002 | B1 |
6460029 | Fries et al. | Oct 2002 | B1 |
6462778 | Abram et al. | Oct 2002 | B1 |
6463128 | Elwin | Oct 2002 | B1 |
6466654 | Cooper et al. | Oct 2002 | B1 |
6467924 | Shipman | Oct 2002 | B2 |
6469712 | Hilpert, Jr. et al. | Oct 2002 | B1 |
6469722 | Kinoe et al. | Oct 2002 | B1 |
6469732 | Chang et al. | Oct 2002 | B1 |
6470347 | Gillam | Oct 2002 | B1 |
6473630 | Baranowski et al. | Oct 2002 | B1 |
6477488 | Bellegarda | Nov 2002 | B1 |
6477494 | Hyde-Thomson et al. | Nov 2002 | B2 |
6487533 | Hyde-Thomson et al. | Nov 2002 | B2 |
6487534 | Thelen et al. | Nov 2002 | B1 |
6487663 | Jaisimha et al. | Nov 2002 | B1 |
6489951 | Wong et al. | Dec 2002 | B1 |
6490560 | Ramaswamy et al. | Dec 2002 | B1 |
6493006 | Gourdol et al. | Dec 2002 | B1 |
6493428 | Hillier | Dec 2002 | B1 |
6493652 | Ohlenbusch et al. | Dec 2002 | B1 |
6493667 | De Souza et al. | Dec 2002 | B1 |
6499013 | Weber | Dec 2002 | B1 |
6499014 | Chihara | Dec 2002 | B1 |
6499016 | Anderson et al. | Dec 2002 | B1 |
6501937 | Ho et al. | Dec 2002 | B1 |
6502194 | Berman et al. | Dec 2002 | B1 |
6505158 | Conkie | Jan 2003 | B1 |
6505175 | Silverman et al. | Jan 2003 | B1 |
6505183 | Loofbourrow et al. | Jan 2003 | B1 |
6507829 | Richards et al. | Jan 2003 | B1 |
6510406 | Marchisio | Jan 2003 | B1 |
6510417 | Woods et al. | Jan 2003 | B1 |
6513008 | Pearson et al. | Jan 2003 | B2 |
6513063 | Julia et al. | Jan 2003 | B1 |
6519565 | Clements et al. | Feb 2003 | B1 |
6519566 | Boyer et al. | Feb 2003 | B1 |
6523026 | Gillis | Feb 2003 | B1 |
6523061 | Halverson et al. | Feb 2003 | B1 |
6523172 | Martinez-Guerra et al. | Feb 2003 | B1 |
6526351 | Whitham | Feb 2003 | B2 |
6526382 | Yuschik | Feb 2003 | B1 |
6526395 | Morris | Feb 2003 | B1 |
6529592 | Khan | Mar 2003 | B1 |
6529608 | Gersabeck et al. | Mar 2003 | B2 |
6532444 | Weber | Mar 2003 | B1 |
6532446 | King | Mar 2003 | B1 |
6535610 | Stewart | Mar 2003 | B1 |
6535852 | Eide | Mar 2003 | B2 |
6535983 | McCormack et al. | Mar 2003 | B1 |
6536139 | Darley et al. | Mar 2003 | B2 |
6538665 | Crow et al. | Mar 2003 | B2 |
6542171 | Satou et al. | Apr 2003 | B1 |
6542584 | Sherwood et al. | Apr 2003 | B1 |
6546262 | Freadman | Apr 2003 | B1 |
6546367 | Otsuka | Apr 2003 | B2 |
6546388 | Edlund et al. | Apr 2003 | B1 |
6549497 | Miyamoto et al. | Apr 2003 | B2 |
6553343 | Kagoshima et al. | Apr 2003 | B1 |
6553344 | Bellegarda et al. | Apr 2003 | B2 |
6556971 | Rigsby et al. | Apr 2003 | B1 |
6556983 | Altschuler et al. | Apr 2003 | B1 |
6560903 | Darley | May 2003 | B1 |
6563769 | Van Der Meulen | May 2003 | B1 |
6564186 | Kiraly et al. | May 2003 | B1 |
6567549 | Marianetti et al. | May 2003 | B1 |
6570557 | Westerman et al. | May 2003 | B1 |
6570596 | Frederiksen | May 2003 | B2 |
6582342 | Kaufman | Jun 2003 | B2 |
6583806 | Ludwig et al. | Jun 2003 | B2 |
6584464 | Warthen | Jun 2003 | B1 |
6587403 | Keller et al. | Jul 2003 | B1 |
6587404 | Keller et al. | Jul 2003 | B1 |
6590303 | Austin et al. | Jul 2003 | B1 |
6591379 | LeVine et al. | Jul 2003 | B1 |
6594673 | Smith et al. | Jul 2003 | B1 |
6594688 | Ludwig et al. | Jul 2003 | B2 |
6597345 | Hirshberg | Jul 2003 | B2 |
6598021 | Shambaugh et al. | Jul 2003 | B1 |
6598022 | Yuschik | Jul 2003 | B2 |
6598039 | Livowsky | Jul 2003 | B1 |
6598054 | Schuetze et al. | Jul 2003 | B2 |
6601026 | Appelt et al. | Jul 2003 | B2 |
6601234 | Bowman-Amuah | Jul 2003 | B1 |
6603837 | Kesanupalli et al. | Aug 2003 | B1 |
6604059 | Strubbe et al. | Aug 2003 | B2 |
6606101 | Malamud et al. | Aug 2003 | B1 |
6606388 | Townsend et al. | Aug 2003 | B1 |
6606632 | Saulpaugh et al. | Aug 2003 | B1 |
6611789 | Darley | Aug 2003 | B1 |
6615172 | Bennett et al. | Sep 2003 | B1 |
6615175 | Gazdzinski | Sep 2003 | B1 |
6615176 | Lewis | Sep 2003 | B2 |
6615220 | Austin et al. | Sep 2003 | B1 |
6621768 | Keller et al. | Sep 2003 | B1 |
6621892 | Banister et al. | Sep 2003 | B1 |
6622121 | Crepy et al. | Sep 2003 | B1 |
6622136 | Russell | Sep 2003 | B2 |
6623529 | Lakritz | Sep 2003 | B1 |
6625583 | Silverman et al. | Sep 2003 | B1 |
6628808 | Bach et al. | Sep 2003 | B1 |
6631186 | Adams et al. | Oct 2003 | B1 |
6631346 | Karaorman et al. | Oct 2003 | B1 |
6633741 | Posa et al. | Oct 2003 | B1 |
6633846 | Bennett et al. | Oct 2003 | B1 |
6633932 | Bork et al. | Oct 2003 | B1 |
6642940 | Dakss et al. | Nov 2003 | B1 |
6643401 | Kashioka et al. | Nov 2003 | B1 |
6643824 | Bates et al. | Nov 2003 | B1 |
6647260 | Dusse et al. | Nov 2003 | B2 |
6650735 | Burton et al. | Nov 2003 | B2 |
6651042 | Field et al. | Nov 2003 | B1 |
6651218 | Adler et al. | Nov 2003 | B1 |
6654740 | Tokuda et al. | Nov 2003 | B2 |
6658389 | Alpdemir | Dec 2003 | B1 |
6658408 | Yano et al. | Dec 2003 | B2 |
6658577 | Huppi et al. | Dec 2003 | B2 |
6661438 | Shiraishi et al. | Dec 2003 | B1 |
6662023 | Helle | Dec 2003 | B1 |
6665639 | Mozer et al. | Dec 2003 | B2 |
6665640 | Bennett et al. | Dec 2003 | B1 |
6665641 | Coorman et al. | Dec 2003 | B1 |
6671672 | Heck | Dec 2003 | B1 |
6671683 | Kanno | Dec 2003 | B2 |
6671856 | Gillam | Dec 2003 | B1 |
6675169 | Bennett et al. | Jan 2004 | B1 |
6675233 | Du et al. | Jan 2004 | B1 |
6677932 | Westerman | Jan 2004 | B1 |
6680675 | Suzuki | Jan 2004 | B1 |
6684187 | Conkie | Jan 2004 | B1 |
6684376 | Kerzman et al. | Jan 2004 | B1 |
6690387 | Zimmerman et al. | Feb 2004 | B2 |
6690800 | Resnick | Feb 2004 | B2 |
6690828 | Meyers | Feb 2004 | B2 |
6691064 | Vroman | Feb 2004 | B2 |
6691090 | Laurila et al. | Feb 2004 | B1 |
6691111 | Lazaridis et al. | Feb 2004 | B2 |
6691151 | Cheyer et al. | Feb 2004 | B1 |
6694295 | Lindholm et al. | Feb 2004 | B2 |
6694297 | Sato | Feb 2004 | B2 |
6697780 | Beutnagel et al. | Feb 2004 | B1 |
6697824 | Bowman-Amuah | Feb 2004 | B1 |
6701294 | Ball et al. | Mar 2004 | B1 |
6701305 | Holt et al. | Mar 2004 | B1 |
6701318 | Fox et al. | Mar 2004 | B2 |
6704015 | Bovarnick et al. | Mar 2004 | B1 |
6704034 | Rodriguez et al. | Mar 2004 | B1 |
6704698 | Paulsen, Jr. et al. | Mar 2004 | B1 |
6704710 | Strong | Mar 2004 | B2 |
6708153 | Britten et al. | Mar 2004 | B2 |
6711585 | Couperman et al. | Mar 2004 | B1 |
6714221 | Christie et al. | Mar 2004 | B1 |
6716139 | Hosseinzadeh-Dolkhani et al. | Apr 2004 | B1 |
6718324 | Edlund et al. | Apr 2004 | B2 |
6718331 | Davis et al. | Apr 2004 | B2 |
6720980 | Lui et al. | Apr 2004 | B1 |
6721728 | McGreevy | Apr 2004 | B2 |
6721734 | Subasic et al. | Apr 2004 | B1 |
6724370 | Dutta et al. | Apr 2004 | B2 |
6725197 | Wuppermann et al. | Apr 2004 | B1 |
6728675 | Maddalozzo, Jr. et al. | Apr 2004 | B1 |
6728681 | Whitham | Apr 2004 | B2 |
6728729 | Jawa et al. | Apr 2004 | B1 |
6731312 | Robbin | May 2004 | B2 |
6732142 | Bates et al. | May 2004 | B1 |
6735632 | Kiraly et al. | May 2004 | B1 |
6738738 | Henton | May 2004 | B2 |
6741264 | Lesser | May 2004 | B1 |
6742021 | Halverson et al. | May 2004 | B1 |
6751592 | Shiga | Jun 2004 | B1 |
6751595 | Busayapongchai et al. | Jun 2004 | B2 |
6751621 | Calistri-Yeh et al. | Jun 2004 | B1 |
6754504 | Reed | Jun 2004 | B1 |
6757362 | Cooper et al. | Jun 2004 | B1 |
6757365 | Bogard | Jun 2004 | B1 |
6757646 | Marchisio | Jun 2004 | B2 |
6757653 | Buth et al. | Jun 2004 | B2 |
6757718 | Halverson et al. | Jun 2004 | B1 |
6760412 | Loucks | Jul 2004 | B1 |
6760700 | Lewis et al. | Jul 2004 | B2 |
6760754 | Isaacs et al. | Jul 2004 | B1 |
6762741 | Weindorf | Jul 2004 | B2 |
6762777 | Carroll | Jul 2004 | B2 |
6763089 | Feigenbaum | Jul 2004 | B2 |
6766294 | MacGinite et al. | Jul 2004 | B2 |
6766320 | Wang et al. | Jul 2004 | B1 |
6766324 | Carlson et al. | Jul 2004 | B2 |
6768979 | Menendez-Pidal et al. | Jul 2004 | B1 |
6772123 | Cooklev et al. | Aug 2004 | B2 |
6772195 | Hatlelid et al. | Aug 2004 | B1 |
6772394 | Kamada | Aug 2004 | B1 |
6775358 | Breitenbach et al. | Aug 2004 | B1 |
6778951 | Contractor | Aug 2004 | B1 |
6778952 | Bellegarda | Aug 2004 | B2 |
6778962 | Kasai et al. | Aug 2004 | B1 |
6778970 | Au | Aug 2004 | B2 |
6778979 | Grefenstette et al. | Aug 2004 | B2 |
6782510 | Gross et al. | Aug 2004 | B1 |
6784901 | Harvey et al. | Aug 2004 | B1 |
6789094 | Rudoff et al. | Sep 2004 | B2 |
6789231 | Reynar et al. | Sep 2004 | B1 |
6790704 | Doyle et al. | Sep 2004 | B2 |
6792082 | Levine | Sep 2004 | B1 |
6792086 | Saylor et al. | Sep 2004 | B1 |
6792407 | Kibre et al. | Sep 2004 | B2 |
6794566 | Pachet | Sep 2004 | B2 |
6795059 | Endo | Sep 2004 | B2 |
6799226 | Robbin et al. | Sep 2004 | B1 |
6801604 | Maes et al. | Oct 2004 | B2 |
6801964 | Mahdavi | Oct 2004 | B1 |
6803905 | Capps et al. | Oct 2004 | B1 |
6804649 | Miranda | Oct 2004 | B2 |
6804677 | Shadmon et al. | Oct 2004 | B2 |
6807536 | Achlioptas et al. | Oct 2004 | B2 |
6807574 | Partovi et al. | Oct 2004 | B1 |
6809724 | Shiraishi et al. | Oct 2004 | B1 |
6810379 | Vermeulen et al. | Oct 2004 | B1 |
6813218 | Antonelli et al. | Nov 2004 | B1 |
6813491 | McKinney | Nov 2004 | B1 |
6813607 | Faruquie et al. | Nov 2004 | B1 |
6816578 | Kredo et al. | Nov 2004 | B1 |
6820055 | Saindon et al. | Nov 2004 | B2 |
6829018 | Lin et al. | Dec 2004 | B2 |
6829603 | Chai et al. | Dec 2004 | B1 |
6832194 | Mozer et al. | Dec 2004 | B1 |
6832381 | Mathur et al. | Dec 2004 | B1 |
6836651 | Segal et al. | Dec 2004 | B2 |
6836760 | Bellegarda et al. | Dec 2004 | B1 |
6839464 | Hawkins et al. | Jan 2005 | B2 |
6839669 | Gould et al. | Jan 2005 | B1 |
6839670 | Stammler et al. | Jan 2005 | B1 |
6839742 | Dyer et al. | Jan 2005 | B1 |
6842767 | Partovi et al. | Jan 2005 | B1 |
6847966 | Sommer et al. | Jan 2005 | B1 |
6847979 | Allemang et al. | Jan 2005 | B2 |
6850775 | Berg | Feb 2005 | B1 |
6850887 | Epstein et al. | Feb 2005 | B2 |
6851115 | Cheyer et al. | Feb 2005 | B1 |
6856259 | Sharp | Feb 2005 | B1 |
6857800 | Zhang et al. | Feb 2005 | B2 |
6859931 | Cheyer et al. | Feb 2005 | B1 |
6862568 | Case | Mar 2005 | B2 |
6862710 | Marchisio | Mar 2005 | B1 |
6865533 | Addison et al. | Mar 2005 | B2 |
6868045 | Schroder | Mar 2005 | B1 |
6868385 | Gerson | Mar 2005 | B1 |
6870529 | Davis | Mar 2005 | B1 |
6871346 | Kumbalimutt et al. | Mar 2005 | B1 |
6873986 | McConnell et al. | Mar 2005 | B2 |
6876947 | Darley et al. | Apr 2005 | B1 |
6877003 | Ho et al. | Apr 2005 | B2 |
6879957 | Pechter et al. | Apr 2005 | B1 |
6882335 | Saarinen | Apr 2005 | B2 |
6882337 | Shetter | Apr 2005 | B2 |
6882747 | Thawonmas et al. | Apr 2005 | B2 |
6882955 | Ohlenbusch et al. | Apr 2005 | B1 |
6882971 | Craner | Apr 2005 | B2 |
6885734 | Eberle et al. | Apr 2005 | B1 |
6889361 | Bates et al. | May 2005 | B1 |
6895084 | Saylor et al. | May 2005 | B1 |
6895257 | Boman et al. | May 2005 | B2 |
6895380 | Sepe, Jr. | May 2005 | B2 |
6895558 | Loveland | May 2005 | B1 |
6898550 | Blackadar et al. | May 2005 | B1 |
6901364 | Nguyen et al. | May 2005 | B2 |
6901399 | Corston et al. | May 2005 | B1 |
6904405 | Suominen | Jun 2005 | B2 |
6907112 | Guedalia et al. | Jun 2005 | B1 |
6907140 | Matsugu et al. | Jun 2005 | B2 |
6910004 | Tarbouriech et al. | Jun 2005 | B2 |
6910007 | Stylianou et al. | Jun 2005 | B2 |
6910186 | Kim | Jun 2005 | B2 |
6911971 | Suzuki et al. | Jun 2005 | B2 |
6912407 | Clarke et al. | Jun 2005 | B1 |
6912498 | Stevens et al. | Jun 2005 | B2 |
6912499 | Sabourin et al. | Jun 2005 | B1 |
6915138 | Kraft | Jul 2005 | B2 |
6915246 | Gusler et al. | Jul 2005 | B2 |
6915294 | Singh et al. | Jul 2005 | B1 |
6917373 | Vong et al. | Jul 2005 | B2 |
6918677 | Shipman | Jul 2005 | B2 |
6924828 | Hirsch | Aug 2005 | B1 |
6925438 | Mohamed et al. | Aug 2005 | B2 |
6928149 | Panjwani et al. | Aug 2005 | B1 |
6928614 | Everhart | Aug 2005 | B1 |
6931255 | Mekuria | Aug 2005 | B2 |
6931384 | Horvitz et al. | Aug 2005 | B1 |
6932708 | Yamashita et al. | Aug 2005 | B2 |
6934394 | Anderson | Aug 2005 | B1 |
6934684 | Alpdemir et al. | Aug 2005 | B2 |
6934756 | Maes | Aug 2005 | B2 |
6934812 | Robbin et al. | Aug 2005 | B1 |
6937975 | Elworthy | Aug 2005 | B1 |
6937986 | Denenberg et al. | Aug 2005 | B2 |
6944593 | Kuzunuki et al. | Sep 2005 | B2 |
6948094 | Schultz et al. | Sep 2005 | B2 |
6950087 | Knox et al. | Sep 2005 | B2 |
6950502 | Jenkins | Sep 2005 | B1 |
6952799 | Edwards et al. | Oct 2005 | B2 |
6954755 | Reisman | Oct 2005 | B2 |
6954899 | Anderson | Oct 2005 | B1 |
6956845 | Baker et al. | Oct 2005 | B2 |
6957076 | Hunzinger | Oct 2005 | B2 |
6957183 | Malayath et al. | Oct 2005 | B2 |
6960734 | Park | Nov 2005 | B1 |
6961699 | Kahn et al. | Nov 2005 | B1 |
6961912 | Aoki et al. | Nov 2005 | B2 |
6963841 | Handal et al. | Nov 2005 | B2 |
6964023 | Maes et al. | Nov 2005 | B2 |
6965376 | Tani et al. | Nov 2005 | B2 |
6968311 | Knockeart et al. | Nov 2005 | B2 |
6970820 | Junqua et al. | Nov 2005 | B2 |
6970881 | Mohan et al. | Nov 2005 | B1 |
6970915 | Partovi et al. | Nov 2005 | B1 |
6970935 | Maes | Nov 2005 | B1 |
6976090 | Ben-Shaul et al. | Dec 2005 | B2 |
6978127 | Bulthuis et al. | Dec 2005 | B1 |
6978239 | Chu et al. | Dec 2005 | B2 |
6980949 | Ford | Dec 2005 | B2 |
6980955 | Okutani et al. | Dec 2005 | B2 |
6983251 | Umemoto et al. | Jan 2006 | B1 |
6985858 | Frey et al. | Jan 2006 | B2 |
6985865 | Packingham et al. | Jan 2006 | B1 |
6985958 | Lucovsky et al. | Jan 2006 | B2 |
6988071 | Gazdzinski | Jan 2006 | B1 |
6990450 | Case et al. | Jan 2006 | B2 |
6996520 | Levin | Feb 2006 | B2 |
6996531 | Korall et al. | Feb 2006 | B2 |
6996575 | Cox et al. | Feb 2006 | B2 |
6999066 | Litwiller | Feb 2006 | B2 |
6999914 | Boerner et al. | Feb 2006 | B1 |
6999925 | Fischer et al. | Feb 2006 | B2 |
6999927 | Mozer et al. | Feb 2006 | B2 |
7000189 | Dutta et al. | Feb 2006 | B2 |
7002556 | Tsukada et al. | Feb 2006 | B2 |
7003099 | Zhang et al. | Feb 2006 | B1 |
7003463 | Maes et al. | Feb 2006 | B1 |
7003522 | Reynar et al. | Feb 2006 | B1 |
7006969 | Atal | Feb 2006 | B2 |
7007026 | Wilkinson et al. | Feb 2006 | B2 |
7007239 | Hawkins et al. | Feb 2006 | B1 |
7010581 | Brown et al. | Mar 2006 | B2 |
7013289 | Horn et al. | Mar 2006 | B2 |
7013308 | Tunstall-Pedoe | Mar 2006 | B1 |
7013429 | Fujimoto et al. | Mar 2006 | B2 |
7015894 | Morohoshi | Mar 2006 | B2 |
7020685 | Chen et al. | Mar 2006 | B1 |
7024363 | Comerford et al. | Apr 2006 | B1 |
7024364 | Guerra et al. | Apr 2006 | B2 |
7024366 | Deyoe et al. | Apr 2006 | B1 |
7024460 | Koopmas et al. | Apr 2006 | B2 |
7027568 | Simpson et al. | Apr 2006 | B1 |
7027974 | Busch et al. | Apr 2006 | B1 |
7027990 | Sussman | Apr 2006 | B2 |
7028252 | Baru et al. | Apr 2006 | B1 |
7030861 | Westerman et al. | Apr 2006 | B1 |
7031530 | Driggs et al. | Apr 2006 | B2 |
7031909 | Mao et al. | Apr 2006 | B2 |
7035794 | Sirivara | Apr 2006 | B2 |
7035801 | Jimenez-Feltstrom | Apr 2006 | B2 |
7035807 | Brittain et al. | Apr 2006 | B1 |
7036128 | Julia et al. | Apr 2006 | B1 |
7036681 | Suda et al. | May 2006 | B2 |
7038659 | Rajkowski | May 2006 | B2 |
7039588 | Okutani et al. | May 2006 | B2 |
7043420 | Ratnaparkhi | May 2006 | B2 |
7043422 | Gao et al. | May 2006 | B2 |
7046230 | Zadesky et al. | May 2006 | B2 |
7046850 | Braspenning et al. | May 2006 | B2 |
7047193 | Bellegarda | May 2006 | B1 |
7050550 | Steinbiss et al. | May 2006 | B2 |
7050976 | Packingham | May 2006 | B1 |
7050977 | Bennett | May 2006 | B1 |
7051096 | Krawiec et al. | May 2006 | B1 |
7054419 | Culliss | May 2006 | B2 |
7054888 | LaChapelle et al. | May 2006 | B2 |
7057607 | Mayoraz et al. | Jun 2006 | B2 |
7058569 | Coorman et al. | Jun 2006 | B2 |
7058888 | Gjerstad et al. | Jun 2006 | B1 |
7058889 | Trovato et al. | Jun 2006 | B2 |
7062223 | Gerber et al. | Jun 2006 | B2 |
7062225 | White | Jun 2006 | B2 |
7062428 | Hogenhout et al. | Jun 2006 | B2 |
7062438 | Kobayashi et al. | Jun 2006 | B2 |
7065185 | Koch | Jun 2006 | B1 |
7065485 | Chong-White et al. | Jun 2006 | B1 |
7069213 | Thompson | Jun 2006 | B2 |
7069220 | Coffman et al. | Jun 2006 | B2 |
7069560 | Cheyer et al. | Jun 2006 | B1 |
7072686 | Schrager | Jul 2006 | B1 |
7072941 | Griffin et al. | Jul 2006 | B2 |
7076527 | Bellegarda et al. | Jul 2006 | B2 |
7079713 | Simmons | Jul 2006 | B2 |
7082322 | Harano | Jul 2006 | B2 |
7084758 | Cole | Aug 2006 | B1 |
7084856 | Huppi | Aug 2006 | B2 |
7085723 | Ross et al. | Aug 2006 | B2 |
7085960 | Bouat et al. | Aug 2006 | B2 |
7088345 | Robinson et al. | Aug 2006 | B2 |
7089292 | Roderick et al. | Aug 2006 | B1 |
7092370 | Jiang et al. | Aug 2006 | B2 |
7092887 | Mozer et al. | Aug 2006 | B2 |
7092928 | Elad et al. | Aug 2006 | B1 |
7092950 | Wong et al. | Aug 2006 | B2 |
7093693 | Gazdzinski | Aug 2006 | B1 |
7095733 | Yarlagadda et al. | Aug 2006 | B1 |
7096183 | Junqua | Aug 2006 | B2 |
7100117 | Chwa et al. | Aug 2006 | B1 |
7103548 | Squibbs et al. | Sep 2006 | B2 |
7107204 | Liu et al. | Sep 2006 | B1 |
7111248 | Mulvey et al. | Sep 2006 | B2 |
7111774 | Song | Sep 2006 | B2 |
7113803 | Dehlin | Sep 2006 | B2 |
7113943 | Bradford et al. | Sep 2006 | B2 |
7115035 | Tanaka | Oct 2006 | B2 |
7117231 | Fischer et al. | Oct 2006 | B2 |
7123696 | Lowe | Oct 2006 | B2 |
7124081 | Bellegarda | Oct 2006 | B1 |
7124082 | Freedman | Oct 2006 | B2 |
7124164 | Chemtob | Oct 2006 | B1 |
7127046 | Smith et al. | Oct 2006 | B1 |
7127394 | Strong | Oct 2006 | B2 |
7127396 | Chu et al. | Oct 2006 | B2 |
7127403 | Saylor et al. | Oct 2006 | B1 |
7133900 | Szeto | Nov 2006 | B1 |
7136710 | Hoffberg et al. | Nov 2006 | B1 |
7136818 | Cosatto et al. | Nov 2006 | B1 |
7137126 | Coffman et al. | Nov 2006 | B1 |
7139697 | Häkkinen et al. | Nov 2006 | B2 |
7139714 | Bennett et al. | Nov 2006 | B2 |
7139722 | Perrella et al. | Nov 2006 | B2 |
7143028 | Hillis et al. | Nov 2006 | B2 |
7143038 | Katae | Nov 2006 | B2 |
7143040 | Durston et al. | Nov 2006 | B2 |
7146319 | Hunt | Dec 2006 | B2 |
7146437 | Robbin et al. | Dec 2006 | B2 |
7149319 | Roeck | Dec 2006 | B2 |
7149695 | Bellegarda | Dec 2006 | B1 |
7149964 | Cottrille et al. | Dec 2006 | B1 |
7152070 | Musick et al. | Dec 2006 | B1 |
7152093 | Ludwig et al. | Dec 2006 | B2 |
7154526 | Foote et al. | Dec 2006 | B2 |
7155668 | Holland et al. | Dec 2006 | B2 |
7158647 | Azima et al. | Jan 2007 | B2 |
7159174 | Johnson et al. | Jan 2007 | B2 |
7162412 | Yamada et al. | Jan 2007 | B2 |
7162482 | Dunning | Jan 2007 | B1 |
7165073 | Vandersluis | Jan 2007 | B2 |
7166791 | Robbin et al. | Jan 2007 | B2 |
7171350 | Lin et al. | Jan 2007 | B2 |
7171360 | Huang et al. | Jan 2007 | B2 |
7174042 | Simmons et al. | Feb 2007 | B1 |
7174295 | Kivimaki | Feb 2007 | B1 |
7174297 | Guerra et al. | Feb 2007 | B2 |
7174298 | Sharma | Feb 2007 | B2 |
7177794 | Mani et al. | Feb 2007 | B2 |
7177798 | Hsu et al. | Feb 2007 | B2 |
7177817 | Khosla et al. | Feb 2007 | B1 |
7181386 | Mohri et al. | Feb 2007 | B2 |
7181388 | Tian | Feb 2007 | B2 |
7184064 | Zimmerman et al. | Feb 2007 | B2 |
7185276 | Keswa | Feb 2007 | B2 |
7188085 | Pelletier | Mar 2007 | B2 |
7190351 | Goren | Mar 2007 | B1 |
7190794 | Hinde | Mar 2007 | B2 |
7191118 | Bellegarda | Mar 2007 | B2 |
7191131 | Nagao | Mar 2007 | B1 |
7193615 | Kim et al. | Mar 2007 | B2 |
7194186 | Strub et al. | Mar 2007 | B1 |
7194413 | Mahoney et al. | Mar 2007 | B2 |
7194471 | Nagatsuka et al. | Mar 2007 | B1 |
7194611 | Bear et al. | Mar 2007 | B2 |
7194699 | Thomson et al. | Mar 2007 | B2 |
7197120 | Luehrig et al. | Mar 2007 | B2 |
7197460 | Gupta et al. | Mar 2007 | B1 |
7200550 | Menezes et al. | Apr 2007 | B2 |
7200558 | Kato et al. | Apr 2007 | B2 |
7200559 | Wang | Apr 2007 | B2 |
7203646 | Bennett | Apr 2007 | B2 |
7206809 | Ludwig et al. | Apr 2007 | B2 |
7216008 | Sakata | May 2007 | B2 |
7216073 | Lavi et al. | May 2007 | B2 |
7216080 | Tsiao et al. | May 2007 | B2 |
7218920 | Hyon | May 2007 | B2 |
7218943 | Klassen et al. | May 2007 | B2 |
7219063 | Schalk et al. | May 2007 | B2 |
7219123 | Fiechter et al. | May 2007 | B1 |
7225125 | Bennett et al. | May 2007 | B2 |
7228278 | Nguyen et al. | Jun 2007 | B2 |
7231343 | Treadgold et al. | Jun 2007 | B1 |
7231597 | Braun et al. | Jun 2007 | B1 |
7233790 | Kjellberg et al. | Jun 2007 | B2 |
7233904 | Luisi | Jun 2007 | B2 |
7234026 | Robbin et al. | Jun 2007 | B2 |
7236932 | Grajski | Jun 2007 | B1 |
7240002 | Minamino et al. | Jul 2007 | B2 |
7243130 | Horvitz et al. | Jul 2007 | B2 |
7243305 | Schabes et al. | Jul 2007 | B2 |
7246118 | Chastain et al. | Jul 2007 | B2 |
7246151 | Isaacs et al. | Jul 2007 | B2 |
7248900 | Deeds et al. | Jul 2007 | B2 |
7251454 | White | Jul 2007 | B2 |
7254773 | Bates et al. | Aug 2007 | B2 |
7257537 | Ross et al. | Aug 2007 | B2 |
7259752 | Simmons | Aug 2007 | B1 |
7260529 | Lengen | Aug 2007 | B1 |
7263373 | Mattisson | Aug 2007 | B2 |
7266189 | Day | Sep 2007 | B1 |
7266495 | Beaufays et al. | Sep 2007 | B1 |
7266496 | Wang et al. | Sep 2007 | B2 |
7266499 | Surace et al. | Sep 2007 | B2 |
7269544 | Simske | Sep 2007 | B2 |
7269556 | Kiss et al. | Sep 2007 | B2 |
7272224 | Normile et al. | Sep 2007 | B1 |
7275063 | Horn | Sep 2007 | B2 |
7277088 | Robinson et al. | Oct 2007 | B2 |
7277854 | Bennett et al. | Oct 2007 | B2 |
7277855 | Acker et al. | Oct 2007 | B1 |
7280958 | Pavlov et al. | Oct 2007 | B2 |
7283072 | Plachta et al. | Oct 2007 | B1 |
7289102 | Hinckley et al. | Oct 2007 | B2 |
7290039 | Lisitsa et al. | Oct 2007 | B1 |
7292579 | Morris | Nov 2007 | B2 |
7292979 | Karas et al. | Nov 2007 | B2 |
7296230 | Fukatsu et al. | Nov 2007 | B2 |
7299033 | Kjellberg et al. | Nov 2007 | B2 |
7302392 | Thenthiruperai et al. | Nov 2007 | B1 |
7302394 | Baray et al. | Nov 2007 | B1 |
7302686 | Togawa | Nov 2007 | B2 |
7308404 | Venkataraman et al. | Dec 2007 | B2 |
7308408 | Stifelman et al. | Dec 2007 | B1 |
7310329 | Vieri et al. | Dec 2007 | B2 |
7310600 | Garner et al. | Dec 2007 | B1 |
7310605 | Janakiraman et al. | Dec 2007 | B2 |
7313523 | Bellegarda et al. | Dec 2007 | B1 |
7315809 | Xun | Jan 2008 | B2 |
7315818 | Stevens et al. | Jan 2008 | B2 |
7319957 | Robinson et al. | Jan 2008 | B2 |
7321783 | Kim, II | Jan 2008 | B2 |
7322023 | Shulman et al. | Jan 2008 | B2 |
7324833 | White et al. | Jan 2008 | B2 |
7324947 | Jordan et al. | Jan 2008 | B2 |
7328155 | Endo et al. | Feb 2008 | B2 |
7345670 | Armstrong | Mar 2008 | B2 |
7345671 | Robbin et al. | Mar 2008 | B2 |
7349953 | Lisitsa et al. | Mar 2008 | B2 |
7353139 | Burrell et al. | Apr 2008 | B1 |
7359493 | Wang et al. | Apr 2008 | B1 |
7359671 | Richenstein et al. | Apr 2008 | B2 |
7359851 | Tong et al. | Apr 2008 | B2 |
7360158 | Beeman | Apr 2008 | B1 |
7362738 | Taube et al. | Apr 2008 | B2 |
7363227 | Mapes-Riordan et al. | Apr 2008 | B2 |
7363586 | Briggs et al. | Apr 2008 | B1 |
7365260 | Kawashima | Apr 2008 | B2 |
7366461 | Brown | Apr 2008 | B1 |
7373612 | Risch et al. | May 2008 | B2 |
7376556 | Bennett | May 2008 | B2 |
7376632 | Sadek et al. | May 2008 | B1 |
7376645 | Bernard | May 2008 | B2 |
7378963 | Begault et al. | May 2008 | B1 |
7379874 | Schmid et al. | May 2008 | B2 |
7380203 | Keely et al. | May 2008 | B2 |
7383170 | Mills et al. | Jun 2008 | B2 |
7386438 | Franz et al. | Jun 2008 | B1 |
7386449 | Sun et al. | Jun 2008 | B2 |
7386799 | Clanton et al. | Jun 2008 | B1 |
7389224 | Elworthy | Jun 2008 | B1 |
7389225 | Jensen et al. | Jun 2008 | B1 |
7392185 | Bennett | Jun 2008 | B2 |
7394947 | Li et al. | Jul 2008 | B2 |
7398209 | Kennewick et al. | Jul 2008 | B2 |
7401300 | Nurmi | Jul 2008 | B2 |
7403938 | Harrison et al. | Jul 2008 | B2 |
7403941 | Bedworth et al. | Jul 2008 | B2 |
7404143 | Freelander et al. | Jul 2008 | B2 |
7409337 | Potter et al. | Aug 2008 | B1 |
7409347 | Bellegarda | Aug 2008 | B1 |
7412389 | Yang | Aug 2008 | B2 |
7412470 | Masuno et al. | Aug 2008 | B2 |
7415100 | Cooper et al. | Aug 2008 | B2 |
7415469 | Singh et al. | Aug 2008 | B2 |
7418389 | Chu et al. | Aug 2008 | B2 |
7418392 | Mozer et al. | Aug 2008 | B1 |
7426467 | Nashida et al. | Sep 2008 | B2 |
7426468 | Coifman et al. | Sep 2008 | B2 |
7427024 | Gazdzinski et al. | Sep 2008 | B1 |
7428541 | Houle | Sep 2008 | B2 |
7433869 | Gollapudi | Oct 2008 | B2 |
7433921 | Ludwig et al. | Oct 2008 | B2 |
7441184 | Frerebeau et al. | Oct 2008 | B2 |
7443316 | Lim | Oct 2008 | B2 |
7444589 | Zellner | Oct 2008 | B2 |
7447360 | Li et al. | Nov 2008 | B2 |
7447624 | Fuhrmann et al. | Nov 2008 | B2 |
7447635 | Konopka et al. | Nov 2008 | B1 |
7451081 | Gajic et al. | Nov 2008 | B1 |
7454351 | Jeschke et al. | Nov 2008 | B2 |
7460652 | Chang | Dec 2008 | B2 |
7461043 | Hess | Dec 2008 | B2 |
7467087 | Gillick et al. | Dec 2008 | B1 |
7467164 | Marsh | Dec 2008 | B2 |
7472061 | Alewine et al. | Dec 2008 | B1 |
7472065 | Aaron et al. | Dec 2008 | B2 |
7475010 | Chao | Jan 2009 | B2 |
7475063 | Datta et al. | Jan 2009 | B2 |
7477238 | Fux et al. | Jan 2009 | B2 |
7477240 | Yanagisawa | Jan 2009 | B2 |
7478037 | Strong | Jan 2009 | B2 |
7478091 | Mojsilovic et al. | Jan 2009 | B2 |
7478129 | Chemtob | Jan 2009 | B1 |
7479948 | Kim et al. | Jan 2009 | B2 |
7479949 | Jobs et al. | Jan 2009 | B2 |
7483832 | Tischer | Jan 2009 | B2 |
7483894 | Cao | Jan 2009 | B2 |
7487089 | Mozer | Feb 2009 | B2 |
7487093 | Mutsuno et al. | Feb 2009 | B2 |
7490034 | Finnigan et al. | Feb 2009 | B2 |
7490039 | Shaffer et al. | Feb 2009 | B1 |
7493560 | Kipnes et al. | Feb 2009 | B1 |
7496498 | Chu et al. | Feb 2009 | B2 |
7496512 | Zhao et al. | Feb 2009 | B2 |
7499923 | Kawatani | Mar 2009 | B2 |
7502738 | Kennewick et al. | Mar 2009 | B2 |
7505795 | Lim et al. | Mar 2009 | B1 |
7508324 | Suraqui | Mar 2009 | B2 |
7508373 | Lin et al. | Mar 2009 | B2 |
7516123 | Betz et al. | Apr 2009 | B2 |
7519327 | White | Apr 2009 | B2 |
7522927 | Fitch et al. | Apr 2009 | B2 |
7523036 | Akabane et al. | Apr 2009 | B2 |
7523108 | Cao | Apr 2009 | B2 |
7526466 | Au | Apr 2009 | B2 |
7526738 | Ording et al. | Apr 2009 | B2 |
7528713 | Singh et al. | May 2009 | B2 |
7529671 | Rockenbeck et al. | May 2009 | B2 |
7529676 | Koyama | May 2009 | B2 |
7535997 | McQuaide, Jr. et al. | May 2009 | B1 |
7536029 | Choi et al. | May 2009 | B2 |
7536565 | Girish et al. | May 2009 | B2 |
7538685 | Cooper et al. | May 2009 | B1 |
7539619 | Seligman et al. | May 2009 | B1 |
7539656 | Fratkina et al. | May 2009 | B2 |
7541940 | Upton | Jun 2009 | B2 |
7542967 | Hurst-Hiller et al. | Jun 2009 | B2 |
7542971 | Thione et al. | Jun 2009 | B2 |
7543232 | Easton, Jr. et al. | Jun 2009 | B2 |
7546382 | Healey et al. | Jun 2009 | B2 |
7546529 | Reynar et al. | Jun 2009 | B2 |
7548895 | Pulsipher | Jun 2009 | B2 |
7552045 | Barliga et al. | Jun 2009 | B2 |
7552055 | Lecoeuche | Jun 2009 | B2 |
7555431 | Bennett | Jun 2009 | B2 |
7555496 | Lantrip et al. | Jun 2009 | B1 |
7558381 | Ali et al. | Jul 2009 | B1 |
7558730 | Davis et al. | Jul 2009 | B2 |
7559026 | Girish et al. | Jul 2009 | B2 |
7561069 | Horstemeyer | Jul 2009 | B2 |
7562007 | Hwang | Jul 2009 | B2 |
7562032 | Abbosh et al. | Jul 2009 | B2 |
7565104 | Brown et al. | Jul 2009 | B1 |
7565380 | Venkatachary | Jul 2009 | B1 |
7571106 | Cao et al. | Aug 2009 | B2 |
7577522 | Rosenberg | Aug 2009 | B2 |
7580551 | Srihari et al. | Aug 2009 | B1 |
7580576 | Wang et al. | Aug 2009 | B2 |
7580839 | Tamura et al. | Aug 2009 | B2 |
7584093 | Potter et al. | Sep 2009 | B2 |
7584278 | Rajarajan et al. | Sep 2009 | B2 |
7584429 | Fabritius | Sep 2009 | B2 |
7593868 | Margiloff et al. | Sep 2009 | B2 |
7596269 | King et al. | Sep 2009 | B2 |
7596499 | Anguera Miro et al. | Sep 2009 | B2 |
7596606 | Codignotto | Sep 2009 | B2 |
7596765 | Almas | Sep 2009 | B2 |
7599918 | Shen et al. | Oct 2009 | B2 |
7603381 | Burke et al. | Oct 2009 | B2 |
7606444 | Erol et al. | Oct 2009 | B1 |
7609179 | Diaz-Gutierrez et al. | Oct 2009 | B2 |
7610258 | Yuknewicz et al. | Oct 2009 | B2 |
7613264 | Wells et al. | Nov 2009 | B2 |
7614008 | Ording | Nov 2009 | B2 |
7617094 | Aoki et al. | Nov 2009 | B2 |
7620407 | Donald et al. | Nov 2009 | B1 |
7620549 | Di Cristo et al. | Nov 2009 | B2 |
7623119 | Autio et al. | Nov 2009 | B2 |
7624007 | Bennett | Nov 2009 | B2 |
7627481 | Kuo et al. | Dec 2009 | B1 |
7630901 | Omi | Dec 2009 | B2 |
7633076 | Huppi et al. | Dec 2009 | B2 |
7634409 | Kennewick et al. | Dec 2009 | B2 |
7634413 | Kuo et al. | Dec 2009 | B1 |
7634718 | Nakajima | Dec 2009 | B2 |
7634732 | Blagsvedt et al. | Dec 2009 | B1 |
7636657 | Ju et al. | Dec 2009 | B2 |
7640158 | Detlef et al. | Dec 2009 | B2 |
7640160 | Di Cristo et al. | Dec 2009 | B2 |
7643990 | Bellegarda | Jan 2010 | B1 |
7647225 | Bennett et al. | Jan 2010 | B2 |
7649454 | Singh et al. | Jan 2010 | B2 |
7649877 | Vieri et al. | Jan 2010 | B2 |
7653883 | Hotelling et al. | Jan 2010 | B2 |
7656393 | King et al. | Feb 2010 | B2 |
7657424 | Bennett | Feb 2010 | B2 |
7657844 | Gibson et al. | Feb 2010 | B2 |
7657849 | Chaudhri et al. | Feb 2010 | B2 |
7663607 | Hotelling et al. | Feb 2010 | B2 |
7664558 | Lindahl et al. | Feb 2010 | B2 |
7664638 | Cooper et al. | Feb 2010 | B2 |
7669134 | Christie et al. | Feb 2010 | B1 |
7672841 | Bennett | Mar 2010 | B2 |
7672952 | Isaacson et al. | Mar 2010 | B2 |
7673238 | Girish et al. | Mar 2010 | B2 |
7673340 | Cohen et al. | Mar 2010 | B1 |
7676026 | Baxter, Jr. | Mar 2010 | B1 |
7676365 | Hwang et al. | Mar 2010 | B2 |
7676463 | Thompson et al. | Mar 2010 | B2 |
7679534 | Kay et al. | Mar 2010 | B2 |
7680649 | Park | Mar 2010 | B2 |
7681126 | Roose | Mar 2010 | B2 |
7683886 | Willey | Mar 2010 | B2 |
7683893 | Kim | Mar 2010 | B2 |
7684985 | Dominach et al. | Mar 2010 | B2 |
7684990 | Caskey et al. | Mar 2010 | B2 |
7684991 | Stohr et al. | Mar 2010 | B2 |
7689245 | Cox et al. | Mar 2010 | B2 |
7689408 | Chen et al. | Mar 2010 | B2 |
7689409 | Heinecke | Mar 2010 | B2 |
7689421 | Li et al. | Mar 2010 | B2 |
7693715 | Hwang et al. | Apr 2010 | B2 |
7693717 | Kahn et al. | Apr 2010 | B2 |
7693719 | Chu et al. | Apr 2010 | B2 |
7693720 | Kennewick et al. | Apr 2010 | B2 |
7698131 | Bennett | Apr 2010 | B2 |
7702500 | Blaedow | Apr 2010 | B2 |
7702508 | Bennett | Apr 2010 | B2 |
7706510 | Ng | Apr 2010 | B2 |
7707026 | Liu | Apr 2010 | B2 |
7707027 | Balchandran et al. | Apr 2010 | B2 |
7707032 | Wang et al. | Apr 2010 | B2 |
7707221 | Dunning et al. | Apr 2010 | B1 |
7707267 | Lisitsa et al. | Apr 2010 | B2 |
7710262 | Ruha | May 2010 | B2 |
7711129 | Lindahl et al. | May 2010 | B2 |
7711550 | Feinberg et al. | May 2010 | B1 |
7711565 | Gazdzinski | May 2010 | B1 |
7711672 | Au | May 2010 | B2 |
7712053 | Bradford et al. | May 2010 | B2 |
7716056 | Weng et al. | May 2010 | B2 |
7716216 | Harik et al. | May 2010 | B1 |
7720674 | Kaiser et al. | May 2010 | B2 |
7720683 | Vermeulen et al. | May 2010 | B1 |
7721226 | Barabe et al. | May 2010 | B2 |
7721301 | Wong et al. | May 2010 | B2 |
7724242 | Hillis et al. | May 2010 | B2 |
7725307 | Bennett | May 2010 | B2 |
7725318 | Gavalda et al. | May 2010 | B2 |
7725320 | Bennett | May 2010 | B2 |
7725321 | Bennett | May 2010 | B2 |
7725838 | Williams | May 2010 | B2 |
7729904 | Bennett | Jun 2010 | B2 |
7729916 | Coffman et al. | Jun 2010 | B2 |
7734461 | Kwak et al. | Jun 2010 | B2 |
7735012 | Naik | Jun 2010 | B2 |
7739588 | Reynar et al. | Jun 2010 | B2 |
7742953 | King et al. | Jun 2010 | B2 |
7743188 | Haitani et al. | Jun 2010 | B2 |
7747616 | Yamada et al. | Jun 2010 | B2 |
7752152 | Paek et al. | Jul 2010 | B2 |
7756868 | Lee | Jul 2010 | B2 |
7756871 | Yacoub et al. | Jul 2010 | B2 |
7757173 | Beaman | Jul 2010 | B2 |
7757182 | Elliott et al. | Jul 2010 | B2 |
7761296 | Bakis et al. | Jul 2010 | B1 |
7763842 | Hsu et al. | Jul 2010 | B2 |
7774204 | Mozer et al. | Aug 2010 | B2 |
7774388 | Runchey | Aug 2010 | B1 |
7777717 | Fux et al. | Aug 2010 | B2 |
7778432 | Larsen | Aug 2010 | B2 |
7778595 | White et al. | Aug 2010 | B2 |
7778632 | Kurlander et al. | Aug 2010 | B2 |
7779353 | Grigoriu et al. | Aug 2010 | B2 |
7779356 | Griesmer | Aug 2010 | B2 |
7779357 | Naik | Aug 2010 | B2 |
7783283 | Kuusinen et al. | Aug 2010 | B2 |
7783486 | Rosser et al. | Aug 2010 | B2 |
7788590 | Taboada et al. | Aug 2010 | B2 |
7797265 | Brinker et al. | Sep 2010 | B2 |
7797269 | Rieman et al. | Sep 2010 | B2 |
7797331 | Theimer et al. | Sep 2010 | B2 |
7797629 | Fux et al. | Sep 2010 | B2 |
7801721 | Rosart et al. | Sep 2010 | B2 |
7801728 | Ben-David et al. | Sep 2010 | B2 |
7801729 | Mozer | Sep 2010 | B2 |
7805299 | Coifman | Sep 2010 | B2 |
7809565 | Coifman | Oct 2010 | B2 |
7809569 | Attwater et al. | Oct 2010 | B2 |
7809570 | Kennewick et al. | Oct 2010 | B2 |
7809610 | Cao | Oct 2010 | B2 |
7809744 | Nevidomski et al. | Oct 2010 | B2 |
7818165 | Carlgren et al. | Oct 2010 | B2 |
7818176 | Freeman et al. | Oct 2010 | B2 |
7818215 | King et al. | Oct 2010 | B2 |
7818291 | Ferguson et al. | Oct 2010 | B2 |
7818672 | McCormack et al. | Oct 2010 | B2 |
7822608 | Cross, Jr. et al. | Oct 2010 | B2 |
7823123 | Sabbouh | Oct 2010 | B2 |
7826945 | Zhang et al. | Nov 2010 | B2 |
7827047 | Anderson et al. | Nov 2010 | B2 |
7831423 | Schubert | Nov 2010 | B2 |
7831426 | Bennett | Nov 2010 | B2 |
7831432 | Bodin et al. | Nov 2010 | B2 |
7836437 | Kacmarcik et al. | Nov 2010 | B2 |
7840400 | Lavi et al. | Nov 2010 | B2 |
7840447 | Kleinrock et al. | Nov 2010 | B2 |
7840581 | Ross et al. | Nov 2010 | B2 |
7840912 | Elias et al. | Nov 2010 | B2 |
7848924 | Nurminen et al. | Dec 2010 | B2 |
7848926 | Goto et al. | Dec 2010 | B2 |
7853444 | Wang et al. | Dec 2010 | B2 |
7853445 | Bachenko et al. | Dec 2010 | B2 |
7853574 | Kraenzel et al. | Dec 2010 | B2 |
7853577 | Sundaresan et al. | Dec 2010 | B2 |
7853664 | Wang et al. | Dec 2010 | B1 |
7853900 | Nguyen et al. | Dec 2010 | B2 |
7865817 | Ryan et al. | Jan 2011 | B2 |
7869999 | Amato et al. | Jan 2011 | B2 |
7870118 | Jiang et al. | Jan 2011 | B2 |
7870133 | Krishnamoorthy et al. | Jan 2011 | B2 |
7873519 | Bennett | Jan 2011 | B2 |
7873654 | Bernard | Jan 2011 | B2 |
7877705 | Chambers et al. | Jan 2011 | B2 |
7880730 | Robinson et al. | Feb 2011 | B2 |
7881283 | Cormier et al. | Feb 2011 | B2 |
7881936 | Longe et al. | Feb 2011 | B2 |
7885844 | Cohen et al. | Feb 2011 | B1 |
7886233 | Rainisto et al. | Feb 2011 | B2 |
7889184 | Blumenberg et al. | Feb 2011 | B2 |
7889185 | Blumenberg et al. | Feb 2011 | B2 |
7890330 | Ozkaragoz et al. | Feb 2011 | B2 |
7890652 | Bull et al. | Feb 2011 | B2 |
7895531 | Radtke et al. | Feb 2011 | B2 |
7899666 | Varone | Mar 2011 | B2 |
7908287 | Katragadda | Mar 2011 | B1 |
7912289 | Kansal et al. | Mar 2011 | B2 |
7912699 | Saraclar et al. | Mar 2011 | B1 |
7912702 | Bennett | Mar 2011 | B2 |
7912720 | Hakkani-Tur et al. | Mar 2011 | B1 |
7912828 | Bonnet et al. | Mar 2011 | B2 |
7913185 | Benson et al. | Mar 2011 | B1 |
7916979 | Simmons | Mar 2011 | B2 |
7917367 | Di Cristo et al. | Mar 2011 | B2 |
7917497 | Harrison et al. | Mar 2011 | B2 |
7920678 | Cooper et al. | Apr 2011 | B2 |
7920682 | Byrne et al. | Apr 2011 | B2 |
7920857 | Lau et al. | Apr 2011 | B2 |
7925525 | Chin | Apr 2011 | B2 |
7925610 | Elbaz et al. | Apr 2011 | B2 |
7929805 | Wang et al. | Apr 2011 | B2 |
7930168 | Weng et al. | Apr 2011 | B2 |
7930183 | Odell et al. | Apr 2011 | B2 |
7930197 | Ozzie et al. | Apr 2011 | B2 |
7936339 | Marggraff et al. | May 2011 | B2 |
7936861 | Knott et al. | May 2011 | B2 |
7941009 | Li et al. | May 2011 | B2 |
7945470 | Cohen et al. | May 2011 | B1 |
7949529 | Weider et al. | May 2011 | B2 |
7949534 | Davis et al. | May 2011 | B2 |
7953679 | Chidlovskii et al. | May 2011 | B2 |
7957975 | Burns et al. | Jun 2011 | B2 |
7962179 | Huang | Jun 2011 | B2 |
7974844 | Sumita | Jul 2011 | B2 |
7974972 | Cao | Jul 2011 | B2 |
7975216 | Woolf et al. | Jul 2011 | B2 |
7983478 | Liu et al. | Jul 2011 | B2 |
7983915 | Knight et al. | Jul 2011 | B2 |
7983917 | Kennewick et al. | Jul 2011 | B2 |
7983919 | Conkie | Jul 2011 | B2 |
7983997 | Allen et al. | Jul 2011 | B2 |
7984062 | Dunning et al. | Jul 2011 | B2 |
7986431 | Emori et al. | Jul 2011 | B2 |
7987151 | Schott et al. | Jul 2011 | B2 |
7987244 | Lewis et al. | Jul 2011 | B1 |
7991614 | Washio et al. | Aug 2011 | B2 |
7992085 | Wang-Aryattanwanich et al. | Aug 2011 | B2 |
7996228 | Miller et al. | Aug 2011 | B2 |
7996589 | Schultz et al. | Aug 2011 | B2 |
7996769 | Fux et al. | Aug 2011 | B2 |
7996792 | Anzures et al. | Aug 2011 | B2 |
7999669 | Singh et al. | Aug 2011 | B2 |
8000453 | Cooper et al. | Aug 2011 | B2 |
8005664 | Hanumanthappa | Aug 2011 | B2 |
8005679 | Jordan et al. | Aug 2011 | B2 |
8006180 | Tunning et al. | Aug 2011 | B2 |
8014308 | Gates, III et al. | Sep 2011 | B2 |
8015006 | Kennewick et al. | Sep 2011 | B2 |
8015011 | Nagano et al. | Sep 2011 | B2 |
8015144 | Zheng et al. | Sep 2011 | B2 |
8018431 | Zehr et al. | Sep 2011 | B1 |
8019271 | Izdepski | Sep 2011 | B1 |
8024195 | Mozer et al. | Sep 2011 | B2 |
8027836 | Baker et al. | Sep 2011 | B2 |
8031943 | Chen et al. | Oct 2011 | B2 |
8032383 | Bhardwaj et al. | Oct 2011 | B1 |
8036901 | Mozer | Oct 2011 | B2 |
8037034 | Plachta et al. | Oct 2011 | B2 |
8041557 | Liu | Oct 2011 | B2 |
8041570 | Mirkovic et al. | Oct 2011 | B2 |
8041611 | Kleinrock et al. | Oct 2011 | B2 |
8042053 | Darwish et al. | Oct 2011 | B2 |
8046363 | Cha et al. | Oct 2011 | B2 |
8046374 | Bromwich | Oct 2011 | B1 |
8050500 | Batty et al. | Nov 2011 | B1 |
8055502 | Clark et al. | Nov 2011 | B2 |
8055708 | Chitsaz et al. | Nov 2011 | B2 |
8060824 | Brownrigg, Jr. et al. | Nov 2011 | B2 |
8064753 | Freeman | Nov 2011 | B2 |
8065143 | Yanagihara | Nov 2011 | B2 |
8065155 | Gazdzinski | Nov 2011 | B1 |
8065156 | Gazdzinski | Nov 2011 | B2 |
8068604 | Leeds et al. | Nov 2011 | B2 |
8069046 | Kennewick et al. | Nov 2011 | B2 |
8069422 | Sheshagiri et al. | Nov 2011 | B2 |
8073681 | Baldwin et al. | Dec 2011 | B2 |
8077153 | Benko et al. | Dec 2011 | B2 |
8078473 | Gazdzinski | Dec 2011 | B1 |
8082153 | Coffman et al. | Dec 2011 | B2 |
8082498 | Salamon et al. | Dec 2011 | B2 |
8090571 | Elshishiny et al. | Jan 2012 | B2 |
8095364 | Longe et al. | Jan 2012 | B2 |
8099289 | Mozer et al. | Jan 2012 | B2 |
8099395 | Pabla et al. | Jan 2012 | B2 |
8099418 | Inoue et al. | Jan 2012 | B2 |
8103510 | Sato | Jan 2012 | B2 |
8107401 | John et al. | Jan 2012 | B2 |
8112275 | Kennewick et al. | Feb 2012 | B2 |
8112280 | Lu | Feb 2012 | B2 |
8117037 | Gazdzinski | Feb 2012 | B2 |
8117542 | Radtke et al. | Feb 2012 | B2 |
8121413 | Hwang et al. | Feb 2012 | B2 |
8121837 | Agapi et al. | Feb 2012 | B2 |
8122094 | Kotab | Feb 2012 | B1 |
8122353 | Bouta | Feb 2012 | B2 |
8131557 | Davis et al. | Mar 2012 | B2 |
8135115 | Hogg, Jr. et al. | Mar 2012 | B1 |
8138912 | Singh et al. | Mar 2012 | B2 |
8140335 | Kennewick et al. | Mar 2012 | B2 |
8140567 | Padovitz et al. | Mar 2012 | B2 |
8150694 | Kennewick et al. | Apr 2012 | B2 |
8150700 | Shin et al. | Apr 2012 | B2 |
8155956 | Cho et al. | Apr 2012 | B2 |
8156005 | Vieri | Apr 2012 | B2 |
8160883 | Lecoeuche | Apr 2012 | B2 |
8165321 | Paquier et al. | Apr 2012 | B2 |
8165886 | Gagnon et al. | Apr 2012 | B1 |
8166019 | Lee et al. | Apr 2012 | B1 |
8166032 | Sommer et al. | Apr 2012 | B2 |
8170790 | Lee et al. | May 2012 | B2 |
8179370 | Yamasani et al. | May 2012 | B1 |
8188856 | Singh et al. | May 2012 | B2 |
8190359 | Bourne | May 2012 | B2 |
8195467 | Mozer et al. | Jun 2012 | B2 |
8195468 | Kennewick et al. | Jun 2012 | B2 |
8200495 | Braho et al. | Jun 2012 | B2 |
8201109 | Van Os et al. | Jun 2012 | B2 |
8204238 | Mozer | Jun 2012 | B2 |
8205788 | Gazdzinski et al. | Jun 2012 | B1 |
8209183 | Patel et al. | Jun 2012 | B1 |
8219115 | Nelissen | Jul 2012 | B1 |
8219406 | Yu et al. | Jul 2012 | B2 |
8219407 | Roy et al. | Jul 2012 | B1 |
8219608 | alSafadi et al. | Jul 2012 | B2 |
8224649 | Chaudhari et al. | Jul 2012 | B2 |
8239207 | Seligman et al. | Aug 2012 | B2 |
8244712 | Serlet et al. | Aug 2012 | B2 |
8255217 | Stent et al. | Aug 2012 | B2 |
8275621 | Alewine et al. | Sep 2012 | B2 |
8285546 | Reich | Oct 2012 | B2 |
8285551 | Gazdzinski | Oct 2012 | B2 |
8285553 | Gazdzinski | Oct 2012 | B2 |
8290777 | Nguyen et al. | Oct 2012 | B1 |
8290778 | Gazdzinski | Oct 2012 | B2 |
8290781 | Gazdzinski | Oct 2012 | B2 |
8296145 | Clark et al. | Oct 2012 | B2 |
8296146 | Gazdzinski | Oct 2012 | B2 |
8296153 | Gazdzinski | Oct 2012 | B2 |
8296380 | Kelly et al. | Oct 2012 | B1 |
8296383 | Lindahl | Oct 2012 | B2 |
8300801 | Sweeney et al. | Oct 2012 | B2 |
8301456 | Gazdzinski | Oct 2012 | B2 |
8311834 | Gazdzinski | Nov 2012 | B1 |
8311838 | Lindahl et al. | Nov 2012 | B2 |
8312017 | Martin et al. | Nov 2012 | B2 |
8321786 | Lunati et al. | Nov 2012 | B2 |
8332224 | Di Cristo et al. | Dec 2012 | B2 |
8332748 | Karam | Dec 2012 | B1 |
8340975 | Rosenberger | Dec 2012 | B1 |
8345665 | Vieri et al. | Jan 2013 | B2 |
8352183 | Thota et al. | Jan 2013 | B2 |
8352268 | Naik et al. | Jan 2013 | B2 |
8352272 | Rogers et al. | Jan 2013 | B2 |
8355919 | Silverman et al. | Jan 2013 | B2 |
8359234 | Vieri | Jan 2013 | B2 |
8370158 | Gazdzinski | Feb 2013 | B2 |
8371503 | Gazdzinski | Feb 2013 | B2 |
8374871 | Ehsani et al. | Feb 2013 | B2 |
8375320 | Kotler et al. | Feb 2013 | B2 |
8380504 | Peden et al. | Feb 2013 | B1 |
8380507 | Herman et al. | Feb 2013 | B2 |
8381107 | Rottler et al. | Feb 2013 | B2 |
8381135 | Hotelling et al. | Feb 2013 | B2 |
8386485 | Kerschberg et al. | Feb 2013 | B2 |
8391844 | Novick et al. | Mar 2013 | B2 |
8396714 | Rogers et al. | Mar 2013 | B2 |
8423288 | Stahl et al. | Apr 2013 | B2 |
8428758 | Naik et al. | Apr 2013 | B2 |
8447612 | Gazdzinski | May 2013 | B2 |
8452597 | Bringert et al. | May 2013 | B2 |
8458115 | Cai et al. | Jun 2013 | B2 |
8458278 | Christie et al. | Jun 2013 | B2 |
8479122 | Hotelling et al. | Jul 2013 | B2 |
8489599 | Bellotti | Jul 2013 | B2 |
8498857 | Kopparapu et al. | Jul 2013 | B2 |
8521513 | Millett et al. | Aug 2013 | B2 |
8560229 | Park et al. | Oct 2013 | B1 |
8583416 | Huang et al. | Nov 2013 | B2 |
8589869 | Wolfram | Nov 2013 | B2 |
8595004 | Koshinaka | Nov 2013 | B2 |
8620659 | Di Cristo et al. | Dec 2013 | B2 |
8626681 | Jurca et al. | Jan 2014 | B1 |
8645137 | Bellegarda et al. | Feb 2014 | B2 |
8654936 | Eslambolchi et al. | Feb 2014 | B1 |
8655901 | Li et al. | Feb 2014 | B1 |
8660849 | Gruber et al. | Feb 2014 | B2 |
8660970 | Fiedorowicz | Feb 2014 | B1 |
8661112 | Creamer et al. | Feb 2014 | B2 |
8675084 | Bolton et al. | Mar 2014 | B2 |
8677377 | Cheyer et al. | Mar 2014 | B2 |
8682667 | Haughay et al. | Mar 2014 | B2 |
8688446 | Yanagihara et al. | Apr 2014 | B2 |
8706472 | Ramerth et al. | Apr 2014 | B2 |
8719006 | Bellegarda et al. | May 2014 | B2 |
8719014 | Wagner | May 2014 | B2 |
8731610 | Appaji | May 2014 | B2 |
8744852 | Seymour et al. | Jun 2014 | B1 |
8760537 | Johnson et al. | Jun 2014 | B2 |
8762145 | Ouchi et al. | Jun 2014 | B2 |
8768693 | Lempel et al. | Jul 2014 | B2 |
8768702 | Mason et al. | Jul 2014 | B2 |
8775931 | Fux et al. | Jul 2014 | B2 |
8798995 | Edara et al. | Aug 2014 | B1 |
8838457 | Cerra et al. | Sep 2014 | B2 |
8880405 | Cerra et al. | Nov 2014 | B2 |
8886540 | Cerra et al. | Nov 2014 | B2 |
8930191 | Gruber et al. | Jan 2015 | B2 |
8943423 | Merrill et al. | Jan 2015 | B2 |
8972878 | David et al. | Mar 2015 | B2 |
8983383 | Haskin | Mar 2015 | B1 |
8996381 | Mozer et al. | Mar 2015 | B2 |
9098467 | Blanksteen et al. | Aug 2015 | B1 |
20010005859 | Okuyama et al. | Jun 2001 | A1 |
20010020259 | Sekiguchi et al. | Sep 2001 | A1 |
20010027396 | Sato | Oct 2001 | A1 |
20010029455 | Chin et al. | Oct 2001 | A1 |
20010030660 | Zainoulline | Oct 2001 | A1 |
20010032080 | Fukada | Oct 2001 | A1 |
20010041021 | Boyle et al. | Nov 2001 | A1 |
20010042107 | Palm | Nov 2001 | A1 |
20010044724 | Hon et al. | Nov 2001 | A1 |
20010047264 | Roundtree | Nov 2001 | A1 |
20010056342 | Piehn et al. | Dec 2001 | A1 |
20010056347 | Chazan et al. | Dec 2001 | A1 |
20020001395 | Davis et al. | Jan 2002 | A1 |
20020002039 | Qureshey et al. | Jan 2002 | A1 |
20020002413 | Tokue | Jan 2002 | A1 |
20020002461 | Tetsumoto | Jan 2002 | A1 |
20020004703 | Gaspard, II | Jan 2002 | A1 |
20020010581 | Euler et al. | Jan 2002 | A1 |
20020010584 | Schultz et al. | Jan 2002 | A1 |
20020010726 | Rogson | Jan 2002 | A1 |
20020010798 | Ben-Shaul et al. | Jan 2002 | A1 |
20020013707 | Shaw et al. | Jan 2002 | A1 |
20020013784 | Swanson | Jan 2002 | A1 |
20020013852 | Janik | Jan 2002 | A1 |
20020015024 | Westerman et al. | Feb 2002 | A1 |
20020015064 | Robotham et al. | Feb 2002 | A1 |
20020021278 | Hinckley et al. | Feb 2002 | A1 |
20020026315 | Miranda | Feb 2002 | A1 |
20020026456 | Bradford | Feb 2002 | A1 |
20020031254 | Lantrip et al. | Mar 2002 | A1 |
20020031262 | Imagawa et al. | Mar 2002 | A1 |
20020032048 | Kitao et al. | Mar 2002 | A1 |
20020032564 | Ehsani et al. | Mar 2002 | A1 |
20020032591 | Mahaffy et al. | Mar 2002 | A1 |
20020032751 | Bharadwaj | Mar 2002 | A1 |
20020035467 | Morimoto et al. | Mar 2002 | A1 |
20020035469 | Holzapfel | Mar 2002 | A1 |
20020035474 | Alpdemir | Mar 2002 | A1 |
20020040359 | Green et al. | Apr 2002 | A1 |
20020042707 | Zhao et al. | Apr 2002 | A1 |
20020045438 | Tagawa et al. | Apr 2002 | A1 |
20020045961 | Gibbs et al. | Apr 2002 | A1 |
20020046025 | Hain | Apr 2002 | A1 |
20020046315 | Miller et al. | Apr 2002 | A1 |
20020052730 | Nakao | May 2002 | A1 |
20020052740 | Charlesworth et al. | May 2002 | A1 |
20020052747 | Sarukkai | May 2002 | A1 |
20020052913 | Yamada et al. | May 2002 | A1 |
20020054094 | Matsuda | May 2002 | A1 |
20020055844 | L'Esperance et al. | May 2002 | A1 |
20020055934 | Lipscomb et al. | May 2002 | A1 |
20020059066 | O'hagan | May 2002 | A1 |
20020059068 | Rose et al. | May 2002 | A1 |
20020065659 | Isono et al. | May 2002 | A1 |
20020065797 | Meidan et al. | May 2002 | A1 |
20020067308 | Robertson | Jun 2002 | A1 |
20020069063 | Buchner et al. | Jun 2002 | A1 |
20020069071 | Knockeart et al. | Jun 2002 | A1 |
20020069220 | Tran | Jun 2002 | A1 |
20020072816 | Shdema et al. | Jun 2002 | A1 |
20020072908 | Case et al. | Jun 2002 | A1 |
20020072914 | Alshawi et al. | Jun 2002 | A1 |
20020077082 | Cruickshank | Jun 2002 | A1 |
20020077817 | Atal | Jun 2002 | A1 |
20020078041 | Wu | Jun 2002 | A1 |
20020080163 | Morey | Jun 2002 | A1 |
20020083068 | Quass et al. | Jun 2002 | A1 |
20020085037 | Leavitt et al. | Jul 2002 | A1 |
20020087508 | Hull et al. | Jul 2002 | A1 |
20020091511 | Hellwig et al. | Jul 2002 | A1 |
20020091529 | Whitham | Jul 2002 | A1 |
20020095286 | Ross et al. | Jul 2002 | A1 |
20020095290 | Kahn et al. | Jul 2002 | A1 |
20020099547 | Chu et al. | Jul 2002 | A1 |
20020099552 | Rubin et al. | Jul 2002 | A1 |
20020101447 | Carro | Aug 2002 | A1 |
20020103641 | Kuo et al. | Aug 2002 | A1 |
20020103644 | Brocious et al. | Aug 2002 | A1 |
20020103646 | Kochanski et al. | Aug 2002 | A1 |
20020107684 | Gao | Aug 2002 | A1 |
20020109709 | Sagar | Aug 2002 | A1 |
20020110248 | Kovales et al. | Aug 2002 | A1 |
20020111198 | Heie et al. | Aug 2002 | A1 |
20020111810 | Khan et al. | Aug 2002 | A1 |
20020116082 | Gudorf | Aug 2002 | A1 |
20020116171 | Russell | Aug 2002 | A1 |
20020116185 | Cooper et al. | Aug 2002 | A1 |
20020116189 | Yeh et al. | Aug 2002 | A1 |
20020116420 | Allam et al. | Aug 2002 | A1 |
20020120697 | Generous et al. | Aug 2002 | A1 |
20020120925 | Logan | Aug 2002 | A1 |
20020122053 | Dutta et al. | Sep 2002 | A1 |
20020123894 | Woodward | Sep 2002 | A1 |
20020126097 | Savolainen | Sep 2002 | A1 |
20020128827 | Bu et al. | Sep 2002 | A1 |
20020128840 | Hinde et al. | Sep 2002 | A1 |
20020129057 | Spielberg | Sep 2002 | A1 |
20020133347 | Schoneburg et al. | Sep 2002 | A1 |
20020133348 | Pearson et al. | Sep 2002 | A1 |
20020135565 | Gordon et al. | Sep 2002 | A1 |
20020135618 | Maes et al. | Sep 2002 | A1 |
20020138254 | Isaka et al. | Sep 2002 | A1 |
20020138265 | Stevens et al. | Sep 2002 | A1 |
20020138270 | Bellegarda et al. | Sep 2002 | A1 |
20020138616 | Basson et al. | Sep 2002 | A1 |
20020140679 | Wen | Oct 2002 | A1 |
20020143533 | Lucas et al. | Oct 2002 | A1 |
20020143542 | Eide | Oct 2002 | A1 |
20020143551 | Sharma et al. | Oct 2002 | A1 |
20020143826 | Day et al. | Oct 2002 | A1 |
20020151297 | Remboski et al. | Oct 2002 | A1 |
20020152045 | Dowling et al. | Oct 2002 | A1 |
20020152255 | Smith et al. | Oct 2002 | A1 |
20020154160 | Hosokawa | Oct 2002 | A1 |
20020161865 | Nguyen | Oct 2002 | A1 |
20020163544 | Baker et al. | Nov 2002 | A1 |
20020164000 | Cohen et al. | Nov 2002 | A1 |
20020165918 | Bettis | Nov 2002 | A1 |
20020167534 | Burke | Nov 2002 | A1 |
20020169592 | Aityan | Nov 2002 | A1 |
20020169605 | Damiba et al. | Nov 2002 | A1 |
20020173273 | Spurgat et al. | Nov 2002 | A1 |
20020173889 | Odinak et al. | Nov 2002 | A1 |
20020173961 | Guerra | Nov 2002 | A1 |
20020173962 | Tang et al. | Nov 2002 | A1 |
20020173966 | Henton | Nov 2002 | A1 |
20020177993 | Veditz et al. | Nov 2002 | A1 |
20020184015 | Li et al. | Dec 2002 | A1 |
20020184027 | Brittan et al. | Dec 2002 | A1 |
20020184189 | Hay et al. | Dec 2002 | A1 |
20020189426 | Hirade et al. | Dec 2002 | A1 |
20020191029 | Gillespie et al. | Dec 2002 | A1 |
20020193996 | Squibbs et al. | Dec 2002 | A1 |
20020198714 | Zhou | Dec 2002 | A1 |
20020198715 | Belrose | Dec 2002 | A1 |
20030001881 | Mannheimer et al. | Jan 2003 | A1 |
20030002632 | Bhogal et al. | Jan 2003 | A1 |
20030003897 | Hyon | Jan 2003 | A1 |
20030013483 | Ausems et al. | Jan 2003 | A1 |
20030016770 | Trans et al. | Jan 2003 | A1 |
20030018475 | Basu et al. | Jan 2003 | A1 |
20030020760 | Takatsu et al. | Jan 2003 | A1 |
20030026402 | Clapper | Feb 2003 | A1 |
20030028380 | Freeland et al. | Feb 2003 | A1 |
20030033148 | Silverman et al. | Feb 2003 | A1 |
20030033153 | Olson et al. | Feb 2003 | A1 |
20030033214 | Mikkelsen et al. | Feb 2003 | A1 |
20030037073 | Tokuda et al. | Feb 2003 | A1 |
20030037254 | Fischer et al. | Feb 2003 | A1 |
20030040908 | Yang et al. | Feb 2003 | A1 |
20030046075 | Stone | Mar 2003 | A1 |
20030046401 | Abbott et al. | Mar 2003 | A1 |
20030046434 | Flanagin et al. | Mar 2003 | A1 |
20030050781 | Tamura et al. | Mar 2003 | A1 |
20030051136 | Curtis et al. | Mar 2003 | A1 |
20030055537 | Odinak et al. | Mar 2003 | A1 |
20030061317 | Brown et al. | Mar 2003 | A1 |
20030061570 | Hatori et al. | Mar 2003 | A1 |
20030063073 | Geaghan et al. | Apr 2003 | A1 |
20030074195 | Bartosik et al. | Apr 2003 | A1 |
20030074198 | Sussman | Apr 2003 | A1 |
20030074457 | Kluth | Apr 2003 | A1 |
20030076301 | Tsuk et al. | Apr 2003 | A1 |
20030078766 | Appelt et al. | Apr 2003 | A1 |
20030078780 | Kochanski et al. | Apr 2003 | A1 |
20030078969 | Sprague et al. | Apr 2003 | A1 |
20030079024 | Hough et al. | Apr 2003 | A1 |
20030079038 | Robbin et al. | Apr 2003 | A1 |
20030080991 | Crow et al. | May 2003 | A1 |
20030083113 | Chua et al. | May 2003 | A1 |
20030083878 | Lee et al. | May 2003 | A1 |
20030083884 | Odinak et al. | May 2003 | A1 |
20030084350 | Eibach et al. | May 2003 | A1 |
20030085870 | Hinckley | May 2003 | A1 |
20030086699 | Benyamin et al. | May 2003 | A1 |
20030088414 | Huang et al. | May 2003 | A1 |
20030088421 | Maes et al. | May 2003 | A1 |
20030090467 | Hohl et al. | May 2003 | A1 |
20030090474 | Schaefer | May 2003 | A1 |
20030095096 | Robbin et al. | May 2003 | A1 |
20030097210 | Horst et al. | May 2003 | A1 |
20030097379 | Ireton | May 2003 | A1 |
20030097408 | Kageyama et al. | May 2003 | A1 |
20030098892 | Hiipakka | May 2003 | A1 |
20030099335 | Tanaka et al. | May 2003 | A1 |
20030101045 | Moffatt et al. | May 2003 | A1 |
20030115060 | Junqua et al. | Jun 2003 | A1 |
20030115064 | Gusler et al. | Jun 2003 | A1 |
20030115186 | Wilkinson et al. | Jun 2003 | A1 |
20030115552 | Jahnke et al. | Jun 2003 | A1 |
20030117365 | Shteyn | Jun 2003 | A1 |
20030120494 | Jost et al. | Jun 2003 | A1 |
20030122652 | Himmelstein | Jul 2003 | A1 |
20030122787 | Zimmerman et al. | Jul 2003 | A1 |
20030125927 | Seme | Jul 2003 | A1 |
20030125955 | Arnold et al. | Jul 2003 | A1 |
20030126559 | Fuhrmann | Jul 2003 | A1 |
20030128819 | Lee et al. | Jul 2003 | A1 |
20030130847 | Case et al. | Jul 2003 | A1 |
20030133694 | Yeo | Jul 2003 | A1 |
20030134678 | Tanaka | Jul 2003 | A1 |
20030135501 | Frerebeau et al. | Jul 2003 | A1 |
20030135740 | Talmor et al. | Jul 2003 | A1 |
20030140088 | Robinson et al. | Jul 2003 | A1 |
20030144846 | Denenberge et al. | Jul 2003 | A1 |
20030145285 | Miyahira et al. | Jul 2003 | A1 |
20030147512 | Abburi | Aug 2003 | A1 |
20030149557 | Cox et al. | Aug 2003 | A1 |
20030149567 | Schmitz et al. | Aug 2003 | A1 |
20030149978 | Plotnick | Aug 2003 | A1 |
20030152203 | Berger et al. | Aug 2003 | A1 |
20030152894 | Townshend | Aug 2003 | A1 |
20030154081 | Chu et al. | Aug 2003 | A1 |
20030157968 | Boman et al. | Aug 2003 | A1 |
20030158735 | Yamada et al. | Aug 2003 | A1 |
20030158737 | Csicsatka | Aug 2003 | A1 |
20030160702 | Tanaka | Aug 2003 | A1 |
20030160830 | Degross | Aug 2003 | A1 |
20030163316 | Addison et al. | Aug 2003 | A1 |
20030164848 | Dutta et al. | Sep 2003 | A1 |
20030167167 | Gong | Sep 2003 | A1 |
20030167318 | Robbin et al. | Sep 2003 | A1 |
20030167335 | Alexander | Sep 2003 | A1 |
20030171928 | Falcon et al. | Sep 2003 | A1 |
20030171936 | Sall et al. | Sep 2003 | A1 |
20030174830 | Boyer et al. | Sep 2003 | A1 |
20030177046 | Socha-Leialoha et al. | Sep 2003 | A1 |
20030179222 | Noma et al. | Sep 2003 | A1 |
20030182115 | Malayath et al. | Sep 2003 | A1 |
20030182131 | Arnold et al. | Sep 2003 | A1 |
20030187655 | Dunsmuir | Oct 2003 | A1 |
20030187659 | Cho et al. | Oct 2003 | A1 |
20030187844 | Li et al. | Oct 2003 | A1 |
20030187925 | Inala et al. | Oct 2003 | A1 |
20030188005 | Yoneda et al. | Oct 2003 | A1 |
20030188192 | Tang et al. | Oct 2003 | A1 |
20030190074 | Loudon et al. | Oct 2003 | A1 |
20030191645 | Zhou | Oct 2003 | A1 |
20030193481 | Sokolsky | Oct 2003 | A1 |
20030194080 | Michaelis et al. | Oct 2003 | A1 |
20030195741 | Mani et al. | Oct 2003 | A1 |
20030197736 | Murphy | Oct 2003 | A1 |
20030197744 | Irvine | Oct 2003 | A1 |
20030200858 | Xie | Oct 2003 | A1 |
20030202697 | Simard et al. | Oct 2003 | A1 |
20030204392 | Finnigan et al. | Oct 2003 | A1 |
20030204492 | Wolf et al. | Oct 2003 | A1 |
20030208756 | Macrae et al. | Nov 2003 | A1 |
20030210266 | Cragun et al. | Nov 2003 | A1 |
20030212961 | Soin et al. | Nov 2003 | A1 |
20030214519 | Smith et al. | Nov 2003 | A1 |
20030221198 | Sloo et al. | Nov 2003 | A1 |
20030224760 | Day | Dec 2003 | A1 |
20030228863 | Vander Veen et al. | Dec 2003 | A1 |
20030228909 | Tanaka et al. | Dec 2003 | A1 |
20030229490 | Etter | Dec 2003 | A1 |
20030229616 | Wong | Dec 2003 | A1 |
20030233230 | Ammicht et al. | Dec 2003 | A1 |
20030233237 | Garside et al. | Dec 2003 | A1 |
20030233240 | Kaatrasalo | Dec 2003 | A1 |
20030234824 | Litwiller | Dec 2003 | A1 |
20030236663 | Dimitrova et al. | Dec 2003 | A1 |
20040001396 | Keller et al. | Jan 2004 | A1 |
20040006467 | Anisimovich et al. | Jan 2004 | A1 |
20040010484 | Foulger et al. | Jan 2004 | A1 |
20040012556 | Yong et al. | Jan 2004 | A1 |
20040013252 | Craner | Jan 2004 | A1 |
20040021676 | Chen et al. | Feb 2004 | A1 |
20040022373 | Suder et al. | Feb 2004 | A1 |
20040023643 | Vander Veen et al. | Feb 2004 | A1 |
20040030554 | Boxberger-Oberoi et al. | Feb 2004 | A1 |
20040030556 | Bennett | Feb 2004 | A1 |
20040030559 | Payne et al. | Feb 2004 | A1 |
20040030996 | Van Liempd et al. | Feb 2004 | A1 |
20040036715 | Warren | Feb 2004 | A1 |
20040048627 | Olvera-Hernandez | Mar 2004 | A1 |
20040049388 | Roth et al. | Mar 2004 | A1 |
20040049391 | Polanyi et al. | Mar 2004 | A1 |
20040051729 | Borden, IV | Mar 2004 | A1 |
20040052338 | Celi, Jr. et al. | Mar 2004 | A1 |
20040054530 | Davis et al. | Mar 2004 | A1 |
20040054533 | Bellegarda | Mar 2004 | A1 |
20040054534 | Junqua | Mar 2004 | A1 |
20040054535 | Mackie et al. | Mar 2004 | A1 |
20040054541 | Kryze et al. | Mar 2004 | A1 |
20040054690 | Hillerbrand et al. | Mar 2004 | A1 |
20040055446 | Robbin et al. | Mar 2004 | A1 |
20040056899 | Sinclair, II et al. | Mar 2004 | A1 |
20040059577 | Pickering | Mar 2004 | A1 |
20040059790 | Austin-Lane et al. | Mar 2004 | A1 |
20040061717 | Menon et al. | Apr 2004 | A1 |
20040062367 | Fellenstein et al. | Apr 2004 | A1 |
20040064593 | Sinclair et al. | Apr 2004 | A1 |
20040069122 | Wilson | Apr 2004 | A1 |
20040070567 | Longe et al. | Apr 2004 | A1 |
20040070612 | Sinclair et al. | Apr 2004 | A1 |
20040073427 | Moore | Apr 2004 | A1 |
20040073428 | Zlokarnik et al. | Apr 2004 | A1 |
20040076086 | Keller et al. | Apr 2004 | A1 |
20040078382 | Mercer et al. | Apr 2004 | A1 |
20040085162 | Agarwal et al. | May 2004 | A1 |
20040085368 | Johnson, Jr. et al. | May 2004 | A1 |
20040086120 | Akins, III et al. | May 2004 | A1 |
20040093213 | Conkie | May 2004 | A1 |
20040093215 | Gupta et al. | May 2004 | A1 |
20040093328 | Damle | May 2004 | A1 |
20040094018 | Ueshima et al. | May 2004 | A1 |
20040096105 | Holtsberg | May 2004 | A1 |
20040098250 | Kimchi et al. | May 2004 | A1 |
20040100479 | Nakano et al. | May 2004 | A1 |
20040106432 | Kanamori et al. | Jun 2004 | A1 |
20040107169 | Lowe | Jun 2004 | A1 |
20040111266 | Coorman et al. | Jun 2004 | A1 |
20040111332 | Baar et al. | Jun 2004 | A1 |
20040114731 | Gillett et al. | Jun 2004 | A1 |
20040122656 | Abir | Jun 2004 | A1 |
20040122664 | Lorenzo et al. | Jun 2004 | A1 |
20040124583 | Landis | Jul 2004 | A1 |
20040125088 | Zimmerman et al. | Jul 2004 | A1 |
20040125922 | Specht | Jul 2004 | A1 |
20040127198 | Roskind et al. | Jul 2004 | A1 |
20040127241 | Shostak | Jul 2004 | A1 |
20040128137 | Bush et al. | Jul 2004 | A1 |
20040128614 | Andrews et al. | Jul 2004 | A1 |
20040133817 | Choi | Jul 2004 | A1 |
20040135701 | Yasuda et al. | Jul 2004 | A1 |
20040135774 | La Monica | Jul 2004 | A1 |
20040136510 | Vander Veen | Jul 2004 | A1 |
20040138869 | Heinecke | Jul 2004 | A1 |
20040145607 | Alderson | Jul 2004 | A1 |
20040153306 | Tanner et al. | Aug 2004 | A1 |
20040160419 | Padgitt | Aug 2004 | A1 |
20040162741 | Flaxer et al. | Aug 2004 | A1 |
20040174399 | Wu et al. | Sep 2004 | A1 |
20040174434 | Walker et al. | Sep 2004 | A1 |
20040176958 | Salmenkaita et al. | Sep 2004 | A1 |
20040177319 | Horn | Sep 2004 | A1 |
20040178994 | Kairls, Jr. | Sep 2004 | A1 |
20040183833 | Chua | Sep 2004 | A1 |
20040186713 | Gomas et al. | Sep 2004 | A1 |
20040186714 | Baker | Sep 2004 | A1 |
20040186777 | Margiloff et al. | Sep 2004 | A1 |
20040186857 | Serlet et al. | Sep 2004 | A1 |
20040193398 | Chu et al. | Sep 2004 | A1 |
20040193420 | Kennewick et al. | Sep 2004 | A1 |
20040193421 | Blass | Sep 2004 | A1 |
20040193426 | Maddux et al. | Sep 2004 | A1 |
20040196256 | Wobbrock et al. | Oct 2004 | A1 |
20040198436 | Alden | Oct 2004 | A1 |
20040199375 | Ehsani et al. | Oct 2004 | A1 |
20040199387 | Wang et al. | Oct 2004 | A1 |
20040199663 | Horvitz et al. | Oct 2004 | A1 |
20040203520 | Schirtzinger et al. | Oct 2004 | A1 |
20040205151 | Sprigg et al. | Oct 2004 | A1 |
20040205671 | Sukehiro et al. | Oct 2004 | A1 |
20040208302 | Urban et al. | Oct 2004 | A1 |
20040210442 | Glynn et al. | Oct 2004 | A1 |
20040210634 | Ferrer et al. | Oct 2004 | A1 |
20040213419 | Varma et al. | Oct 2004 | A1 |
20040215731 | Tzann-en Szeto | Oct 2004 | A1 |
20040216049 | Lewis et al. | Oct 2004 | A1 |
20040218451 | Said et al. | Nov 2004 | A1 |
20040220798 | Chi et al. | Nov 2004 | A1 |
20040223485 | Arellano et al. | Nov 2004 | A1 |
20040223599 | Bear et al. | Nov 2004 | A1 |
20040224638 | Fadell et al. | Nov 2004 | A1 |
20040225501 | Cutaia et al. | Nov 2004 | A1 |
20040225650 | Cooper et al. | Nov 2004 | A1 |
20040225746 | Niell et al. | Nov 2004 | A1 |
20040230637 | Lecoueche et al. | Nov 2004 | A1 |
20040236778 | Junqua et al. | Nov 2004 | A1 |
20040242286 | Benco et al. | Dec 2004 | A1 |
20040243412 | Gupta et al. | Dec 2004 | A1 |
20040243419 | Wang | Dec 2004 | A1 |
20040249629 | Webster | Dec 2004 | A1 |
20040249637 | Baker | Dec 2004 | A1 |
20040249667 | Oon | Dec 2004 | A1 |
20040252119 | Hunleth et al. | Dec 2004 | A1 |
20040252604 | Johnson et al. | Dec 2004 | A1 |
20040252966 | Holloway et al. | Dec 2004 | A1 |
20040254791 | Coifman et al. | Dec 2004 | A1 |
20040254792 | Busayapongchai et al. | Dec 2004 | A1 |
20040257432 | Girish et al. | Dec 2004 | A1 |
20040259536 | Keskar et al. | Dec 2004 | A1 |
20040260438 | Chernetsky et al. | Dec 2004 | A1 |
20040260718 | Fedorov et al. | Dec 2004 | A1 |
20040261023 | Bier | Dec 2004 | A1 |
20040262051 | Carro | Dec 2004 | A1 |
20040263636 | Cutler et al. | Dec 2004 | A1 |
20040267825 | Novak et al. | Dec 2004 | A1 |
20040268253 | Demello et al. | Dec 2004 | A1 |
20040268262 | Gupta et al. | Dec 2004 | A1 |
20050002507 | Timmins et al. | Jan 2005 | A1 |
20050010409 | Hull et al. | Jan 2005 | A1 |
20050012723 | Pallakoff | Jan 2005 | A1 |
20050015254 | Beaman | Jan 2005 | A1 |
20050015772 | Saare et al. | Jan 2005 | A1 |
20050021330 | Mano | Jan 2005 | A1 |
20050022114 | Shanahan et al. | Jan 2005 | A1 |
20050024341 | Gillespie et al. | Feb 2005 | A1 |
20050024345 | Eastty et al. | Feb 2005 | A1 |
20050027385 | Yueh | Feb 2005 | A1 |
20050030175 | Wolfe | Feb 2005 | A1 |
20050031106 | Henderson | Feb 2005 | A1 |
20050033582 | Gadd et al. | Feb 2005 | A1 |
20050033771 | Schmitter et al. | Feb 2005 | A1 |
20050034164 | Sano et al. | Feb 2005 | A1 |
20050038657 | Roth et al. | Feb 2005 | A1 |
20050039141 | Burke et al. | Feb 2005 | A1 |
20050042591 | Bloom et al. | Feb 2005 | A1 |
20050043946 | Ueyarna et al. | Feb 2005 | A1 |
20050043949 | Roth et al. | Feb 2005 | A1 |
20050044569 | Marcus | Feb 2005 | A1 |
20050045373 | Born | Mar 2005 | A1 |
20050049880 | Roth et al. | Mar 2005 | A1 |
20050055212 | Nagao | Mar 2005 | A1 |
20050055403 | Brittan | Mar 2005 | A1 |
20050058438 | Hayashi | Mar 2005 | A1 |
20050060155 | Chu et al. | Mar 2005 | A1 |
20050071165 | Hofstader et al. | Mar 2005 | A1 |
20050071332 | Ortega et al. | Mar 2005 | A1 |
20050071437 | Bear et al. | Mar 2005 | A1 |
20050074113 | Mathew et al. | Apr 2005 | A1 |
20050080613 | Colledge et al. | Apr 2005 | A1 |
20050080620 | Rao et al. | Apr 2005 | A1 |
20050080625 | Bennett et al. | Apr 2005 | A1 |
20050080632 | Endo et al. | Apr 2005 | A1 |
20050080780 | Colledge et al. | Apr 2005 | A1 |
20050086059 | Bennett | Apr 2005 | A1 |
20050086255 | Schran et al. | Apr 2005 | A1 |
20050086605 | Ferrer et al. | Apr 2005 | A1 |
20050091118 | Fano | Apr 2005 | A1 |
20050094475 | Naoi | May 2005 | A1 |
20050099398 | Garside et al. | May 2005 | A1 |
20050100214 | Zhang et al. | May 2005 | A1 |
20050102144 | Rapoport | May 2005 | A1 |
20050102614 | Brockett et al. | May 2005 | A1 |
20050102625 | Lee et al. | May 2005 | A1 |
20050105712 | Williams et al. | May 2005 | A1 |
20050108001 | Aarskog | May 2005 | A1 |
20050108017 | Esser et al. | May 2005 | A1 |
20050108074 | Bloechl et al. | May 2005 | A1 |
20050108338 | Simske et al. | May 2005 | A1 |
20050108344 | Tafoya et al. | May 2005 | A1 |
20050108642 | Sinclair et al. | May 2005 | A1 |
20050114124 | Liu et al. | May 2005 | A1 |
20050114140 | Brackett et al. | May 2005 | A1 |
20050114306 | Shu et al. | May 2005 | A1 |
20050114791 | Bollenbacher et al. | May 2005 | A1 |
20050119890 | Hirose | Jun 2005 | A1 |
20050119897 | Bennett et al. | Jun 2005 | A1 |
20050125216 | Chitrapura et al. | Jun 2005 | A1 |
20050125235 | Lazay et al. | Jun 2005 | A1 |
20050131951 | Zhang et al. | Jun 2005 | A1 |
20050132301 | Ikeda | Jun 2005 | A1 |
20050136949 | Barnes, Jr. | Jun 2005 | A1 |
20050138305 | Zellner | Jun 2005 | A1 |
20050140504 | Marshall et al. | Jun 2005 | A1 |
20050143972 | Gopalakrishnan et al. | Jun 2005 | A1 |
20050144003 | Iso-Sipila | Jun 2005 | A1 |
20050144070 | Cheshire | Jun 2005 | A1 |
20050144568 | Gruen et al. | Jun 2005 | A1 |
20050148356 | Ferguson et al. | Jul 2005 | A1 |
20050149214 | Yoo et al. | Jul 2005 | A1 |
20050149330 | Katae | Jul 2005 | A1 |
20050149332 | Kuzunuki et al. | Jul 2005 | A1 |
20050149510 | Shafrir | Jul 2005 | A1 |
20050152558 | Van Tassel | Jul 2005 | A1 |
20050152602 | Chen et al. | Jul 2005 | A1 |
20050154578 | Tong et al. | Jul 2005 | A1 |
20050154591 | Lecoeuche | Jul 2005 | A1 |
20050159939 | Mohler et al. | Jul 2005 | A1 |
20050159957 | Roth et al. | Jul 2005 | A1 |
20050162395 | Unruh | Jul 2005 | A1 |
20050165015 | Ncube et al. | Jul 2005 | A1 |
20050165607 | Di Fabbrizio et al. | Jul 2005 | A1 |
20050166153 | Eytchison et al. | Jul 2005 | A1 |
20050177445 | Church | Aug 2005 | A1 |
20050181770 | Helferich | Aug 2005 | A1 |
20050182616 | Kotipalli | Aug 2005 | A1 |
20050182627 | Tanaka et al. | Aug 2005 | A1 |
20050182628 | Choi | Aug 2005 | A1 |
20050182629 | Coorman et al. | Aug 2005 | A1 |
20050182630 | Miro et al. | Aug 2005 | A1 |
20050182765 | Liddy | Aug 2005 | A1 |
20050187773 | Filoche et al. | Aug 2005 | A1 |
20050190970 | Griffin | Sep 2005 | A1 |
20050192801 | Lewis et al. | Sep 2005 | A1 |
20050192812 | Buchholz et al. | Sep 2005 | A1 |
20050195077 | Mcculloch et al. | Sep 2005 | A1 |
20050195429 | Archbold | Sep 2005 | A1 |
20050196733 | Budra et al. | Sep 2005 | A1 |
20050201572 | Lindahl et al. | Sep 2005 | A1 |
20050202854 | Kortum et al. | Sep 2005 | A1 |
20050203747 | Lecoeuche | Sep 2005 | A1 |
20050203991 | Kawamura et al. | Sep 2005 | A1 |
20050209848 | Ishii | Sep 2005 | A1 |
20050210394 | Crandall et al. | Sep 2005 | A1 |
20050216331 | Ahrens et al. | Sep 2005 | A1 |
20050222843 | Kahn et al. | Oct 2005 | A1 |
20050222973 | Kaiser | Oct 2005 | A1 |
20050228665 | Kobayashi et al. | Oct 2005 | A1 |
20050245243 | Zuniga | Nov 2005 | A1 |
20050246350 | Canaran | Nov 2005 | A1 |
20050246365 | Lowles et al. | Nov 2005 | A1 |
20050246726 | Labrou et al. | Nov 2005 | A1 |
20050262440 | Stanciu et al. | Nov 2005 | A1 |
20050267738 | Wilkinson et al. | Dec 2005 | A1 |
20050267757 | Iso-Sipila et al. | Dec 2005 | A1 |
20050271216 | Lashkari | Dec 2005 | A1 |
20050273337 | Erell et al. | Dec 2005 | A1 |
20050273626 | Pearson et al. | Dec 2005 | A1 |
20050278297 | Nelson | Dec 2005 | A1 |
20050278643 | Ukai et al. | Dec 2005 | A1 |
20050278647 | Leavitt et al. | Dec 2005 | A1 |
20050283364 | Longe et al. | Dec 2005 | A1 |
20050283726 | Lunati | Dec 2005 | A1 |
20050283729 | Morris et al. | Dec 2005 | A1 |
20050288934 | Omi | Dec 2005 | A1 |
20050288936 | Busayapongchai et al. | Dec 2005 | A1 |
20050289463 | Wu et al. | Dec 2005 | A1 |
20060001652 | Chiu et al. | Jan 2006 | A1 |
20060004570 | Ju et al. | Jan 2006 | A1 |
20060004744 | Nevidomski et al. | Jan 2006 | A1 |
20060007174 | Shen | Jan 2006 | A1 |
20060009973 | Nguyen et al. | Jan 2006 | A1 |
20060013414 | Shih | Jan 2006 | A1 |
20060015341 | Baker | Jan 2006 | A1 |
20060015819 | Hawkins et al. | Jan 2006 | A1 |
20060018446 | Schmandt et al. | Jan 2006 | A1 |
20060018492 | Chiu et al. | Jan 2006 | A1 |
20060020890 | Kroll et al. | Jan 2006 | A1 |
20060025999 | Feng et al. | Feb 2006 | A1 |
20060026233 | Tenembaum et al. | Feb 2006 | A1 |
20060026521 | Hotelling et al. | Feb 2006 | A1 |
20060026535 | Hotelling et al. | Feb 2006 | A1 |
20060026536 | Hotelling et al. | Feb 2006 | A1 |
20060033724 | Chaudhri et al. | Feb 2006 | A1 |
20060035632 | Sorvari et al. | Feb 2006 | A1 |
20060036946 | Radtke et al. | Feb 2006 | A1 |
20060041424 | Todhunter et al. | Feb 2006 | A1 |
20060041431 | Maes | Feb 2006 | A1 |
20060041590 | King et al. | Feb 2006 | A1 |
20060047632 | Zhang | Mar 2006 | A1 |
20060050865 | Kortum et al. | Mar 2006 | A1 |
20060052141 | Suzuki | Mar 2006 | A1 |
20060053007 | Niemisto | Mar 2006 | A1 |
20060053365 | Hollander et al. | Mar 2006 | A1 |
20060053379 | Henderson et al. | Mar 2006 | A1 |
20060053387 | Ording | Mar 2006 | A1 |
20060058999 | Barker et al. | Mar 2006 | A1 |
20060059437 | Conklin | Mar 2006 | A1 |
20060060762 | Chan et al. | Mar 2006 | A1 |
20060061488 | Dunton | Mar 2006 | A1 |
20060067535 | Culbert et al. | Mar 2006 | A1 |
20060067536 | Culbert et al. | Mar 2006 | A1 |
20060069567 | Tischer et al. | Mar 2006 | A1 |
20060069664 | Ling et al. | Mar 2006 | A1 |
20060072248 | Watanabe et al. | Apr 2006 | A1 |
20060072716 | Pham | Apr 2006 | A1 |
20060074628 | Elbaz et al. | Apr 2006 | A1 |
20060074660 | Waters et al. | Apr 2006 | A1 |
20060074674 | Zhang et al. | Apr 2006 | A1 |
20060074750 | Clark et al. | Apr 2006 | A1 |
20060074898 | Gavalda et al. | Apr 2006 | A1 |
20060075429 | Istvan et al. | Apr 2006 | A1 |
20060077055 | Basir | Apr 2006 | A1 |
20060080098 | Campbell | Apr 2006 | A1 |
20060085187 | Barquilla | Apr 2006 | A1 |
20060085465 | Nori et al. | Apr 2006 | A1 |
20060085757 | Andre et al. | Apr 2006 | A1 |
20060095265 | Chu et al. | May 2006 | A1 |
20060095790 | Nguyen et al. | May 2006 | A1 |
20060095846 | Nurmi | May 2006 | A1 |
20060095848 | Naik | May 2006 | A1 |
20060097991 | Hotelling et al. | May 2006 | A1 |
20060100848 | Cozzi et al. | May 2006 | A1 |
20060100849 | Chan | May 2006 | A1 |
20060101354 | Hashimoto et al. | May 2006 | A1 |
20060103633 | Gioeli | May 2006 | A1 |
20060106592 | Brockett et al. | May 2006 | A1 |
20060106594 | Brockett et al. | May 2006 | A1 |
20060106595 | Brockett et al. | May 2006 | A1 |
20060111906 | Cross et al. | May 2006 | A1 |
20060111909 | Maes et al. | May 2006 | A1 |
20060116874 | Samuelsson et al. | Jun 2006 | A1 |
20060116877 | Pickering et al. | Jun 2006 | A1 |
20060117002 | Swen | Jun 2006 | A1 |
20060119582 | Ng et al. | Jun 2006 | A1 |
20060122834 | Bennett | Jun 2006 | A1 |
20060122836 | Cross et al. | Jun 2006 | A1 |
20060129929 | Weber et al. | Jun 2006 | A1 |
20060132812 | Barnes et al. | Jun 2006 | A1 |
20060136213 | Hirose et al. | Jun 2006 | A1 |
20060136352 | Brun et al. | Jun 2006 | A1 |
20060141990 | Zak et al. | Jun 2006 | A1 |
20060142576 | Meng et al. | Jun 2006 | A1 |
20060143007 | Koh et al. | Jun 2006 | A1 |
20060143576 | Gupta et al. | Jun 2006 | A1 |
20060148520 | Baker et al. | Jul 2006 | A1 |
20060149557 | Kaneko et al. | Jul 2006 | A1 |
20060150087 | Cronenberger et al. | Jul 2006 | A1 |
20060152496 | Knaven | Jul 2006 | A1 |
20060153040 | Girish et al. | Jul 2006 | A1 |
20060156252 | Sheshagiri et al. | Jul 2006 | A1 |
20060156307 | Kunjithapatham et al. | Jul 2006 | A1 |
20060161870 | Hotelling et al. | Jul 2006 | A1 |
20060161871 | Hotelling et al. | Jul 2006 | A1 |
20060161872 | Rytivaara et al. | Jul 2006 | A1 |
20060165105 | Shenfield et al. | Jul 2006 | A1 |
20060167676 | Plumb | Jul 2006 | A1 |
20060168150 | Naik et al. | Jul 2006 | A1 |
20060168507 | Hansen | Jul 2006 | A1 |
20060168539 | Hawkins et al. | Jul 2006 | A1 |
20060172720 | Islam et al. | Aug 2006 | A1 |
20060173683 | Roth et al. | Aug 2006 | A1 |
20060174207 | Deshpande | Aug 2006 | A1 |
20060178868 | Billerey-Mosier | Aug 2006 | A1 |
20060181519 | Vernier et al. | Aug 2006 | A1 |
20060183466 | Lee et al. | Aug 2006 | A1 |
20060184886 | Chung et al. | Aug 2006 | A1 |
20060187073 | Lin et al. | Aug 2006 | A1 |
20060190269 | Tessel et al. | Aug 2006 | A1 |
20060190577 | Yamada | Aug 2006 | A1 |
20060193518 | Dong | Aug 2006 | A1 |
20060195206 | Moon et al. | Aug 2006 | A1 |
20060195323 | Monne et al. | Aug 2006 | A1 |
20060197753 | Hotelling | Sep 2006 | A1 |
20060197755 | Bawany | Sep 2006 | A1 |
20060200253 | Hoffberg et al. | Sep 2006 | A1 |
20060200342 | Corston-Oliver et al. | Sep 2006 | A1 |
20060200347 | Kim et al. | Sep 2006 | A1 |
20060205432 | Hawkins et al. | Sep 2006 | A1 |
20060206454 | Forstall et al. | Sep 2006 | A1 |
20060212415 | Backer et al. | Sep 2006 | A1 |
20060217967 | Goertzen et al. | Sep 2006 | A1 |
20060221738 | Park et al. | Oct 2006 | A1 |
20060221788 | Lindahl et al. | Oct 2006 | A1 |
20060224570 | Quiroga et al. | Oct 2006 | A1 |
20060229802 | Vertelney et al. | Oct 2006 | A1 |
20060229870 | Kobal | Oct 2006 | A1 |
20060229876 | Aaron et al. | Oct 2006 | A1 |
20060230410 | Kurganov et al. | Oct 2006 | A1 |
20060234680 | Doulton | Oct 2006 | A1 |
20060235550 | Csicsatka et al. | Oct 2006 | A1 |
20060235700 | Wong et al. | Oct 2006 | A1 |
20060235841 | Betz et al. | Oct 2006 | A1 |
20060236262 | Bathiche et al. | Oct 2006 | A1 |
20060239419 | Joseph et al. | Oct 2006 | A1 |
20060239471 | Mao et al. | Oct 2006 | A1 |
20060240866 | Eilts et al. | Oct 2006 | A1 |
20060242190 | Wnek | Oct 2006 | A1 |
20060246955 | Nirhamo et al. | Nov 2006 | A1 |
20060247931 | Caskey et al. | Nov 2006 | A1 |
20060252457 | Schrager | Nov 2006 | A1 |
20060253210 | Rosenberg | Nov 2006 | A1 |
20060253787 | Fogg | Nov 2006 | A1 |
20060256934 | Mazor | Nov 2006 | A1 |
20060262876 | LaDue | Nov 2006 | A1 |
20060265208 | Assadollahi | Nov 2006 | A1 |
20060265503 | Jones et al. | Nov 2006 | A1 |
20060265648 | Rainisto et al. | Nov 2006 | A1 |
20060271627 | Szczepanek | Nov 2006 | A1 |
20060274051 | Longe et al. | Dec 2006 | A1 |
20060274905 | Lindahl et al. | Dec 2006 | A1 |
20060277058 | J″maev et al. | Dec 2006 | A1 |
20060282264 | Denny et al. | Dec 2006 | A1 |
20060282415 | Shibata et al. | Dec 2006 | A1 |
20060286527 | Morel | Dec 2006 | A1 |
20060288024 | Braica | Dec 2006 | A1 |
20060291666 | Ball et al. | Dec 2006 | A1 |
20060293876 | Kamatani et al. | Dec 2006 | A1 |
20060293880 | Elshishiny et al. | Dec 2006 | A1 |
20060293886 | Odell et al. | Dec 2006 | A1 |
20070003026 | Hodge et al. | Jan 2007 | A1 |
20070004451 | Anderson | Jan 2007 | A1 |
20070005849 | Oliver | Jan 2007 | A1 |
20070006098 | Krumm et al. | Jan 2007 | A1 |
20070011154 | Musgrove et al. | Jan 2007 | A1 |
20070014280 | Cormier et al. | Jan 2007 | A1 |
20070016563 | Omoigui | Jan 2007 | A1 |
20070016865 | Johnson et al. | Jan 2007 | A1 |
20070021956 | Qu et al. | Jan 2007 | A1 |
20070022380 | Swartz et al. | Jan 2007 | A1 |
20070025704 | Tsukazaki et al. | Feb 2007 | A1 |
20070026852 | Logan et al. | Feb 2007 | A1 |
20070027732 | Hudgens | Feb 2007 | A1 |
20070028009 | Robbin et al. | Feb 2007 | A1 |
20070032247 | Shaffer et al. | Feb 2007 | A1 |
20070033003 | Morris | Feb 2007 | A1 |
20070033026 | Bartosik et al. | Feb 2007 | A1 |
20070036117 | Taube et al. | Feb 2007 | A1 |
20070036286 | Champlin et al. | Feb 2007 | A1 |
20070038436 | Cristoe et al. | Feb 2007 | A1 |
20070038609 | Wu | Feb 2007 | A1 |
20070040813 | Kushler et al. | Feb 2007 | A1 |
20070041361 | Iso-Sipila | Feb 2007 | A1 |
20070043568 | Dhanakshirur et al. | Feb 2007 | A1 |
20070044038 | Horentrup et al. | Feb 2007 | A1 |
20070046641 | Lim | Mar 2007 | A1 |
20070047719 | Dhawan et al. | Mar 2007 | A1 |
20070050184 | Drucker et al. | Mar 2007 | A1 |
20070050191 | Weider et al. | Mar 2007 | A1 |
20070050393 | Vogel et al. | Mar 2007 | A1 |
20070050712 | Hull et al. | Mar 2007 | A1 |
20070052586 | Horstemeyer | Mar 2007 | A1 |
20070055493 | Lee | Mar 2007 | A1 |
20070055508 | Zhao et al. | Mar 2007 | A1 |
20070055514 | Beattie et al. | Mar 2007 | A1 |
20070055525 | Kennewick et al. | Mar 2007 | A1 |
20070055529 | Kanevsky et al. | Mar 2007 | A1 |
20070058832 | Hug et al. | Mar 2007 | A1 |
20070060107 | Day | Mar 2007 | A1 |
20070061487 | Moore et al. | Mar 2007 | A1 |
20070061712 | Bodin et al. | Mar 2007 | A1 |
20070061754 | Ardhanari et al. | Mar 2007 | A1 |
20070067173 | Bellegarda | Mar 2007 | A1 |
20070067272 | Flynt et al. | Mar 2007 | A1 |
20070073540 | Hirakawa et al. | Mar 2007 | A1 |
20070073541 | Tian | Mar 2007 | A1 |
20070073745 | Scott et al. | Mar 2007 | A1 |
20070075965 | Huppi et al. | Apr 2007 | A1 |
20070079027 | Marriott et al. | Apr 2007 | A1 |
20070080936 | Tsuk et al. | Apr 2007 | A1 |
20070083467 | Lindahl et al. | Apr 2007 | A1 |
20070083623 | Nishimura et al. | Apr 2007 | A1 |
20070088556 | Andrew | Apr 2007 | A1 |
20070089132 | Qureshey et al. | Apr 2007 | A1 |
20070089135 | Qureshey et al. | Apr 2007 | A1 |
20070093277 | Cavacuiti et al. | Apr 2007 | A1 |
20070094026 | Ativanichayaphong et al. | Apr 2007 | A1 |
20070098195 | Holmes | May 2007 | A1 |
20070100206 | Lin et al. | May 2007 | A1 |
20070100602 | Kim | May 2007 | A1 |
20070100619 | Purho et al. | May 2007 | A1 |
20070100635 | Mahajan et al. | May 2007 | A1 |
20070100709 | Lee et al. | May 2007 | A1 |
20070100790 | Cheyer et al. | May 2007 | A1 |
20070100883 | Rose et al. | May 2007 | A1 |
20070106512 | Acero et al. | May 2007 | A1 |
20070106513 | Boillot et al. | May 2007 | A1 |
20070106674 | Agrawal et al. | May 2007 | A1 |
20070116195 | Thompson et al. | May 2007 | A1 |
20070118377 | Badino et al. | May 2007 | A1 |
20070118378 | Skuratovsky | May 2007 | A1 |
20070121846 | Altberg et al. | May 2007 | A1 |
20070124132 | Takeuchi | May 2007 | A1 |
20070124149 | Shen et al. | May 2007 | A1 |
20070124676 | Amundsen et al. | May 2007 | A1 |
20070127888 | Hayashi et al. | Jun 2007 | A1 |
20070128777 | Yin et al. | Jun 2007 | A1 |
20070129059 | Nadarajah et al. | Jun 2007 | A1 |
20070130014 | Altberg et al. | Jun 2007 | A1 |
20070130128 | Garg et al. | Jun 2007 | A1 |
20070132738 | Lowles et al. | Jun 2007 | A1 |
20070133771 | Stifelman et al. | Jun 2007 | A1 |
20070135949 | Snover et al. | Jun 2007 | A1 |
20070136064 | Carroll | Jun 2007 | A1 |
20070136778 | Birger et al. | Jun 2007 | A1 |
20070143163 | Weiss et al. | Jun 2007 | A1 |
20070149252 | Jobs et al. | Jun 2007 | A1 |
20070150842 | Chaudhri et al. | Jun 2007 | A1 |
20070152978 | Kocienda et al. | Jul 2007 | A1 |
20070152980 | Kocienda et al. | Jul 2007 | A1 |
20070155346 | Mijatovic et al. | Jul 2007 | A1 |
20070156410 | Stohr et al. | Jul 2007 | A1 |
20070156627 | D'Alicandro | Jul 2007 | A1 |
20070157089 | Van Os et al. | Jul 2007 | A1 |
20070157268 | Girish et al. | Jul 2007 | A1 |
20070162274 | Ruiz et al. | Jul 2007 | A1 |
20070162296 | Altberg et al. | Jul 2007 | A1 |
20070162414 | Horowitz et al. | Jul 2007 | A1 |
20070168922 | Kaiser et al. | Jul 2007 | A1 |
20070173233 | Vander Veen et al. | Jul 2007 | A1 |
20070173267 | Klassen et al. | Jul 2007 | A1 |
20070174188 | Fish | Jul 2007 | A1 |
20070174396 | Kumar et al. | Jul 2007 | A1 |
20070179776 | Segond et al. | Aug 2007 | A1 |
20070179778 | Gong et al. | Aug 2007 | A1 |
20070180383 | Naik | Aug 2007 | A1 |
20070182595 | Ghasabian | Aug 2007 | A1 |
20070185551 | Meadows et al. | Aug 2007 | A1 |
20070185754 | Schmidt | Aug 2007 | A1 |
20070185831 | Churcher | Aug 2007 | A1 |
20070185917 | Prahlad et al. | Aug 2007 | A1 |
20070188901 | Heckerman et al. | Aug 2007 | A1 |
20070192026 | Lee et al. | Aug 2007 | A1 |
20070192027 | Lee et al. | Aug 2007 | A1 |
20070192105 | Neeracher et al. | Aug 2007 | A1 |
20070192179 | Van Luchene et al. | Aug 2007 | A1 |
20070192293 | Swen | Aug 2007 | A1 |
20070192403 | Heine et al. | Aug 2007 | A1 |
20070192744 | Reponen | Aug 2007 | A1 |
20070198267 | Jones et al. | Aug 2007 | A1 |
20070198269 | Braho et al. | Aug 2007 | A1 |
20070198273 | Hennecke | Aug 2007 | A1 |
20070198566 | Sustik | Aug 2007 | A1 |
20070203955 | Pomerantz | Aug 2007 | A1 |
20070207785 | Chatterjee et al. | Sep 2007 | A1 |
20070208569 | Subramanian et al. | Sep 2007 | A1 |
20070208579 | Peterson | Sep 2007 | A1 |
20070208726 | Krishnaprasad et al. | Sep 2007 | A1 |
20070211071 | Slotznick et al. | Sep 2007 | A1 |
20070213099 | Bast | Sep 2007 | A1 |
20070213857 | Bodin et al. | Sep 2007 | A1 |
20070219645 | Thomas et al. | Sep 2007 | A1 |
20070219777 | Chu et al. | Sep 2007 | A1 |
20070219803 | Chiu et al. | Sep 2007 | A1 |
20070219983 | Fish | Sep 2007 | A1 |
20070225980 | Sumita | Sep 2007 | A1 |
20070225984 | Milstein et al. | Sep 2007 | A1 |
20070226652 | Kikuchi et al. | Sep 2007 | A1 |
20070229323 | Plachta et al. | Oct 2007 | A1 |
20070230729 | Naylor et al. | Oct 2007 | A1 |
20070233484 | Coelho et al. | Oct 2007 | A1 |
20070233490 | Yao | Oct 2007 | A1 |
20070233497 | Paek et al. | Oct 2007 | A1 |
20070233692 | Lisa et al. | Oct 2007 | A1 |
20070233725 | Michmerhuizen et al. | Oct 2007 | A1 |
20070238488 | Scott | Oct 2007 | A1 |
20070238489 | Scott | Oct 2007 | A1 |
20070238520 | Kacmarcik | Oct 2007 | A1 |
20070239429 | Johnson et al. | Oct 2007 | A1 |
20070240043 | Fux et al. | Oct 2007 | A1 |
20070240044 | Fux et al. | Oct 2007 | A1 |
20070240045 | Fux et al. | Oct 2007 | A1 |
20070241885 | Clipsham | Oct 2007 | A1 |
20070244702 | Kahn et al. | Oct 2007 | A1 |
20070247441 | Kim et al. | Oct 2007 | A1 |
20070255435 | Cohen et al. | Nov 2007 | A1 |
20070255979 | Deily et al. | Nov 2007 | A1 |
20070257890 | Hotelling et al. | Nov 2007 | A1 |
20070258642 | Thota | Nov 2007 | A1 |
20070260460 | Hyatt | Nov 2007 | A1 |
20070260595 | Beatty et al. | Nov 2007 | A1 |
20070260822 | Adams | Nov 2007 | A1 |
20070261080 | Saetti | Nov 2007 | A1 |
20070265831 | Dinur et al. | Nov 2007 | A1 |
20070271104 | McKay | Nov 2007 | A1 |
20070271510 | Grigoriu et al. | Nov 2007 | A1 |
20070274468 | Cai | Nov 2007 | A1 |
20070276651 | Bliss et al. | Nov 2007 | A1 |
20070276714 | Beringer | Nov 2007 | A1 |
20070276810 | Rosen | Nov 2007 | A1 |
20070277088 | Bodin et al. | Nov 2007 | A1 |
20070282595 | Tunning et al. | Dec 2007 | A1 |
20070285958 | Platchta et al. | Dec 2007 | A1 |
20070286363 | Burg et al. | Dec 2007 | A1 |
20070288241 | Cross et al. | Dec 2007 | A1 |
20070288449 | Datta et al. | Dec 2007 | A1 |
20070291108 | Huber et al. | Dec 2007 | A1 |
20070294077 | Narayanan et al. | Dec 2007 | A1 |
20070294263 | Punj et al. | Dec 2007 | A1 |
20070299664 | Peters et al. | Dec 2007 | A1 |
20070299831 | Williams et al. | Dec 2007 | A1 |
20070300140 | Makela et al. | Dec 2007 | A1 |
20080010355 | Vieri et al. | Jan 2008 | A1 |
20080012950 | Lee et al. | Jan 2008 | A1 |
20080013751 | Hiselius | Jan 2008 | A1 |
20080015863 | Agapi et al. | Jan 2008 | A1 |
20080015864 | Ross et al. | Jan 2008 | A1 |
20080016575 | Vincent et al. | Jan 2008 | A1 |
20080021708 | Bennett et al. | Jan 2008 | A1 |
20080022208 | Morse | Jan 2008 | A1 |
20080031475 | Goldstein | Feb 2008 | A1 |
20080034032 | Healey et al. | Feb 2008 | A1 |
20080034044 | Bhakta et al. | Feb 2008 | A1 |
20080036743 | Westerman et al. | Feb 2008 | A1 |
20080040339 | Zhou et al. | Feb 2008 | A1 |
20080042970 | Liang et al. | Feb 2008 | A1 |
20080043936 | Liebermann | Feb 2008 | A1 |
20080043943 | Sipher et al. | Feb 2008 | A1 |
20080046239 | Boo | Feb 2008 | A1 |
20080046250 | Agapi et al. | Feb 2008 | A1 |
20080046422 | Lee et al. | Feb 2008 | A1 |
20080046820 | Lee et al. | Feb 2008 | A1 |
20080046948 | Verosub | Feb 2008 | A1 |
20080048908 | Sato | Feb 2008 | A1 |
20080052063 | Bennett et al. | Feb 2008 | A1 |
20080052073 | Goto et al. | Feb 2008 | A1 |
20080052077 | Bennett et al. | Feb 2008 | A1 |
20080052080 | Narayanan | Feb 2008 | A1 |
20080056459 | Vallier et al. | Mar 2008 | A1 |
20080056579 | Guha | Mar 2008 | A1 |
20080059190 | Chu et al. | Mar 2008 | A1 |
20080059200 | Puli | Mar 2008 | A1 |
20080059876 | Hantler et al. | Mar 2008 | A1 |
20080062141 | Chaudhri | Mar 2008 | A1 |
20080065382 | Gerl et al. | Mar 2008 | A1 |
20080065387 | Cross et al. | Mar 2008 | A1 |
20080071529 | Silverman et al. | Mar 2008 | A1 |
20080071544 | Beaufays et al. | Mar 2008 | A1 |
20080075296 | Lindahl et al. | Mar 2008 | A1 |
20080076972 | Dorogusker et al. | Mar 2008 | A1 |
20080077310 | Murlidar et al. | Mar 2008 | A1 |
20080077384 | Agapi et al. | Mar 2008 | A1 |
20080077386 | Gao et al. | Mar 2008 | A1 |
20080077391 | Chino et al. | Mar 2008 | A1 |
20080077393 | Gao et al. | Mar 2008 | A1 |
20080077406 | Ganong, III | Mar 2008 | A1 |
20080077859 | Schabes et al. | Mar 2008 | A1 |
20080079566 | Singh et al. | Apr 2008 | A1 |
20080082332 | Mallett et al. | Apr 2008 | A1 |
20080082338 | O″Neil et al. | Apr 2008 | A1 |
20080082390 | Hawkins et al. | Apr 2008 | A1 |
20080082576 | Bodin et al. | Apr 2008 | A1 |
20080082651 | Singh et al. | Apr 2008 | A1 |
20080084974 | Dhanakshirur | Apr 2008 | A1 |
20080091406 | Baldwin et al. | Apr 2008 | A1 |
20080091426 | Rempel et al. | Apr 2008 | A1 |
20080091443 | Strope et al. | Apr 2008 | A1 |
20080096531 | Mcquaide et al. | Apr 2008 | A1 |
20080096726 | Riley et al. | Apr 2008 | A1 |
20080097937 | Hadjarian | Apr 2008 | A1 |
20080098302 | Roose | Apr 2008 | A1 |
20080098480 | Henry et al. | Apr 2008 | A1 |
20080057922 | Kokes et al. | May 2008 | A1 |
20080100579 | Robinson et al. | May 2008 | A1 |
20080101584 | Gray et al. | May 2008 | A1 |
20080109222 | Liu | May 2008 | A1 |
20080109402 | Wang et al. | May 2008 | A1 |
20080114480 | Harb | May 2008 | A1 |
20080114598 | Prieto et al. | May 2008 | A1 |
20080114604 | Wei et al. | May 2008 | A1 |
20080114841 | Lambert | May 2008 | A1 |
20080115084 | Scott | May 2008 | A1 |
20080118143 | Gordon et al. | May 2008 | A1 |
20080120102 | Rao | May 2008 | A1 |
20080120112 | Jordan et al. | May 2008 | A1 |
20080120342 | Reed et al. | May 2008 | A1 |
20080122796 | Jobs et al. | May 2008 | A1 |
20080126077 | Thorn | May 2008 | A1 |
20080126091 | Clark et al. | May 2008 | A1 |
20080126093 | Sivadas | May 2008 | A1 |
20080126100 | Grost et al. | May 2008 | A1 |
20080126491 | Portele et al. | May 2008 | A1 |
20080129520 | Lee | Jun 2008 | A1 |
20080130867 | Bowen | Jun 2008 | A1 |
20080131006 | Oliver | Jun 2008 | A1 |
20080132221 | Willey et al. | Jun 2008 | A1 |
20080133215 | Sarukkai | Jun 2008 | A1 |
20080133228 | Rao | Jun 2008 | A1 |
20080133241 | Baker et al. | Jun 2008 | A1 |
20080133956 | Fadell | Jun 2008 | A1 |
20080140413 | Millman et al. | Jun 2008 | A1 |
20080140416 | Shostak | Jun 2008 | A1 |
20080140652 | Millman et al. | Jun 2008 | A1 |
20080140657 | Azvine et al. | Jun 2008 | A1 |
20080140702 | Reed et al. | Jun 2008 | A1 |
20080141125 | Ghassabian et al. | Jun 2008 | A1 |
20080141180 | Reed et al. | Jun 2008 | A1 |
20080141182 | Barsness et al. | Jun 2008 | A1 |
20080146245 | Appaji | Jun 2008 | A1 |
20080146290 | Sreeram et al. | Jun 2008 | A1 |
20080147408 | Da Palma et al. | Jun 2008 | A1 |
20080147411 | Dames et al. | Jun 2008 | A1 |
20080147874 | Yoneda et al. | Jun 2008 | A1 |
20080150900 | Han | Jun 2008 | A1 |
20080154600 | Tian et al. | Jun 2008 | A1 |
20080154612 | Evermann et al. | Jun 2008 | A1 |
20080154828 | Antebi et al. | Jun 2008 | A1 |
20080157867 | Krah | Jul 2008 | A1 |
20080163119 | Kim et al. | Jul 2008 | A1 |
20080163131 | Hirai et al. | Jul 2008 | A1 |
20080165144 | Forstall et al. | Jul 2008 | A1 |
20080165980 | Pavlovic et al. | Jul 2008 | A1 |
20080165994 | Caren et al. | Jul 2008 | A1 |
20080167013 | Novick et al. | Jul 2008 | A1 |
20080167858 | Christie et al. | Jul 2008 | A1 |
20080168366 | Kocienda et al. | Jul 2008 | A1 |
20080183473 | Nagano et al. | Jul 2008 | A1 |
20080186960 | Kocheisen et al. | Aug 2008 | A1 |
20080189099 | Friedman et al. | Aug 2008 | A1 |
20080189106 | Low et al. | Aug 2008 | A1 |
20080189110 | Freeman et al. | Aug 2008 | A1 |
20080189114 | Fail et al. | Aug 2008 | A1 |
20080189606 | Rybak | Aug 2008 | A1 |
20080195312 | Aaron et al. | Aug 2008 | A1 |
20080195601 | Ntoulas et al. | Aug 2008 | A1 |
20080195630 | Exartier et al. | Aug 2008 | A1 |
20080195940 | Gail et al. | Aug 2008 | A1 |
20080200142 | Abdel-Kader et al. | Aug 2008 | A1 |
20080201306 | Cooper et al. | Aug 2008 | A1 |
20080201375 | Khedouri et al. | Aug 2008 | A1 |
20080204379 | Perez-Noguera | Aug 2008 | A1 |
20080207176 | Brackbill et al. | Aug 2008 | A1 |
20080208585 | Ativanichayaphong et al. | Aug 2008 | A1 |
20080208587 | Ben-David et al. | Aug 2008 | A1 |
20080212796 | Denda | Sep 2008 | A1 |
20080219641 | Sandrew et al. | Sep 2008 | A1 |
20080221866 | Katragadda et al. | Sep 2008 | A1 |
20080221879 | Cerra et al. | Sep 2008 | A1 |
20080221880 | Cerra et al. | Sep 2008 | A1 |
20080221889 | Cerra et al. | Sep 2008 | A1 |
20080221903 | Kanevsky et al. | Sep 2008 | A1 |
20080222118 | Scian et al. | Sep 2008 | A1 |
20080228463 | Mori et al. | Sep 2008 | A1 |
20080228485 | Owen | Sep 2008 | A1 |
20080228490 | Fischer et al. | Sep 2008 | A1 |
20080228495 | Cross et al. | Sep 2008 | A1 |
20080228496 | Yu et al. | Sep 2008 | A1 |
20080228928 | Donelli et al. | Sep 2008 | A1 |
20080229185 | Lynch | Sep 2008 | A1 |
20080229218 | Maeng | Sep 2008 | A1 |
20080235017 | Satomura et al. | Sep 2008 | A1 |
20080235024 | Goldberg et al. | Sep 2008 | A1 |
20080235027 | Cross | Sep 2008 | A1 |
20080240569 | Tonouchi | Oct 2008 | A1 |
20080242280 | Shapiro et al. | Oct 2008 | A1 |
20080244390 | Fux et al. | Oct 2008 | A1 |
20080244446 | Lefevre et al. | Oct 2008 | A1 |
20080247519 | Abella et al. | Oct 2008 | A1 |
20080248797 | Freeman et al. | Oct 2008 | A1 |
20080249770 | Kim et al. | Oct 2008 | A1 |
20080253577 | Eppolito | Oct 2008 | A1 |
20080255837 | Kahn et al. | Oct 2008 | A1 |
20080255845 | Bennett | Oct 2008 | A1 |
20080256613 | Grover | Oct 2008 | A1 |
20080259022 | Mansfield et al. | Oct 2008 | A1 |
20080262838 | Nurminen et al. | Oct 2008 | A1 |
20080262846 | Burns et al. | Oct 2008 | A1 |
20080270118 | Kuo et al. | Oct 2008 | A1 |
20080270138 | Knight et al. | Oct 2008 | A1 |
20080270139 | Shi et al. | Oct 2008 | A1 |
20080270140 | Hertz et al. | Oct 2008 | A1 |
20080270151 | Mahoney et al. | Oct 2008 | A1 |
20080277473 | Kotlarsky et al. | Nov 2008 | A1 |
20080281510 | Shahine | Nov 2008 | A1 |
20080292112 | Valenzuela et al. | Nov 2008 | A1 |
20080294418 | Cleary et al. | Nov 2008 | A1 |
20080294651 | Masuyama et al. | Nov 2008 | A1 |
20080294981 | Balzano et al. | Nov 2008 | A1 |
20080298766 | Wen et al. | Dec 2008 | A1 |
20080299523 | Chai et al. | Dec 2008 | A1 |
20080300871 | Gilbert | Dec 2008 | A1 |
20080300878 | Bennett | Dec 2008 | A1 |
20080306727 | Thurmair et al. | Dec 2008 | A1 |
20080312909 | Hermansen et al. | Dec 2008 | A1 |
20080313335 | Jung et al. | Dec 2008 | A1 |
20080316183 | Westerman et al. | Dec 2008 | A1 |
20080319753 | Hancock | Dec 2008 | A1 |
20080319763 | Di Fabbrizio et al. | Dec 2008 | A1 |
20090003115 | Lindahl et al. | Jan 2009 | A1 |
20090005012 | Van Heugten | Jan 2009 | A1 |
20090005891 | Batson et al. | Jan 2009 | A1 |
20090006097 | Etezadi et al. | Jan 2009 | A1 |
20090006099 | Sharpe et al. | Jan 2009 | A1 |
20090006100 | Badger et al. | Jan 2009 | A1 |
20090006343 | Platt et al. | Jan 2009 | A1 |
20090006345 | Platt et al. | Jan 2009 | A1 |
20090006488 | Lindahl et al. | Jan 2009 | A1 |
20090006671 | Batson et al. | Jan 2009 | A1 |
20090007001 | Morin et al. | Jan 2009 | A1 |
20090011709 | Akasaka et al. | Jan 2009 | A1 |
20090012748 | Beish et al. | Jan 2009 | A1 |
20090012775 | El Hady et al. | Jan 2009 | A1 |
20090018828 | Nakadai et al. | Jan 2009 | A1 |
20090018834 | Cooper et al. | Jan 2009 | A1 |
20090018835 | Cooper et al. | Jan 2009 | A1 |
20090018839 | Cooper et al. | Jan 2009 | A1 |
20090018840 | Lutz et al. | Jan 2009 | A1 |
20090022329 | Mahowald | Jan 2009 | A1 |
20090028435 | Wu et al. | Jan 2009 | A1 |
20090030800 | Grois | Jan 2009 | A1 |
20090030978 | Johnson et al. | Jan 2009 | A1 |
20090043580 | Mozer et al. | Feb 2009 | A1 |
20090043583 | Agapi et al. | Feb 2009 | A1 |
20090043763 | Peng | Feb 2009 | A1 |
20090048821 | Yam et al. | Feb 2009 | A1 |
20090048845 | Burckart et al. | Feb 2009 | A1 |
20090049067 | Murray | Feb 2009 | A1 |
20090055179 | Cho et al. | Feb 2009 | A1 |
20090055186 | Lance et al. | Feb 2009 | A1 |
20090058823 | Kocienda | Mar 2009 | A1 |
20090058860 | Fong et al. | Mar 2009 | A1 |
20090060472 | Bull et al. | Mar 2009 | A1 |
20090063974 | Bull et al. | Mar 2009 | A1 |
20090064031 | Bull et al. | Mar 2009 | A1 |
20090070097 | Wu et al. | Mar 2009 | A1 |
20090070102 | Maegawa | Mar 2009 | A1 |
20090070114 | Staszak | Mar 2009 | A1 |
20090074214 | Bradford et al. | Mar 2009 | A1 |
20090076792 | Lawson-Tancred | Mar 2009 | A1 |
20090076796 | Daraselia | Mar 2009 | A1 |
20090076819 | Wouters et al. | Mar 2009 | A1 |
20090076821 | Brenner et al. | Mar 2009 | A1 |
20090076825 | Bradford et al. | Mar 2009 | A1 |
20090077165 | Rhodes et al. | Mar 2009 | A1 |
20090083034 | Hernandez et al. | Mar 2009 | A1 |
20090083035 | Huang et al. | Mar 2009 | A1 |
20090083036 | Zhao et al. | Mar 2009 | A1 |
20090083037 | Gleason et al. | Mar 2009 | A1 |
20090083047 | Lindahl et al. | Mar 2009 | A1 |
20090089058 | Bellegarda | Apr 2009 | A1 |
20090092260 | Powers | Apr 2009 | A1 |
20090092261 | Bard | Apr 2009 | A1 |
20090092262 | Costa et al. | Apr 2009 | A1 |
20090094029 | Koch et al. | Apr 2009 | A1 |
20090094033 | Mozer et al. | Apr 2009 | A1 |
20090097634 | Nambiar et al. | Apr 2009 | A1 |
20090097637 | Boscher et al. | Apr 2009 | A1 |
20090100049 | Cao | Apr 2009 | A1 |
20090100454 | Weber | Apr 2009 | A1 |
20090104898 | Harris | Apr 2009 | A1 |
20090106026 | Ferrieux | Apr 2009 | A1 |
20090106376 | Tom et al. | Apr 2009 | A1 |
20090106397 | O'Keefe | Apr 2009 | A1 |
20090112572 | Thorn | Apr 2009 | A1 |
20090112592 | Candelore et al. | Apr 2009 | A1 |
20090112677 | Rhett | Apr 2009 | A1 |
20090112892 | Cardie et al. | Apr 2009 | A1 |
20090119587 | Allen et al. | May 2009 | A1 |
20090123021 | Jung et al. | May 2009 | A1 |
20090123071 | Iwasaki | May 2009 | A1 |
20090125477 | Lu et al. | May 2009 | A1 |
20090128505 | Partridge et al. | May 2009 | A1 |
20090137286 | Luke et al. | May 2009 | A1 |
20090138736 | Chin | May 2009 | A1 |
20090138828 | Schultz et al. | May 2009 | A1 |
20090144049 | Haddad et al. | Jun 2009 | A1 |
20090144428 | Bowater et al. | Jun 2009 | A1 |
20090144609 | Liang et al. | Jun 2009 | A1 |
20090146848 | Ghassabian | Jun 2009 | A1 |
20090150147 | Jacoby et al. | Jun 2009 | A1 |
20090150156 | Kennewick et al. | Jun 2009 | A1 |
20090152349 | Bonev et al. | Jun 2009 | A1 |
20090153288 | Hope et al. | Jun 2009 | A1 |
20090154669 | Wood et al. | Jun 2009 | A1 |
20090157382 | Bar | Jun 2009 | A1 |
20090157384 | Toutanova et al. | Jun 2009 | A1 |
20090157401 | Bennett | Jun 2009 | A1 |
20090158423 | Orlassino et al. | Jun 2009 | A1 |
20090160803 | Hashimoto | Jun 2009 | A1 |
20090164441 | Cheyer | Jun 2009 | A1 |
20090164655 | Pettersson et al. | Jun 2009 | A1 |
20090164937 | Alviar et al. | Jun 2009 | A1 |
20090167508 | Fadell et al. | Jul 2009 | A1 |
20090167509 | Fadell et al. | Jul 2009 | A1 |
20090171578 | Kim et al. | Jul 2009 | A1 |
20090171664 | Kennewick et al. | Jul 2009 | A1 |
20090172108 | Singh | Jul 2009 | A1 |
20090172542 | Girish et al. | Jul 2009 | A1 |
20090174667 | Kocienda et al. | Jul 2009 | A1 |
20090174677 | Gehani et al. | Jul 2009 | A1 |
20090177300 | Lee | Jul 2009 | A1 |
20090177461 | Ehsani et al. | Jul 2009 | A1 |
20090182445 | Girish et al. | Jul 2009 | A1 |
20090187402 | Scholl | Jul 2009 | A1 |
20090187577 | Reznik et al. | Jul 2009 | A1 |
20090191895 | Singh et al. | Jul 2009 | A1 |
20090192782 | Drewes | Jul 2009 | A1 |
20090198497 | Kwon | Aug 2009 | A1 |
20090204409 | Mozer et al. | Aug 2009 | A1 |
20090204596 | Brun et al. | Aug 2009 | A1 |
20090204620 | Thione et al. | Aug 2009 | A1 |
20090210232 | Sanchez et al. | Aug 2009 | A1 |
20090213134 | Stephanick et al. | Aug 2009 | A1 |
20090215503 | Zhang et al. | Aug 2009 | A1 |
20090216540 | Tessel et al. | Aug 2009 | A1 |
20090216704 | Zheng et al. | Aug 2009 | A1 |
20090222270 | Likens et al. | Sep 2009 | A2 |
20090222488 | Boerries et al. | Sep 2009 | A1 |
20090228126 | Spielberg et al. | Sep 2009 | A1 |
20090228273 | Wang et al. | Sep 2009 | A1 |
20090228281 | Singleton et al. | Sep 2009 | A1 |
20090228792 | Van Os et al. | Sep 2009 | A1 |
20090228842 | Westerman et al. | Sep 2009 | A1 |
20090234655 | Kwon | Sep 2009 | A1 |
20090239202 | Stone | Sep 2009 | A1 |
20090239552 | Churchill et al. | Sep 2009 | A1 |
20090240485 | Dalal et al. | Sep 2009 | A1 |
20090241054 | Hendricks | Sep 2009 | A1 |
20090241760 | Georges | Oct 2009 | A1 |
20090247237 | Mittleman et al. | Oct 2009 | A1 |
20090248182 | Logan et al. | Oct 2009 | A1 |
20090248420 | Basir et al. | Oct 2009 | A1 |
20090249198 | Davis et al. | Oct 2009 | A1 |
20090252350 | Seguin | Oct 2009 | A1 |
20090253457 | Seguin | Oct 2009 | A1 |
20090253463 | Shin et al. | Oct 2009 | A1 |
20090254339 | Seguin | Oct 2009 | A1 |
20090254345 | Fleizach et al. | Oct 2009 | A1 |
20090259969 | Pallakoff | Oct 2009 | A1 |
20090265368 | Crider et al. | Oct 2009 | A1 |
20090271109 | Lee et al. | Oct 2009 | A1 |
20090271175 | Bodin et al. | Oct 2009 | A1 |
20090271176 | Bodin et al. | Oct 2009 | A1 |
20090271178 | Bodin et al. | Oct 2009 | A1 |
20090274315 | Carnes et al. | Nov 2009 | A1 |
20090281789 | Waibel et al. | Nov 2009 | A1 |
20090284482 | Chin | Nov 2009 | A1 |
20090286514 | Lichorowic et al. | Nov 2009 | A1 |
20090287583 | Holmes | Nov 2009 | A1 |
20090290718 | Kahn et al. | Nov 2009 | A1 |
20090292987 | Sorenson | Nov 2009 | A1 |
20090296552 | Hicks et al. | Dec 2009 | A1 |
20090298474 | George | Dec 2009 | A1 |
20090299745 | Kennewick et al. | Dec 2009 | A1 |
20090299849 | Cao et al. | Dec 2009 | A1 |
20090300391 | Jessup et al. | Dec 2009 | A1 |
20090300488 | Salamon et al. | Dec 2009 | A1 |
20090304198 | Herre et al. | Dec 2009 | A1 |
20090306967 | Nicolov et al. | Dec 2009 | A1 |
20090306969 | Goud et al. | Dec 2009 | A1 |
20090306979 | Jaiswal et al. | Dec 2009 | A1 |
20090306980 | Shin | Dec 2009 | A1 |
20090306981 | Cromack et al. | Dec 2009 | A1 |
20090306985 | Roberts et al. | Dec 2009 | A1 |
20090306988 | Chen et al. | Dec 2009 | A1 |
20090306989 | Kaji | Dec 2009 | A1 |
20090307162 | Bui et al. | Dec 2009 | A1 |
20090307201 | Dunning et al. | Dec 2009 | A1 |
20090307584 | Davidson et al. | Dec 2009 | A1 |
20090313023 | Jones | Dec 2009 | A1 |
20090313026 | Coffman et al. | Dec 2009 | A1 |
20090313544 | Wood et al. | Dec 2009 | A1 |
20090313564 | Rottler et al. | Dec 2009 | A1 |
20090316943 | Frigola Munoz et al. | Dec 2009 | A1 |
20090318119 | Basir et al. | Dec 2009 | A1 |
20090318198 | Carroll | Dec 2009 | A1 |
20090319266 | Brown et al. | Dec 2009 | A1 |
20090326936 | Nagashima | Dec 2009 | A1 |
20090326938 | Marila et al. | Dec 2009 | A1 |
20090326949 | Douthitt et al. | Dec 2009 | A1 |
20090327977 | Bachfischer et al. | Dec 2009 | A1 |
20100004931 | Ma et al. | Jan 2010 | A1 |
20100005081 | Bennett | Jan 2010 | A1 |
20100013796 | Abileah et al. | Jan 2010 | A1 |
20100019834 | Zerbe et al. | Jan 2010 | A1 |
20100023318 | Lemoine | Jan 2010 | A1 |
20100023320 | Di Cristo et al. | Jan 2010 | A1 |
20100030928 | Conroy et al. | Feb 2010 | A1 |
20100031143 | Rao et al. | Feb 2010 | A1 |
20100036655 | Cecil et al. | Feb 2010 | A1 |
20100036660 | Bennett | Feb 2010 | A1 |
20100037183 | Miyashita et al. | Feb 2010 | A1 |
20100042400 | Block et al. | Feb 2010 | A1 |
20100046842 | Conwell et al. | Feb 2010 | A1 |
20100049514 | Kennewick et al. | Feb 2010 | A1 |
20100050064 | Liu et al. | Feb 2010 | A1 |
20100054512 | Solum | Mar 2010 | A1 |
20100057457 | Ogata et al. | Mar 2010 | A1 |
20100057643 | Yang | Mar 2010 | A1 |
20100060646 | Unsal et al. | Mar 2010 | A1 |
20100063804 | Sato et al. | Mar 2010 | A1 |
20100063825 | Williams et al. | Mar 2010 | A1 |
20100063961 | Guiheneuf et al. | Mar 2010 | A1 |
20100064113 | Lindahl et al. | Mar 2010 | A1 |
20100064218 | Bull et al. | Mar 2010 | A1 |
20100067723 | Bergmann et al. | Mar 2010 | A1 |
20100067867 | Lin et al. | Mar 2010 | A1 |
20100070281 | Conkie et al. | Mar 2010 | A1 |
20100070899 | Hunt et al. | Mar 2010 | A1 |
20100076760 | Kraenzel et al. | Mar 2010 | A1 |
20100077350 | Lim et al. | Mar 2010 | A1 |
20100079501 | Ikeda et al. | Apr 2010 | A1 |
20100080398 | Waldmann | Apr 2010 | A1 |
20100080470 | Deluca et al. | Apr 2010 | A1 |
20100081456 | Singh et al. | Apr 2010 | A1 |
20100081487 | Chen et al. | Apr 2010 | A1 |
20100082286 | Leung | Apr 2010 | A1 |
20100082327 | Rogers et al. | Apr 2010 | A1 |
20100082328 | Rogers et al. | Apr 2010 | A1 |
20100082329 | Silverman et al. | Apr 2010 | A1 |
20100082346 | Rogers et al. | Apr 2010 | A1 |
20100082347 | Rogers et al. | Apr 2010 | A1 |
20100082348 | Silverman et al. | Apr 2010 | A1 |
20100082349 | Bellegarda et al. | Apr 2010 | A1 |
20100082970 | Lindahl et al. | Apr 2010 | A1 |
20100086152 | Rank et al. | Apr 2010 | A1 |
20100086153 | Hagen et al. | Apr 2010 | A1 |
20100086156 | Rank et al. | Apr 2010 | A1 |
20100088020 | Sano et al. | Apr 2010 | A1 |
20100088093 | Lee et al. | Apr 2010 | A1 |
20100088100 | Lindahl | Apr 2010 | A1 |
20100100212 | Lindahl et al. | Apr 2010 | A1 |
20100100384 | Ju et al. | Apr 2010 | A1 |
20100103776 | Chan | Apr 2010 | A1 |
20100106500 | McKee et al. | Apr 2010 | A1 |
20100114856 | Kuboyama | May 2010 | A1 |
20100121637 | Roy et al. | May 2010 | A1 |
20100125460 | Mellott et al. | May 2010 | A1 |
20100125811 | Moore et al. | May 2010 | A1 |
20100131273 | Aley-Raz et al. | May 2010 | A1 |
20100131498 | Linthicum et al. | May 2010 | A1 |
20100131899 | Hubert | May 2010 | A1 |
20100138215 | Williams | Jun 2010 | A1 |
20100138224 | Bedingfield, Sr. | Jun 2010 | A1 |
20100138416 | Bellotti | Jun 2010 | A1 |
20100142740 | Roerup | Jun 2010 | A1 |
20100145694 | Ju et al. | Jun 2010 | A1 |
20100145700 | Kennewick et al. | Jun 2010 | A1 |
20100146442 | Nagasaka et al. | Jun 2010 | A1 |
20100153115 | Klee et al. | Jun 2010 | A1 |
20100161313 | Karttunen | Jun 2010 | A1 |
20100161554 | Datuashvili et al. | Jun 2010 | A1 |
20100164897 | Morin et al. | Jul 2010 | A1 |
20100169075 | Raffa et al. | Jul 2010 | A1 |
20100169097 | Nachman et al. | Jul 2010 | A1 |
20100171713 | Kwok et al. | Jul 2010 | A1 |
20100174544 | Heifets | Jul 2010 | A1 |
20100175066 | Paik | Jul 2010 | A1 |
20100179932 | Yoon et al. | Jul 2010 | A1 |
20100179991 | Lorch et al. | Jul 2010 | A1 |
20100185448 | Meisel | Jul 2010 | A1 |
20100185949 | Jaeger | Jul 2010 | A1 |
20100197359 | Harris | Aug 2010 | A1 |
20100199215 | Seymour et al. | Aug 2010 | A1 |
20100204986 | Kennewick et al. | Aug 2010 | A1 |
20100211199 | Naik et al. | Aug 2010 | A1 |
20100217604 | Baldwin et al. | Aug 2010 | A1 |
20100222033 | Scott et al. | Sep 2010 | A1 |
20100222098 | Garg | Sep 2010 | A1 |
20100223055 | Mclean | Sep 2010 | A1 |
20100223056 | Kadirkamanathan | Sep 2010 | A1 |
20100223131 | Scott et al. | Sep 2010 | A1 |
20100228540 | Bennett | Sep 2010 | A1 |
20100228691 | Yang et al. | Sep 2010 | A1 |
20100229082 | Karmarkar et al. | Sep 2010 | A1 |
20100231474 | Yamagajo et al. | Sep 2010 | A1 |
20100235167 | Bourdon | Sep 2010 | A1 |
20100235341 | Bennett | Sep 2010 | A1 |
20100235729 | Kocienda et al. | Sep 2010 | A1 |
20100235770 | Ording et al. | Sep 2010 | A1 |
20100250542 | Fujimaki | Sep 2010 | A1 |
20100250599 | Schmidt et al. | Sep 2010 | A1 |
20100257160 | Cao | Oct 2010 | A1 |
20100257478 | Longe et al. | Oct 2010 | A1 |
20100262599 | Nitz | Oct 2010 | A1 |
20100268539 | Xu et al. | Oct 2010 | A1 |
20100274753 | Liberty et al. | Oct 2010 | A1 |
20100277579 | Cho | Nov 2010 | A1 |
20100278320 | Arsenault et al. | Nov 2010 | A1 |
20100278453 | King | Nov 2010 | A1 |
20100280983 | Cho et al. | Nov 2010 | A1 |
20100281034 | Petrou et al. | Nov 2010 | A1 |
20100286985 | Kennewick et al. | Nov 2010 | A1 |
20100287514 | Cragun et al. | Nov 2010 | A1 |
20100293460 | Budelli | Nov 2010 | A1 |
20100299133 | Kopparapu et al. | Nov 2010 | A1 |
20100299138 | Kim | Nov 2010 | A1 |
20100299142 | Freeman et al. | Nov 2010 | A1 |
20100302056 | Dutton et al. | Dec 2010 | A1 |
20100304705 | Hursey | Dec 2010 | A1 |
20100305807 | Basir et al. | Dec 2010 | A1 |
20100305947 | Schwarz et al. | Dec 2010 | A1 |
20100312547 | Van Os et al. | Dec 2010 | A1 |
20100312566 | Odinak et al. | Dec 2010 | A1 |
20100318576 | Kim | Dec 2010 | A1 |
20100322438 | Siotis | Dec 2010 | A1 |
20100324895 | Kurzweil et al. | Dec 2010 | A1 |
20100324905 | Kurzweil et al. | Dec 2010 | A1 |
20100325573 | Estrada et al. | Dec 2010 | A1 |
20100325588 | Reddy et al. | Dec 2010 | A1 |
20100332224 | Mäkelä et al. | Dec 2010 | A1 |
20100332235 | David | Dec 2010 | A1 |
20100332280 | Bradley et al. | Dec 2010 | A1 |
20100332348 | Cao | Dec 2010 | A1 |
20100332428 | Mchenry et al. | Dec 2010 | A1 |
20100332976 | Fux et al. | Dec 2010 | A1 |
20100333030 | Johns | Dec 2010 | A1 |
20110002487 | Panther et al. | Jan 2011 | A1 |
20110010178 | Lee et al. | Jan 2011 | A1 |
20110010644 | Merrill et al. | Jan 2011 | A1 |
20110016150 | Engstrom et al. | Jan 2011 | A1 |
20110018695 | Bells et al. | Jan 2011 | A1 |
20110021213 | Carr | Jan 2011 | A1 |
20110022292 | Shen et al. | Jan 2011 | A1 |
20110022394 | Wide et al. | Jan 2011 | A1 |
20110022472 | Zon | Jan 2011 | A1 |
20110022952 | Wu et al. | Jan 2011 | A1 |
20110029616 | Wang et al. | Feb 2011 | A1 |
20110033064 | Johnson et al. | Feb 2011 | A1 |
20110038489 | Visser et al. | Feb 2011 | A1 |
20110047072 | Ciurea | Feb 2011 | A1 |
20110047161 | Myaeng et al. | Feb 2011 | A1 |
20110050591 | Kim et al. | Mar 2011 | A1 |
20110054894 | Phillips et al. | Mar 2011 | A1 |
20110054901 | Qin et al. | Mar 2011 | A1 |
20110055256 | Phillips et al. | Mar 2011 | A1 |
20110060584 | Ferrucci et al. | Mar 2011 | A1 |
20110060587 | Phillips et al. | Mar 2011 | A1 |
20110060589 | Weinberg et al. | Mar 2011 | A1 |
20110060807 | Martin et al. | Mar 2011 | A1 |
20110066468 | Huang et al. | Mar 2011 | A1 |
20110072492 | Mohler et al. | Mar 2011 | A1 |
20110076994 | Kim et al. | Mar 2011 | A1 |
20110082688 | Kim et al. | Apr 2011 | A1 |
20110083079 | Farrell et al. | Apr 2011 | A1 |
20110087491 | Wittenstein et al. | Apr 2011 | A1 |
20110090078 | Kim et al. | Apr 2011 | A1 |
20110093261 | Angott | Apr 2011 | A1 |
20110093265 | Stent et al. | Apr 2011 | A1 |
20110093271 | Bernard | Apr 2011 | A1 |
20110099000 | Rai et al. | Apr 2011 | A1 |
20110103682 | Chidlovskii et al. | May 2011 | A1 |
20110106736 | Aharonson et al. | May 2011 | A1 |
20110110502 | Daye et al. | May 2011 | A1 |
20110112827 | Kennewick et al. | May 2011 | A1 |
20110112837 | Kurki-Suonio et al. | May 2011 | A1 |
20110112921 | Kennewick et al. | May 2011 | A1 |
20110116610 | Shaw et al. | May 2011 | A1 |
20110119049 | Ylonen | May 2011 | A1 |
20110119051 | Li et al. | May 2011 | A1 |
20110125540 | Jang et al. | May 2011 | A1 |
20110130958 | Stahl et al. | Jun 2011 | A1 |
20110131036 | DiCristo et al. | Jun 2011 | A1 |
20110131038 | Oyaizu et al. | Jun 2011 | A1 |
20110131045 | Cristo et al. | Jun 2011 | A1 |
20110141141 | Kankainen | Jun 2011 | A1 |
20110143811 | Rodriguez | Jun 2011 | A1 |
20110144973 | Bocchieri et al. | Jun 2011 | A1 |
20110144999 | Jang et al. | Jun 2011 | A1 |
20110145718 | Ketola et al. | Jun 2011 | A1 |
20110151830 | Blanda et al. | Jun 2011 | A1 |
20110153209 | Geelen | Jun 2011 | A1 |
20110153330 | Yazdani et al. | Jun 2011 | A1 |
20110153373 | Dantzig et al. | Jun 2011 | A1 |
20110157029 | Tseng | Jun 2011 | A1 |
20110161076 | Davis et al. | Jun 2011 | A1 |
20110161079 | Gruhn et al. | Jun 2011 | A1 |
20110161309 | Lung et al. | Jun 2011 | A1 |
20110161852 | Vainio et al. | Jun 2011 | A1 |
20110167350 | Hoellwarth | Jul 2011 | A1 |
20110175810 | Markovic et al. | Jul 2011 | A1 |
20110179002 | Dumitru et al. | Jul 2011 | A1 |
20110179372 | Moore et al. | Jul 2011 | A1 |
20110183650 | Mckee et al. | Jul 2011 | A1 |
20110184721 | Subramanian et al. | Jul 2011 | A1 |
20110184730 | LeBeau et al. | Jul 2011 | A1 |
20110191271 | Baker et al. | Aug 2011 | A1 |
20110191344 | Jin et al. | Aug 2011 | A1 |
20110195758 | Damale et al. | Aug 2011 | A1 |
20110201385 | Higginbotham | Aug 2011 | A1 |
20110201387 | Paek et al. | Aug 2011 | A1 |
20110202526 | Lee et al. | Aug 2011 | A1 |
20110205149 | Tom | Aug 2011 | A1 |
20110209088 | Hinckley et al. | Aug 2011 | A1 |
20110212717 | Rhoads et al. | Sep 2011 | A1 |
20110218855 | Cao et al. | Sep 2011 | A1 |
20110219018 | Bailey et al. | Sep 2011 | A1 |
20110224972 | Millett et al. | Sep 2011 | A1 |
20110231182 | Weider et al. | Sep 2011 | A1 |
20110231188 | Kennewick et al. | Sep 2011 | A1 |
20110231474 | Locker et al. | Sep 2011 | A1 |
20110238407 | Kent | Sep 2011 | A1 |
20110238408 | Larcheveque et al. | Sep 2011 | A1 |
20110238676 | Liu et al. | Sep 2011 | A1 |
20110242007 | Gray et al. | Oct 2011 | A1 |
20110249144 | Chang | Oct 2011 | A1 |
20110250570 | Mack et al. | Oct 2011 | A1 |
20110258188 | Abdalmageed et al. | Oct 2011 | A1 |
20110260861 | Singh et al. | Oct 2011 | A1 |
20110264643 | Cao | Oct 2011 | A1 |
20110274303 | Filson et al. | Nov 2011 | A1 |
20110276598 | Kozempel | Nov 2011 | A1 |
20110279368 | Klein et al. | Nov 2011 | A1 |
20110282888 | Koperski et al. | Nov 2011 | A1 |
20110288861 | Kurzweil et al. | Nov 2011 | A1 |
20110298585 | Barry | Dec 2011 | A1 |
20110302162 | Xiao et al. | Dec 2011 | A1 |
20110306426 | Novak et al. | Dec 2011 | A1 |
20110307491 | Fisk et al. | Dec 2011 | A1 |
20110307810 | Hilerio et al. | Dec 2011 | A1 |
20110313775 | Laligand et al. | Dec 2011 | A1 |
20110314032 | Bennett et al. | Dec 2011 | A1 |
20110314404 | Kotler et al. | Dec 2011 | A1 |
20120002820 | Leichter | Jan 2012 | A1 |
20120008754 | Mukherjee et al. | Jan 2012 | A1 |
20120011138 | Dunning et al. | Jan 2012 | A1 |
20120013609 | Reponen et al. | Jan 2012 | A1 |
20120015629 | Olsen et al. | Jan 2012 | A1 |
20120016678 | Gruber et al. | Jan 2012 | A1 |
20120020490 | Leichter | Jan 2012 | A1 |
20120022787 | LeBeau et al. | Jan 2012 | A1 |
20120022857 | Baldwin et al. | Jan 2012 | A1 |
20120022860 | Lloyd et al. | Jan 2012 | A1 |
20120022868 | LeBeau et al. | Jan 2012 | A1 |
20120022869 | Lloyd et al. | Jan 2012 | A1 |
20120022870 | Kristjansson et al. | Jan 2012 | A1 |
20120022872 | Gruber et al. | Jan 2012 | A1 |
20120022874 | Lloyd et al. | Jan 2012 | A1 |
20120022876 | LeBeau et al. | Jan 2012 | A1 |
20120023088 | Cheng et al. | Jan 2012 | A1 |
20120034904 | LeBeau et al. | Feb 2012 | A1 |
20120035907 | Lebeau et al. | Feb 2012 | A1 |
20120035908 | Lebeau et al. | Feb 2012 | A1 |
20120035924 | Jitkoff et al. | Feb 2012 | A1 |
20120035925 | Friend et al. | Feb 2012 | A1 |
20120035931 | LeBeau et al. | Feb 2012 | A1 |
20120035932 | Jitkoff et al. | Feb 2012 | A1 |
20120036556 | LeBeau et al. | Feb 2012 | A1 |
20120042343 | Laligand et al. | Feb 2012 | A1 |
20120053815 | Montanari et al. | Mar 2012 | A1 |
20120053945 | Gupta et al. | Mar 2012 | A1 |
20120056815 | Mehra | Mar 2012 | A1 |
20120078627 | Wagner | Mar 2012 | A1 |
20120082317 | Pance et al. | Apr 2012 | A1 |
20120084086 | Gilbert et al. | Apr 2012 | A1 |
20120108221 | Thomas et al. | May 2012 | A1 |
20120116770 | Chen et al. | May 2012 | A1 |
20120124126 | Alcazar et al. | May 2012 | A1 |
20120136572 | Norton | May 2012 | A1 |
20120136985 | Popescu et al. | May 2012 | A1 |
20120137367 | Dupont et al. | May 2012 | A1 |
20120149394 | Singh et al. | Jun 2012 | A1 |
20120150580 | Norton | Jun 2012 | A1 |
20120158293 | Burnham | Jun 2012 | A1 |
20120158422 | Burnham et al. | Jun 2012 | A1 |
20120159380 | Kocienda et al. | Jun 2012 | A1 |
20120163710 | Skaff et al. | Jun 2012 | A1 |
20120173464 | Tur et al. | Jul 2012 | A1 |
20120174121 | Treat et al. | Jul 2012 | A1 |
20120185237 | Gajic et al. | Jul 2012 | A1 |
20120197743 | Grigg et al. | Aug 2012 | A1 |
20120197995 | Caruso | Aug 2012 | A1 |
20120197998 | Kessel et al. | Aug 2012 | A1 |
20120201362 | Crossan et al. | Aug 2012 | A1 |
20120209853 | Desai et al. | Aug 2012 | A1 |
20120214141 | Raya et al. | Aug 2012 | A1 |
20120214517 | Singh et al. | Aug 2012 | A1 |
20120221339 | Wang et al. | Aug 2012 | A1 |
20120221552 | Reponen et al. | Aug 2012 | A1 |
20120223936 | Aughey et al. | Sep 2012 | A1 |
20120232886 | Capuozzo et al. | Sep 2012 | A1 |
20120232906 | Lindahl et al. | Sep 2012 | A1 |
20120242482 | Elumalai et al. | Sep 2012 | A1 |
20120245719 | Story, Jr. et al. | Sep 2012 | A1 |
20120245941 | Cheyer | Sep 2012 | A1 |
20120245944 | Gruber et al. | Sep 2012 | A1 |
20120252367 | Gaglio et al. | Oct 2012 | A1 |
20120254143 | Varma et al. | Oct 2012 | A1 |
20120254152 | Park et al. | Oct 2012 | A1 |
20120265528 | Gruber et al. | Oct 2012 | A1 |
20120265535 | Bryant-Rich et al. | Oct 2012 | A1 |
20120271625 | Bernard | Oct 2012 | A1 |
20120271635 | Ljolje | Oct 2012 | A1 |
20120271640 | Basir | Oct 2012 | A1 |
20120271676 | Aravamudan et al. | Oct 2012 | A1 |
20120284027 | Mallett et al. | Nov 2012 | A1 |
20120290300 | Lee et al. | Nov 2012 | A1 |
20120295708 | Hernandez-Abrego et al. | Nov 2012 | A1 |
20120296649 | Bansal et al. | Nov 2012 | A1 |
20120296891 | Rangan | Nov 2012 | A1 |
20120304124 | Chen et al. | Nov 2012 | A1 |
20120309363 | Gruber et al. | Dec 2012 | A1 |
20120310642 | Cao et al. | Dec 2012 | A1 |
20120310649 | Cannistraro et al. | Dec 2012 | A1 |
20120310652 | O'Sullivan | Dec 2012 | A1 |
20120311478 | Van Os et al. | Dec 2012 | A1 |
20120311583 | Gruber et al. | Dec 2012 | A1 |
20120311584 | Gruber et al. | Dec 2012 | A1 |
20120311585 | Gruber et al. | Dec 2012 | A1 |
20120317498 | Logan et al. | Dec 2012 | A1 |
20120330660 | Jaiswal | Dec 2012 | A1 |
20120330661 | Lindahl | Dec 2012 | A1 |
20130005405 | Prociw | Jan 2013 | A1 |
20130006633 | Grokop et al. | Jan 2013 | A1 |
20130006638 | Lindahl | Jan 2013 | A1 |
20130007648 | Gamon et al. | Jan 2013 | A1 |
20130041968 | Cohen et al. | Feb 2013 | A1 |
20130054706 | Graham et al. | Feb 2013 | A1 |
20130055099 | Yao et al. | Feb 2013 | A1 |
20130073286 | Bastea-Forte et al. | Mar 2013 | A1 |
20130080167 | Mozer | Mar 2013 | A1 |
20130080177 | Chen | Mar 2013 | A1 |
20130085755 | Bringert et al. | Apr 2013 | A1 |
20130085761 | Bringert et al. | Apr 2013 | A1 |
20130091090 | Spivack et al. | Apr 2013 | A1 |
20130095805 | LeBeau | Apr 2013 | A1 |
20130097566 | Berglund | Apr 2013 | A1 |
20130110505 | Gruber et al. | May 2013 | A1 |
20130110515 | Guzzoni et al. | May 2013 | A1 |
20130110518 | Gruber et al. | May 2013 | A1 |
20130110519 | Cheyer et al. | May 2013 | A1 |
20130110520 | Cheyer et al. | May 2013 | A1 |
20130111348 | Gruber et al. | May 2013 | A1 |
20130111487 | Cheyer et al. | May 2013 | A1 |
20130115927 | Gruber et al. | May 2013 | A1 |
20130117022 | Chen et al. | May 2013 | A1 |
20130144616 | Bangalore et al. | Jun 2013 | A1 |
20130170738 | Capuozzo et al. | Jul 2013 | A1 |
20130185074 | Gruber et al. | Jul 2013 | A1 |
20130185081 | Cheyer et al. | Jul 2013 | A1 |
20130191117 | Atti et al. | Jul 2013 | A1 |
20130218560 | Hsiao et al. | Aug 2013 | A1 |
20130225128 | Gomar | Aug 2013 | A1 |
20130238647 | Thompson | Sep 2013 | A1 |
20130244615 | Miller | Sep 2013 | A1 |
20130275117 | Winer | Oct 2013 | A1 |
20130275875 | Gruber | Oct 2013 | A1 |
20130275899 | Schubert et al. | Oct 2013 | A1 |
20130289991 | Eshwar et al. | Oct 2013 | A1 |
20130289994 | Newman et al. | Oct 2013 | A1 |
20130304479 | Teller et al. | Nov 2013 | A1 |
20130304758 | Gruber et al. | Nov 2013 | A1 |
20130322634 | Bennett | Dec 2013 | A1 |
20130325443 | Begeja et al. | Dec 2013 | A1 |
20130325481 | van Os | Dec 2013 | A1 |
20130325484 | Chakladar | Dec 2013 | A1 |
20130325979 | Mansfield et al. | Dec 2013 | A1 |
20130346068 | Solem et al. | Dec 2013 | A1 |
20140028735 | Williams et al. | Jan 2014 | A1 |
20140068751 | Last | Mar 2014 | A1 |
20140080428 | Rhoads et al. | Mar 2014 | A1 |
20140086458 | Rogers et al. | Mar 2014 | A1 |
20140095171 | Lynch | Apr 2014 | A1 |
20140098247 | Rao et al. | Apr 2014 | A1 |
20140122086 | Kapur et al. | May 2014 | A1 |
20140136195 | Abdossalami et al. | May 2014 | A1 |
20140152577 | Yuen et al. | Jun 2014 | A1 |
20140155031 | Lee et al. | Jun 2014 | A1 |
20140195251 | Zeinstra et al. | Jul 2014 | A1 |
20140222436 | Binder et al. | Aug 2014 | A1 |
20140244258 | Song et al. | Aug 2014 | A1 |
20140274203 | Ganong, III | Sep 2014 | A1 |
20140274211 | Sejnoha | Sep 2014 | A1 |
20140278435 | Ganong et al. | Sep 2014 | A1 |
20140278443 | Gunn | Sep 2014 | A1 |
20140281983 | Xian | Sep 2014 | A1 |
20150161370 | North | Jun 2015 | A1 |
20150161989 | Hsu | Jun 2015 | A1 |
20150179176 | Ryu | Jun 2015 | A1 |
20150245154 | Dadu | Aug 2015 | A1 |
20150255071 | Chiba | Sep 2015 | A1 |
20150340040 | Mun | Nov 2015 | A1 |
20150340042 | Sejnoha | Nov 2015 | A1 |
20150370531 | Faaborg | Dec 2015 | A1 |
20160091967 | Prokofieva | Mar 2016 | A1 |
20160189717 | Kannan | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
2666438 | Jun 2013 | CA |
681573 | Apr 1993 | CH |
1263385 | Aug 2000 | CN |
1369858 | Sep 2002 | CN |
1494695 | May 2004 | CN |
1673939 | Sep 2005 | CN |
1864204 | Nov 2006 | CN |
1959628 | May 2007 | CN |
1975715 | Jun 2007 | CN |
1995917 | Jul 2007 | CN |
101162153 | Apr 2008 | CN |
101183525 | May 2008 | CN |
101297541 | Oct 2008 | CN |
101535983 | Sep 2009 | CN |
101636736 | Jan 2010 | CN |
101939740 | Jan 2011 | CN |
3837590 | May 1990 | DE |
4126902 | Feb 1992 | DE |
4334773 | Apr 1994 | DE |
4445023 | Jun 1996 | DE |
10-2004-029203 | Dec 2005 | DE |
19841541 | Dec 2007 | DE |
0030390 | Jun 1981 | EP |
0057514 | Aug 1982 | EP |
0509880 | Sep 1982 | EP |
0138061 | Apr 1985 | EP |
0140777 | May 1985 | EP |
0218859 | Apr 1987 | EP |
0262938 | Apr 1988 | EP |
0138061 | Jun 1988 | EP |
0283995 | Sep 1988 | EP |
0293259 | Nov 1988 | EP |
0299572 | Jan 1989 | EP |
0313975 | May 1989 | EP |
0314908 | May 1989 | EP |
0327408 | Aug 1989 | EP |
0389271 | Sep 1990 | EP |
0411675 | Feb 1991 | EP |
0441089 | Aug 1991 | EP |
0464712 | Jan 1992 | EP |
0476972 | Mar 1992 | EP |
0534410 | Mar 1993 | EP |
0558312 | Sep 1993 | EP |
0559349 | Sep 1993 | EP |
0570660 | Nov 1993 | EP |
0575146 | Dec 1993 | EP |
0578604 | Jan 1994 | EP |
0586996 | Mar 1994 | EP |
0609030 | Aug 1994 | EP |
0651543 | May 1995 | EP |
0679005 | Oct 1995 | EP |
0795811 | Sep 1997 | EP |
0476972 | May 1998 | EP |
0845894 | Jun 1998 | EP |
0863453 | Sep 1998 | EP |
0863469 | Sep 1998 | EP |
0867860 | Sep 1998 | EP |
0869697 | Oct 1998 | EP |
0559349 | Jan 1999 | EP |
0889626 | Jan 1999 | EP |
0917077 | May 1999 | EP |
0691023 | Sep 1999 | EP |
0946032 | Sep 1999 | EP |
0981236 | Feb 2000 | EP |
0982732 | Mar 2000 | EP |
0984430 | Mar 2000 | EP |
1001588 | May 2000 | EP |
1014277 | Jun 2000 | EP |
1028425 | Aug 2000 | EP |
1028426 | Aug 2000 | EP |
1047251 | Oct 2000 | EP |
1052566 | Nov 2000 | EP |
1076302 | Feb 2001 | EP |
1091615 | Apr 2001 | EP |
1094406 | Apr 2001 | EP |
1107229 | Jun 2001 | EP |
1229496 | Aug 2002 | EP |
1233600 | Aug 2002 | EP |
1245023 | Oct 2002 | EP |
1246075 | Oct 2002 | EP |
1280326 | Jan 2003 | EP |
1291848 | Mar 2003 | EP |
1311102 | May 2003 | EP |
1315084 | May 2003 | EP |
1315086 | May 2003 | EP |
1347361 | Sep 2003 | EP |
1368961 | Dec 2003 | EP |
1379061 | Jan 2004 | EP |
1432219 | Jun 2004 | EP |
1435620 | Jul 2004 | EP |
1480421 | Nov 2004 | EP |
1517228 | Mar 2005 | EP |
1536612 | Jun 2005 | EP |
1566948 | Aug 2005 | EP |
1650938 | Apr 2006 | EP |
1693829 | Aug 2006 | EP |
1739546 | Jan 2007 | EP |
1181802 | Feb 2007 | EP |
1818786 | Aug 2007 | EP |
1892700 | Feb 2008 | EP |
1912205 | Apr 2008 | EP |
1939860 | Jul 2008 | EP |
651543 | Sep 2008 | EP |
1909263 | Jan 2009 | EP |
1335620 | Mar 2009 | EP |
2069895 | Jun 2009 | EP |
2094032 | Aug 2009 | EP |
2109295 | Oct 2009 | EP |
1720375 | Jul 2010 | EP |
2205010 | Jul 2010 | EP |
2309491 | Apr 2011 | EP |
2400373 | Dec 2011 | EP |
2431842 | Mar 2012 | EP |
2551784 | Jan 2013 | EP |
2575128 | Apr 2013 | EP |
2733598 | May 2014 | EP |
2293667 | Apr 1996 | GB |
2310559 | Aug 1997 | GB |
2342802 | Apr 2000 | GB |
2343285 | May 2000 | GB |
2346500 | Aug 2000 | GB |
2352377 | Jan 2001 | GB |
2384399 | Jul 2003 | GB |
2402855 | Dec 2004 | GB |
2445436 | Jul 2008 | GB |
FI20010199 | Apr 2003 | IT |
55-80084 | Jun 1980 | JP |
57-41731 | Mar 1982 | JP |
59-57336 | Apr 1984 | JP |
62-153326 | Jul 1987 | JP |
1-254742 | Oct 1989 | JP |
2-86397 | Mar 1990 | JP |
2-153415 | Jun 1990 | JP |
3-113578 | May 1991 | JP |
4-236624 | Aug 1992 | JP |
5-79951 | Mar 1993 | JP |
5-165459 | Jul 1993 | JP |
5-293126 | Nov 1993 | JP |
6-19965 | Jan 1994 | JP |
6-69954 | Mar 1994 | JP |
6-274586 | Sep 1994 | JP |
6-332617 | Dec 1994 | JP |
7-199379 | Aug 1995 | JP |
7-320051 | Dec 1995 | JP |
7-320079 | Dec 1995 | JP |
8-63330 | Mar 1996 | JP |
8-185265 | Jul 1996 | JP |
08-223281 | Aug 1996 | JP |
8-227341 | Sep 1996 | JP |
9-18585 | Jan 1997 | JP |
9-55792 | Feb 1997 | JP |
9-259063 | Oct 1997 | JP |
9-265457 | Oct 1997 | JP |
10-31497 | Feb 1998 | JP |
10-105324 | Apr 1998 | JP |
11-6743 | Jan 1999 | JP |
11-45241 | Feb 1999 | JP |
11-265400 | Sep 1999 | JP |
2000-90119 | Mar 2000 | JP |
2000-99225 | Apr 2000 | JP |
2000-134407 | May 2000 | JP |
2000-163031 | Jun 2000 | JP |
2000-207167 | Jul 2000 | JP |
2000-224663 | Aug 2000 | JP |
2000-272349 | Oct 2000 | JP |
2000-331004 | Nov 2000 | JP |
2000-339137 | Dec 2000 | JP |
2001-034290 | Feb 2001 | JP |
2001-56233 | Feb 2001 | JP |
2001-125896 | May 2001 | JP |
2001-148899 | May 2001 | JP |
2002-14954 | Jan 2002 | JP |
2002-024212 | Jan 2002 | JP |
2002-041624 | Feb 2002 | JP |
2002-082748 | Mar 2002 | JP |
2002-82893 | Mar 2002 | JP |
2002-342033 | Nov 2002 | JP |
2002-344880 | Nov 2002 | JP |
2002-542501 | Dec 2002 | JP |
2003-44091 | Feb 2003 | JP |
2003-84877 | Mar 2003 | JP |
2003-517158 | May 2003 | JP |
2003-233568 | Aug 2003 | JP |
2003-244317 | Aug 2003 | JP |
2003-288356 | Oct 2003 | JP |
2004-48804 | Feb 2004 | JP |
2004-054080 | Feb 2004 | JP |
2004-505322 | Feb 2004 | JP |
2004-505525 | Feb 2004 | JP |
2004-86356 | Mar 2004 | JP |
2004-152063 | May 2004 | JP |
2005-070645 | Mar 2005 | JP |
2005-86624 | Mar 2005 | JP |
2005-506602 | Mar 2005 | JP |
2005-92441 | Apr 2005 | JP |
2005-149481 | Jun 2005 | JP |
2005-181386 | Jul 2005 | JP |
2005-189454 | Jul 2005 | JP |
2005-221678 | Aug 2005 | JP |
2005-283843 | Oct 2005 | JP |
2005-311864 | Nov 2005 | JP |
2005-332212 | Dec 2005 | JP |
2006-023860 | Jan 2006 | JP |
2006-031092 | Feb 2006 | JP |
2006-080617 | Mar 2006 | JP |
2006-107438 | Apr 2006 | JP |
2006-146008 | Jun 2006 | JP |
2006-195637 | Jul 2006 | JP |
2007-4633 | Jan 2007 | JP |
2007-053796 | Mar 2007 | JP |
2007-079690 | Mar 2007 | JP |
2007-193794 | Aug 2007 | JP |
2007-206317 | Aug 2007 | JP |
2007-299352 | Nov 2007 | JP |
2008-26381 | Feb 2008 | JP |
2008-39928 | Feb 2008 | JP |
2008-90545 | Apr 2008 | JP |
2008-97003 | Apr 2008 | JP |
2008-134949 | Jun 2008 | JP |
2008-526101 | Jul 2008 | JP |
2008-198022 | Aug 2008 | JP |
2008-217468 | Sep 2008 | JP |
2008-233678 | Oct 2008 | JP |
2008-236448 | Oct 2008 | JP |
2008-271481 | Nov 2008 | JP |
2009-503623 | Jan 2009 | JP |
2009-036999 | Feb 2009 | JP |
2009-47920 | Mar 2009 | JP |
2009-98490 | May 2009 | JP |
2009-186989 | Aug 2009 | JP |
2009-205367 | Sep 2009 | JP |
2009-294913 | Dec 2009 | JP |
2009-294946 | Dec 2009 | JP |
2010-78979 | Apr 2010 | JP |
2010-518526 | May 2010 | JP |
2010-157207 | Jul 2010 | JP |
2010-535377 | Nov 2010 | JP |
2010-287063 | Dec 2010 | JP |
2011-041026 | Feb 2011 | JP |
2011-059659 | Mar 2011 | JP |
2013-511214 | Mar 2013 | JP |
2013-517566 | May 2013 | JP |
10-1999-0073234 | Oct 1999 | KR |
11-2002-0013984 | Feb 2002 | KR |
10-2002-0057262 | Jul 2002 | KR |
10-2002-0064149 | Aug 2002 | KR |
10-2002-0069952 | Sep 2002 | KR |
10-2003-0016993 | Mar 2003 | KR |
10-2004-0044632 | May 2004 | KR |
10-2005-0083561 | Aug 2005 | KR |
10-2005-0090568 | Sep 2005 | KR |
10-2006-0011603 | Feb 2006 | KR |
10-2006-0012730 | Feb 2006 | KR |
10-2006-0073574 | Jun 2006 | KR |
10-2006-0091469 | Aug 2006 | KR |
10-2007-0024262 | Mar 2007 | KR |
10-2007-0071675 | Jul 2007 | KR |
10-0757496 | Sep 2007 | KR |
10-2007-0100837 | Oct 2007 | KR |
10-0776800 | Nov 2007 | KR |
10-0801227 | Feb 2008 | KR |
10-0810500 | Mar 2008 | KR |
10-2008-0049647 | Jun 2008 | KR |
10-2008-0109322 | Dec 2008 | KR |
10-2009-0001716 | Jan 2009 | KR |
10-2009-0086805 | Aug 2009 | KR |
10-0920267 | Oct 2009 | KR |
10-2009-0122944 | Dec 2009 | KR |
10-2010-0119519 | Nov 2010 | KR |
10-1032792 | May 2011 | KR |
10-2011-0113414 | Oct 2011 | KR |
10-1193668 | Dec 2012 | KR |
1014847 | Oct 2001 | NL |
2273106 | Mar 2006 | RU |
2349970 | Mar 2009 | RU |
2353068 | Apr 2009 | RU |
200643744 | Dec 2006 | TW |
200801988 | Jan 2008 | TW |
201227715 | Jul 2012 | TW |
1993020640 | Oct 1993 | WO |
1994016434 | Jul 1994 | WO |
1994029788 | Dec 1994 | WO |
1995002221 | Jan 1995 | WO |
1995016950 | Jun 1995 | WO |
1995017746 | Jun 1995 | WO |
1997010586 | Mar 1997 | WO |
1997026612 | Jul 1997 | WO |
1997029614 | Aug 1997 | WO |
1997038488 | Oct 1997 | WO |
1997049044 | Dec 1997 | WO |
1998009270 | Mar 1998 | WO |
1998033111 | Jul 1998 | WO |
1998041956 | Sep 1998 | WO |
1999001834 | Jan 1999 | WO |
1999008238 | Feb 1999 | WO |
1999016181 | Apr 1999 | WO |
1999056227 | Nov 1999 | WO |
2000019697 | Apr 2000 | WO |
2000022820 | Apr 2000 | WO |
2000029964 | May 2000 | WO |
2000030070 | May 2000 | WO |
2000038041 | Jun 2000 | WO |
2000044173 | Jul 2000 | WO |
2000060435 | Oct 2000 | WO |
2000063766 | Oct 2000 | WO |
2000068936 | Nov 2000 | WO |
2001006489 | Jan 2001 | WO |
2001030046 | Apr 2001 | WO |
2001030047 | Apr 2001 | WO |
2001060435 | Apr 2001 | WO |
2001033569 | May 2001 | WO |
2001035391 | May 2001 | WO |
2001046946 | Jun 2001 | WO |
2001065413 | Sep 2001 | WO |
2001067753 | Sep 2001 | WO |
2002010900 | Feb 2002 | WO |
2002025610 | Mar 2002 | WO |
2002031814 | Apr 2002 | WO |
2002037469 | May 2002 | WO |
2002071259 | Sep 2002 | WO |
2002073603 | Sep 2002 | WO |
2003003152 | Jan 2003 | WO |
2003003765 | Jan 2003 | WO |
2003023786 | Mar 2003 | WO |
2003041364 | May 2003 | WO |
2003049494 | Jun 2003 | WO |
2003056789 | Jul 2003 | WO |
2003067202 | Aug 2003 | WO |
2003084196 | Oct 2003 | WO |
2003094489 | Nov 2003 | WO |
2004008801 | Jan 2004 | WO |
2004025938 | Mar 2004 | WO |
2004047415 | Jun 2004 | WO |
2004055637 | Jul 2004 | WO |
2004057486 | Jul 2004 | WO |
2004061850 | Jul 2004 | WO |
2004084413 | Sep 2004 | WO |
2005003920 | Jan 2005 | WO |
2005008505 | Jan 2005 | WO |
2005008899 | Jan 2005 | WO |
2005010725 | Feb 2005 | WO |
2005027472 | Mar 2005 | WO |
2005027485 | Mar 2005 | WO |
2005031737 | Apr 2005 | WO |
2005034085 | Apr 2005 | WO |
2005041455 | May 2005 | WO |
2005059895 | Jun 2005 | WO |
2005069171 | Jul 2005 | WO |
2005101176 | Oct 2005 | WO |
2006020305 | Feb 2006 | WO |
2006037545 | Apr 2006 | WO |
2006054724 | May 2006 | WO |
2006056822 | Jun 2006 | WO |
2006078246 | Jul 2006 | WO |
2006084144 | Aug 2006 | WO |
2006101649 | Sep 2006 | WO |
2006129967 | Dec 2006 | WO |
2006133571 | Dec 2006 | WO |
2007002753 | Jan 2007 | WO |
2007080559 | Jul 2007 | WO |
2007083894 | Jul 2007 | WO |
2008030970 | Mar 2008 | WO |
2008071231 | Jun 2008 | WO |
2008085742 | Jul 2008 | WO |
2008098900 | Aug 2008 | WO |
2008109835 | Sep 2008 | WO |
2008120036 | Oct 2008 | WO |
2008130095 | Oct 2008 | WO |
2008140236 | Nov 2008 | WO |
2008142472 | Nov 2008 | WO |
2008153639 | Dec 2008 | WO |
2009009240 | Jan 2009 | WO |
2009016631 | Feb 2009 | WO |
2009017280 | Feb 2009 | WO |
2009104126 | Aug 2009 | WO |
2009156438 | Dec 2009 | WO |
2009156978 | Dec 2009 | WO |
2010075623 | Jul 2010 | WO |
2011057346 | May 2011 | WO |
2011060106 | May 2011 | WO |
2011088053 | Jul 2011 | WO |
2011116309 | Sep 2011 | WO |
2011133543 | Oct 2011 | WO |
2011150730 | Dec 2011 | WO |
2011163350 | Dec 2011 | WO |
2012154317 | Nov 2012 | WO |
2012155079 | Nov 2012 | WO |
2012167168 | Dec 2012 | WO |
2013048880 | Apr 2013 | WO |
2013169842 | Nov 2013 | WO |
2014028797 | Feb 2014 | WO |
2014031505 | Feb 2014 | WO |
2014078965 | May 2014 | WO |
2015084659 | Jun 2015 | WO |
Entry |
---|
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2016/021410, dated Apr. 28, 2016, 2 pages. |
“Interactive Voice”, available at <http://www.helloivee.com/company/>, retrieved on Feb. 10, 2014, 2 pages. |
“Meet Ivee, Your Wi-Fi Voice Activated Assistant”, available at <http://www.helloivee.com/>, retrieved on Feb. 10, 2014, 8 pages. |
“Speaker Recognition”, Wikipedia, The Free Enclyclopedia, Nov. 2, 2010, 4 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/029810, dated Oct. 3, 2013, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/029810, dated Aug. 17, 2012, 11 pages. |
Extended European Search Report and Search Opinion received for European Patent Application No. 12185276.8, dated Dec. 18, 2012, 4 pages. |
Extended European Search Report received for European Patent Application No. 12186663.6, dated Jul. 16, 2013, 6 pages. |
Apple Computer, “Knowledge Navigator”, published by Apple Computer no later than 2008, as depicted in Exemplary Screenshots from video entitled ‘Knowledge Navigator’, 2008, 7 pages. |
Applebaum et al., “Enhancing the Discrimination of Speaker Independent Hidden Markov Models with Corrective Training”, International Conference on Acoustics, Speech, and Signal Processing, May 23, 1989, pp. 302-305. |
Bellegarda, Jerome R. “Latent Semantic Mapping”, IEEE Signal Processing Magazine, vol. 22, No. 5, Sep. 2005, pp. 70-80. |
Bellegarda et al,, “Tied Mixture Continuous Parameter Modeling for Speech Recognition”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 38, No. 12, Dec. 1990, pp, 2033-2045. |
Chang et al., “Discriminative Training of Dynamic Programming based Speech Recognizers”, IEEE Transactions on Speech and Audio Processing, vol. 1, No. 2, Apr. 1993, pp. 135-143. |
Cheyer et al., “Demonstration Video of Multimodal Maps Using an Agent Architecture”, published by SRI International no later than 1996, as depicted in Exemplary Screenshots from video entitled Demonstration Video of Multimodal Maps Using an Agent Architecture, 1996, 6 pages. |
Cheyer et al., “Demonstration Video of Multimodal Maps Using an Open-Agent Architecture”, published by SRI International no later than 1996, as depicted in Exemplary Screenshots from video entitled Demonstration Video of Multimodal Maps Using an Open-Agent Architecture, 6 pages. |
Cheyer, A., “Demonstration Video of Vanguard Mobile Portal”, published by SRI International no later than 2004, as depicted in ‘Exemplary Screenshots from video entitled Demonstration Video of Vanguard Mobile Portal’, 2004, 10 pages. |
Choi et al., “Acoustic and Visual Signal based Context Awareness System for Mobile Application”, IEEE Transactions on Consumer Electronics, vol. 57, No. 2, May 2011, pp. 738-746. |
Kickstarter, “Ivee Sleek: Wi-Fi Voice-Activated Assistant”, available at <https://www.kickstarter.com/projects/ivee/ivee-sleek-wi-fi-voice-activated-assistant>, retrieved on Feb. 10, 2014, 13 pages. |
Navigli, Roberto, “Word Sense Disambiguation: A Survey”, ACM Computing Surveys, vol. 41, No. 2, Feb. 2009, 70 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/015418, dated Aug. 26, 2014, 17 pages. |
Guim, Mark, “How to Set a Person-Based Reminder with Cortana”, available at <http://www.wpcentral.com/how-to-person-based-reminder-cortana>, Apr. 26, 2014, 15 pages. |
Miller, Chance, “Google Keyboard Updated with New Personalized Suggestions Feature”, available at <http://9to5google.com/2014/03/19/google-keyboard-updated-with-new-personalized-suggestions-feature/>, Mar. 19, 2014, 4 pages. |
Roddy et al., “Interface Issues in Text Based Chat Rooms”, SIGCHI Bulletin, vol. 30, No. 2, Apr. 1998, pp. 119-123. |
Viegas et al., “Chat Circles”, SIGCHI Conference on Human Factors in Computing Systems, May 15-20, 1999, pp. 9-16. |
Davis et al., “A Personal Handheld Multi-Modal Shopping Assistant”, International Conference on Networking and Services, IEEE, 2006, 9 pages. |
SRI, “SRI Speech: Products: Software Development Kits: EduSpeak”, available at <http://web.archive.org/web/20090828084033/http://www.speechatsri.com/products/eduspeak>shtml, retrieved on Jun. 20, 2013, 2 pages. |
“Mel Scale”, Wikipedia the Free Encyclopedia, Last modified on Oct. 13, 2009 and retrieved on Jul. 28, 2010, available at <http://en.wikipedia.org/wiki/Mel—scale>, 2 pages. |
“Minimum Phase”, Wikipedia the free Encyclopedia, Last modified on Jan. 12, 2010 and retrieved on Jul. 28, 2010, available at <http://en.wikipedia.org/wiki/Minimum—phase>, 8 pages. |
Acero et al., “Environmental Robustness in Automatic Speech Recognition”, International Conference on Acoustics, Speech and Signal Processing (ICASSP'90), Apr. 1990, 4 pages. |
Acero et al., “Robust Speech Recognition by Normalization of the Acoustic Space”, International Conference on Acoustics, Speech and Signal Processing, 1991, 4 pages. |
Agnas et al., “Spoken Language Translator: First-Year Report”, SICS (ISSN 0283-3638), SRI and Telia Research AB, Jan. 1994, 161 pages. |
Ahlbom et al., Modeling Spectral Speech Transitions Using Temporal Decomposition Techniques, IEEE International Conference of Acoustics, Speech and Signal Processing (ICASSP'87), vol. 12, Apr. 1987, 4 pages. |
Alfred App, “Alfred”, available at <http://www.alfredapp.com/>, retrieved on Feb. 8, 2012, 5 pages. |
Allen, J., “Natural Language Understanding”, 2nd Edition, The Benjamin/Cummings Publishing Company, Inc., 1995, 671 pages. |
Alshawi et al., “CLARE: A Contextual Reasoning and Co-operative Response Framework for the Core Language Engine”, SRI International, Cambridge Computer Science Research Centre, Cambridge, Dec. 1992, 273 pages. |
Alshawi et al., “Declarative Derivation of Database Queries from Meaning Representations”, Proceedings of the BANKAI Workshop on Intelligent Information Access, Oct. 1991, 12 pages. |
Alshawi et al., “Logical Forms in the Core Language Engine”, Proceedings of the 27th Annual Meeting of the Association for Computational Linguistics, 1989, pp, 25-32. |
Alshawi et al., “Overview of the Core Language Engine”, Proceedings of Future Generation Computing Systems,Tokyo, 13 pages. |
Alshawi, H., “Translation and Monotonic Interpretation/Generation”, SRI International, Cambridge Computer Science Research Centre, Cambridge, available at <http://www.cam.sri.com/tr/crc024/paper.ps.Z1992>, Jul. 1992, 18 pages. |
Ambite et al., “Design and Implementation of the CALO Query Manager”, American Association for Artificial Intelligence, 2006, 8 pages. |
Ambite et al., “Integration of Heterogeneous Knowledge Sources in the CALO Query Manager”, The 4th International Conference on Ontologies, Databases and Applications of Semantics (ODBASE), 2005, 18 pages. |
Anastasakos et al., “Duration Modeling in Large Vocabulary Speech Recognition”, International Conference on Acoustics, Speech and Signal Processing (ICASSP'95), May 1995, pp. 628-631. |
Anderson el al., “Syntax-Directed Recognition of Hand-Printed Two-Dimensional Mathematics”, Proceedings of Symposium on Interactive Systems for Experimental Applied Mathematics: Proceedings of the Association for Computing Machinery Inc. Symposium, 1967, 12 pages. |
Ansari et al., “Pitch Modification of Speech using a Low-Sensitivity Inverse Filter Approach”, IEEE Signal Processing Letters, vol. 5, No. 3, Mar. 1998, pp. 60-62. |
Anthony et al., “Supervised Adaption for Signature Verification System”, IBM Technical Disclosure, Jun. 1, 1978, 3 pages. |
Appelt et al., “Fastus: A Finite-State Processor for Information Extraction from Real-world Text”, Proceedings of IJCAI, 1993, 8 pages. |
Appelt et al., “SRI International Fastus System MUC-6 Test Results and Analysis”, SRI International, Menlo Park, California, 1995, 12 pages. |
Apple Computer, “Guide Maker User's Guide”, Apple Computer, Inc., Apr. 27, 1994, 8 pages. |
Apple Computer, “Introduction to Apple Guide”, Apple Computer, Inc., Apr. 28, 1994, 20 pages. |
Archbold et al., “A Team User's Guide”, SRI International, Dec. 21, 1981, 70 pages. |
Asanovic et al., “Experimental Determination of Precision Requirements for Back-Propagation Training of Artificial Neural Networks”, Proceedings of the 2nd International Conference of Microelectronics for Neural Networks, 1991, www.ICSI.Berkelev.EDU, 1991, 7 pages. |
Atal et al., “Efficient Coding of LPC Parameters by Temporal Decomposition”, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'83), Apr. 1983, 4 pages. |
Bahl et al., “A Maximum Likelihood Approach to Continuous Speech Recognition”, IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. PAMI-5, No. 2, Mar. 1983, 13 pages. |
Bahl et al., “A Tree-Based Statistical Language Model for Natural Language Speech Recognition”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 37, No. 7, Jul. 1989, 8 pages. |
Bahl et al., “Acoustic Markov Models Used in the Tangora Speech Recognition System”, Proceeding of International Conference on Acoustics, Speech and Signal Processing (ICASSP'88), vol. 1, Apr. 1988, 4 pages. |
Bahl et al., “Large Vocabulary Natural Language Continuous Speech Recognition”, Proceedings of 1989 International Conference on Acoustics, Speech and Signal Processing, vol. 1, May 1989, 6 pages. |
Bahl et al., “Multonic Markov Word Models for Large Vocabulary Continuous Speech Recognition”, IEEE Transactions on Speech and Audio Processing, vol. 1, No. 3, Jul. 1993, 11 pages. |
Bahl et al., “Speech Recognition with Continuous-Parameter Hidden Markov Models”, Proceeding of International Conference on Acoustics, Speech and Signal Processing (ICASSP'88), vol. 1, Apr. 1988, 8 pages. |
Banbrook, M., “Nonlinear Analysis of Speech from a Synthesis Perspective”, A Thesis Submitted for the Degree of Doctor of Philosophy, The University of Edinburgh, Oct. 15, 1996, 35 pages. |
Bear et al., “A System for Labeling Self-Repairs in Speech”, SRI International, Feb. 22, 1993, 9 pages. |
Bear et al., “Detection and Correction of Repairs in Human-Computer Dialog”, SRI International, May 1992, 11 pages. |
Bear et al., “Integrating Multiple Knowledge Sources for Detection and Correction of Repairs in Human-Computer Dialog”, Proceedings of the 30th Annual Meeting on Association for Computational Linguistics (ACL), 1992, 8 pages. |
Bear et al., “Using Information Extraction to Improve Document Retrieval”, SRI International, Menlo Park, California, 1998, 11 pages. |
Belaid et al., “A Syntactic Approach for Handwritten Mathematical Formula Recognition”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-6, No. 1, Jan. 1984, 7 pages. |
Bellegarda et al., “A Latent Semantic Analysis Framework for Large-Span Language Modeling”, 5th European Conference on Speech, Communication and Technology (EUROSPEECH'97), Sep. 1997, 4 pages. |
Bellegarda et al., “A Multispan Language Modeling Framework for Large Vocabulary Speech Recognition”, IEEE Transactions on Speech and Audio Processing, vol. 6, No. 5, Sep. 1998, 12 pages. |
Bellegarda et al., “A Novel Word Clustering Algorithm Based on Latent Semantic Analysis”, Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'96), vol. 1, 1996, 4 pages. |
Bellegarda et al., “Experiments Using Data Augmentation for Speaker Adaptation”, International Conference on Acoustics, Speech and Signal Processing (ICASSP'95), May 1995, 4 pages. |
Bellegarda, Jerome R., “Exploiting Latent Semantic Information in Statistical Language Modeling”, Proceedings of the IEEE, vol. 88, No. 8, Aug. 2000, 18 pages. |
Bellegarda, Jerome R., “Interaction-Driven Speech Input—A Data-Driven Approach to the Capture of both Local and Global Language Constraints”, available at <http://old.sig.chi.ora/bulletin/1998.2/bellegarda.html>, 1992, 7 pages. |
Bellegarda, Jerome R., “Large Vocabulary Speech Recognition with Multispan Statistical Language Models”, IEEE Transactions on Speech and Audio Processing, vol. 8, No. 1, Jan. 2000, 9 pages. |
Bellegarda et al., “On-Line Handwriting Recognition using Statistical Mixtures”, Advances in Handwriting and Drawings: A Multidisciplinary Approach, Europia, 6th International IGS Conference on Handwriting and Drawing, Paris, France, Jul. 1993, 11 pages. |
Appelt et al., “SRI: Description of the JV-FASTUS System used for MUC-5”, SRI International, Artificial Intelligence Center, 1993, 19 pages. |
Bellegarda, Jerome R., “Exploiting both Local and Global Constraints for Multi-Span Statistical Language Modeling”, Proceeding of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing (1CASSP'98), vol. 2, May 1998, 5 pages. |
“Top 10 Best Practices for Voice User Interface Design” available at <http://www.developer.com/voice/article.php/1567051/Top-10-Best-Practices-for-Voice-UserInterface-Design.htm>, Nov. 1, 2002, 4 pages. |
Combined Search Report and Examination Report under Sections 17 and 18(3) received for GB Patent Application No. 1009318.5, dated Oct. 8, 2010, 5 pages. |
Combined Search Report and Examination Report under Sections 17 and 18(3) received for GB Patent Application No. 1217449.6, dated Jan. 17, 2013, 6 pages. |
Aikawa et al., “Speech Recognition Using Time-Warping Neural Networks”, Proceedings of the 1991, IEEE Workshop on Neural Networks for Signal Processing, 1991, 10 pages. |
Bellegarda et al., “Performance of the IBM Large Vocabulary Continuous Speech Recognition System on the ARPA Wall Street Journal Task”, Signal Processing VII: Theories and Applications, European Association for Signal Processing, 1994, 4 pages. |
Bellegarda et al., “The Metamorphic Algorithm: A Speaker Mapping Approach to Data Augmentation”, IEEE Transactions on Speech and Audio Processing, vol. 2, No. 3, Jul. 1994, 8 pages. |
Belvin et al., “Development of the HRL Route Navigation Dialogue System”, Proceedings of the First International Conference on Human Language Technology Research, Paper, 2001, 5 pages. |
Berry et al., “PTIME: Personalized Assistance for Calendaring”, ACM Transactions on Intelligent Systems and Technology, vol. 2, No. 4, Article 40, Jul. 2011, pp. 1-22. |
Berry et al., “Task Management under Change and Uncertainty Constraint Solving Experience with the CALO Project”, Proceedings of CP'05 Workshop on Constraint Solving under Change, 2005, 5 pages. |
Black et al., “Automatically Clustering Similar Units for Unit Selection in Speech Synthesis”, Proceedings of Eurospeech, vol. 2, 1997, 4 pages. |
Blair et al., “An Evaluation of Retrieval Effectiveness for a Full-Text Document-Retrieval System”, Communications of the ACM, vol. 28, No. 3, Mar. 1985, 11 pages. |
Bobrow et al., “Knowledge Representation for Syntactic/Semantic Processing”, From: AAA-80 Proceedings, Copyright 1980, AAAI, 1980, 8 pages. |
Bouchou et al., “Using Transducers in Natural Language Database Query”, Proceedings of 4th International Conference on Applications of Natural Language to Information Systems, Austria, Jun. 1999, 17 pages. |
Bratt et al., “The SRI Telephone-Based ATIS System”, Proceedings of ARPA Workshop on Spoken Language Technology, 1995, 3 pages. |
Briner, L. L., “Identifying Keywords in Text Data Processing”, In Zelkowitz Marvin V., ED, Directions and Challenges, 15th Annual Technical Symposium, Gaithersbury, Maryland, Jun. 17, 1976, 7 pages. |
Bulyko et al., “Error-Correction Detection and Response Generation in a Spoken Dialogue System”, Speech Communication, vol. 45, 2005, pp. 271-288. |
Bulyko et al., “Joint Prosody Prediction and Unit Selection for Concatenative Speech Synthesis”, Electrical Engineering Department, University of Washington, Seattle, 2001, 4 pages. |
Burke et al., “Question Answering from Frequently Asked Question Files”, AI Magazine, vol. 18, No. 2, 1997, 10 pages. |
Burns et al., “Development of a Web-Based Intelligent Agent for the Fashion Selection and Purchasing Process via Electronic Commerce”, Proceedings of the Americas Conference on Information System (AMCIS), Dec. 31, 1998, 4 pages. |
Bussey, et al., “Service Architecture, Prototype Description and Network Implications of a Personalized Information Grazing Service”, INFOCOM'90, Ninth Annual Joint Conference of the IEEE Computer and Communication Societies, Available at <http://slrohall.com/oublications/>, Jun. 1990, 8 pages. |
Bussler et al., “Web Service Execution Environment (WSMX)”, retrieved from Internet on Sep. 17, 2012, available at <http://www.w3.org/Submission/WSMX>, Jun. 3, 2005, 29 pages. |
Butcher, Mike, “EVI Arrives in Town to go Toe-to-Toe with Siri”, TechCrunch, Jan. 23, 2012, 2 pages. |
Buzo et al., “Speech Coding Based Upon Vector Quantization”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. Assp-28, No. 5, Oct. 1980, 13 pages. |
Caminero-Gil et al., “Data-Driven Discourse Modeling for Semantic Interpretation”, Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, May 1996, 6 pages. |
Car Working Group, “Hands-Free Profile 1.5 HFP1.5—SPEC”, Bluetooth Doc, available at <www.bluetooth.org>, Nov. 25, 2005, 93 pages. |
Carter, D., “Lexical Acquisition in the Core Language Engine”, Proceedings of the Fourth Conference of the European Chapter of the Association for Computational Linguistics, 1989, 8 pages. |
Carter et al., “The Speech-Language Interface in the Spoken Language Translator”. SRI International, Nov. 23, 1994, 9 pages. |
Cawley, Gavin C. “The Application of Neural Networks to Phonetic Modelling”, PhD. Thesis, University of Essex, Mar. 1996, 13 pages. |
Chai et al., “Comparative Evaluation of a Natural Language Dialog Based System and a Menu Driven System for Information Access: A Case Study”, Proceedings of the International Conference on Multimedia Information Retrieval (RIAO), Paris, Apr. 2000, 11 pages. |
Chang et al., “A Segment-Based Speech Recognition System for Isolated Mandarin Syllables”, Proceedings TEN CON '93, IEEE Region 10 Conference on Computer, Communication, Control and Power Engineering, vol. 3, Oct. 1993, 6 pages. |
Chen. Yi, “Multimedia Siri Finds and Plays Whatever You Ask for”, PSFK Report, Feb. 9, 2012, 9 pages. |
Cheyer, Adam, “A Perspective on AI & Agent Technologies for SCM”, VerticalNet Presentation, 2001, 22 pages. |
Cheyer, Adam, “About Adam Cheyer”, available at <http://www.adam.cheyer.com/about.htrnl>, retrieved on Sep. 17, 2012, 2 pages. |
Cheyer et al., “Multimodal Maps: An Agent-Based Approach”, International Conference on Co-operative Multimodal Communication, 1995, 15 pages. |
Cheyer et al., “Spoken Language and Multimodal Applications for Electronic Realties”, Virtual Reality, vol. 3, 1999, pp. 1-15. |
Cheyer et al., “The Open Agent Architecture”, Autonomous Agents and Multi-Agent Systems, vol. 4, Mar. 1, 2001, 6 pages. |
Cheyer et al., “The Open Agent Architecture: Building Communities of Distributed Software Agents”, Artificial Intelligence Center, SRI International, Power Point Presentation, Available online at <http://www.ai.sri.com/-oaa/>, retrieved on Feb. 21, 1998, 25 pages. |
Codd, E. F., “Databases: Improving Usability and Responsiveness—How About Recently”, Copyright 1978, Academic Press, Inc., 1978, 28 pages. |
Cohen et al., “An Open Agent Architecture”, available at <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=1 0.1.1.30.480>, 1994, 8 pages. |
Cohen et al., “Voice User Interface Design,”, Excerpts from Chapter 1 and Chapter 10, 2004, 36 pages. |
Coles et al., “Chemistry Question-Answering” SRI International, Jun. 1969, 15 pages. |
Coles et al., “Techniques for Information Retrieval Using an Inferential Question-Answering System with Natural-Language Input”, SRI International, Nov. 1972, 198 Pages. |
Coles et al., “The Application of Theorem Proving to Information Retrieval”, SRI International, Jan. 1971, 21 pages. |
Conklin, Jeff, “Hypertext: An Introduction and Survey”, COMPUTER Magazine, Sep. 1987, 25 pages. |
Connolly et al., “Fast Algorithms for Complex Matrix Multiplication Using Surrogates”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 37, No. 6, Jun. 1989, 13 pages. |
Constantinides et al., “A Schema Based Approach to Dialog Control” Proceedings of the International Conference on Spoken Language Processing, 1998, 4 pages. |
Cox et al., “Speech and Language Processing for Next-Millennium Communications Services”, Proceedings of the IEEE, vol. 88, No. 8, Aug. 2000, 24 pages. |
Craig et al., “Deacon: Direct English Access and Control”, AFIPS Conference Proceedings, vol. 19, San Francisco, Nov. 1966, 18 pages. |
Cutkosky et al., “Pact: An Experiment in Integrating Concurrent Engineering Systems”, Journal & Magazines, Computer, vol. 26, No. 1, Jan. 1993, 14 pages. |
Dar et al., “DTL's DataSpot: Database Exploration Using Plain Language”, Proceedings of the 24th VLDB Conference, New York, 1998, 5 pages. |
Decker et al., “Designing Behaviors for Information Agents”, The Robotics Institute, Carnegie-Mellon University, Paper, Jul. 1996, 15 pages. |
Decker et al., “Matchmaking and Brokering”, The Robotics Institute, Carnegie-Mellon University, Paper, May 1996, 19 pages. |
Deerwester et al., “Indexing by Latent Semantic Analysis”, Journal of the American Society for Information Science, vol. 41, No. 6, Sep. 1990. 19 pages. |
Deller, Jr. et al., “Discrete-Time Processing of Speech Signals”, Prentice Hall, ISBN: 0-02-328301-7, 1987, 14 pages. |
Digital Equipment Corporation, “Open VMS Software Overview”, Software Manual, Dec. 1995, 159 pages. |
Domingue et al., “Web Service Modeling Ontology (WSMO)—An Ontology for Semantic Web Services”, Position Paper at the W3C Workshop on Frameworks for Semantics in Web Services, Innsbruck, Austria, Jun. 2005, 6 pages. |
Donovan, R. E., “A New Distance Measure for Costing Spectral Discontinuities in Concatenative Speech Synthesisers”, available at <http://citeseerx.ist.osu.edu/viewdoc/summarv?doi=1 0.1.1.21.6398>, 2001, 4 pages. |
Dowding et al., “Gemini: A Natural Language System for Spoken-Language Understanding”, Proceedings of the Thirty-First Annual Meeting of the Association for Computational Linguistics, 1993, 8 pages. |
Dowding et al., “Interleaving Syntax and Semantics in an Efficient Bottom-Up Parser”, Proceedings of the 32nd Annual Meeting of the Association for Computational Linguistics, 1994, 7 pages. |
Elio et al., “On Abstract Task Models and Conversation Policies”, Proc. Workshop on Specifying and Implementing Conversation Policies, Autonomous Agents'99 Conference, 1999, pp. 1-10. |
Epstein et al., “Natural Language Access to a Melanoma Data Base”, SRI International, Sep. 1978, 7 pages. |
Ericsson et al., “Software Illustrating a Unified Approach to Multimodality and Multilinguality in the In-Home Domain”, Talk and Look: Tools for Ambient Linguistic Knowledge, Dec. 2006, 127 pages. |
Evi, “Meet Evi: The One Mobile Application that Provides Solutions for your Everyday Problems”, Feb. 2012, 3 pages. |
Exhibit 1, “Natural Language Interface Using Constrained Intermediate Dictionary of Results”, List of Publications Manually Reviewed for the Search of U.S. Pat. No. 7,177,798, Mar. 22, 2013, 1 page. |
Feigenbaum et al., “Computer-Assisted Semantic Annotation of Scientific Life Works”, Oct. 15, 2007, 22 pages. |
Ferguson el al., “TRIPS: An Integrated Intelligent Problem-Solving Assistant”, Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-98) and Tenth Conference on Innovative Applications of Artificial Intelligence (IAAI-98), 1998, 7 pages. |
Fikes et al., “A Network-Based Knowledge Representation and its Natural Deduction System”, SRI International, Jul. 1977, 43 pages. |
Frisse, M. E., “Searching for Information in a Hypertext Medical Handbook”, Communications of the ACM, vol. 31, No. 7, Jul. 1988, 8 pages. |
Gamback et al., “The Swedish Core Language Engine”, NOTEX Conference, 1992, 17 pages. |
Gannes, Liz, “Alfred App Gives Personalized Restaurant Recommendations”, AllThingsD, Jul. 18, 2011, pp. 1-3. |
Gautier et al., “Generating Explanations of Device Behavior Using Compositional Modeling and Causal Ordering”, CiteSeerx, 1993, pp. 89-97. |
Gervasio et al., “Active Preference Learning for Personalized Calendar Scheduling Assistance”, CiteSeerx, Proceedings of IUI'05, Jan. 2005, pp. 90-97. |
Glass, Alyssa, “Explaining Preference Learning”, CiteSeerx, 2006, pp. 1-5. |
Glass et al., “Multilingual Language Generation Across Multiple Domains”, International Conference on Spoken Language Processing, Japan, Sep. 1994, 5 pages. |
Glass et al., “Multilingual Spoken-Language Understanding in the Mit Voyager System”, Available online at <http://groups.csail.mit.edu/sls/publications/1995/speechcomm95-voyager.pdf>, Aug. 1995, 29 pages. |
Goddeau et al., “A Form-Based Dialogue Manager for Spoken Language Applications”, Available online at <http://phasedance.com/pdf!icslp96.pdf>, Oct. 1996, 4 pages. |
Goddeau et al., “Galaxy: A Human-Language Interface to On-Line Travel Information”, International Conference on Spoken Language Processing, Yokohama, 1994, pp. 707-710. |
Goldberg et al., “Using Collaborative Filtering to Weave an Information Tapestry”, Communications of the ACM, vol. 35, No. 12, Dec. 1992, 10 pages. |
Gong et al., “Guidelines for Handheld Mobile Device Interface Design”, Proceedings of DSI 2004 Annual Meeting, 2004, pp. 3751-3756. |
Gorin et al., “On Adaptive Acquisition of Language”, International Conference on Acoustics, Speech and Signal Processing (ICASSP'90), vol. 1, Apr. 1990, 5 pages. |
Gotoh et al., “Document Space Models Using Latent Semantic Analysis”, In Proceedings of Eurospeech, 1997, 4 pages. |
Gray, R. M., “Vector Quantization” IEEE ASSP Magazine, Apr. 1984, 26 pages. |
Green, C., “The Application of Theorem Proving to Question-Answering Systems”, SRI Stanford Research Institute, Artificial Intelligence Group, Jun. 1969, 169 pages. |
Gregg et al., “DSS Access on the WWW: An Intelligent Agent Prototype”, Proceedings of the Americas Conference on Information Systems, Association for Information Systems, 1998, 3 pages. |
Grishman et al., “Computational Linguistics: An Introduction”, Cambridge University Press, 1986, 172 pages. |
Grosz et al., “Dialogic: A Core Natural-Language Processing System”, SRI International, Nov. 1982, 17 pages. |
Grosz et al., “Research on Natural-Language Processing at SRI”, SRI International, Nov. 1981, 21 pages. |
Grosz, B., “Team: A Transportable Natural-Language Interface System”, Proceedings of the First Conference on Applied Natural Language Processing, 1983, 7 pages. |
Grosz et al., “TEAM: An Experiment in the Design of Transportable Natural—Language Interfaces”, Artificial Intelligence, vol. 32, 1987, 71 pages. |
Gruber, Tom, “(Avoiding) The Travesty of the Commons”, Presentation at NPUC, New Paradigms for User Computing, IBM Almaden Research Center, Jul. 24, 2006, 52 pages. |
Gruber, Thomas R., “A Translation Approach to Portable Ontology Specifications”, Knowledge Acquisition, vol. 5, No. 2, Jun. 1993, pp. 199-220. |
Gruber et al., “An Ontology for Engineering Mathematics”, Fourth International Conference on Principles of Knowledge Representation and Reasoning, Available online at <http://www-ksl.stanford.edu/knowledge-sharing/papers/engmath.html>, 1994, pp. 1-22. |
Gruber, Thomas R., “Automated Knowledge Acquisition for Strategic Knowledge”, Machine Learning, vol. 4, 1989, pp. 293-336. |
Gruber, Tom, “Big Think Small Screen: How Semantic Computing in the Cloud will Revolutionize the Consumer Experience on the Phone”, Keynote Presentation at Web 3.0 Conference, Jan. 2010, 41 pages. |
Gruber et al., “Generative Design Rationale: Beyond the Record and Replay Paradigm”, Knowledge Systems Laboratory, Technical Report KSL 92-59, Dec. 1991, Updated Feb. 1993, 24 pages. |
Gruber, Thomas R., “Interactive Acquisition of Justifications: Learning “Why” by Being Told “What””, Knowledge Systems Laboratory, Technical Report KSL 91-17, Original Oct. 1990, Revised Feb. 1991, 24 pages. |
Gruber et al., “Machine-Generated Explanations of Engineering Models: A Compositional Modeling Approach”, Proceedings of International Joint Conference on Artificial Intelligence. 1993, 7 pages. |
Gruber et al., “NIKE: A National Infrastructure for Knowledge Exchange”, A Whitepaper Advocating and ATP Initiative on Technologies for Lifelong Learning, Oct. 1994, pp. 1-10. |
Gruber et al., “Toward a Knowledge Medium for Collaborative Product Development”, Proceedings of the Second International Conference on Artificial Intelligence in Design, Jun. 1992, pp. 1-19. |
Gruber, Thomas R., “Toward Principles for the Design of Ontologies used for Knowledge Sharing”, International Journal of Human-Computer Studies, vol. 43, No. 5-6, Nov. 1995, pp. 907-928. |
Gruber, Tom, “2021: Mass Collaboration and the Really New Economy”, TNTY Futures, vol. 1, No. 6, Available online at <http://tomgruber.org/writing/tnty2001.htm>, Aug. 2001, 5 pages. |
Gruber, Tom, “Collaborating Around Shared Content on the WWW, W3C Workshop on WWW and Collaboration”, available at <http://www.w3.org/Collaboration/Workshop/Proceedings/P9.html>, Sep. 1995, 1 page. |
Gruber, Tom, “Collective Knowledge Systems: Where the Social Web Meets the Semantic Web”, Web Semantics: Science, Services and Agents on the World Wide Web, 2007, pp. 1-19. |
Gruber, Tom, “Despite Our Best Efforts, Ontologies are not the Problem”, AAAI Spring Symposium, Available online at <http://tomgruber.org/writing/aaai-ss08.htm>, Mar. 2008, pp. 1-40. |
Gruber, Tom, “Enterprise Collaboration Management with Intraspect”, Intraspect Technical White Paper, Jul. 2001, pp. 1-24. |
Gruber, Tom, “Every Ontology is a Treaty—A Social Agreement—Among People with Some Common Motive in Sharing”, Official Quarterly Bulletin of AIS Special Interest Group on Semantic Web and Information Systems, vol. 1, No. 3, 2004, pp. 1-5. |
Gruber, Tom, “Helping Organizations Collaborate, Communicate, and Learn”, Presentation to NASA Ames Research, Available online at <http://tomgruber.org/writing/organizational-intelligence-talk.htm>, Mar.-Oct. 2003, 30 pages. |
Gruber, Tom, “Intelligence at the Interface: Semantic Technology and the Consumer Internet Experience”, Presentation at Semantic Technologies Conference, Available online at <http://tomgruber.org/writing/semtech08.htm>, May 20, 2008, pp. 1-40. |
Gruber, Tom, “It Is What It Does: The Pragmatics of Ontology for Knowledge Sharing”, Proceedings of the International CIDOC CRM Symposium, Available online at <http://tomgruber.org/writing/cidoc-ontology.htm>, Mar. 26, 2003, 21 pages. |
Gruber, Tom, “Ontologies, Web 2.0 and Beyond”, Ontology Summit, Available online at <http://tomgruber.org/writing/ontolog-social-web-keynoie.htm>, Apr. 2007, 17 pages. |
Gruber, Tom, “Ontology of Folksonomy: A Mash-Up of Apples and Oranges”, Int'l Journal on Semantic Web & Information Systems, vol. 3, No. 2, 2007, 7 pages. |
Gruber, Tom, “Siri, A Virtual Personal Assistant-Bringing Intelligence to the Interface”, Semantic Technologies Conference, Jun. 16, 2009, 21 pages. |
Gruber, Tom, “TagOntology”, Presentation to Tag Camp, Oct. 29, 2005, 20 pages. |
Gruber, Tom, “Where the Social Web Meets the Semantic Web”, Presentation at the 5th International Semantic Web Conference, Nov. 2006, 38 pages. |
Guida et al., “NLI: A Robust Interface for Natural Language Person-Machine Communication”, International Journal of Man-Machine Studies, vol. 17, 1982, 17 pages. |
Guzzoni et al., “A Unified Platform for Building Intelligent Web Interaction Assistants”, Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Computer Society, 2006, 4 pages. |
Guzzoni et al., “Active, A Platform for Building Intelligent Operating Rooms”, Surgetica 2007 Computer-Aided Medical Interventions: Tools and Applications, 2007, pp. 191-198. |
Guzzoni et al., “Active, A platform for Building Intelligent Software”, Computational Intelligence, available at <http://www.informatik.uni-trier.del-ley/pers/hd/g/Guzzoni:Didier >, 2006, 5 pages. |
Guzzoni et al., “Active, A Tool for Building Intelligent User Interfaces”, ASC 2007, Palma de Mallorca, Aug. 2007, 6 pages. |
Guzzoni, D., “Active: A Unified Platform for Building Intelligent Assistant Applications”, Oct. 25, 2007, 262 pages. |
Guzzoni et al., “Many Robots Make Short Work”, AAAI Robot Contest, SRI International, 1996, 9 pages. |
Guzzoni et al., “Modeling Human-Agent Interaction with Active Ontologies”, AAAI Spring Symposium, Interaction Challenges for Intelligent Assistants, Stanford University, Palo Alto, California, 2007, 8 pages. |
Haas et al., “An Approach to Acquiring and Applying Knowledge”, SRI international, Nov. 1980, 22 pages. |
Hadidi et al., “Student's Acceptance of Web-Based Course Offerings: An Empirical Assessment”, Proceedings of the Americas Conference on Information Systems(AMCIS), 1998, 4 pages. |
Hardwar, Devindra, “Driving App Waze Builds its own Siri for Hands-Free Voice Control”, Available online at <http://venturebeat.com/2012/02/09/driving-app-waze-builds-its-own-siri-for-hands-free-voice-control/>, retrieved on Feb. 9, 2012, 4 pages. |
Harris, F. J., “On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform”, In Proceedings of the IEEE, vol. 66, No. 1, Jan. 1978, 34 pages. |
Hawkins et al., “Hierarchical Temporal Memory: Concepts, Theory and Terminology”, Numenta, Inc., Mar. 27, 2007, 20 pages. |
He et al., “Personal Security Agent: KQML-Based PKI”, The Robotics Institute, Carnegie-Mellon University, Paper, 1997, 14 pages. |
Helm et al., “Building Visual Language Parsers”, Proceedings of CHI'91, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1991, 8 pages. |
Hendrix et al., “Developing a Natural Language Interface to Complex Data”, ACM Transactions on Database Systems, vol. 3, No. 2, Jun. 1978, pp. 105-147. |
Hendrix, Gary G., “Human Engineering for Applied Natural Language Processing”, SRI International, Technical Note 139, Feb. 1977, 27 pages. |
Hendrix, Gary G., “Klaus: A System for Managing Information and Computational Resources”, SRI International, Technical Note 230, Oct. 1980, 34 pages. |
Hendrix, Gary G., “Lifer: A Natural Language Interface Facility”, SRI Stanford Research Institute, Technical Note 135, Dec. 1976, 9 pages. |
Hendrix, Gary G., “Natural-Language Interface”, American Journal of Computational Linguistics, vol. 8, No. 2, Apr.-Jun. 1982, pp. 56-61. |
Hendrix, Gary G., “The Lifer Manual: A Guide to Building Practical Natural Language Interfaces”, SRI International, Technical Note 138, Feb. 1977, 76 pages. |
Hendrix et al., “Transportable Natural-Language Interfaces to Databases”, SRI International, Technical Note 228, Apr. 30, 1981, 18 pages. |
Hermansky, H., “Perceptual Linear Predictive (PLP) Analysis of Speech”, Journal of the Acoustical Society of America, vol. 87, No. 4, Apr. 1990, 15 pages. |
Hermansky, H., “Recognition of Speech in Additive and Convolutional Noise Based on Rasta Spectral Processing”, Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'93), Apr. 1993, 4 pages. |
Hirschman et al., “Multi-Site Data Collection and Evaluation in Spoken Language Understanding”, Proceedings of the Workshop on Human Language Technology, 1993, pp. 19-24. |
Hobbs et al., “Fastus: A System for Extracting Information from Natural-Language Text”, SRI International, Technical Note 519, Nov. 19, 1992, 26 pages. |
Hobbs et al., “Fastus: Extracting Information from Natural-Language Texts”, SRI International, 1992, pp. 1-22. |
Hobbs, Jerry R., “Sublanguage and Knowledge”, SRI International, Technical Note 329, Jun. 1984, 30 pages. |
Hodjat et al., “Iterative Statistical Language Model Generation for use with an Agent-Oriented Natural Language Interface”, Proceedings of HCI International, vol. 4, 2003, pp. 1422-1426. |
Hoehfeld et al., “Learning with Limited Numerical Precision Using the Cascade-Correlation Algorithm”, IEEE Transactions on Neural Networks, vol. 3, No. 4, Jul. 1992, 18 pages. |
Holmes, J. N., “Speech Synthesis and Recognition-Stochastic Models for Word Recognition”, Published by Chapman & Hall, London, ISBN 0 412 534304, 1998, 7 pages. |
Hon et al., “CMU Robust Vocabulary-Independent Speech Recognition System”, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP-91), Apr. 1991, 4 pages. |
Horvitz et al., “Handsfree Decision Support: Toward a Non-invasive Human-Computer Interface”, Proceedings of the Symposium on Computer Applications in Medical Care, IEEE Computer Society Press, 1995, p. 955. |
Horvitz et al., “In Pursuit of Effective Handsfree Decision Support: Coupling Bayesian Inference, Speech Understanding, and User Models”, 1995, 8 pages. |
Huang et al., “The SPHINX-II Speech Recognition System: An Overview”, Computer, Speech and Language, vol. 7, No. 2, 1993, 14 pages. |
IBM, “Speech Editor”, IBM Technical Disclosure Bulletin, vol. 29, No. 10, Mar. 10, 1987, 3 pages. |
IBM, “Integrated Audio-Graphics User Interface”, IBM Technical Disclosure Bulletin, vol. 33, No. 11, Apr. 1991, 4 pages. |
IBM, “Speech Recognition with Hidden Markov Models of Speech Waveforms”, IBM Technical Disclosure Bulletin, vol. 34, No. 1, Jun. 1991, 10 pages. |
Intraspect Software, “The Intraspect Knowledge Management Solution: Technical Overview”, available at <http://tomgruber.org/writing/intraspect-whitepaper-1998.pdf>, 1998, 18 pages. |
Iowegian International, “FIR FilterProperties, DSPGuru, Digital Signal Processing Central”, available at <http://www.dspguru.com/dsp/faq/fir/properties> retrieved on Jul. 28, 2010, 6 pages. |
Issar et al., “CMU's Robust Spoken Language Understanding System”, Proceedings of Eurospeech, 1993, 4 pages. |
Issar, Sunil, “Estimation of Language Models for New Spoken Language Applications”, Proceedings of 4th International Conference on Spoken language Processing, Oct. 1996, 4 pages. |
Jacobs et al., “Scisor: Extracting Information from On-Line News”, Communications of the ACM, vol. 33, No. 11, Nov. 1990, 10 pages. |
Janas, Jurgen M,. “The Semantics-Based Natural Language Interface to Relational Databases”, Chapter 6, Cooperative Interfaces to Information Systems, 1986, pp. 143-188. |
Jelinek, F., “Self-Organized Language Modeling for Speech Recognition”, Readings in Speech Recognition, Edited by Alex Waibel and Kai-Fu Lee, Morgan Kaufmann Publishers, Inc., ISBN: 1-55860-124-4, 1990, 63 pages. |
Jennings et al., “A Personal News Service Based on a User Model Neural Network”, IEICE Transactions on Information and Systems, vol. E75-D, No. 2, Mar. 1992, 12 pages. |
Ji et al., “A Method for Chinese Syllables Recognition Based upon Sub-syllable Hidden Markov Model”, 1994 International Symposium on Speech, Image Processing and Neural Networks, Hong Kong, Apr. 1994, 4 pages. |
Johnson, Julia Ann., “A Data Management Strategy for Transportable Natural Language Interfaces”, Doctoral Thesis Submitted to the Department of Computer Science, University of British Columbia, Canada, Jun. 1989, 285 pages. |
Jones, J., “Speech Recognition for Cyclone”, Apple Computer, Inc., E.R.S. Revision 2.9, Sep. 10, 1992, 93 pages. |
Julia et al., “http://www.speech.sri.com/demos/atis.html”, Proceedings of AAAI, Spring Symposium, 1997, 5 pages. |
Julia et al., “Un Editeur Interactif De Tableaux Dessines a Main Levee (An Interactive Editor for Hand-Sketched Tables)”, Traitement du Signal, vol. 12, No. 6, 1995, pp. 619-626. |
Kahn et al., “CoABS Grid Scalability Experiments”, Autonomous Agents and Multi-Agent Systems, vol. 7, 2003, pp. 171-178. |
Kamel et al., “A Graph Based Knowledge Retrieval System”, IEEE International Conference on Systems, Man and Cybernetics, 1990, pp. 269-275. |
Karp, P. D., “A Generic Knowledge-Base Access Protocol”, Available online at <http://lecture.cs.buu.ac.th/-f50353/Document/gfp.pdf>, May 12, 1994, 66 pages. |
Katz. Boris, “A Three-Step Procedure for Language Generation”, Massachusetts Institute of Technology, A.I. Memo No. 599, Dec. 1980, pp. 1-40. |
Katz. Boris, “Annotating the World Wide Web Using Natural Language”, Proceedings of the 5th RIAO Conference on Computer Assisted Information Searching on the Internet, 1997, 7 pages. |
Katz. S. M., “Estimation of Probabilities from Sparse Data for the Language Model Component of a Speech Recognizer”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-35, No. 3, Mar. 1987, 3 pages. |
Katz et al., “Exploiting Lexical Regularities in Designing Natural Language Systems”, Proceedings of the 12th International Conference on Computational Linguistics, 1988, pp. 1-22. |
Katz et al., “REXTOR: A System for Generating Relations from Natural Language”, Proceedings of the ACL Workshop on Natural Language Processing and Information Retrieval (NLP&IR). Oct. 2000, 11 pages. |
Katz, Boris, “Using English for Indexing and Retrieving”, Proceedings of the 1st RIAO Conference on User-Oriented Content-Based Text and Image Handling, 1988, pp. 314-332. |
Kitano, H., “PhiDM-Dialog, An Experimental Speech-to-Speech Dialog Translation System”, Computer, vol. 24, No. 6, Jun. 1991, 13 pages. |
Klabbers et al., “Reducing Audible Spectral Discontinuities”, IEEE Transactions on Speech and Audio Processing, vol. 9, No. 1, Jan. 2001, 13 pages. |
Klatt et al., “Linguistic Uses of Segmental Duration in English: Acoustic and Perpetual Evidence”, Journal of the Acoustical Society of America, vol. 59, No. 5, May 1976, 16 pages. |
Knownav, “Knowledge Navigator”, YouTube Video available at <http://www.youtube.com/watch?v=QRH8eimU—20>, Apr. 29, 2008, 1 page. |
Kominek et al., “Impact of Durational Outlier Removal from Unit Selection Catalogs”, 5th ISCA Speech Synthesis Workshop, Jun. 14-16, 2004, 6 pages. |
Konolige, Kurt, “A Framework for a Portable Natural-Language Interface to Large Data Bases”, SRI International, Technical Note 197, Oct. 12, 1979, 54 pages. |
Kubala et al., “Speaker Adaptation from a Speaker-Independent Training Corpus”, International Conference on Acoustics, Speech and Signal Processing (ICASSP'90), Apr. 1990, 4 pages. |
Kubala et al., “The Hub and Spoke Paradigm for CSR Evaluation”, Proceedings of the Spoken Language Technology Workshop, Mar. 1994, 9 pages. |
Laird et al., “SOAR: An Architecture for General Intelligence”, Artificial Intelligence, vol. 33, 1987, pp. 1-64. |
Langley et al., “A Design for the ICARUS Architechture”, SIGART Bulletin, vol. 2, No. 4, 1991, pp. 104-109. |
Larks, “Intelligent Software Agents”, available at <http://www.cs.cmu.edu/˜softagents/larks.html> retrieved on Mar. 15, 2013, 2 pages. |
Lee et al., “A Real-Time Mandarin Dictation Machine for Chinese Language with Unlimited Texts and Very Large Vocabulary”, International Conference on Acoustics, Speech and Signal Processing, vol. 1, Apr. 1990, 5 pages. |
Lee et al., “Golden Mandarin (II)—An Improved Single-Chip Real-Time Mandarin Dictation Machine for Chinese Language with Very Large Vocabulary”, IEEE International Conference of Acoustics, Speech and Signal Processing, vol. 2, 1993, 4 pages. |
Lee et al., “Golden Mandarin (II)—An Intelligent Mandarin Dictation Machine for Chinese Character Input with Adaptation/Learning Functions”, International Symposium on Speech, Image Processing and Neural Networks, Hong Kong, Apr. 1994, 5 pages. |
Lee. K. F., “Large-Vocabulary Speaker-Independent Continuous Speech Recognition: The SPHINX System”, Partial Fulfillment of the Requirements for the Degree of Doctorof Philosophy, Computer Science Department, Carnegie Mellon University, Apr. 1988, 195 pages. |
Lee et al., “System Description of Golden Mandarin (I) Voice Input for Unlimited Chinese Characters”, International Conference on Computer Processing of Chinese & Oriental Languages, vol. 5, No. 3 & 4, Nov. 1991, 16 pages. |
Lemon et al., “Multithreaded Context for Robust Conversational Interfaces: Context-Sensitive Speech Recognition and Interpretation of Corrective Fragments”, ACM Transactions on Computer-Human Interaction, vol. 11, No. 3, Sep. 2004, pp. 241-267. |
Leong et al., “CASIS: A Context-Aware Speech Interface System”, Proceedings of the 10th International Conference on Intelligent User Interfaces, Jan. 2005, pp. 231-238. |
Lieberman et al., “Out of Context: ComputerSystems that Adapt to, and Learn from, Context”,IBM Systems Journal, vol. 39. No. 3 & 4, 2000, pp. 617-632. |
Lin et al., “A Distributed Architecture for Cooperative Spoken Dialogue Agents with Coherent Dialogue State and History”, Available on line at <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.272>, 1999, 4 pages. |
Lin et al., “A New Framework for Recognition of Mandarin Syllables with Tones Using Sub-syllabic Unites”, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP-93), Apr. 1993, 4 pages. |
Linde et al., “An Algorithm for Vector Quantizer Design”, IEEE Transactions on Communications, vol. 28, No. 1, Jan. 1980, 12 pages. |
Liu et al., “Efficient Joint Compensation of Speech for the Effects of Additive Noise and Linear Filtering”, IEEE International Conference of Acoustics, Speech and Signal Processing, ICASSP-92, Mar. 1992, 4 pages. |
Logan et al., “Mel Frequency Cepstral Co-efficients for Music Modeling”, International Symposium on Music Information Retrieval, 2000, 2 pages. |
Lowerre, B. T., “The-Harpy Speech Recognition System”, Doctoral Dissertation, Department of Computer Science, Carnegie Mellon University, Apr. 1976, 20 pages. |
Maghbouleh, Arman, “An Empirical Comparison of Automatic Decision Tree and Linear Regression Models for Vowel Durations”, Revised Version of a Paper Presented at the Computational Phonology in Speech Technology Workshop, 1996 Annual Meeting of the Association for Computational Linguistics in Santa Cruz, California, 7 pages. |
Markel et al., “Linear Prediction of Speech”, Springer-Verlag, Berlin, Heidelberg, New York, 1976, 12 pages. |
Martin et al., “Building and Using Practical Agent Applications”, SRI International, PAAM Tutorial, 1998, 78 pages. |
Martin et al., “Building Distributed Software Systems with the Open Agent Architecture”, Proceedings of the Third International Conference on the Practical Application of Intelligent Agents and Multi-Agent Technology, Mar. 1998, pp. 355-376. |
Martin et al., “Development Tools for the Open Agent Architecture”, Proceedings of the International Conference on the Practical Application of Intelligent Agents and Multi-Agent Technology, Apr. 1996, pp. 1-17. |
Martin et al., “Information Brokering in an Agent Architecture”, Proceedings of the Second International Conference on the Practical Application of Intelligent Agents and Multi-Agent Technology, Apr. 1997, pp. 1-20. |
Martin et al., “Transportability and Generality in a Natural-Language Interface System”, Proceedings of the Eighth International Joint Conference on Artificial Intelligence, Technical Note 293, Aug. 1983, 21 pages. |
Martin et al., “The Open Agent Architecture: A Framework for Building Distributed Software Systems”, Applied Artificial Intelligence: An International Journal, vol. 13, No. 1-2, available at <http://adam.cheyer.com/papers/oaa.pdf> >, retrieved from internet on Jan.-Mar. 1999. |
Matiasek et al., “Tamic-P: A System for NL Access to Social Insurance Database”, 4th International Conference on Applications of Natural Language to Information Systems, Jun. 1999, 7 pages. |
McGuire et al., “SHADE: Technology for Knowledge-Based Collaborative Engineering”, Journal of Concurrent Engineering Applications and Research (CERA), 1993, 18 pages. |
Meng et al., “Wheels: A Conversational System in the Automobile Classified Domain”, Proceedings of Fourth International Conference on Spoken Language, ICSLP 96, vol. 1, Oct. 1996, 4 pages. |
Michos et al., “Towards an Adaptive Natural Language Interface to Command Languages”, Natural Language Engineering, vol. 2, No. 3, 1996, pp. 191-209. |
Milstead et al., “Metadata: Cataloging by Any Other Name”, available at <http://www.iicm.tugraz.at/thesis/cguetl—diss/literatur/Kapitel06/References/Milstead—et—al.—1999/metadata.html>, Jan. 1999, 18 pages. |
Milward el al., “D2.2: Dynamic Multimodal Interface Reconfiguration, Talk and Look: Tools for Ambient Linguistic Knowledge”, available at <http://www.ihmc.us/users/nblaylock!Pubs/Files/talk d2.2.pdf>, Aug. 8, 2006, 69 pages. |
Minker et al., “Hidden Understanding Models for Machine Translation”, Proceedings of ETRW on Interactive Dialogue in Multi-Modal Systems, Jun. 1999, pp. 1-4. |
Mitra et al., “A Graph-Oriented Model for Articulation of Ontology Interdependencies”, Advances in Database Technology, Lecture Notes in Computer Science, vol. 1777, 2000, pp. 1-15. |
Modi et al., “CMRadar: A Personal Assistant Agent for Calendar anagement”, AAAI, Intelligent Systems Demonstrations, 2004, pp. 1020-1021. |
Moore et al., “Combining Linguistic and Statistical Knowledge Sources in Natural-Language Processing for ATIS”, SRI International, Artificial Intelliqence Center, 1995, 4 pages. |
Moore, Robert C., “Handling Complex Queries in a Distributed Data Base”, SRI International, Technical Note 170, Oct. 8, 1979, 38 pages. |
Moore, Robert C., “Practical Natural-Language Processing by Computer”, SRI International, Technical Note 251, Oct. 1981, 34 pages. |
Moore et al., “SRI's Experience with the ATIS Evaluation”, Proceedings of the Workshop on Speech and Natural Language, Jun. 1990, pp. 147-148. |
Moore et al., “The Information Warfare Advisor: An Architecture for Interacting with Intelligent Agents Across the Web”, Proceedings of Americas Conference on Information Systems (AMCIS), Dec. 31, 1998, pp. 186-188. |
Moore, Robert C., “The Role of Logic in Knowledge Representation and Commonsense Reasoning”, SRI International, Technical Note 264, Jun. 1982, 19 pages. |
Moore, Robert C., “Using Natural-Language Knowledge Sources in Speech Recognition”, SRI International, Artificial Intelligence Center, Jan. 1999, pp. 1-24. |
Moran et al., “Intelligent Agent-Based User Interfaces”, Proceedings of International Workshop on Human Interface Technology, Oct. 1995, pp. 1-4. |
Moran et al., “Multimodal User Interfaces in the Open Agent Architecture”, International Conference on Intelligent User Interfaces (IUI97), 1997, 8 pages. |
Moran, Douglas B., “Quantifier Scoping in the SRI Core Language Engine”, Proceedings of the 26th Annual Meeting on Association for Computational Linguistics, 1988, pp. 33-40. |
Morgan, B., “Business Objects (Business Objects for Windows) Business Objects Inc.”, DBMS, vol. 5, No. 10, Sep. 1992, 3 pages. |
Motro, Amihai, “Flex: A Tolerant and Cooperative User Interface to Databases”, IEEE Transactions on Knowledge and Data Engineering, vol. 2, No. 2, Jun. 1990, pp. 231-246. |
Mountford et al., “Talking and Listening to Computers”, The Art of Human-Computer Interface Design, Apple Computer, Inc., Addison-Wesley Publishing Company, Inc., 1990, 17 pages. |
Mozer, Michael C., “An Intelligent Environment must be Adaptive”, IEEE Intelligent Systems, 1999, pp. 11-13. |
Murty et al., “Combining Evidence from Residual Phase and MFCC Features for Speaker Recognition”, IEEE Signal Processing Letters, vol. 13, No. 1, Jan. 2006, 4 pages. |
Murveit et al., “Integrating Natural Language Constraints into HMM-Based Speech Recognition”, International Conference on Acoustics, Speech and Signal Processing, Apr. 1990, 5 pages. |
Murveit et al., “Speech Recognition in SRI's Resource Management and ATIS Systems”, Proceedings of the Workshop on Speech and Natural Language, 1991, pp. 94-100. |
Nakagawa et al., “Speaker Recognition by Combining MFCC and Phase Information”, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Mar. 2010, 4 pages. |
Naone, Erica, “TR10: Intelligent Software Assistant”, Technology Review, Mar.-Apr. 2009, 2 pages |
Neches et al., “Enabling Technology for Knowledge Sharing”, Fall, 1991, pp. 37-56. |
Niesler et al., “A Variable-Length Category-Based N-Gram Language Model”, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'96), vol. 1, May 1996, 6 pages. |
Noth et al., “Verbmobil: The Use of Prosody in the Linguistic Components of a Speech Understanding System”, IEEE Transactions on Speech and Audio Processing, vol. 8, No. 5, Sep. 2000, pp. 519-532. |
Odubiyi et al., “SAIRE—A Scalable Agent-Based Information Retrieval Engine”, Proceedings of the First International Conference on Autonomous Agents, 1997, 12 pages. |
Owei et al., “Natural Language Query Filtration in the Conceptual Query Language”, IEEE, 1997, pp. 539-549. |
Pannu et al., “A Learning Personal Agent for Text Filtering and Notification”, Proceedings of the International Conference of Knowledge Based Systems, 1996, pp. 1-11. |
Papadimitriou et al., “Latent Semantic Indexing: A Probabilistic Analysis”, Available online at <http://citeseerx.ist.psu.edu/messaqes/downloadsexceeded.html>, Nov. 14, 1997, 21 pages. |
Parson, T. W., “Voice and Speech Processing”, Pitch and Formant Estimation, McGraw-Hill, Inc., ISBN: 0-07-0485541-0, 1987, 15 pages. |
Parsons, T. W., “Voice and Speech Processing”, Linguistics and Technical Fundamentals, Articulatory Phonetics and Phonemics, McGraw-Hill, Inc., ISBN: 0-07-0485541-0, 1987, 5 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US1993/012637, dated Apr. 10, 1995, 7 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US1993/012666, dated Mar. 1, 1995, 5 pages. |
International Search Report received for PCT Patent Application No. PCT/US1993/012666, dated Nov. 9, 1994, 8 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US1994/011011, dated Feb. 28, 1996, 4 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US1994/11011, dated Feb. 28, 1995, 7 pages. |
Shimazu et al., “CAPIT: Natural Language Interface Design Tool with Keyword Analyzer and Case-Based Parser”, NEG Research & Development, vol. 33, No. 4, Oct. 1992, 11 pages. |
Shinkle, L., “Team User's Guide”, SRI International, Artificial Intelligence Center, Nov. 1984, 78 pages. |
Shklar et al., “InfoHarness: Use of Automatically Generated Metadata for Search and Retrieval of Heterogeneous Information”, Proceedings of CAiSE'95, Finland, 1995, 14 pages. |
Sigurdsson et al., “Mel Frequency Cepstral Co-efficients: An Evaluation of Robustness of MP3 Encoded Music”, Proceedings of the 7th International Conference on Music Information Retrieval, 2006, 4 pages. |
Silverman et al., “Using a Sigmoid Transformation for Improved Modeling of Phoneme Duration”. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Mar. 1999, 5 pages. |
Simonite, Tom, “One Easy Way to Make Siri Smarter”, Technology Review, Oct. 18, 2011, 2 pages. |
Singh, N., “Unifying Heterogeneous Information Models”, Communications of the ACM, 1998, 13 pages. |
SRI International, “The Open Agent Architecture TM 1.0 Distribution”, Open Agent Architecture (OAA), 1999, 2 pages. |
Starr et al., “Knowledge-Intensive Query Processing”, Proceedings of the 5th KRDB Workshop, Seattle, May 31, 1998, 6 pages. |
Stent et al., “The CommandTalk Spoken Dialogue System”, SRI International, 1999, pp. 183-190. |
Stern et al., “Multiple Approaches to Robust Speech Recognition”, Proceedings of Speech and Natural Language Workshop, 1992, 6 pages. |
Stickel, Mark E., “A Nonclausal Connection-Graph Resolution Theorem-Proving Program”, Proceedings of AAAI'82, 1982, 5 pages. |
Sugumaran, V., “A Distributed Intelligent Agent-Based Spatial Decision Support System”, Proceedings of the Americas Conference on Information systems (AMCIS), Dec. 31, 1998, 4 pages. |
Sycara et al., “Coordination of Multiple Intelligent Software Agents”, International Journal of Cooperative Information Systems (IJCIS), vol. 5, No. 2 & 3, 1996, 31 pages. |
Sycara et al., “Distributed Intelligent Agents”, IEEE Expert, vol. 11, No. 6, Dec. 1996, 32 pages. |
Sycara et al., “Dynamic Service Matchmaking among Agents in Open Information Environments”, SIGMOD Record, 1999, 7 pages. |
Sycara et al., “The RETSINA MAS Infrastructure”, Autonomous Agents and Multi-Agent Systems, vol. 7, 2003, 20 pages. |
Tenenbaum et al., “Data Structure Using Pascal”, Prentice-Hall, Inc., 1981, 34 pages. |
Textndrive, “Text'nDrive App Demo—Listen and Reply to your Messages by Voice while Driving!”, YouTube Video available at <http://www.youtube.com/watch?v=WaGfzoHsAMw>, Apr. 27, 2010, 1 page. |
Tofel, Kevin C., “SpeakTolt: A Personal Assistant for Older iPhones, iPads”, Apple News, Tips and Reviews, Feb. 9, 2012, 7 pages. |
Tsai et al., “Attributed Grammar—A Tool for Combining Syntactic and Statistical Approaches to Pattern Recognition”, IEEE Transactions on Systems, Man and Cybernetics, vol. SMC-10, No. 12, Dec. 1980, 13 pages. |
Tucker, Joshua, “Too Lazy to Grab Your TV Remote? Use Siri Instead”, Engadget, Nov. 30, 2011, 8 pages. |
Tur et al., “The CALO Meeting Assistant System”, IEEE Transactions on Audio, Speech and Language Processing, vol. 18, No. 6, Aug. 2010, pp, 1601-1611. |
Tur et al., “The CALO Meeting Speech Recognition and Understanding System”, Proc. IEEE Spoken Language Technology Workshop, 2008, 4 pages. |
Tyson et al., “Domain-Independent Task Specification in the TACITUS Natural Language System”, SRI International, Artificial Intelligence Center, May 1990, 16 pages. |
Udell, J., “Computer Telephony”, BYTE, vol. 19, No. 7, Jul. 1994, 9 pages. |
Van Santen, J. P.H., “Contextual Effects on Vowel Duration”, Journal Speech Communication, vol. 11. No. 6, Dec. 1992, pp. 513-546. |
Vepa et al., “New Objective Distance Measures for Spectral Discontinuities in Concatenative Speech Synthesis”, Proceedings of the IEEE 2002 Workshop on Speech Synthesis, 2002, 4 pages. |
Verschelde, Jan, “MATLAB Lecture 8. Special Matrices in MATLAB”, UIC, Dept. of Math, Stat. & CS, MCS 320, Introduction to Symbolic Computation, 2007, 4 pages. |
Vingron. Martin, “Near-Optimal Sequence Alignment”, Current Opinion in Structural Biology, vol. 6, No. 3, 1996, pp. 346-352. |
Vlingo, “Vlingo Launches Voice Enablement Application on Apple App Store”, Press Release, Dec. 3, 2008, 2 pages. |
Vlingo InCar, “Distracted Driving Solution with Vlingo InCar”, YouTube Video, Available online at <http://www.youtube.com/watch?v=Vqs8XfXxgz4>, Oct. 2010, 2 pages. |
Voiceassist, “Send Text, Listen to and Send E-Mail by Voice”, YouTube Video, Available online at <http://www.youtube.com/watch?v=0tEU61nHHA4>, Jul. 30, 2009, 1 page. |
Voiceonthego, “Voice on the Go (BlackBerry)”, YouTube Video, available online at <http://www.youtube.com/watch?v=p4pWgQS98w>, Jul. 27, 2009, 1 page. |
Wahlster et al., “Smartkom: Multimodal Communication with a Life-Like Character”, Eurospeech—Scandinavia, 7th European Conference on Speech Communication and Technology, 2001, 5 pages. |
Waldinger et al., “Deductive Question Answering o Multiple Resources”, New Directions in Question Answering, Published by AAAI, Menlo Park, 2003, 22 pages. |
Walker et al., “Natural Language Access to Medical Text”, SRI International, Artificial Intelligence Center, Mar. 1981, 23 pages. |
Waltz, D., “An English Language Question Answering System for a Large Relational Database”, ACM, vol. 21, No. 7, 1978, 14 pages. |
Ward et al., “A Class Based Language Model for Speech Recognition”, IEEE, 1996, 3 pages. |
Ward et al., “Recent Improvements in the CMU Spoken Language Understanding System”, ARPA Human Language Technology Workshop, 1994, 4 pages. |
Ward, Wayne, “The CMU Air Travel Information Service: Understanding Spontaneous Speech”, Proceedings of the Workshop on Speech and Natural Language, HLT '90, 1990, pp. 127-129. |
Warren et al., “An Efficient Easily Adaptable System for Interpreting Natural Language Queries”, American Journal of Computational Linguistics, vol. 8, No. 3-4 , 1982, 11 pages. |
Weizenbaum. J., “ELIZA—A Computer Program for the Study of Natural Language Communication Between Man and Machine”, Communications of the ACM, vol. 9, No. 1, Jan. 1966, 10 pages. |
Werner et al., “Prosodic Aspects of Speech, Universite de Lausanne”, Fundamentals of Speech Synthesis and Speech Recognition: Basic Concepts, State of the Art and Future Challenges, 1994, 18 pages. |
Winiwarter et al., “Adaptive Natural Language Interfaces to FAQ Knowledge Bases”, Proceedings of 4th International Conference on Applications of Natural Language to Information Systems, Austria, Jun. 1999, 22 pages. |
Wolff, M., “Post Structuralism and the ARTFUL Database: Some Theoretical Considerations”, Information Technology and Libraries, vol. 13, No. 1, Mar. 1994. 10 pages. |
Wu, M., “Digital Speech Processing and Coding”, Multimedia Signal Processing, Lecture-2 Course Presentation, University of Maryland, College Park, 2003, 8 pages. |
Wu et al., “KDA: A Knowledge-Based Database Assistant”, Proceeding of the Fifth International Conference on Engineering (IEEE Cat.No. 89CH2695-5), 1989, 8 pages. |
Wu, M., “Speech Recognition, Synthesis, and H.C.I.”, Multimedia Signal Processing, Lecture-3 Course Presentation, University of Maryland, College Park, 2003, 11 pages. |
Wyle, M, F., “A Wide Area Network Information Filter”, Proceedings of First International Conference on Artificial Intelligence on Wall Street, Oct. 1991, 6 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US1995/008369, dated Oct. 9, 1996, 4 pages. |
International Search Report received for PCT Patent Application No. PCT/US1995/008369, dated Nov. 8, 1995, 6 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2010/037378, dated Aug. 25, 2010, 14 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2011/020861, dated Nov. 29, 2011, 12 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/040571, dated Nov. 16, 2012, 14 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/056382, dated Dec. 20, 2012, 11 pages. |
Pereira, Fernando, “Logic for Natural Language Analysis”, SRI International, Technical Note 275, Jan. 1983, 194 pages. |
Perrault et al., “Natural-Language Interfaces”, SRI International, Technical Note 393, Aug. 22, 1986, 48 pages. |
Phoenix Solutions, Inc., “Declaration of Christopher Schmandt Regarding the MIT Galaxy System”, West Interactive Corp., A Delaware Corporation, Document 40, Jul. 2, 2010, 162 pages. |
Picone, J., “Continuous Speech Recognition using Hidden Markov Models”, IEEE ASSP Magazine, vol. 7, No. 3, Jul. 1990, 16 pages. |
Pulman et al., “Clare: A Combined Language and Reasoning Engine”, Proceedings of JFIT Conference, available at <http://www.cam.sri.com/tr/crc042/paper.ps.Z>, 1993, 8 pages. |
Rabiner et al., “Fundamental of Speech Recognition”, AT&T, Published by Prentice-Hall, Inc., ISBN: 0-13-285826-6, 1993, 17 pages. |
Rabiner et al., “Note on the Properties of a Vector Quantizer for LPC Coefficients”, Bell System Technical Journal, vol. 62, No. 8, Oct. 1983, 9 pages. |
Ratcliffe. M., “ClearAccess 2.0 Allows SQL Searches Off-Line (Structured Query Language) (ClearAccess Corp. Preparing New Version of Data-Access Application with Simplified User Interface, New Features) (Product Announcement)”, MacWeek, vol. 6, No. 41, Nov. 16, 1992, 2 pages. |
Ravishankar, Mosur K., “Efficient Algorithms for Speech Recognition”, Doctoral Thesis Submitted to School of Computer Science, Computer Science Division, Carnegie Mellon University, Pittsburgh, May 15, 1996, 146 pages. |
Rayner, M., “Abductive Equivalential Translation and its Application to Natural Language Database Interfacing”, Dissertation Paper, SRI International, Sep. 1993, 162 pages. |
Rayner et al., “Adapting the Core Language Engine to French and Spanish”, Cornell University Library, available at <http:I/arxiv.org/abs/cmp-Ig/9605015>, May 10, 1996, 9 pages. |
Rayner et al., “Deriving Database Queries from Logical Forms by Abductive Definition Expansion”, Proceedings of the Third Conference on Applied Natural Language Processing, ANLC, 1992, 8 pages. |
Rayner, Manny, “Linguistic Domain Theories: Natural-Language Database Interfacing from First Principles”, SRI International, Cambridge, 1993, 11 pages. |
Rayner et al., “Spoken Language Translation with Mid-90's Technology: A Case Study”, Eurospeech, ISCA, Available online at <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.8608>, 1993, 4 pages. |
Remde et al., “SuperBook: An Automatic Tool for Information Exploration-Hypertext?”, In Proceedings of Hypertext, 87 Papers, Nov. 1987, 14 pages. |
Reynolds, C. F., “On-Line Reviews: A New Application of the HICOM Conferencing System”, IEEE Colloquium on Human Factors in Electronic Mail and Conferencing Systems, Feb. 3, 1989, 4 pages. |
Rice et al., “Monthly Program: Nov. 14, 1995”, The San Francisco Bay Area Chapter of ACM SIGCHI, available at <http://www.baychi.org/calendar/19951114>, Nov. 14, 1995, 2 pages. |
Rice et al., “Using the Web Instead of a Window System”, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI'96, 1996, pp. 1-14. |
Rigoll, G., “Speaker Adaptation for Large Vocabulary Speech Recognition Systems Using Speaker Markov Models”, International Conference on Acoustics, Speech and Signal Processing (ICASSP'89), May 1989, 4 pages. |
Riley, M D., “Tree-Based Modelling of Segmental Durations”, Talking Machines Theories, Models and Designs, Elsevier Science Publishers B.V., North-Holland, ISBN: 08-444-89115.3, 1992, 15 pages. |
Rivlin et al., “Maestro: Conductor of Multimedia Analysis Technologies”, SRI International, 1999, 7 pages. |
Rivoira et al., “Syntax and Semantics in a Word-Sequence Recognition System”, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'79), Apr. 1979, 5 pages. |
Roddy et al., “Communication and Collaboration in a Landscape of B2B eMarketplaces”, VerticalNet Solutions, White Paper, Jun. 15, 2000, 23 pages. |
Rosenfeld, R., “A Maximum Entropy Approach to Adaptive Statistical Language Modelling”, Computer Speech and Language, vol. 10, No. 3, Jul. 1996, 25 pages. |
Roszkiewicz, A., “Extending your Apple”, Back Talk-Lip Service, A+ Magazine, The Independent Guide for Apple Computing, vol. 2, No. 2, Feb. 1984, 5 pages. |
Rudnicky et al., “Creating Natural Dialogs in the Carnegie Mellon Communicator System”, Proceedings of Eurospeech, vol. 4, 1999, pp. 1531-1534. |
Russell et al., “Artificial Intelligence, A Modern Approach”, Prentice Hall, Inc., 1995, 121 pages. |
Sacerdoti et al., “A Ladder User's Guide (Revised)”, SRI International Artificial Intelligence Center, Mar. 1980, 39 pages. |
Sagalowicz, D., “Ad-Ladder User's Guide”, SRI International, Sep. 1980, 42 pages. |
Sakoe et al., “Dynamic Programming Algorithm Optimization for Spoken Word Recognition”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-26, No. 1, Feb. 1978, 8 pages. |
Salton et al., “On the Application of Syntactic Methodologies in Automatic Text Analysis”, Information Processing and Management, vol. 26, No. 1, Great Britain, 1990, 22 pages. |
Sameshima et al., “Authorization with Security Attributes and Privilege Delegation Access control beyond the ACL”, Computer Communications, vol. 20, 1997, 9 pages. |
San-Segundo et al., “Confidence Measures for Dialogue Management in the CU Communicator System”, Proceedings of Acoustics, Speech and Signal Processing (ICASSP'00), Jun. 2000, 4 pages. |
Sato, H., “A Data Model, Knowledge Base and Natural Language Processing for Sharing a Large Statistical Database”, Statistical and Scientific Database Management, Lecture Notes in Computer Science, vol. 339, 1989, 20 pages. |
Savoy, J., “Searching Information in Hypertext Systems Using Multiple Sources of Evidence”, International Journal of Man-Machine Studies, vol. 38, No. 6, Jun. 1996, 15 pages. |
Scagliola, C., “Language Models and Search Algorithms for Real-Time Speech Recognition”, International Journal of Man-Machine Studies, vol. 22, No. 5, 1985, 25 pages. |
Schmandt et al., “Augmenting a Window System with Speech Input”, IEEE Computer Society, Computer, vol. 23, No. 8, Aug. 1990, 8 pages. |
Schnelle, Dirk, “Context Aware Voice User Interfaces or Workflow Support”, Dissertation paper, Aug. 27, 2007, 254 pages. |
Schütze, H., “Dimensions of Meaning”, Proceedings of Supercomputing'92 Conference, Nov. 1992, 10 pages. |
Seneff et al., “A New Restaurant Guide Conversational System: Issues in Rapid Prototyping for Specialized Domains”, Proceedings of Fourth International Conference on Spoken Language, vol. 2, 1996, 4 pages. |
Sharoff et al., “Register-Domain Separation as a Methodology for Development of Natural Language Interfaces to Databases”, Proceedings of Human-Computer Interaction (INTERACT'99), 1999, 7 pages. |
Sheth et al., “Evolving Agents for Personalized Information Filtering”, Proceedings of the Ninth Conference on Artificial Intelligence for Applications, Mar. 1993, 9 pages. |
Sheth et al., “Relationships at the Heart of Semantic Web: Modeling, Discovering, and Exploiting Complex Semantic Relationships”, Enhancing the Power of the Internet: Studies in Fuzziness and Soft Computing, Oct. 13, 2002, pp. 1-38. |
Shikano et al., “Speaker Adaptation through Vector Quantization”, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'86), vol. 11, Apr. 1986, 4 pages. |
Apple Computer, Inc., “iTunes 2: Specification Sheet”, 2001, 2 pages. |
Apple Computer, Inc., “iTunes, Playlist Related Help Screens”, iTunes v1.0, 2000-2001, 8 pages. |
Apple Computer, Inc., “QuickTime Movie Playback Programming Guide”, Aug. 11, 2005, pp. 1-58. |
Apple Computer, Inc., “QuickTime Overview”, Aug. 11, 2005, pp. 1-34. |
Apple Computer, Inc., “Welcome to Tiger”, available at <http://www.maths.dundee.ac.uk/software/Welcome—to—Mac—OS—X—v10.4—Tiger.pdf>, 2005, pp. 1-32. |
“Corporate Ladder”, BLOC Publishing Corporation, 1991, 1 page. |
Arango et al., “Touring Machine: A Software Platform for Distributed Multimedia Applications”, 1992 IFIP International Conference on Upper Layer Protocols, Architectures, and Applications, May 1992, pp. 1-11. |
Arons, Barry M., “The Audio-Graphical Interface to a Personal Integrated Telecommunications System”, Thesis Submitted to the Department of Architecture at the Massachusetts Institute of Technology, Jun. 1984, 88 pages. |
Badino et al., “Language Independent Phoneme Mapping for Foreign TTS”, 5th ISCA Speech Synthesis Workshop, Pittsburgh, PA, Jun. 14-16, 2004, 2 pages. |
Baechtle et al., “Adjustable Audio Indicator”, IBM Technical Disclosure Bulletin, Jul. 1, 1984, 2 pages. |
Baeza-Yates, Ricardo, “Visualization of Large Answers in Text Databases”, AVI '96 Proceedings of the Workshop on Advanced Visual Interfaces, 1996, pp. 101-107. |
Bahl et al., “Recognition of a Continuously Read Natural Corpus”, IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 3, Apr. 1978, pp. 422-424. |
Bajarin, Tim, “With Low End Launched, Apple Turns to Portable Future”, PC Week, vol. 7, Oct. 1990, p. 153(1). |
Barthel, B., “Information Access for Visually Impaired Persons: Do We Still Keep a “Document” in “Documentation”?”, Professional Communication Conference, Sep. 1995, pp. 62-66. |
Baudel et al., “2 Techniques for Improved HC Interaction: Toolglass & Magic Lenses: The See-Through Interface”, Apple Inc., Video Clip, CHI'94 Video Program on a CD, 1994. |
Beck et al., “Integrating Natural Language, Query Processing, and Semantic Data Models”, COMCON Spring '90. IEEE Computer Society International Conference, 1990, Feb. 26-Mar. 2, 1990, pp. 538-543. |
Bederson et al., “Pad++: A Zooming Graphical Interface for Exploring Alternate Interface Physics”, UIST' 94 Proceedings of the 7th Annual ACM symposium on User Interface Software and Technology, Nov. 1994, pp. 17-26. |
Bederson et al., “The Craft of Information Visualization”, Elsevier Science, Inc., 2003, 435 pages. |
“Diagrammaker”, Action Software, 1989. |
“Diagram-Master”, Ashton-Tate, 1989. |
Benel et al., “Optimal Size and Spacing of Touchscreen Input Areas”, Human-Computer Interaction—INTERACT, 1987, pp. 581-585. |
Beringer et al., “Operator Behavioral Biases Using High-Resolution Touch Input Devices”, Proceedings of the Human Factors and Ergonomics Society 33rd Annual Meeting, 1989, 3 pages. |
Beringer, Dennis B., “Target Size, Location, Sampling Point and Instruction Set: More Effects on Touch Panel Operation”, Proceedings of the Human Factors and Ergonomics Society 34th Annual Meeting, 1990, 5 pages. |
Bernabei et al., “Graphical I/O Devices for Medical Users”, 14th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society, vol. 3, 1992, pp. 834-836. |
Bernstein, Macrophone, “Speech Corpus”, IEEE/ICASSP, Apr. 22, 1994, pp. 1-81 to 1-84. |
Berry et al., “Symantec”, New version of MORE.TM, Apr. 10, 1990, 1 page. |
Best Buy, “When it Comes to Selecting a Projection TV, Toshiba Makes Everything Perfectly Clear”, Previews of New Releases, available at <http://www.bestbuy.com/HomeAudioVideo/Specials/ToshibaTVFeatures.asp>, retrieved on Jan. 23, 2003, 5 pages. |
Betts et al., “Goals and Objectives for User Interface Software”, Computer Graphics, vol. 21, No. 2, Apr. 1987, pp. 73-78. |
Biemann, Chris, “Unsupervised Part-of-Speech Tagging Employing Efficient Graph Clustering”, Proceeding COLING ACL '06 Proceedings of the 21st International Conference on computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, 2006, pp. 7-12. |
Bier et al., “Toolglass and Magic Lenses: The See-Through Interface”, Computer Graphics (SIGGRAPH '93 Proceedings), vol. 27, 1993, pp. 73-80. |
Birrell, Andrew, “Personal Jukebox (PJB)”, available at <http://birrell.org/andrew/talks/pjb-overview.ppt>, Oct. 13, 2000, 6 pages. |
Black et al., “Multilingual Text-to-Speech Synthesis”, Acoustics, Speech and Signal Processing (ICASSP'04) Proceedings of the IEEE International Conference, vol. 3, May 17-21, 2004, 4 pages. |
Bleher et al., “A Graphic Interactive Application Monitor”, IBM Systems Journal, vol. 19, No. 3, Sep. 1980, pp. 382-402. |
Bluetooth PC Headsets, “‘Connecting’ Your Bluetooth Headset with Your Computer”, Enjoy Wireless VoIP Conversations, available at <http://www.bluetoothpcheadsets.com/connect.htm>, retrieved on Apr. 29, 2006, 4 pages. |
Bocchieri et al., “Use of Geographical Meta-Data in ASR Language and Acoustic Models”, IEEE International Conference on Acoustics Speech and Signal Processing, 2010, pp. 5118-5121. |
Bociurkiw, Michael, “Product Guide: Vanessa Matz”, available at <http://www.forbes.com/asap/2000/1127/vmartz—print.html>, retrieved on Jan. 23, 2003, 2 pages. |
“Glossary of Adaptive Technologies: Word Prediction”, available at <http://www.utoronto.ca/atrc/reference/techwordpred.html>, retrieved on Dec. 6, 2005, 5 pages. |
Borenstein, Nathaniel S., “Cooperative Work in the Andrew Message System”, Information Technology Center and Computer Science Department, Carnegie Mellon University; Thyberg, Chris A. Academic Computing, Carnegie Mellon University, 1988, pp. 306-323. |
Boy, Guy A., “Intelligent Assistant Systems”, Harcourt Brace Jovanovicy, 1991, 1 page. |
“iAP Sports Lingo 0×09 Protocol V1.00”, May 1, 2006, 17 pages. |
Brown et al., “Browing Graphs Using a Fisheye View”, Apple Inc., Video Clip, Systems Research Center, CHI '92 Continued Proceedings on a CD, 1992. |
Brown et al., “Browsing Graphs Using a Fisheye View”, CHI '93 Proceedings of the INTERACT '93 and CHI '93 Conference on Human Factors in Computing Systems, 1993, p. 516. |
Burger, D., “Improved Access to Computers for the Visually Handicapped: New Prospects and Principles”, IEEE Transactions on Rehabilitation Engineering, vol. 2, No. 3, Sep. 1994, pp. 111-118. |
“IEEE 1394 (Redirected from Firewire”, Wikipedia, The Free Encyclopedia, available at <http://www.wikipedia.org/wiki/Firewire>, retrieved on Jun. 8, 2003, 2 pages. |
Butler, Travis, “Arches Jukebox 6000 Challenges Nomad Jukebox”, available at <http://tidbits.com/article/6521>, Aug. 13, 2001, 5 pages. |
Butler, Travis, “Portable MP3: The Nomad Jukebox”, available at <http://tidbits.com/article/6261>, Jan. 8, 2001, 4 pages. |
Buxton et al., “EuroPARC's Integrated Interactive Intermedia Facility (IIIF): Early Experiences”, Proceedings of the IFIP WG 8.4 Conference on Multi-User Interfaces and Applications. 1990, pp. 11-34. |
Call Centre, “Word Prediction”, The CALL Centre & Scottish Executive Education Dept., 1999, pp. 63-73. |
Campbell et al., “An Expandable Error-Protected 4800 BPS CELP Coder (U.S. Federal Standard 4800 BPS Voice Coder)”, (Proceedings of IEEE Int'l Acoustics, Speech, and Signal Processing Conference, May 1983), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 328-330. |
Card et al., “Readings in Information Visualization Using Vision to Think”, Interactive Technologies, 1999, 712 pages. |
Carpendale et al., “3-Dimensional Pliable Surfaces: For the Effective Presentation of Visual Information”, UIST '95 Proceedings of the 8th Annual ACM Symposium on User Interface and Software Technology, Nov. 14-17, 1995, pp. 217-226. |
Carpendale et al., “Extending Distortion Viewing from 2D to 3D”, IEEE Computer Graphics and Applications, Jul./Aug. 1997, pp. 42-51. |
Carpendale et al., “Making Distortions Comprehensible”, IEEE Proceedings of Symposium on Visual Languages, 1997, 10 pages. |
Casner et al., “N-Way Conferencing with Packet Video”, The Third International Workshop on Packet Video, Mar. 22-23, 1990, pp. 1-6. |
Chakarova et al., “Digital Still Cameras—Downloading Images to a Computer”, Multimedia Reporting and Convergence, available at <http://journalism.berkeley.edu/multimedia/tutorials/stillcams/downloading.html>, retrieved on May 9, 2005, 2 pages. |
Chartier, David, “Using Multi-Network Meebo Chat Service on Your iPhone”, available at <http://www.tuaw.com/2007/07/04/using-multi-network-meebo-chat-service-on-your-iphone/>, Jul. 4, 2007, 5 pages. |
Extended European Search Report (includes European Search Report and European Search Opinion) received for European Patent Application No. 06256215.2, dated Feb. 20, 2007, 6 pages. |
Extended European Search Report (includes Supplementary European Search Report and Search Opinion) received for European Patent Application No. 07863218.9, dated Dec. 9, 2010, 7 pages. |
Extended European Search Report (includes European Search Report and European Search Opinion) received for European Patent Application No. 12186113.2, dated Apr. 28, 2014, 14 pages. |
ABCOM Pty. Ltd. “12.1″ 925 Candela Mobile PC”, LCDHardware.com, available at <http://www.lcdhardware.com/panel/12—1—panel/default.asp.>, retrieved on Dec. 19, 2002, 2 pages. |
Cisco Systems, Inc., “Cisco Unity Unified Messaging User Guide”, Release 4.0(5), Apr. 14, 2005, 152 pages. |
Cisco Systems, Inc., “Installation Guide for Cisco Unity Unified Messaging with Microsoft Exchange 2003/2000 (With Failover Configured)”, Release 4.0(5), Apr. 14, 2005, 152 pages. |
Cisco Systems, Inc., “Operations Manager Tutorial, Cisco's IPC Management Solution”, 2006, 256 pages. |
Coleman, David W., “Meridian Mail Voice Mail System Integrates Voice Processing and Personal Computing”, Speech Technology, vol. 4, No. 2, Mar./Apr. 1988, pp. 84-87. |
COMPAQ, “Personal Jukebox”, available at http://research.compaq.com/SRC/pjb/>, 2001, 3 pages. |
COMPAQ Inspiration Technology, “Personal Jukebox (PJB)—Systems Research Center and PAAD”, Oct. 13, 2000, 25 pages. |
Conkie et al., “Preselection of Candidate Units in a Unit Selection-Based Text-to-Speech Synthesis System”, ISCA, 2000, 4 pages. |
Conklin, Jeffrey, “A Survey of Hypertext” MCC Software Technology Program, Dec. 1987, 40 pages. |
Copperi et al., “CELP Coding for High Quality Speech at 8 kbits/s”, Proceedings of IEEE International Acoustics, Speech and Signal Processing Conference, Apr. 1986), as reprinted in Vector Quantization (IEEE Press), 1990, pp. 324-327. |
Corr, Paul, “Macintosh Utilities for Special Needs Users”, available at <http://homepage.mac.com/corrp/macsupt/columns/specneeds.html>, Feb. 1994 (content updated Sep. 19, 1999), 4 pages. |
Creative, “Creative NOMAD MuVo”, available at <http://web.archive.org/web/20041024075901/www.creative.com/products/product.asp?category=213&subcategory=216&product=4983>, retrieved on Jun. 7, 2006, 1 page. |
Creative, “Creative NOMAD MuVo TX”, available at <http://web.archive.org/web/20041024175952/www.creative.com/products/pfriendly.asp?product=9672>, retrieved on Jun. 6, 2006, 1 page. |
Creative, “Digital MP3 Player”, available at <http://web.archive.org/web/20041024074823/www.creative.com/products/product.asp?category=213&subcategory=216&product=4983, 2004, 1 page. |
Creative Technology Ltd., “Creative NOMAD®: Digital Audio Player: User Guide (On-Line Version)”, available at <http://ec1.images-amazon.com/media/i3d/01/A/man-migrate/MANUAL000010757.pdf>, Jun. 1999, 40 pages. |
Creative Technology Ltd., “Creative NOMAD® II: Getting Started—User Guide (On Line Version)”, available at <http://ec1.images-amazon.com/media/i3d/01/A/man-migrate/MANUAL000026434.pdf>, Apr. 2000, 46 pages. |
Creative Technology Ltd., “Nomad Jukebox”, User Guide, Version 1.0, Aug. 2000, 52 pages. |
Croft et al., “Task Support in an Office System”, Proceedings of the Second ACM-SIGOA Conference on Office Information Systems, 1984, pp. 22-24. |
Crowley et al., “MMConf: An Infrastructure for Building Shared Multimedia Applications”, CSCW 90 Proceedings, Oct. 1990, pp. 329-342. |
Cuperman et al., “Vector Predictive Coding of Speech at 16 kbit s/s”, (IEEE Transactions on Communications, Jul. 1985), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 300-311. |
ABF Software, “Lens-Magnifying Glass 1.5”, available at <http://download.com/3000-2437-10262078.html?tag=1st-0-1>, retrieved on Feb. 11, 2004, 1 page. |
Davis et al., “Stone Soup Translation”, Department of Linguistics, Ohio State University, 2001, 11 pages. |
De Herrera, Chris, “Microsoft ActiveSync 3.1”, Version 1.02, available at <http://www.cewindows.net/wce/activesync3.1.htm>, Oct. 13, 2000, 8 pages. |
Degani et al., “‘Soft’ Controls for Hard Displays: Still a Challenge”, Proceedings of the 36th Annual Meeting of the Human Factors Society, 1992, pp. 52-56. |
Del Strother, Jonathan, “Coverflow”, available at <http://www.steelskies.com/coverflow>, retrieved on Jun. 15, 2006, 14 pages. |
Diamond Multimedia Systems, Inc., “Rio PMP300: User's Guide”, available at <http://ec1.images-amazon.com/media/i3d/01/A/man-migrate/MANUAL000022854.pdf>, 1998, 28 pages. |
Dickinson et al., “Palmtips: Tiny Containers for All Your Data”, PC Magazine, vol. 9, Mar. 1990, p. 218(3). |
Digital Equipment Corporation, “OpenVMS RTL DECtalk (DTK$) Manual”, May 1993, 56 pages. |
Donahue et al., “Whiteboards: A Graphical Database Tool”, ACM Transactions on Office Information Systems, vol. 4, No. 1, Jan. 1986, pp. 24-41. |
Dourish et al., “Portholes: Supporting Awareness in a Distributed Work Group”, CHI 1992;, May 1992, pp. 541-547. |
Abut et al., “Low-Rate Speech Encoding Using Vector Quantization and Subband Coding”, (Proceedings of the IEEE International Acoustics, Speech and Signal Processing Conference, Apr. 1986), as reprinted in Vector Quantization IEEE Press, 1990, pp. 312-315. |
dyslexic.com, “AlphaSmart 3000 with CoWriter SmartApplet: Don Johnston Special Needs”, available at <http://www.dyslexic.com/procuts.php?catid-2&pid=465&PHPSESSID=2511b800000f7da>, retrieved on Dec. 6, 2005, 13 pages. |
Edwards, John R., “Q&A: Integrated Software with Macros and an Intelligent Assistant”, Byte Magazine, vol. 11, No. 1, Jan. 1986, pp. 120-122. |
Egido, Carmen, “Video Conferencing as a Technology to Support Group Work: A Review of its Failures”, Bell Communications Research, 1988, pp. 13-24. |
Elliot, Chip, “High-Quality Multimedia Conferencing Through a Long-Haul Packet Network”, BBN Systems and Technologies, 1993, pp. 91-98. |
Elliott et al., “Annotation Suggestion and Search for Personal Multimedia Objects on the Web”, CIVR, Jul. 7-9, 2008, pp. 75-84. |
Elofson et al., “Delegation Technologies: Environmental Scanning with Intelligent Agents”, Jour. of Management Info. Systems, Summer 1991, vol. 8, No. 1, 1991, pp. 37-62. |
Eluminx, “Illuminated Keyboard”, available at <http://www.elumix.com/>, retrieved on Dec. 19, 2002, 1 page. |
Engst, Adam C., “SoundJam Keeps on Jammin'”, available at <http://db.tidbits.com/getbits.acgi?tbart=05988>, Jun. 19, 2000, 3 pages. |
Ericsson Inc., “Cellular Phone with Integrated MP3 Player”, Research Disclosure Journal No. 41815, Feb. 1999, 2 pages. |
Eslambolchilar et al., “Making Sense of Fisheye Views”, Second Dynamic and Interaction Workshop at University of Glasgow, Aug. 2005, 6 pages. |
Eslambolchilar et al., “Multimodal Feedback for Tilt Controlled Speed Dependent Automatic Zooming”, UIST'04, Oct. 24-27, 2004, 2 pages. |
Fanty et al., “A Comparison of DFT, PLP and Cochleagram for Alphabet Recognition”, IEEE, Nov. 1991. |
Findlater et al., “Beyond QWERTY: Augmenting Touch-Screen Keyboards with Multi-Touch Gestures for Non-Alphanumeric Input”, CHI '12, Austin, Texas, USA, May 5-10, 2012, 4 pages. |
Fisher et al., “Virtual Environment Display System”, Interactive 3D Graphics, Oct. 23-24, 1986, pp. 77-87. |
Forsdick, Harry, “Explorations into Real-Time Multimedia Conferencing”, Proceedings of the Ifip Tc 6 International Symposium on Computer Message Systems, 1986, 331 pages. |
Furnas et al., “Space-Scale Diagrams: Understanding Multiscale Interfaces”, CHI '95 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1995, pp. 234-241. |
Furnas, George W., “Effective View Navigation”, Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, Mar. 1997, pp. 367-374. |
Furnas, George W., “Generalized Fisheye Views”, CHI '86 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, vol. 17, No, 4, Apr. 1986, pp. 16-23. |
Furnas, George W., “The Fisheye Calendar System”, Bellcore Technical Memorandum, Nov. 19, 1991. |
Gardner, Jr., P. C., “A System for the Automated Office Environment”, IBM Systems Journal, vol. 20, No. 3, 1981, pp. 321-345. |
Garretson, R., “IBM Adds ‘Drawing Assistant’ Design Tool to Graphic Series”, PC Week, vol. 2, No. 32, Aug. 13, 1985, 1 page. |
Gaver et al., “One Is Not Enough: Multiple Views in a Media Space”, INTERCHI, Apr. 24-29, 1993, pp. 335-341. |
Gaver et al., “Realizing a Video Environment: EuroPARC's RAVE System”, Rank Xerox Cambridge EuroPARC, 1992, pp. 27-35. |
Giachin et al., “Word Juncture Modeling Using Inter-Word Context-Dependent Phone-Like Units”, Cselt Technical Reports, vol. 20, No. 1, Mar. 1992, pp. 43-47. |
Gillespie, Kelly, “Adventures in Integration”, Data Based Advisor, vol. 9, No. 9, Sep. 1991, pp. 90-92. |
Gillespie, Kelly, “Internationalize Your Applications with Unicode”, Data Based Advisor, vol. 10, No. 10, Oct. 1992, pp. 136-137. |
Gilloire et al., “Innovative Speech Processing for Mobile Terminals: An Annotated Bibliography”, Signal Processing, vol. 80, No. 7, Jul. 2000, pp. 1149-1166. |
Glinert-Stevens, Susan, “Microsoft Publisher: Desktop Wizardry”, PC Sources, vol. 3. No. 2, Feb. 1992, 1 page. |
Gmail, “About Group Chat”, available at <http://mail.google.com/support/bin/answer.py?answer=81090>, Nov. 26, 2007, 2 pages. |
Goldberg, Cheryl, “IBM Drawing Assistant: Graphics for the EGA”, PC Magazine, vol. 4, No. 26, Dec. 24, 1985, 1 page. |
Good et al., “Building a User-Derived Interface”, Communications of the ACM; (Oct. 1984) vol. 27, No. 10, Oct. 1984, pp. 1032-1043. |
Gray et al., “Rate Distortion Speech Coding with a Minimum Discrimination Information Distortion Measure”, (IEEE Transactions on Information Theory, Nov. 1981), as reprinted in Vector Quantization (IEEE Press), 1990, pp. 208-221. |
Greenberg, Saul, “A Fisheye Text Editor for Relaxed-WYSIWIS Groupware”, CHI '96 Companion, Vancouver, Canada, Apr. 13-18, 1996, 2 pages. |
Griffin et al., “Signal Estimation From Modified Short-Time Fourier Transform”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-32, No. 2, Apr. 1984, pp. 236-243. |
Gruhn et al., “A Research Perspective on Computer-Assisted Office Work”, IBM Systems Journal, vol. 18, No. 3, 1979, pp. 432-456. |
Hain et al,, “The Papageno TTS System”, Siemens AG, Corporate Technology, Munich, Germany TC-STAR Workshop, 2006, 6 pages. |
Halbert, D. C., “Programming by Example”, Dept. Electrical Engineering and Comp. Sciences, University of California, Berkley, Nov. 1984, pp. 1-76. |
Hall, William S., “Adapt Your Program for Worldwide Use with Windows.TM. Internationalization Support”, Microsoft Systems Journal, vol. 6, No. 6, Nov./Dec. 1991, pp. 29-58. |
Haoui et al., “Embedded Coding of Speech: A Vector Quantization Approach”, (Proceedings of the IEEE International Acoustics, Speech and Signal Processing Conference, Mar. 1985), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 297-299. |
Hartson et al., “Advances in Human-Computer Interaction”, Chapters 1, 5, and 6, vol. 3, 1992, 121 pages. |
Heger et al,, “Knowbot: An Adaptive Data Base Interface”, Nuclear Science and Engineering, V. 107, No. 2, Feb. 1991, pp. 142-157. |
Hendrix et al., “The Intelligent Assistant: Technical Considerations Involved in Designing Q&A's Natural-Language Interface”, Byte Magazine, Issue 14, Dec. 1987, 1 page. |
Heyer et al., “Exploring Expression Data: Identification and Analysis of Coexpressed Genes”, Genome Research, vol. 9, 1999, pp. 1106-1115. |
Hill, R. D., “Some Important Features and Issues in User Interface Management System”, Dynamic Graphics Project, University of Toronto, CSRI, vol. 21, No. 2, Apr. 1987, pp. 116-120. |
Hinckley et al., “A Survey of Design Issues in Spatial Input”, UIST '94 Proceedings of the 7th Annual ACM Symposium on User Interface Software and Technology, 1994, pp. 213-222. |
Hiroshi, “TeamWork Station: Towards a Seamless Shared Workspace”, NTT Human Interface Laboratories, CSCW 90 Proceedings, Oct. 1990, pp. 13-26. |
Holmes, “Speech System and Research”, 1955, pp. 129-135, 152-153. |
Hon et al., “Towards Large Vocabulary Mandarin Chinese Speech Recognition”, Conference on Acoustics, Speech, and Signal Processing, ICASSP-94, IEEE International, vol. 1, Apr. 1994, pp. 545-548. |
Hopper, Andy, “Pandora—An Experimental System for Multimedia Applications”, Olivetti Research Laboratory, Apr. 1990, pp. 19-34. |
Howard, John H., “(Abstract) An Overview of the Andrew File System”, Information Technology Center, Carnegie Mellon University; (CMU-ITC-88-062) To Appear in a future issue of the ACM Transactions on Computer Systems, 1988, pp. 1-6. |
Huang et al., “Real-Time Software-Based Video Coder for Multimedia Communication Systems”, Department of Computer Science and Information Engineering, 1993, 10 pages. |
Hukin, R. W., “Testing an Auditory Model by Resynthesis”, European Conference on Speech Communication and Technology, Sep. 26-29, 1989, pp. 243-246. |
Hunt, “Unit Selection in a Concatenative Speech Synthesis System Using a Large Speech Database”, Copyright 1996 IEEE. “To appear in Proc. ICASSP-96, May 7-10, Atlanta, GA” ATR Interpreting Telecommunications Research Labs, Kyoto Japan, 1996, pp. 373-376. |
IBM, “Why Buy: ThinkPad”, available at <http://www.pc.ibm.com/us/thinkpad/easeofuse.html>, retrieved on Dec. 19, 2002, 2 pages. |
IBM Corporation, “Simon Says Here's How”, Users Manual, 1994, 3 pages. |
iChat AV, “Video Conferencing for the Rest of Us”, Apple—Mac OS X—iChat AV, available at <http://www.apple.com/macosx/features/ichat/>, retrieved on Apr. 13, 2006, 3 pages. |
iPhone Hacks, “Native iPhone MMS Application Released”, available at <http://www.iphonehacks.com/2007/12/iphone-rams-app.html>, retrieved on Dec. 25, 2007, 5 pages. |
iPhoneChat, “iChat for iPhone in JavaScript”, available at <http://www.publictivity.com/iPhoneChat/>, retrieved on Dec. 25, 2007, 2 pages. |
JABRA,“Bluetooth Headset: User Manual”, 2005, 17 pages. |
JABRA,“Bluetooth Introduction”, 2004, 15 pages. |
JABRA Corporation, “FreeSpeak: BT200 User Manual”, 2002, 42 pages. |
Jaybird, “Everything Wrong with AIM: Because We've All Thought About It”, available at <http://www.psychonoble.com/archives/articles/82.html>, May 24, 2006, 3 pages. |
Jeffay et al., “Kernel Support for Live Digital Audio and Video”, In Proc. of the Second Intl. Workshop on Network and Operating System Support for Digital Audio and Video, vol. 614, Nov. 1991, pp. 10-21. |
Jelinek et al., “Interpolated Estimation of Markov Source Parameters from Sparse Data”, In Proceedings of the Workshop on Pattern Recognition in Practice,, May 1980, pp. 381-397. |
Johnson, Jeff A., “A Comparison of User Interfaces for Panning on a Touch-Controlled Display”, CHI '95 Proceedings, 1995, 8 pages. |
Kaeppner et al., “Architecture of HeiPhone: A Testbed for Audio/Video Teleconferencing”, IBM European Networking Center, 1993. |
Kamba et al., “Using Small Screen Space More Efficiently”, CHI '96 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Apr. 13-18, 1996, pp. 383-390. |
Kang et al., “Quality Improvement of LPC-Processed Noisy Speech by Using Spectral Subtraction”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 37, No. 6, Jun. 1989, pp. 939-942. |
Keahey et al., “Non-Linear Image Magnification”, Apr. 24, 1996, 11 pages. |
Keahey et al., “Nonlinear Magnification Fields”, Proceedings of the 1997 IEEE Symposium on Information Visualization, 1997, 12 pages. |
Keahey et al., “Techniques for Non-Linear Magnification Transformations”, IEEE Proceedings of Symposium on Information Visualization, Oct. 1996, pp. 38-45. |
Keahey et al., “Viewing Text With Non-Linear Magnification: An Experimental Study”, Department of Computer Science, Indiana University, Apr. 24, 1996, pp. 1-9. |
Kennedy, P J., “Digital Data Storage Using Video Disc”, IBM Technical Disclosure Bulletin, vol. 24. No. 2, Jul. 1981, p. 1171. |
Kerr, “An Incremental String Search in C: This Data Matching Algorithm Narrows the Search Space with each Keystroke”, Computer Language, vol. 6, No. 12, Dec. 1989, pp. 35-39. |
Abut et al., “Vector Quantization of Speech and Speech-Like Waveforms”, (IEEE Transactions on Acoustics, Speech, and Signal Processing, Jun. 1982), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 258-270. |
Kim. E.A. S., “The Structure and Processing of Fundamental Frequency Contours”, University of Cambridge, Doctoral Thesis, Apr. 1987, 378 pages. |
Kirstein et al., “Piloting of Multimedia Integrated Communications for European Researchers”, Proc, INET '93, 1993, pp. 1-12. |
Kjelldahl et al., “Multimedia—Principles, Systems, and Applications”, Proceedings of the 1991 Eurographics Workshop on Multimedia Systems, Applications, and Interaction, Apr. 1991. |
Kline et al., “Improving GUI Accessibility for People with Low Vision”, CHI '95 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, May 7-11, 1995, pp. 114-121. |
Kline et al., “UnWindows 1.0: X Windows Tools for Low Vision Users”, ACM SIGCAPH Computers and the Physically Handicapped, No. 49, Mar. 1994, pp. 1-5. |
Knight et al., “Heuristic Search”, Production Systems, Artificial Intelligence, 2nd ed., McGraw-Hill, Inc. 1983-1991. |
Kroon et al., “Quantization Procedures for the Excitation in CELP Coders”, (Proceedings of IEEE International Acoustics, Speech, and Signal Processing Conference, Apr. 1987), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 320-323. |
Kuo et al., “A Radical-Partitioned coded Block Adaptive Neural Network Structure for Large-Volume Chinese Characters Recognition”, International Joint Conference on Neural Networks, vol. 3, Jun. 1992, pp. 597-601. |
Kuo et al., “A Radical-Partitioned Neural Network System Using a Modified Sigmoid Function and a Weight-Dotted Radical Selector for Large-Volume Chinese Character Recognition VLSI”, IEEE Int. Symp. Circuits and Systems, Jun. 1994, pp. 3862-3865. |
Kurlander et al., “Comic Chat”, [Online], 1996 [Retrieved on: Feb. 4, 2013], SIGGRAPH '96 Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, [Retrieved from: http://delivery.acm.org/10.1145/240000/237260/p225-kurlander.pdf], 1996, pp. 225-236. |
Laface et al., “A Fast Segmental Viterbi Algorithm for Large Vocabulary Recognition”, International Conference on Acoustics, Speech, and Signal Processing, vol. 1, May 1995, pp. 560-563. |
Lafferty et al., “Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data”, Proceedings of the 18th International Conference on Machine Learning, 2001, 9 pages. |
Adium, “AboutAdium—Adium X—Trac”, available at <http://web.archive.org/web/20070819113247/http://trac.adiumx.com/wiki/AboutAdium>, retrieved on Nov. 25, 2011, 2 pages. |
Lamping et al., “Laying Out and Visualizing Large Trees Using a Hyperbolic Space”, Proceedings of the ACM Symposium on User Interface Software and Technology, Nov. 1994, pp. 13-14. |
Lamping et al., “Visualizing Large Trees Using the Hyperbolic Browser”, Apple Inc., Video Clip, MIT Media Library, on a CD, 1995. |
Lantz et al., “Towards a Universal Directory Service”, Departments of Computer Science and Electrical Engineering, Stanford University, 1985, pp. 250-260. |
Lantz, Keith, “An Experiment in Integrated Multimedia Conferencing”, 1986, pp. 267-275. |
Lauwers et al., “Collaboration Awareness in Support of Collaboration Transparency: Requirements for the Next Generation of Shared Window Systems”, CHI'90 Proceedings, 1990, pp. 303-311. |
Lauwers et al., “Replicated Architectures for Shared Window Systems: A Critique”, COCS '90 Proceedings of the ACM SIGOIS and IEEE CS TC-OA conference on Office information systems, ACM SIGOIS Bulletin. 1990, pp. 249-260. |
Lazzaro, Joseph J., “Adapting Desktop Computers to Meet the Needs of Disabled Workers is Easier Than You Might Think”, Computers for the Disabled, BYTE Magazine, Jun. 1993, 4 pages. |
Leahy et al., “Effect of Touch Screen Target Location on User Accuracy”, Proceedings of the Human Factors Society 34th Annual Meeting, 1990, 5 pages. |
Lee, Kai-Fu, “Automatic Speech Recognition”, 1989, 14 pages. (Table of Contents). |
Leung et al., “A Review and Taxonomy of Distortion-Oriented Presentation Techniques”, ACM Transactions on Computer-Human Interaction (TOCHI), vol. 1, No. 2, Jun. 1994, pp. 126-160. |
Levinson et al., “Speech synthesis in telecommunications” IEEE Communications Magazine, vol. 31, No. 11, Nov. 1993, pp. 46-53. |
Lewis, “Speech synthesis in a computer aided learning environment”, UK IT, Mar. 19-22, 1990, pp. 294-298. |
Lewis, Peter, “Two New Ways to Buy Your Bits”, CNN Money, available at <http://money.cnn.com/2003/12/30/commentary/ontechnology/download/>,, Dec. 31, 2003, 4 pages. |
Lieberman, Henry, “A Multi-Scale, Multi-Layer, Translucent Virtual Space”, Proceedings of IEEE Conference on Information Visualization, Aug. 1997, pp. 124-131. |
Lieberman, Henry, “Powers of Ten Thousand: Navigating in Large Information Spaces”, Proceedings of the ACM Symposium on User Interface Software and Technology, Nov. 1994, pp. 1-2. |
Lyon, R., “A Computational Model of Binaural Localization and Separation”, Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Apr. 1983, pp. 1148-1151. |
Ahlberg et al., “The Alphaslider: A Compact and Rapid Selector”, CHI '94 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Apr. 1994, pp. 365-371. |
Lyons, Richard F., “CCD Correlators for Auditory Models”, Proceedings of the Twenty-Fifth Asilomar Conference on Signals, Systems and Computers, Nov. 4-6, 1991, pp. 785-789. |
MacKenzie et al., “Alphanumeric Entry on Pen-Based Computers” International Journal of Human-Computer Studies, vol. 41, 1994, pp. 775-792. |
MacKinlay et al., “The Perspective Wall: Detail and Context Smoothly Integrated”, ACM, 1991, pp. 173-179. |
Ahlberg et al., “Visual Information Seeking: Tight Coupling of Dynamic Query Filters with Starfield Displays”, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Apr. 24-28, 1994, pp. 313-317. |
Mactech, “KeyStrokes 3.5 for Mac OS X Boosts Word Prediction”, available at <http://www.mactech.com/news/?p=1007129>, retrieved on Jan. 7, 2008, 3 pages. |
Mahedero et al., “Natural Language Processing of Lyrics”, In Proceedings of the 13th Annual ACM International Conference on Multimedia, ACM, Nov. 6-11, 2005, 4 pages. |
Marcus et al., “Building a Large Annotated Corpus of English: The Penn Treebank”, Computational Linguistics, vol. 19, No. 2, 1993, pp. 313-330. |
Markel et al., “Linear Production of Speech”, Reviews, 1976, pp. xii, 288. |
Masui, Toshiyuki, “POBox: An Efficient Text Input Method for Handheld and Ubiquitous Computers”, Proceedings of the 1st International Symposium on Handheld and Ubiquitous Computing, 1999, 12 pages. |
Matsui et al., “Speaker Adaptation of Tied-Mixture-Based Phoneme Models for Text-Prompted Speaker Recognition”, 1994 IEEE International Conference on Acoustics, Speech and Signal Processing, Apr. 19-22, 1994, 1-125-1-128. |
Matsuzawa, A, “Low-Voltage and Low-Power Circuit Design for Mixed Analog/Digital Systems in Portable Equipment”, IEEE Journal of Solid-State Circuits, vol. 29, No. 4, 1994, pp. 470-480. |
Mellinger, David K., “Feature-Map Methods for Extracting Sound Frequency Modulation”, IEEE Computer Society Press, 1991, pp. 795-799. |
Menico, Costas, “Faster String Searches”, Dr. Dobb's Journal, vol. 14, No. 7, Jul. 1989, pp. 74-77. |
Menta, Richard, “1200 Song MP3 Portable is a Milestone Player”, available at <http://www.mp3newswire.net/stories/personaljuke.html>, Jan. 11, 2000, 4 pages. |
Meyer, Mike, “A Shell for Modern Personal Computers”, University of California, Aug. 1987, pp. 13-19. |
Meyrowitz et al., “Bruwin: An Adaptable Design Strategy for Window Manager/Virtual Terminal Systems”, Department of Computer Science, Brown University, 1981, pp. 180-189. |
Miastkowski, Stan, “paperWorks Makes Paper Intelligent”, Byte Magazine, Jun. 1992. |
Microsoft, “Turn on and Use Magnifier”, available at <http://www.microsoft.com/windowsxp/using/accessibility/magnifierturnon.mspx>, retrieved on Jun. 6, 2009. |
Microsoft Corporation, Microsoft Office Word 2003 (SP2), Microsoft Corporation. SP3 as of 2005, pages MSWord 2003 Figures 1-5. 1983-2003. |
Microsoft Corporation, “Microsoft MS-DOS Operating System User's Guide”, Microsoft Corporation, 1982, pp. 4-1 to 4-16, 5-1 to 5-19. |
Microsoft Press, “Microsoft Windows User's Guide for the Windows Graphical Environment”, version 3.0, 1985-1990, pp. 33-41 & 70-74. |
Microsoft Windows XP, “Magnifier Utility” Oct. 25, 2001, 2 pages. |
Microsoft Word 2000 Microsoft Corporation, pages MSWord Figures 1-5, 1999. |
Microsoft/Ford, “Basic Sync Commands”, www.SyncMyRide.com, Sep. 14, 2007, 1 page. |
Milner, N. P., “A Review of Human Performance and Preferences with Different Input Devices to Computer Systems”, Proceedings of the Fourth Conference of the British Computer Society on People and Computers, Sep. 5-9, 1988, pp. 341-352. |
Miniman, Jared, “Applian Software's Replay Radio and Player v1.02”, pocketnow.com—Review, available at <http://www.pocketnow.com/reviews/replay/replay.htm>, Jul. 31, 2001, 16 pages. |
Moberg et al., “Cross-Lingual Phoneme Mapping for Multilingual Synthesis Systems”, Proceedings of the 8th International Conference on Spoken Language Processing, Jeju Island, Korea, Interspeech 2004, Oct. 4-8, 2004, 4 pages. |
Moberg, M., “Contributions to Multilingual Low-Footprint TTS System for Hand-Held Devices”, Doctoral Thesis, Tampere University of Technology, Aug. 17, 2007, 82 pages. |
Mobile Tech News, “T9 Text Input Software Updated”, available at <http://www.mobiletechnews.com/info/2004/11/23/122155.html>, Nov. 23, 2004, 4 pages. |
Mok et al., “Media Searching on Mobile Devices”, IEEE EIT 2007 Proceedings, 2007, pp. 126-129. |
Morland, D. V., “Human Factors Guidelines for Terminal Interface Design”, Communications ofthe ACM vol. 26, No. 7, Jul. 1983, pp. 484-494. |
Morris et al., “Andrew: A Distributed Personal Computing Environment”, Communications of the ACM, (Mar. 1986); vol. 29 No. 3,, Mar. 1986, pp. 184-201. |
Muller et al., “CSCW'92 Demonstrations”, 1992, pp. 11-14. |
Musicmatch, “Musicmatch and Xing Technology Introduce Musicmatch Jukebox”, Press Releases, available at <http://www.musicmatch.com/info/company/press/releases/?year=1998&release=2>, May 18, 1998, 2 pages. |
Muthesamy et al., “Speaker-Independent Vowel Recognition: Spectograms versus Cochleagrams”, IEEE, Apr. 1990. |
My Cool Aids, “What's New”, available at <http://www.mycoolaids.com/>, 2012, 1 page. |
Myers, Brad A., “Shortcutter for Palm”, available at <http://www.cs.cmu.edu/˜pebbles/v5/shortcutter/palm/index.html>, retrieved on Jun. 18, 2014, 10 pages. |
Nadoli et al., “Intelligent Agents in the Simulation of Manufacturing Systems”, Proceedings of the SCS Multiconference on AI and Simulation, 1989, 1 page. |
Nakagawa et al., “Unknown Word Guessing and Part-of-Speech Tagging Using Support Vector Machines”, Proceedings of the 6th NLPRS, 2001, pp. 325-331. |
Ahlstrom et al., “Overcoming Touchscreen User Fatigue by Workplace Design”, CHI '92 Posters and Short Talks of the 1992 SIGCHI Conference on Human Factors in Computing Systems, 1992, pp. 101-102. |
NCIP, “NCIP Library: Word Prediction Collection”, available at <http://www2.edc.org/ncip/library/wp/toc.htm>, 1998, 4 pages. |
NCIP, “What is Word Prediction?”, available at <http://www2.edc.org/NCIP/library/wp/what—is.htm>, 1998, 2 pages. |
NCIP Staff, “Magnification Technology”, available at <http://www2.edc.org/ncip/library/vi/magnifi.htm>, 1994, 6 pages. |
Newton, Harry, “Newton's Telecom Dictionary”, Mar. 1998, pp. 62, 155, 610-611, 771. |
Nguyen et al., “Generic Manager for Spoken Dialogue Systems”, In DiaBruck: 7th Workshop on the Semantics and Pragmatics of Dialogue, Proceedings, 2003, 2 pages. |
Nilsson, B. A., “Microsoft Publisher is an Honorable Start for DTP Beginners”, Computer Shopper, Feb. 1, 1992, 2 pages. |
Noik, Emanuel G., “Layout-Independent Fisheye Views of Nested Graphs”, IEEE Proceedings of Symposium on Visual Languages, 1993, 6 pages. |
Nonhoff-Arps et al., “StraBenmusik: Portable MP3-Spieler mit USB Anschluss”, CT Magazin Fuer Computer Technik, Verlag Heinz Heise GMBH, Hannover DE, No. 25, 2000, pp. 166-175. |
Northern Telecom, “Meridian Mail PC User Guide”, 1988, 17 Pages. |
Notenboom, Leo A., “Can I Retrieve Old MSN Messenger Conversations?”, available at <http://ask-leo.com/can—i—retrieve—old—msn—messenger—conversations.html>, Mar. 11, 2004, 23 pages. |
O'Connor, Rory J., “Apple Banking on Newton's Brain”, San Jose Mercury News, Apr. 22, 1991. |
Ohsawa et al., “A computational Model of an Intelligent Agent Who Talks with a Person”, Research Reports on Information Sciences, Series C, No. 92, Apr. 1989, pp. 1-18. |
Ohtomo et al., “Two-Stage Recognition Method of Hand-Written Chinese Characters Using an Integrated Neural Network Model”, Denshi Joohoo Tsuushin Gakkai Ronbunshi, D-II, vol. J74, Feb. 1991, pp. 158-165. |
Okazaki et al., “Multi-Fisheye Transformation Method for Large-Scale Network Maps”, IEEE Japan, vol. 44, No. 6, 1995, pp. 495-500. |
Omologo et al., “Microphone Array Based Speech Recognition with Different Talker-Array Positions”, IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 1, Apr. 21-24, 1997, pp. 227-230. |
Oregon Scientific, “512MB Waterproof MP3 Player with FM Radio & Built-in Pedometer”, available at <http://www2.oregonscientific.com/shoptproduct.asp?cid=4&scid=11&pid=581>, retrieved on Jul. 31, 2006, 2 pages. |
Oregon Scientific, “Waterproof Music Player with FM Radio and Pedometer (MP121)—User Manual”, 2005, 24 pages. |
Padilla, Alfredo, “Palm Treo 750 Cell Phone Review—Messaging”, available at <http://www.wirelessinfo.com/content/palm-Treo-750-Cell-Phone-Review/Messaging.htm>, Mar. 17, 2007, 6 pages. |
Palay et al., “The Andrew Toolkit: An Overview”, Information Technology Center, Carnegie-Mellon University, 1988, pp. 1-15. |
Palm, Inc., “User Guide : Your Palm® Treo.TM. 755p Smartphone”, 2005-2007, 304 pages. |
Panasonic, “Toughbook 28: Powerful, Rugged and Wireless”, Panasonic: Toughbook Models, available at <http://www.panasonic.com/computer/notebook/html/01a—s8.htm>, retrieved on Dec. 19, 2002, 3 pages. |
Parks et al., “Classification of Whale and Ice Sounds with a cochlear Model”, IEEE, Mar. 1992. |
Patterson et al., “Rendezvous: An Architecture for Synchronous Multi-User Applications”, CSCW '90 Proceedings, 1990, pp. 317-328. |
International Search Report received for PCT Patent Application No. PCT/US2002/033330, dated Feb. 4, 2003, 6 pages. |
Ahmed et al., “Intelligent Natural Language Query Processor”, TENCON '89, Fourth IEEE Region 10 International Conference, Nov. 22-24, 1989, pp. 47-49. |
Ahuja et al., “A Comparison of Application Sharing Mechanisms in Real-Time Desktop Conferencing Systems”, At&T Bell Laboratories, 1990, pp. 238-248. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2005/038819, dated Apr. 5, 2006, 12 pages. |
International Search Report received for PCT Patent Application No. PCT/US2005/046797, dated Nov. 24, 2006, 6 pages. |
Invitation to Pay Additional Fees and Partial Search Report received for PCT Application No. PCT/US2005/046797, dated Jul. 3, 2006, 6 pages. |
Written Opinion received for PCT Patent Application No. PCT/US2005/046797, dated Nov. 24, 2006, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2006/048669, dated Jul. 2, 2007, 12 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2006/048670, dated May 21, 2007, 11 pages. |
Invitation to Pay Addition Fees and Partial International Search Report received for PCT Patent Application No. PCT/US2006/048738, dated Jul. 10, 2007, 4 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2006/048753, dated Jun. 19, 2007, 15 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2007/026243, dated Mar. 31, 2008, 10 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2007/088872, dated May 8, 2008, 8 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2007/088873, dated May 8, 2008, 7 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000032, dated Jun. 12, 2008, 7 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000042, dated May 21, 2008, 7 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000043, dated Oct. 10, 2008, 12 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2008/000043, dated Jun. 27, 2008, 4 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000045, dated Jun. 12, 2008, 7 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000047, dated Sep. 11, 2008, 12 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2008/000047, dated Jul. 4, 2008, 4 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/U82008/000059, dated Sep. 19, 2008, 18 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/000061, dated Jul. 1, 2008, 13 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2011/020350, dated Jun. 30, 2011, 17 pages. |
Invitation to Pay Additional Fees and Partial International Search Report received for PCT Patent Application No. PCT/US2011/020350, dated Apr. 14, 2011, 5 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2011/020861, dated Aug. 2, 2012, 11 pages. |
Aikawa, K. “Time-Warping Neural Network for Phoneme Recognition”, IEEE International Joint Conference on Neural Networks, vol. 3, Nov. 18-21, 1991, pp. 2122-2127. |
Allen et al., “Automated Natural Spoken Dialog”, Computer, vol. 35, No. 4, Apr. 2002, pp. 51-56. |
Alleva et al., “Applying SPHINX-II to DARPA Wall Street Journal CSR Task”, Proceedings of Speech and Natural Language Workshop, Feb. 1992, pp. 393-398. |
Amrel Corporation, “Rocky Matrix BackLit Keyboard”, available at <http://www.amrel.com/asi—matrixkeyboard.html>, retrieved on Dec. 19, 2002, 1 page. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/034028, dated Jun. 11, 2012, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/040931, dated Feb. 1, 2013, 4 pages (International Search Report only). |
Apple, “VoiceOver”, available at <http://www.apple.com/accessibility/voiceover/>, Feb. 2009, 5 pages. |
Apple Computer, Inc., “Apple—iPod—Technical Specifications, iPod 20GB and 60GB Mac + PC”, available at <http://www.apple.com/ipod/color/specs.html>, 2005, 3 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/041225, dated Aug. 23, 2013, 3 pages (International Search Report only). |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2013/047659, dated Feb. 27, 2014, 7 pages. |
Invitation to Pay Additional Fees received for PCT Application No, PCT/US2013/052558, dated Nov. 7, 2013. 6 pages. |
Pearl, Amy, “System Support for Integrated Desktop Video Conferencing”, Sunmicrosystems Laboratories, Dec. 1992, pp. 1-15. |
Penn et al., “Ale for Speech: A Translation Prototype”, Bell Laboratories, 1999, 4 pages. |
Phillipps, Ben, “Touchscreens are Changing the Face of Computers—Today's Users Have Five Types of Touchscreens to Choose from, Each with its Own Unique Characteristics”, Electronic Products, Nov. 1994, pp. 63-70. |
Phillips, Dick, “The Multi-Media Workstation”, SIGGRAPH '89 Panel Proceedings, 1989, pp. 93-109. |
Pickering, J. A., “Touch-Sensitive Screens: The Technologies and Their Application”, International Journal of Man-Machine Studies, vol. 25, No. 3, Sep. 1986, pp. 249-269. |
Pingali et al., “Audio-Visual Tracking for Natural Interactivity”, ACM Multimedia, Oct. 1999, pp. 373-382. |
Plaisant et al., “Touchscreen Interfaces for Alphanumeric Data Entry”, Proceedings of the Human Factors and Ergonomics Society 36th Annual Meeting, 1992, pp. 293-297. |
Plaisant et al., “Touchscreen Toggle Design”, CHI'92, May 3-7, 1992, pp. 667-668. |
Poly-Optical Products, Inc., “Poly-Optical Fiber Optic Membrane Switch Backlighting”, available at <http://www.poly-optical.com/membrane—switches.html>, retrieved on Dec. 19, 2002, 3 pages. |
Poor, Alfred, “Microsoft Publisher”, PC Magazine, vol. 10, No. 20, Nov. 26, 1991. 1 page. |
Potter et al., “An Experimental Evaluation of Three Touch Screen Strategies within a Hypertext Database”, International Journal of Human-Computer Interaction, vol. 1. No. 1, 1989, pp. 41-52. |
Potter et al., “Improving the Accuracy of Touch Screens: An Experimental Evaluation of Three Strategies”, CHI '88 ACM, 1988, pp. 27-32. |
Public Safety Technologies, “Tracer 2000 Computer”, available at <http://www.pst911.com/tracer.html>, retrieved on Dec. 19, 2002, 3 pages. |
Apple Computer, Inc., “Apple Announces iTunes 2”, Press Release, Oct. 23, 2001, 2 pages. |
Rabiner et al., “Digital Processing of Speech Signals”, Prentice Hall, 1978, pp. 274-277. |
Rampe et al., “SmartForm Designer and SmartForm Assistant”, News release, Claris Corp., Jan. 9, 1989, 1 page. |
Rao et al., “Exploring Large Tables with the Table Lens”, Apple Inc., Video Clip, Xerox Corp., on a CD, 1994. |
Rao et al., “Exploring Large Tables with the Table Lens”, CHI'95 Mosaic of Creativity, ACM, May 7-11, 1995, pp. 403-404. |
Rao et al., “The Table Lens: Merging Graphical and Symbolic Representations in an Interactive Focus+Context Visualization for Tabular Information”, Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, Apr. 1994, pp. 1-7. |
Raper, Larry K. ,“The C-MU PC Server Project”,(CMU-ITC-86-051), Dec. 1986, pp. 1-30. |
Ratcliffe et al., “Intelligent Agents Take U.S. Bows”, MacWeek, vol. 6, No. 9, Mar. 2, 1992, 1 page. |
Reddy, D. R., “Speech Recognition by Machine: A Review”, Proceedings of the IEEE, Apr. 1976, pp. 501-531. |
Reininger et al., “Speech and Speaker Independent Codebook Design in VQ Coding Schemes”, (Proceedings of the IEEE International Acoustics, Speech and Signal Processing Conference, Mar. 1985), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 271-273. |
Ren et al., “Efficient Strategies for Selecting Small Targets on Pen-Based Systems: An Evaluation Experiment for Selection Strategies and Strategy Classifications”, Proceedings of the IFIP TC2/TC13 WG2.7/WG13.4 Seventh Working Conference on Engineering for Human-Computer Interaction, vol. 150, 1998, pp. 19-37. |
Ren et al., “Improving Selection Performance on Pen-Based Systems: A Study of Pen-Based Interaction for Selection Tasks”, ACM Transactions on Computer-Human Interaction, vol. 7, No. 3, Sep. 2000, pp. 384-416. |
Ren et al., “The Best among Six Strategies for Selecting a Minute Target and the Determination of the Minute Maximum Size of the Targets on a Pen-Based Computer”, Human-Computer Interaction INTERACT, 1997, pp. 85-92. |
Apple Computer, Inc., “Apple Introduces iTunes—World's Best and Easiest to Use Jukebox Software”, Macworld Expo, Jan. 9, 2001, 2 pages. |
Riecken, R D., “Adaptive Direct anipulation”, IEEE Xplore, 1991, pp. 1115-1120. |
Rioport, “Rio 500: Getting Started Guide”, available at <http://ec1.images-amazon.com/media/i3d/01/A/man-migrate/MANUAL000023453.pdf>, 1999, 2 pages. |
Robbin et al., “MP3 Player and Encoder for Macintosh!”. SoundJam MP Plus, Version 2.0, 2000, 76 pages. |
Robertson et al., “Information Visualization Using 3D Interactive Animation”, Communications of the ACM, vol. 36, No. 4, Apr. 1993, pp. 57-71. |
Robertson et al., “The Document Lens”, UIST '93, Nov. 3-5, 1993, pp. 101-108. |
Root, Robert, “Design of a Multi-Media Vehicle for Social Browsing”, Bell Communications Research, 1988, pp. 25-38. |
Roseberry, Catherine, “How to Pair a Bluetooth Headset & Cell Phone”, available at <http://mobileoffice.about.com/od/usingyourphone/ht/blueheadset—p.htm>, retrieved on Apr. 29, 2006, 2 pages. |
Rosenberg et al., “An Overview of the Andrew Message System”, Information Technology Center Carnegie-Mellon University, Jul. 1987, pp. 99-108. |
Rosner et al., “In Touch: A Graphical User Interface Development Tool”, IEEE Colloquium on Software Tools for Interface Design, Nov. 8, 1990, pp. 12/1-12/7. |
Rossfrank, “Konstenlose Sprachmitteilungins Festnetz”, XP002234425, Dec. 10, 2000, pp. 1-4. |
Roucos et al., “A Segment Vocoder at 150 B/S”, (Proceedings of the IEEE International Acoustics, Speech and Signal Processing Conference, Apr. 1983), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 246-249. |
Roucos et al., “High Quality Time-Scale Modification for Speech”, Proceedings of the 1985 IEEE Conference on Acoustics, Speech and Signal Processing, 1985, pp. 493-496. |
Sabin et al., “Product Code Vector Quantizers for Waveform and Voice Coding”, (IEEE Transactions on Acoustics, Speech and Signal Processing, Jun. 1984), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 274-288. |
Apple Computer, Inc., “Apple's iPod Available in Stores Tomorrow”, Press Release, Nov. 9, 2001, 1 page. |
Santen, Jan P., “Assignment of Segmental Duration in Text-to-Speech Synthesis”, Computer Speech and Language, vol. 8, No. 2, Apr. 1994, pp. 95-128. |
Sarawagi, Sunita, “CRF Package Page”, available at <http://crf.sourceforge.net/>, retrieved on Apr. 6, 2011, 2 pages. |
Sarkar et al., “Graphical Fisheye Views”, Communications of the ACM, vol. 37, No. 12, Dec. 1994, pp. 73-83. |
Sarkar et al., “Graphical Fisheye Views of Graphs”, Systems Research Center, Digital Equipment Corporation,, Mar. 17, 1992, 31 pages. |
Sarkar et al., “Graphical Fisheye Views of Graphs”, CHI '92 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, May 3-7, 1992, pp. 83-91. |
Sarkar et al., “Stretching the Rubber Sheet: A Metaphor for Viewing Large Layouts on Small Screens”, UIST'93, ACM, Nov. 3-5, 1993, pp. 81-91. |
Sastry, Ravindra W., “A Need for Speed: A New Speedometer for Runners”, submitted to the Department of Electrical Engineering and Computer Science at the Massachusetts Institute of Technology, 1999, pp. 1-42. |
Schafer et al., “Digital Representations of Speech Signals”, Proceedings of the IEEE, vol. 63, No. 4, Apr. 1975, pp. 662-677. |
Schaffer et al., “Navigating Hierarchically Clustered Networks through Fisheye and Full-Zoom Methods”, ACM Transactions on Computer-Human Interaction, vol. 3, No. 2, Jun. 1996, pp. 162-188. |
Scheifler, R, W., “The X Window System”, MIT Laboratory for Computer Science and Gettys, Jim Digital Equipment Corporation and MIT Project Athena; ACM Transactions on Graphics. vol. 5, No. 2, Apr. 1986, pp. 79-109. |
Schluter et al., “Using Phase Spectrum Information for Improved Speech Recognition Performance”, IEEE International Conference on Acoustics, Speech, and Signal Processing, 2001, pp. 133-136. |
Schmandt et al., “A Conversational Telephone Messaging System”, IEEE Transactions on Consumer Electronics, vol. CE-30, Aug. 1984, pp. xxi-xxiv. |
Schmandt et al., “Phone Slave: A Graphical Telecommunications Interface”, Society for Information Display, International Symposium Digest of Technical Papers, Jun. 1984, 4 pages. |
Schmandt et al., “Phone Slave: A Graphical Telecommunications Interface”, Proceedings of the SID, vol. 26, No. 1, 1985, pp. 79-82. |
Schmid, H., “Part-of-speech tagging with neural networks”, COLING '94 Proceedings of the 15th conference on Computational linguistics—vol. 1, 1994, pp. 172-176. |
Schooler et al., “A Packet-switched Multimedia Conferencing System”, by Eve Schooler, et al; ACM SIGOIS Bulletin, vol. I, No. 1, Jan. 1989, pp. 12-22. |
Schooler et al., “An Architecture for Multimedia Connection Management”, Proceedings IEEE 4th Comsoc International Workshop on Multimedia Communications, Apr. 1992, pp. 271-274. |
Schooler et al., “Multimedia Conferencing: Has it Come of Age?”, Proceedings 24th Hawaii International Conference on System Sciences, vol. 3, Jan. 1991, pp. 707-716. |
Schooler et al., “The Connection Control Protocol: Architecture Overview”, USC/Information Sciences Institute, Jan. 28, 1992, pp. 1-6. |
Schooler, Eve, “A Distributed Architecture for Multimedia Conference Control”, ISI Research Report, Nov. 1991, pp. 1-18. |
Schooler, Eve M., “Case Study: Multimedia Conference Control in a Packet-Switched Teleconferencing System”, Journal of Internetworking: Research and Experience, vol. 4, No. 2, Jun. 1993, pp. 99-120. |
Schooler, Eve M., “The Impact of Scaling on a Multimedia Connection Architecture”, Multimedia Systems, vol. 1, No. 1, 1993, pp. 2-9. |
Schütze, H., “Distributional part-of-speech tagging”, EACL '95 Proceedings of the seventh conference on European chapter of the Association for Computational Linguistics, 1995, pp. 141-148. |
Schütze, Hinrich, “Part-of-speech induction from scratch”, ACL '93 Proceedings of the 31st annual meeting on Association for Computational Linguistics, 1993, pp. 251-258. |
Schwartz et al., “Context-Dependent Modeling for Acoustic-Phonetic Recognition of Continuous Speech”, IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 10, Apr. 1985, pp. 1205-1208. |
Schwartz et al., “Improved Hidden Markov Modeling of Phonemes for Continuous Speech Recognition”, IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 9, 1984, pp. 21-24. |
Schwartz et al., “The N-Best Algorithm: An Efficient and Exact Procedure for Finding the N Most Likely Sentence Hypotheses”, IEEE, 1990, pp. 81-84. |
Scott et al., “Designing Touch Screen Numeric Keypads: Effects of Finger Size, Key Size, and Key Spacing”, Proceedings of the Human Factors and Ergonomics Society 41st Annual Meeting, Oct. 1997, pp. 360-364. |
Seagrave, Jim, “A Faster Way to Search Text”, EXE, vol. 5, No. 3, Aug. 1990, pp. 50-52. |
Sears et al., “High Precision Touchs Screens: Design Strategies and Comparisons with a Mouse”, International Journal of Man-Machine Studies, vol. 34, No. 4, Apr. 1991, pp. 593-613. |
Sears et al., “Investigating Touchscreen Typing: The Effect of Keyboard Size on Typing Speed”, Behavior & Information Technology, vol. 12, No. 1, 1993, pp. 17-22. |
Sears et al., “Touchscreen Keyboards”, Apple Inc., Video Clip, Human-Computer Interaction Laboratory, on a CD, Apr. 1991. |
Seide et al., “Improving Speech Understanding by Incorporating Database Constraints and Dialogue History”, Proceedings of Fourth International Conference on Philadelphia,, 1996, pp. 1017-1020. |
Shiraki et al., “LPC Speech Coding Based on Variable-Length Segment Quantization”, (IEEE Transactions on Acoustics, Speech and Signal Processing, Sep. 1988), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 250-257. |
Shneiderman, Ben, “Designing the User Interface: Strategies for Effective Human-Computer Interaction”, Second Edition, 1992, 599 pages. |
Shneiderman, Ben, “Designing the User Interface: Strategies for Effective Human-Computer Interaction”, Third Edition, 1998, 669 pages. |
Shneiderman, Ben, “Direct Manipulation for Comprehensible, Predictable and Controllable User Interfaces”, Proceedings of the 2nd International Conference on Intelligent User Interfaces, 1997, pp. 33-39. |
Shneiderman, Ben, “Sparks of Innovation in Human-Computer Interaction”, 1993, (Table of Contents, Title Page, Ch. 4, Ch. 6 and List of References). |
Shneiderman, Ben, “The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations”, IEEE Proceedings of Symposium on Visual Languages, 1996, pp. 336-343. |
Shneiderman, Ben, “Touch Screens Now Offer Compelling Uses”, IEEE Software, Mar. 1991, pp. 93-94. |
Shoham et al., “Efficient Bit and Allocation for an Arbitrary Set of Quantizers”, (IEEE Transactions on Acoustics, Speech, and Signal Processing, Sep. 1988) as reprinted in Vector Quantization (IEEE Press, 1990). 1990, pp. 289-296. |
Simkovitz, Daniel, “LP-DOS Magnifies the PC Screen”, IEEE, 1992, pp. 203-204. |
Singh et al., “Automatic Generation of Phone Sets and Lexical Transcriptions”, Acoustics, Speech and Signal Processing (ICASSP'00), 2000, 1 page. |
Sinitsyn, Alexander, “A Synchronization Framework for Personal Mobile Servers”, Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications Workshops, Piscataway, 2004, pp. 1, 3 and 5. |
Slaney et al., “On the Importance of Time—A Temporal Representation of Sound”, Visual Representation of Speech Signals, 1993, pp. 95-116. |
Smeaton, Alan F., “Natural Language Processing and Information Retrieval”, Information Processing and Management, vol. 26, No. 1, 1990, pp. 19-20. |
Smith et al., “Guidelines for Designing User Interface Software”, User Lab, Inc., Aug. 1986, pp. 1-384. |
Smith et al., “Relating Distortion to Performance in Distortion Oriented Displays”, Proceedings of Sixth Australian Conference on Computer-Human Interaction, Nov. 1996, pp. 6-11. |
Sony Eiicsson Corporate, “Sony Ericsson to introduce Auto pairing.TM. to Improve Bluetooth.TM. Connectivity Between Headsets and Phones”, Press Release, available at <http://www.sonyericsson.com/spg.jsp?cc=global&lc=en&ver=4001&template=pc3—1—1&z . . . >, Sep. 28, 2005, 2 pages. |
Soong et al., “A High Quality Subband Speech Coder with Backward Adaptive Predictor and Optimal Time-Frequency Bit Assignment”, (Proceedings of the IEEE International Acoustics, Speech, and Signal Processing Conference, Apr. 1986), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 316-319. |
Spiller, Karen, “Low-Decibel Earbuds Keep Noise at a Reasonable Level”, available at <http://www.nashuatelegraph.com/apps/pbcs.dll/article?Date=20060813&Cate . . . >, Aug. 13, 2006, 3 pages. |
Apple Computer, Inc., “Inside Macintosh”, vol. VI, 1985. |
Srinivas et al., “Monet: A Multi-Media System for Conferencing and Application Sharing in Distributed Systems”, CERC Technical Report Series Research Note, Feb. 1992. |
Stealth Computer Corporation, “Peripherals for Industrial Keyboards & Pointing Devices”, available at <http://www.stealthcomputer.com/peripherals—oen.htm>, retrieved on Dec. 19, 2002, 6 pages. |
Steinberg, Gene, “Sonicblue Rio Car (10 GB, Reviewed: 6 GB)”, available at <http://electronics.cnet.com/electronics/0-6342420-1304-4098389.html>, Dec. 12, 2000, 2 pages. |
Stent et al., “Geo-Centric Language Models for Local Business Voice Search”, AT&T Labs—Research, 2009, pp. 389-396. |
Stone et al., “The Movable Filter as a User Interface Tool”, CHI '94 Human Factors in Computing Systems, 1994, pp. 306-312. |
Su et al., “A Review of ZoomText Xtra Screen Magnification Program for Windows 95”, Journal of Visual Impairment & Blindness, Feb. 1998, pp. 116-119. |
Su, Joseph C., “A Review of Telesensory's Vista PCI Screen Magnification System”, Journal of Visual Impairment & Blindness, Oct. 1998, pp. 705, 707-710. |
Sullivan, Danny, “How Google Instant's Autocomplete Suggestions Work”, available at <http://searchengineland.com/how-google-instant-autocomplete-suggestions-work-62592>, Apr. 6, 2011, 12 pages. |
Summerfield et al., “ASIC Implementation of the Lyon Cochlea Model”, Proceedings of the 1992 International Conference on Acoustics, Speech and Signal Processing, IEEE, vol. V, 1992, pp. 673-676. |
T3 Magazine, “Creative MuVo TX 256MB”, available at <http://www.t3.co.uk/reviews/entertainment/mp3—player/creative—muvo—tx—256mb>, Aug. 17, 2004, 1 page. |
TAOS, “TAOS, Inc. Announces Industry's First Ambient Light Sensor to Convert Light Intensity to Digital Signals”, News Release, available at <http://www.taosinc.com/presssrelease—090902.htm>, Sep. 16, 2002, 3 pages. |
Apple Computer, Inc., “iTunes 2, Playlist Related Help Screens”, iTunes v2.0, 2000-2001, 8 pages. |
Tello, Ernest R., “Natural-Language Systems”, Mastering AI Tools and Techniques, Howard W. Sams & Company, 1988. |
TG3 Electronics, Inc., “BL82 Series Backlit Keyboards”, available at <http://www.tg3electronics.com/products/backlit/backlit.htm>, retrieved on Dec. 19, 2002, 2 pages. |
The HP 150, “Hardware: Compact, Powerful, and Innovative”, vol. 8, No. 10, Oct. 1983, pp. 36-50. |
Tidwell, Jenifer, “Animated Transition”, Designing Interfaces, Patterns for effective Interaction Design, Nov. 2005, First Edition, 4 pages. |
Touch, Joseph. “Zoned Analog Personal Teleconferencing”, USC / Information Sciences Institute, 1993, pp. 1-19. |
Toutanova et al., “Feature-Rich Part-of-Speech Tagging with a Cyclic Dependency Network”, Computer Science Dept., Stanford University, Stanford CA 94305-9040, 2003, 8 pages. |
Trigg et al., “Hypertext Habitats: Experiences of Writers in NoteCards”, Hypertext '87 Papers; Intelligent Systems Laboratory, Xerox Palo Alto Research Center, 1987, pp. 89-108. |
Trowbridge, David, “Using Andrew for Development of Educational Applications”, Center for Design of Educational Computing, Carnegie-Mellon University (CMU-ITC-85-065), Jun. 2, 1985, pp. 1-6. |
Tsao et al., “Matrix Quantizer Design for LPC Speech Using the Generalized Lloyd Algorithm”, (IEEE Transactions on Acoustics, Speech and Signal Processing, Jun. 1985), as reprinted in Vector Quantization (IEEE Press. 1990), 1990, pp. 237-245. |
Turletti, Thierry, “The INRIA Videoconferencing System (IVS)”, Oct. 1994, pp. 1-7. |
Uslan et al., “A Review of Henter-Joyce's MAGic for Windows NT”, Journal of Visual Impairment and Blindness, Dec. 1999, pp. 666-668. |
Uslan et al., “A Review of Supernova Screen Magnification Program for Windows”, Journal of Visual Impairment & Blindness, Feb. 1999, pp. 108-110. |
Uslan et al., “A Review of Two Screen Magnification Programs for Windows 95: Magnum 95 and LP-Windows”, Journal of Visual Impairment & Blindness, Sep.-Oct. 1997, pp. 9-13. |
Veiga, Alex, “AT&T Wireless Launching Music Service”, available at <http://bizyahoo.com/ap/041005/at—t—mobile—music—5.html?printer=1>, Oct. 5, 2004, 2 pages. |
Vogel et al., “Shift: A Technique for Operating Pen-Based Interfaces Using Touch”, CHI '07 Proceedings, Mobile Interaction Techniques I, Apr. 28-May 3, 2007, pp. 657-666. |
W3C Working Draft, “Speech Synthesis Markup Language Specification for the Speech Interface Framework”, available at <http://www.w3org./TR/speech-synthesis>, retrieved on Dec. 14, 2000, 42 pages. |
Wadlow, M. G., “The Role of Human Interface Guidelines in the Design of Multimedia Applications”, Carnegie Mellon University (To be Published in Current Psychology: Research and Reviews, Summer 1990 (CMU-ITC-91-101), 1990, pp. 1-22. |
Walker et al., “The LOCUS Distributed Operating System 1”, University of California Los Angeles, 1983, pp. 49-70. |
Wang et al., “An Initial Study on Large Vocabulary Continuous Mandarin Speech Recognition with Limited Training Data Based on Sub-Syllabic Models”, International Computer Symposium, vol. 2, 1994, pp. 1140-1145. |
Wang et al., “Tone Recognition of Continuous Mandarin Speech Based on Hidden Markov Model”, International Journal of Pattern Recognition and Artificial Intelligence, vol. 8, 1994, pp. 233-245. |
Ware et al., “The DragMag Image Magnifier”, CHI '95 Mosaic of Creativity, May 7-11, 1995, pp. 407-408. |
Ware et al., “The DragMag Image Magnifier Prototype I”, Apple Inc., Video Clip, Marlon, on a CD, Applicant is not Certain about the Date for the Video Clip., 1995. |
Watabe et al., “Distributed Multiparty Desktop Conferencing System: MERMAID”, CSCW 90 Proceedings, Oct. 1990, pp. 27-38. |
White, George M., “Speech Recognition, Neural Nets, and Brains”, Jan. 1992, pp. 1-48. |
Wikipedia, “Acoustic Model”, available at <http://en.wikipedia.org/wiki/AcousticModel>, retrieved on Sep. 14, 2011, 2 pages. |
Wikipedia, “Language Model”, available at <http://en.wikipedia.org/wiki/Language—model>, retrieved on Sep. 14, 2011, 3 pages. |
Wikipedia, “Speech Recognition”, available at <http://en.wikipedia.org/wiki/Speech—recognition>, retrieved on Sep. 14, 2011, 10 pages. |
Wilensky et al., “Talking to UNIX in English: An Overview of UC”, Communications of the ACM, vol. 27, No. 6, Jun. 1984, pp. 574-593. |
Wilson, Mark, “New iPod Shuffle Moves Buttons to Headphones, Adds Text to Speech”, available at <http://gizmodo.com/5167946/new-ipod-shuffle-moves-buttons-to-headphones-adds-text-to-speech>, Mar. 11, 2009, 13 pages. |
Wirelessinfo, “SMS/MMS Ease of Use (8.0)”, available at <http://www.wirelessinfo.com/content/palm-Treo-750-Cell-Phone-Review/Messaging.htm>, Mar. 2007, 3 pages. |
Wong et al., “An 800 Bit/s Vector Quantization LPC Vocoder”, (IEEE Transactions on Acoustics, Speech and Signal Processing, Oct. 1982), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 222-232. |
Wong et al., “Very Low Data Rate Speech Compression with LPC Vector and Matrix Quantization”, (Proceedings of the IEEE Int'l Acoustics, Speech and Signal Processing Conference, Apr. 1983), as reprinted in Vector Quantization (IEEE Press, 1990), 1990, pp. 233-236. |
Wu et al., “Automatic Generation of Synthesis Units and Prosodic Information for Chinese Concatenative Synthesis”, Speech Communication, vol. 35, No. 3-4, Oct. 2001, pp. 219-237. |
Yang et al., “Auditory Representations of Acoustic Signals”, IEEE Transactions of Information Theory, vol. 38, No. 2, Mar. 1992, pp. 824-839. |
Yang et al., “Hidden Markov Model for Mandarin Lexical Tone Recognition”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 36, No. 7, Jul. 1988, pp. 988-992. |
Yiourgalis et al., “Text-to-Speech system for Greek”, ICASSP 91, vol. 1, May 14-17, 1991., pp. 525-528. |
Zainab, “Google Input Tools Shows Onscreen Keyboard in Multiple Languages [Chrome]”, available at <http://www.addictivetips.com/internet-tips/google-input-tools-shows-multiple-language-onscreen-keyboards-chrome/>, Jan. 3, 2012, 3 pages. |
Zelig, “A Review of the Palm Treo 750v”, available at <http://www.mtekk.com.au/Articles/tabid/54/articleType/ArticleView/articleId/769/A-Review-of-the-Palm-Treo-750v.aspx>, Feb. 5, 2007, 3 pages. |
Zhang et al., “Research of Text Classification Model Based on Latent Semantic Analysis and Improved HS-SVM”, Intelligent Systems and Applications (ISA), 2010 2nd International Workshop, May 22-23, 2010, 5 pages. |
Ziegler, K, “A Distributed Information System Study”, IBM Systems Journal, vol. 18, No. 3, 1979, pp. 374-401. |
Zipnick et al., “U.S. Appl. No. 10/859,661, filed Jun. 2, 2004”. |
“2004 Chrysler Pacifica: U-Connect Hands-Free Communication System”, The Best and Brightest of 2004, Brief Article, Automotive Industries, Sep. 2003, 1 page. |
“2007 Lexus GS 450h 4dr Sedan (3.5L 6cyl Gas/Electric Hybrid CVT)”, available at <http://review.cnet.corn/4505-10865—16-31833144.html>, retrieved on Aug. 3, 2006, 10 pages. |
“All Music Website”, available at <http://www.allmusic.com/>, retrieved on Mar. 19, 2007, 2 pages. |
“BluePhoneElite: About”, available at <http://www.reelintelligence.com/BluePhoneElite>, retrieved on Sep. 25, 2006, 2 pages. |
“BluePhoneElite: Features”, available at <http://www.reelintelligence.com/BluePhoneElite/features.shtml,>, retrieved on Sep. 25, 2006, 2 pages. |
“Digital Audio in the New Era”, Electronic Design and Application, No. 6, Jun. 30, 2003, 3 pages. |
“Mobile Speech Solutions, Mobile Accessibility”, SVOX AG Product Information Sheet, available at <http://www.svox.com/site/bra840604/con782768/mob965831936.aSQ?osLang=1>, Sep. 27, 2012, 1 page. |
“N200 Hands-Free Bluetooth Car Kit”, available at <www.wirelessground.com>, retrieved on Mar. 19, 2007, 3 pages. |
“PhatNoise”, Voice Index on Tap, Kenwood Music Keg, available at <http://www.phatnoise.com/kenwood/kenwoodssamail.html>, retrieved on Jul. 13, 2006, 1 page. |
“What is Fuzzy Logic?”, available at <http://www.cs.cmu.edu>, retrieved on Apr. 15, 1993, 5 pages. |
“Windows XP: A Big Surprise!—Experiencing Amazement from Windows XP”, New Computer, No. 2, Feb. 28, 2002, 8 pages. |
Aikawa et al., “Generation for Multilingual MT”, available at <http://mtarchive.info/MTS-2001-Aikawa.pdf>, retrieved on Sep. 18, 2001, 6 pages. |
ANHUI USTC IFL YTEK Co. Ltd., “Flytek Research Center Information Datasheet”, available at <http://www.iflttek.com/english/Research.htm>, retrieved on Oct. 15, 2004, 3 pages. |
Borden IV, G.R., “An Aural User Interface for Ubiquitous Computing”, Proceedings of the 6th International Symposium on Wearable Computers, IEEE, 2002, 2 pages. |
Brain, Marshall, “How MP3 Files Work”, available at <http://www.howstuffworks.com>, retrieved on Mar. 19, 2007, 4 pages. |
Busemann et al., “Natural Language Diaglogue Service for Appointment Scheduling Agents”, Technical Report RR-97-02, Deutsches Forschungszentrum fur Kunstliche lntelligenz GmbH, 1997, 8 pages. |
Dusan et al., “Multimodal Interaction on PDA's Integrating Speech and Pen Inputs”, Eurospeech Geneva, 2003, 4 pages. |
Lamel et al., “Generation and synthesis of Broadcast Messages”, Proceedings of ESCA-NATO Workshop: Applications of Speech Technology, Sep. 1, 1993, 4 pages. |
Lyons et al., “Augmenting Conversations Using Dual-Purpose Speech”, Proceedings of the 17th Annual ACM Symposium on User interface Software and Technology, 2004, 10 pages. |
Macsimum News, “Apple Files Patent for an Audio Interface for the iPod”, available at <http://www.macsimumnews.com/index.php/archive/apple—files—patent—for—an—audio—interface—for—the—ipod>, retrieved on Jul. 13, 2006, 8 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2004/016519, dated Nov. 3, 2005, 6 pages. |
Invitation to Pay Additional Fees and Partial International Search Report received for PCT Patent Application No. PCT/US2004/016519, dated Aug. 4, 2005, 6 pages. |
International Search Report received for PCT Patent Application No. PCT/US2011/037014, dated Oct. 4, 2011, 6 pages. |
Invitation to Pay Additional Search Fees received for PCT Application No. PCT/US2011/037014, dated Aug. 2, 2011, 6 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/043098, dated Nov. 14, 2012, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/040971, dated Nov. 12, 2013, 11 pages. |
Quazza et al., “Actor: A Multilingual Unit-Selection Speech Synthesis System”, Proceedings of 4th ISCA Tutorial and Research Workshop on Speech Synthesis, Jan. 1, 2001, 6 pages. |
Ricker, Thomas, “Apple Patents Audio User Interface”, Engadget, available at <http://www.engadget.com/2006/05/04/apple-patents-audio-user-interface/>, May 4, 2006, 6 pages. |
Santaholma, Marianne E., “Grammar Sharing Techniques for Rule-based Multilingual NLP Systems”, Proceedings of the 16th Nordic Conference of Computational Linguistics, NODALIDA 2007, May 25, 2007, 8 pages. |
Taylor et al., “Speech Synthesis by Phonological Structure Matching”, International Speech Communication Association, vol. 2, Section 3, 1999, 4 pages. |
Xu et al., “Speech-Based Interactive Games for Language Learning: Reading, Translation, and Question-Answering”, Computational Linguistics and Chinese Language Processing, vol. 14, No. 2, Jun. 2009, pp. 133-160. |
Yunker, John, “Beyond Borders: Web Globalization Strategies”, New Riders, Aug. 22, 2002, 11 pages. |
Yang et al., “Smart Sight: A Tourist Assistant System”, Proceedings of Third International Symposium on Wearable Computers, 1999, 6 pages. |
Yankelovich et al., “Intermedia: The Concept and the Construction of a Seamless Information Environment”, Computer Magazine, IEEE, Jan. 1988, 16 pages. |
Yoon et al., “Letter-to-Sound Rules for Korean”, Department of Linguistics, The Ohio State University, 2002, 4 pages. |
Zeng et al., “Cooperative Intelligent Software Agents”, The Robotics Institute, Carnegie-Mellon University, Mar. 1995, 13 pages. |
Zhao, Y., “An Acoustic-Phonetic-Based Speaker Adaptation Technique for Improving Speaker-Independent Continuous Speech Recognition”, IEEE Transactions on Speech and Audio Processing, vol. 2, No. 3, Jul. 1994, pp. 380-394. |
Zhao et al., “Intelligent Agents for Flexible Workflow Systems”, Proceedings of the Americas Conference on Information Systems (AMCIS), Oct. 1998, 4 pages. |
Zovato et al., “Towards Emotional Speech Synthesis: A Rule based Approach”, Proceedings of 5th ISCA Speech Synthesis Workshop-Pittsburgh, 2004, pp. 219-220. |
Zue, Victor, “Conversational Interfaces: Advances and Challenges”, Spoken Language System Group, Sep. 1997, 10 pages. |
Zue et al., “From Interface to Content: Translingual Access and Delivery of On-Line Information”, Eurospeech, 1997, 4 pages. |
Zue et al., “Jupiter: A Telephone-Based Conversational Interface for Weather Information”, IEEE Transactions on Speech and Audio Processing, Jan. 2000, 13 pages. |
Zue et al., “Pegasus: A Spoken Dialogue Interface for On-Line Air Travel Planning”, Speech Communication, vol. 15, 1994, 10 pages. |
Zue et al., “The Voyager Speech Understanding System: Preliminary Development and Evaluation”, Proceedings of IEEE, International Conference on Acoustics, Speech and Signal Processing, 1990, 4 pages. |
Zue, Victor W., “Toward Systems that Understand Spoken Language”, ARPA Strategic Computing Institute, Feb. 1994, 9 pages. |
International Search Report received for PCT Patent Application No. PCT/GB2009/051684, dated Mar. 12, 2010, 4 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/GB2009/051684, dated Jun. 23, 2011, 10 pages. |
Cucerzan et al., “Bootstrapping a Multilingual Part-of-Speech Tagger in One Person-Day”, In Proceedings of the 6th Conference on Natural Language Learning, vol. 20, 2002, pp. 1-7. |
Schone et al., “Knowledge-Free Induction of Morphology Using Latent Semantic Analysis”, Proceedings of the 2nd Workshop on Learning Language in Logic and the 4th Conference on Computational Natural Language Learning, vol. 7, 2000, pp. 67-72. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2005/030234, dated Mar. 20, 2007, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2005/030234, dated Mar. 17, 2006, 11 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/040801, dated Dec. 19, 2013, 16 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/040801, dated Oct. 22, 2012, 20 pages. |
International Search Report & Written Opinion received for PCT Patent Application No. PCT/US2013/028412, dated Sep. 26, 2013, 17 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/028920, dated Jun. 27, 2013, 14 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/029156, dated Jul. 15, 2013, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/058916, dated Sep. 8, 2014, 10 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/029050, dated Jul. 31, 2014, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/029562, dated Sep. 18, 2014, 21 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/040401, dated Sep. 4, 2014, 10 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/040403, dated Sep. 23, 2014, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/041159, dated Sep. 26, 2014, 10 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/041173, dated Sep. 10, 2014, 11 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/23822, dated Sep. 25, 2014, 14 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/056382, dated Apr. 10, 2014, 9 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/028412, dated Sep. 12, 2014, 12 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/028920, dated Sep. 18, 2014, 11 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/029156, dated Sep. 9, 2014, 7 pages. |
Biemann et al., “Disentangling from Babylonian Confusion—Unsupervised Language Identification”, CICLing'05 Proceedings of the 6th international conference on Computational Linguistics and Intelligent Text Processing, vol. 3406, Feb. 2005, pp. 773-784. |
Choularton et al., “User Responses to Speech Recognition Errors: Consistency of Behaviour Across Domains”, Proceedings of the 10th Australian International Conference on Speech Science & Technology, Dec. 8-10, 2004, pp. 457-462. |
Jiang et al., “A Syllable-based Name Transliteration System”, Proc. of the 2009 Named Entities Workshop, Aug. 7, 2009, pp. 96-99. |
Kazemzadeh et al., “Acoustic Correlates of User Response to Error in Human-Computer Dialogues”, Automatic Speech Recognition and Understanding, 2003, pp. 215-220. |
Kikui, Gen-Itiro, “Identifying the Coding System and Language of On-Line Documents on the Internet”, International Conference on Computational, Aug. 1996, pp. 652-657. |
Meng et al., “Generating Phonetic Cognates to Handle Named Entities in English-Chinese Cross-Language Spoken Document Retrieval”, Automatic Speech Recognition and Understanding, Dec. 2001, pp. 311-314. |
Russo et al., “Urgency is a Non-Monotonic Function of Pulse Rate”, Journal of the Acoustical Society of America, vol. 122, No. 5, 2007, 6 pages. |
Sethy et al., “A Syllable Based Approach for Improved Recognition of Spoken Names”, ITRW on Pronunciation Modeling and Lexicon Adaptation for Spoken language Technology (PMLA2002), Sep. 14-15, 2002, pp. 30-35. |
Strom et al., “Intelligent Barge-In in Conversational Systems”, MIT laboratory for Computer Science, 2000, 4 pages. |
Henrich et al., “Language Identification for the Automatic Grapheme-To-Phoneme Conversion of Foreign Words in a German Text-To-Speech System”, Proceedings of the European Conference on Speech Communication and Technology, vol. 2, Sep. 1989, pp. 220-223. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/040571, dated Dec. 19, 2013, 10 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/041233, dated Nov. 18, 2014, 8 pages. |
International Search Report received for PCT Patent Application No. PCT/US2013/041233, dated Nov. 22, 2013, 3 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/028785, dated Oct. 17, 2014, 23 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/049568, dated Nov. 14, 2014, 12 pages. |
Extended European Search Report (includes Supplementary European Search Report and Search Opinion) received for European Patent Application No. 12727027.0, dated Sep. 26, 2014, 7 pages. |
Guay, Matthew, “Location-Driven Productivity with Task Ave”, available at <http://iphone.appstorm.net/reviews/productivity/location-driven-productivity-with-task-ave/>, Feb. 19, 2011, 7 pages. |
Waibel, Alex, “Interactive Translation of Conversational Speech”, Computer, vol. 29, No. 7, Jul. 1996, pp. 41-48. |
Amano et al., “A User-friendly Multimedia Book Authoring System”, The Institute of Electronics, Information and Communication Engineers Technical Report, vol. 103, No. 416, Nov. 2003, pp. 33-40. |
AppleEvent Manager, which is described in the publication Inside Macintosh vol. VI, available from Addison-Wesley Publishing Company, 1985. |
Dual Rate Speech Coder for Multimedia Communications Transmitting at 5.3 and 6.3 kbit/s, International Telecommunication Union Recommendation G.723, 7 pages. |
Quick Search Algorithm, Communications of the ACM, 33(8), 1990, pp. 132-142. |
Worldwide Character Encoding, Version 2.0, vols. 1,2 by Unicode, Inc., 12 pages. |
Extended European Search Report (includes Partial European Search Report and European Search Opinion) received for European Patent Application No. 13169672.6, dated Aug. 14, 2013, 11 pages. |
Barrett et al., “How to Personalize the Web”, 1997 In proceddings of the ACM SIGCHI Conference on Human Factors in Computer Systems, Mar. 22-27, 1997, pp. 75-82. |
Boyer et al., “A Fast String SearchingAlgorithm”, Communications of the ACM, vol. 20, 1977, pp. 762-772. |
Cao et al., “Adapting Ranking SVM to Document Retrieval”, SIGIR '06, Seattle, WA, Aug. 6-11, 2006, 8 pages. |
Chomsky et al., “The Sound Pattern of English”, New York, Harper and Row, 1968, 242 pages. |
Church, Kenneth W., “Phonological Parsing in Speech Recognition”, Kluwer Academic Publishers, 1987. |
Erol et al., “Multimedia Clip Generation From Documents for Browsing on Mobile Devices”, IEEE Transactions on Multimedia, vol. 10, No. 5, Aug. 2008, 13 pages. |
Evermann et al., “Posterior Probability Decoding, Confidence Estimation and System Combination”, Proceedings Speech Transcription Workshop, 2000, 4 pages. |
Fiscus, J. G., “A Post-Processing System to Yield Reduced Word Error Rates: Recognizer Output Voting Error Reduction (ROVER)”, IEEE Proceedings, Automatic Speech Recognition and Understanding, Dec. 14-17, 1997, pp. 347-354. |
Gonnet et al., “Handbook of Algorithms and Data Structures: in Pascal and C. (2nd ed.)”, Addison-Wesley Longman Publishing Co., 1991, 17 pages. |
Gruber, Thomas R., et al., U.S. Appl. No. 61/186,414, filed Jun. 12, 2009 titled “System and Method for Semantic Auto-Completion” 13 pages. |
Gruber, Thomas R., et al., U.S. Appl. No. 61/493,201, filed Jun. 3, 2011 titled “Generating and Processing Data Items That Represent Tasks to Perform”, 68 pages. |
Gruber, Thomas R., et al., U.S. Appl. No. 61/657,744, filed Jun. 9, 2012 titled “Automatically Adapting User Interfaces for Hands-Free Interaction”, 40 pages. |
Gruber, Thomas R., et al., U.S. Appl. No. 07/976,970, filed Nov. 16, 1992 titled “Status Bar for Application Windows”. |
Haitsma et al., “A Highly Robust Audio Fingerprinting System”, In Proceedings of the International Symposium on Music Information Retrieval (ISMIR), 2002, 9 pages. |
Hendrickson, Bruce, “Latent Semantic Analysis and Fiedler Retrieval”, Discrete Algorithms and Mathematics Department, Sandia National Labs, Albuquerque, NM, Sep. 21, 2006, 12 pages. |
ID3.ORG, “id3v2.4,0-Frames”, available at <http://id3.org/id3v2.4.0-frames?action=print>, retrieved on Jan. 22, 2015, 41 pages. |
Jawaid et al., “Machine Translation with Significant Word Reordering and Rich Target-Side Morphology”, WDS'11 Proceedings of Contributed Papers, Part I, 2011, pp. 161-166. |
Kane et al., “Slide Rule: Making Mobile Touch Screens Accessible to Blind People Using Multi-Touch Interaction Techniques”, ASSETS, Oct. 13-15, 2008, pp. 73-80. |
Kohler, Joachim, “Multilingual Phone Models for Vocabulary-Independent Speech Recognition Tasks”, Speech Communication, vol. 35, No. 1-2, Aug. 2001, pp. 21-30. |
Kroon et al., “Pitch Predictors with High Temporal Resolution”, IEEE, vol. 2, 1990, pp. 661-664. |
Ladefoged, Peter, “A Course in Phonetics”, New York, Harcourt, Brace, Jovanovich, Second Edition, 1982. |
Lau et al., “Trigger-Based Language Models: A Maximum Entropy Approach”, ICASSP'93 Proceedings of the 1993 IEEE international conference on Acoustics, speech, and signal processing: speech processing—vol. II, 1993, pp. 45-48. |
Lee et al., “On URL Normalization”, Proceedings of the International Conference on Computational Science and its Applications, ICCSA 2005, pp. 1076-1085. |
Leveseque et al., “A Fundamental Tradeoff in Knowledge Representation and Reasoning”, Readings in Knowledge Representation, 1985, 30 pages. |
Mangu et al., “Finding Consensus in Speech Recognition: Word Error Minimization and Other Applications of Confusion Networks”, Computer Speech and Language, vol. 14, No. 4, 2000, pp. 291-294. |
Manning etal, “Foundations of Statistical Natural Language Processing”, The MIT Press, Cambridge Massachusetts, 1999, pp. 10-11. |
International Preliminary Examination Report on received for PCT Patent Application No. PCT/US1993/12637, dated Apr. 10, 1995, 7 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2009/051954, dated Mar. 24, 2011, 8 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2009/051954, dated Oct. 30, 2009, 10 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/043100, dated Nov. 15, 2012, 8 pages. |
Reddi, “The Parser”. |
Rose et al., “Inside Macintosh”, vols. I, II, and III, Addison-Wesley Publishing Company, Inc., Jul. 1988, 1284 pages. |
Sankar, Ananth, “Bayesian Model Combination (BAYCOM) for Improved Recognition”, IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Mar. 18-23, 2005, pp. 845-848. |
Stifleman. L., “Not Just Another Voice Mail System”, Proceedings of 1991 Conference, American Voice, Atlanta GA. Sep. 24-26, 1991, pp. 21-26. |
Stuker et al., “Cross-System Adaptation and Combination for Continuous Speech Recognition: The Influence of Phoneme Set and Acoustic Front-End”, Influence of Phoneme Set and Acoustic Front-End, Interspeech, Sep. 17-21, 2006, pp. 521-524. |
Sundaram et al., “Latent Perceptual Mapping with Data-Driven Variable-Length Acoustic Units for Template-Based Speech Recognition”, ICASSP 2012, Mar. 2012, pp. 4125-4128. |
Wang et al., “An Industrial-Strength Audio Search Algorithm”, In Proceedings of the International Conference on Music Information Retrieval (ISMIR), 2003, 7 pages. |
Young, S. J.. “The HTK Book”, Available on <http://htk.eng.cam.ac.uk>, 4 pages. |
Amano, Junko, “A User-Friendly Authoring System for Digital Talking Books”, IEICE Technical Report, The Institute of Electronics, Information and Communication Engineers, vol. 103 No. 418, Nov. 6, 2003, pp. 33-40. |
Extended European Search Report (inclusive of the Partial European Search Report and European Search Opinion) received for European Patent Application No. 12729332.2, dated Oct. 31, 2014, 6 pages. |
adobe.com, “Reading PDF Documents with Adobe Reader 6.0—A Guide for People with Disabilities”, Available online at “https://www.adobe.com/enterprise/accessibility/pdfs/acro6—cg—ue.pdf”, Jan. 2004, 76 pages. |
Bertulucci, Jeff, “Google Adds Voice Search to Chrome Browser”, PC World, Jun. 14, 2011. |
Dobrisek et al., “Evolution of the Information-Retrieval System for Blind and Visually-Impaired People”, International Journal of Speech Technology, Kluwer Academic Publishers, Bo, vol. 6, No. 3, pp. 301-309. |
Lee et al., “A Multi-Touch Three Dimensional Touch-Sensitive Tablet”, CHI '85 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Apr. 1985, pp. 21-25. |
Martins et al., “Extracting and Exploring the Geo-Temporal Semantics of Textual Resources”, Semantic Computing, IEEE International Conference, 2008, pp. 1-9. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2009/055577, dated Aug. 6, 2010, 12 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2009/055577, dated Jan. 26, 2010, 9 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/041225, dated Nov. 27, 2014, 9 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/047668, dated Jan. 8, 2015, 13 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/052558, dated Feb. 12, 2015, 12 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/058916, dated Mar. 19, 2015, 8 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/060121, dated Apr. 2, 2015, 6 pages. |
Rubine, Dean Harris, “Combining Gestures and Direct Manipulation”, CHI '92, May 3-7, 1992, pp. 659-660. |
Rubine, Dean Harris, “The Automatic Recognition of Gestures”, CMU-CS-91-202, Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Computer Science at Carnegie Mellon University, Dec. 1991, 285 pages. |
Sen et al., “Indian Accent Text-to-Speech System for Web Browsing”, Sadhana, vol. 27, No. 1, Feb. 2002, pp. 113-126. |
Tombros et al., “Users' Perception of Relevance of Spoken Documents”, Journal of the American Society for Information Science, New York, Aug. 2000, pp. 929-939. |
Westerman, Wayne, “Hand Tracking, Finger Identification and Chordic Manipulation on a Multi-Touch Surface”, Doctoral Dissertation, 1999, 363 Pages. |
Youtube, “New bar search for Facebook”, Available at “https://www.youtube.com/watch?v=vwgN1WbvCas”, 1 page. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/047668, dated Feb. 13, 2014, 17 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/052558, dated Jan. 30, 2014, 15 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/060121, dated Dec. 6, 2013, 8 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/040961, dated Mar. 10, 2015, 5 pages. |
Invitation to Pay Additional Fees received for PCT Application No. PCT/US2014/040961, dated Jan. 14, 2015, 3 pages. |
Invitation to Pay Additional Fees and Partial Search Report received for PCT Patent Application No. PCT/US2015/023089, dated Jun. 17, 2015, 7 pages. |
Chen et al., “An Improved Method for Image Retrieval Using Speech Annotation”, The 9th International Conference on Multi-Media Modeling, Jan. 2003, pp. 1-17. |
Haga et al., “A Usability Survey of a Contents-Based Video Retrieval System by Combining Digital Video and an Electronic Bulletin Board”, The Internet and Higher Education, vol. 8, No. 3, 2005, pp. 251-262. |
Jouvet et al., “Evaluating Grapheme-to-phoneme Converters in Automatic Speech Recognition Context”, IEEE,, 2012,, pp. 4821-4824. |
Kazmucha, Allyson, “How to Send Map Locations Using iMessage”, iMore.com, Available at <http://www.imore.com/how-use-imessage-share-your-location-your-iphone>, Aug. 2, 2012, 6 pages. |
Lewis, Cameron, “Task Ave for iPhone Review”, Mac Life, Available at <http://www.maclife.com/article/reviews/task—ave—iphone—review>, Mar. 3, 2011, 5 pages. |
Ng, Simon, “Google's Task List Now Comes to Iphone”, SimonBlog, Available at <http://www.simonblog.com/2009/02/04/googles-task-list-now-comes-to-iphone/>, Feb. 4, 2009, 33 pages. |
Osxdaily, “Get a List of Siri Commands Directly from Siri”, Available at <http://osxdaily.com/2013/02/05/list-siri-commands/>, Feb. 5, 2013, 15 pages. |
Extended European Search Report (includes Partial European Search Report and European Search Opinion) received for European Patent Application No. 15169349.6, dated Jul. 28, 2015, 8 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/044574, dated Sep. 27, 2013, 12 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/044834, dated Dec. 9, 2014, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/044834, dated Dec. 20, 2013, 13 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/047659, dated Jul. 7, 2014, 25 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/023826, dated Oct. 9, 2014, 13 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/026871, dated Jul. 23, 2014, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/026873, dated Jan. 5, 2015, 11 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/028950, dated Nov. 25, 2014, 10 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/040393, dated Dec. 8, 2014, 23 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/040394, dated Aug. 8, 2014, 11 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/040397, dated Aug. 27, 2014, 12 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/023097, dated Jul. 7, 2015, 15 pages. |
Sarvas et al., “Metadata Creation System for Mobile Images”, Conference Proceedings, The Second International Conference on Mobile Systems, Applications and Services, Jun. 6, 2004, pp. 36-48. |
Srihari, R, K.., “Use of Multimedia Input in Automated Image Annotation and Content-based Retrieval”, Proceedings of Spie, International Society for Optical Engineering, vol. 2420, Feb. 9, 1995., pp. 249-260. |
Timothy et al., “Speech-Based Annotation and Retrieval of Digital Photographs”, Interspeech. 8th Annual Conference of the International Speech Communication Association, Aug. 27, 2007, pp. 2165-2168. |
Viikki et al., “Speaker- and Language-Independent Speech Recognition in Mobile Communication Systems”, IEEE, vol. 1, 2001, pp. 5-8. |
Xiang et al., “Correcting Phoneme Recognition Errors in Learning Word Pronunciation through Speech Interaction”, Speech Communication, vol. 55, No. 1, Jan. 1, 2013, pp. 190-203. |
Database WPI Section Ch, Week 8733, Derwent Publications Ltd., London, GB; AN 87-230826 & JP,A,62 153 326 (Sanwa Kako KK (Sans ) Sanwa Kako Co), Jul. 8, 1987. |
Database WPI Section Ch, Week 8947, Derwent Publications Ltd., London, GB; AN 89-343299 & JP,A,1 254 742 (Sekisui Plastics KK), Oct. 11, 1989. |
Dragon NaturallySpeaking Version 11 Users Guide, Nuance Communications, Inc., Copyright @2002-2010, 132 pages. |
Headset Button Controller v7.3 APK Full APP Download for Andriod, Blackberry, iPhone, 11 pages. |
Patent Abstracts of Japan, vol. 014, No. 273 (E-0940) Jun. 13, 1990 (Jun. 13, 1990)—& JP 02 086057 A (Japan Storage Battery Co Ltd), Mar. 27, 1990 (Mar. 27, 1990). |
European Search Report received for European Patent Application No. 01201774.5, dated Sep. 14, 2001, 3 pages. |
Extended European Search Report received for European Patent Application No. 11159884.3, dated May 20, 2011, 8 pages. |
European Search Report received for European Patent Application No. 99107544.1, dated Jul. 8, 1999, 4 pages. |
European Search Report received for European Patent Application No. 99107545.8, dated Jul. 1, 1999, 3 pages. |
API.AI, “Android App Review—Speaktoit Assistant”, Available at <https://www.youtube.com/watch?v=myE498nyfGw>, Mar. 30, 2011, 3 pages. |
Apple, “iPhone User's Guide”, Available at <http://mesnotices.20minutes.fr/manuel-notice-mode-emploi/APPLE/IPHONE%2D%5FE#>, Retrieved on Mar. 27, 2008, Jun. 2007, 137 pages. |
Bergmann et al., “An adaptable man-machine interface using connected-word recognition”, 2nd European Conference on Speech Communication and Technology (EUROSPEECH 91), vol. 2, XP002176387, Sep. 24-26, 1991, pp. 467-470. |
Chamberlain, Kim, “Quick Start Guide Natural Reader”, available online at <http://atrc.colostate.edu/files/quickstarts/Natural—Reader—Quick—Start—Guide.>, Apr. 2008, 5 pages. |
Colt, Sam, “Here's One Way Apple's Smartwatch Could Be Better Than Anything Else”, Business Insider, Aug. 21, 2014, pp. 1-4. |
Dittenbach et al., “A Natural Language Query Interface for Tourism Information”, In: Information and Communication Technologies in Tourism 2003, XP055114393, Feb. 14, 2003, pp. 152-162. |
Fuji Film, “Taking Pictures Remotely : Free iPhone/Android App Fuji Film Camera Remote”, Available at <http://app.fujifilm-dsc.com/en/camera—remote/guide05.html>, Apr. 22, 2014, 3 pages. |
Gurevych el al., “Semantic Coherence Scoring Using an Ontology”, North American Chapter of the Association for Computational Linguistics Archive, Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology, May 27, 2003, 8 pages. |
Morton, Philip, “Checking if an Element Is Hidden”, StackOverflow, Available at <http://stackoverflow.com/questions/178325/checking-if-an-element-is-hidden>, Oct. 7, 2008, 12 pages. |
NDTV, “Sony SmartWatch 2 Launched in India for Rs. 14,990”, available at <http://gadgets.ndtv.com/others/news/sony-smartwatch-2-launched-in-india-for-rs-14990-420319>, Sep. 18, 2013, 4 pages. |
Pan et al., “Natural Language Aided Visual Query Building for Complex Data Access”, In proceeding of: Proceedings of the Twenty-Second Conference on Innovative Applications of Artificial Intelligence, XP055114607, Jul. 11, 2010. |
International Search Report received for PCT Application No. PCT/US1994/000687, dated Jun. 3, 1994, 1 page. |
International Search Report received for PCT Application No. PCT/US1994/00077, dated May 25, 1994, 2 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US1994/11011, dated Feb. 28, 1996, 4 pages. |
International Search Report received for PCT Application No. PCT/US1995/013076, dated Feb. 2, 1996, 1 page. |
International Search Report received for PCT Application No. PCT/US1996/01002, dated Oct. 30, 1996, 4 pages. |
International Search Report received for PCT Application No. PCT/US2002/024669, dated Nov. 5, 2002, 3 pages. |
International Search Report received for PCT Application No. PCT/US2002/024670, dated Sep. 26, 2002, 3 pages. |
International Preliminary Report on Patentability received for PCT Application No. PCT/US2004/002873, dated Feb. 1, 2006, 5 pages. |
International Search Report received and written opinion for PCT Application No. PCT/US2004/002873, dated Oct. 13, 2005, 7 pages. |
International Preliminary report on Patentability received for PCT Application No. PCT/US2004/016519, dated Jan. 23, 2006, 12 pages. |
International Preliminary Report on Patentability received for PCT Application No. PCT/US2008/000042, dated Jul. 7, 2009, 6 pages. |
International Preliminary Report on Patentability received for PCT Application No. PCT/US2008/000043, dated Jul. 7, 2009, 8 pages. |
International Preliminary Report on Patentability received for PCT Application No. PCT/US2008/000047, dated Jul. 7, 2009, 8 pages. |
International Preliminary Report on Patentability received for PCt Application No. PCT/US2010/037378, dated Dec. 6, 2011, 9 pages. |
International Preliminary Report on Patentability received for PCT Application No. PCT/US2011/020350, dated Jul. 17, 2012, 12 pages. |
International Preliminary Report on Patentability received for PCT Application No. PCT/US2011/020825, dated Jan. 13, 2012, 17 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2011/020825, dated Mar. 18, 2011. |
International Preliminary Report on Patentability received for PCT Application No. PCT/US2011/037014, dated Dec. 13, 2012, 10 pages. |
International Preliminary Report on Patentability received for PCT Application No. PCT/US2012/034028, dated Oct. 31, 2013, 7 pages. |
International Preliminary Report on Patentability received for PCT Application No. PCT/US2012/040931, dated Dec. 18, 2014, 9 pages. |
International Preliminary Report on Patentability received for PCT Application No. PCT/US2012/043098, dated Jan. 9, 2014, 8 pages. |
International Preliminary Report on Patentability received for PCT Application No. PCT/US2012/043100, dated Jan. 9, 2014, 7 pages. |
International Preliminary Report on Patentability received for PCT/US2013/047659, dated Dec. 31, 2014, 15 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/015418, dated Aug. 20, 2015, 12 pages. |
International Preliminary Report on Patentability received for PCT Application No. PCT/US2014/016988, dated Sep. 3, 2015, 8 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2014/016988, dated Apr. 29, 2014, 10 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/023822, dated Sep. 24, 2015, 12 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/026871, dated Sep. 24, 2015, 7 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/026873, dated Sep. 24, 2015, 9 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/028785, dated Sep. 24, 2015, 15 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/028950, dated Sep. 24, 2015, 8 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/029562, dated Sep. 24, 2015, 16 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/053951, dated Dec. 8, 2014, 11 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/053957, dated Feb. 19, 2015, 11 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/053958, dated Feb. 19, 2015, 10 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/019298, dated Jul. 13, 2015, 17 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/019320, dated Jul. 2, 2015, 14 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/019321, dated Jun. 3, 2015, 11 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/019322, dated Jun. 18, 2015, 16 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/023593, dated Aug. 14, 2015, 16 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/025188, dated Jun. 23, 2015, 11 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/032724, dated Jul. 27, 2015, 11 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/033051, dated Aug. 5, 2015, 14 pages. |
Playmemories Camera Apps, “PlayMemories Camera Apps Help Guide”, Available at <https://www.playmemoriescameraapps.com/portal/manual/IS9104-NPIA09014—00-F00002/en/index.html>, 2012, 3 pages. |
Techsmith, “Snagit 11—Snagit 11.4 Help”, Available at <http://assets.techsmith.com/Downloads/ua-tutorials-snagi11/Snagit—11.pdf>, Jan. 2014, 146 pages. |
Xperia Blog, “Action Camera Extension Gives Smartwatch/Smartband Owners Ability to Control Sony Wireless Cameras”, Available at <http://www.xperiablog.net/2014/06/13/action-camera-extension-gives-smartwatchsmartband-owners-ability-to-control-sony-wireless-cameras/>, Jun. 13, 2014, 10 pages. |
Zhong et al., “JustSpeak: Enabling Universal Voice Control on Android”, W4A'14, Proceedings of the 11th Web for All Conference, No. 36, Apr. 7-9, 2014, 4 pages. |
International Search Report & Written Opinion received for PCT Patent Application No. PCT/US2016/021410, dated Jul. 26, 2016, 19 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2016/021410, dated Sep. 21, 2017, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20160260436 A1 | Sep 2016 | US |
Number | Date | Country | |
---|---|---|---|
62129932 | Mar 2015 | US |