The present invention relates to a device which may be used to cleanse the colon and remove colonic content, and which may also be used to inject medications and/or insert surgical instruments and accessories into any area of the colon or other body cavity. The device of the present invention may thus be used for endo-surgical applications such as endoscopic sub-mucosal dissection (ESD) and natural orifice transluminal endoscopic surgery (NOTES).
Colorectal cancer is the third most common diagnosed cancer in both men and women and the second leading cause of cancer deaths in the U.S.
Colonoscopy is an accepted method for evaluation of the colon and screening for colorectal cancer. The diagnostic accuracy and the therapeutic safety of colonoscopy depend on the quality of the colonic cleansing, or preparation. The ideal preparation for colonoscopy would reliably empty the colon of all fecal material in a rapid fashion without causing damage to the colonic tissues. However, in practice, it is frequently found during colonoscopy that fecal debris is left in place due to inadequate preparation. This is reported to be found in up to 20% of cases, and may cause the termination of the procedure [Toledo T K, DiPalma J A. Review article: colon cleansing preparation for gastrointestinal procedures. Aliment Pharmacol Ther 2001; 15:605-11. Leaper M, Johnston M J, Barclay M, Dobbs B R, Frizelle F A. Reasons for failure to diagnose colorectal carcinoma at colonoscopy. Endoscopy 2004; 36:499-503].
Thus, there would be a significant advantage if a colonic cleansing device were available, which may cleanse the colon during colonoscopy procedures, without requiring termination of the procedure or removal of the colonoscope.
Several potential solutions to this problem have been proposed in the prior art. However, these solutions have generally suffered from one or both of the following disadvantages:
Examples of such prior art solutions include the sheath-like devices disclosed in U.S. Pat. No. 5,025,778 and WO 93/11698. The channel in the device in the former publication which may be used for aspiration is of small volume, and requires the insertion of ancillary elements (such as rigidly stiff tubes) in order to prevent collapse under suction. In the device disclosed in WO 93/11698, channels suitable for use in aspiration need to be constructed such that they permanently maintain their tubular form, thereby either increasing the cross section profile of the device or limiting the volume of fecal contents that may be aspirated per unit time.
There is therefore a pressing need for a colonic cleansing device which permits the efficient irrigation and high-volume aspiration of fecal debris during an endoscopic procedure, and which may be used for this purpose without either. removing the endoscope from the body cavity or comprising the functionality of said endoscope in any way.
Many of the technical problems related to development of appropriate endoscopic instrumentation for colonic cleansing are also encountered in relation to devices used in other endoscopic procedures such as NOTES. Thus, for example, on the one hand, there is a need for a device having improved maneuverability and control of the instrumentation that is normally passed through the endoscopic channels in the NOTES procedure. On the other hand, many potential solutions to this problem would necessitate an increase in both cross sectional size of the endoscope and the amount of friction offered thereby during endoscope insertion and manipulation. A need thus exists for a technical solution that would improve instrument manipulation capability without compromising endoscopic advancement.
The device of the present invention is a sleeve-like device intended for use in conjunction with medical instruments such as endoscopes, catheters and drain tubes which are normally inserted and operated within body cavities. The primary purpose of the device is to create additional tooling channels associated with the aforesaid medical instruments which may be used for various endoscopic procedures.
One example of a clinical use of the device of the present invention in which the advantages and benefits thereof are readily seen is the cleaning of body cavities during various medical procedures (such as endoscopy). The various favorable structural and functional properties of the device permit irrigation of debris located within the body cavity, and aspiration of same at high pressure without collapse of either the aspiration channel or of the walls of the body cavity. Advantageously, this cleansing function may be performed without preventing or hindering in any way the normal functioning of the medical instrument, thereby obviating the need to cease operation of said instrument or to remove said instrument from the body cavity, when the operator wishes to clean regions of said cavity.
A further highly advantageous feature of the present invention is the fact that the aforementioned aspiration channels are formed only once the device of the present invention has been inserted into the body cavity and immobilized therein. Thus, the insertion and controlled movement of the device within the body cavity is greatly enhanced by the absence of a fixed external large volume aspiration lumen.
A still further highly advantageous feature of the present invention is the ability to use the additional lumens for insertion of endoscopic tools and accessories to facilitate surgical procedures. In particular, the tooling channels of the present device also provide the ability for the operator to control the distance and directional vector of the instruments emerging from said channels. This feature is of particularly benefit in advanced endoscopic procedures such as (but not limited to) ESD and NOTES.
The present invention is thus primarily directed to a sleeve device comprising a thin-walled elongate internal tubular membrane which is suitable for being fitted around the external surface of an elongate medical instrument,
The term “large volume” channels refers to the fact that the additional longitudinally-disposed “virtual channels” (which are passively created as a consequence of expansion of the inflatable channels and anchoring of the device) may have cross-sectional areas and hence volumes far greater than commonly encountered in endoscopic instruments. In general, each of these channels may have a volume in the range of 5-200 ml. These figures are, however, given for the sake of illustration only; the actual volume of the virtual channels may deviate to either side of this exemplary range.
For the sake of clarity, it is to be noted that in the context of the present disclosure, “distal” refers to the direction away from the operator, such that the distal end of the device is the leading end, i.e. the end that is first inserted into the body cavity. “Proximal”, therefore, refers to the opposite (trailing) end, i.e. the end of the device which is closer to the operator.
One particularly advantageous feature of the device of the present invention is the fact that the large volume “virtual” channels created upon inflation within a body cavity are capable of substantially retaining their initial volume and cross-sectional area upon the application of very high suction pressures. Thus in one preferred embodiment of the present invention, the virtual channels are capable of withstanding the application of suction pressures of up to −760 mmHg (−1 atm) to their proximal ends without any substantial deformation. The terms “substantially retaining volume and cross-sectional area” and “without substantial deformation” are intended to convey the mean that at the indicated high suction pressure, the “virtual channels” retain most of their maximal capability for aspirating solid and liquid materials.
In one preferred embodiment, the device further comprises one or more open-ended longitudinally disposed non-inflatable channels affixed to the aforementioned internal tubular membrane, wherein said channels are capable of allowing the passage of fluids along their length.
In a further highly preferred embodiment, the device of the present invention further comprises an elongate longitudinally-disposed external tubular membrane which encloses all of the other elements of said device within its lumen.
As mentioned previously, the device of the present invention may be used in conjunction with any suitable elongate medical instrument that is normally inserted and operated within a body cavity or passage. However, in one preferred embodiment, the internal tubular membrane of said device is suitable (in terms of dimensions and form) for being fitted around the external surface of an endoscope, such as a colonoscope, enteroscope, sigmoidoscope or bronchoscope.
In order to permit connection of the device with external sources of suction pressure, balloon inflation fluid (such as saline or water) and cleaning fluid, the proximal end thereof may comprise means for connecting the open proximal ends of the various channels with said suction pressure and fluid supply sources.
In one preferred embodiment, each of the inflatable channels is constructed as a single balloon-lie element, having a closed distal end and an open proximal end.
In an alternative preferred embodiment, however, each inflatable channel comprises a chain of separate segments, wherein each segment is in fluid communication with its neighbors by means of a narrow opening. In an alternative version of this embodiment of the device, each inflatable channel may comprise a plurality of separate segments, wherein each segment is isolated from its neighbor and may be independently inflated and deflated by means of a separate inflation/deflation line attached thereto.
In another preferred embodiment, the device may also comprise an expandable balloon located at the distal end thereof, such that upon inflation thereof, balloon blocks the distal openings of the various channels. This distal balloon (optionally together with the circumferential balloons that are disclosed immediately hereinbelow), may be used to assist in the clearance of solid and semi-solid material that has become trapped within the large-volume “virtual channels”.
The device may also further comprise one or more circumferentially located balloons each of which is affixed to the external surface of the device in an annular manner, such that upon inflation thereof, the contents of the large volume channels are compressed. The co-coordinated inflation of a series of such balloons may be used to generate a proximally-directed peristaltic-like wave of pressure in the region of the trapped debris, thereby encouraging the removal thereof from the “virtual channel”.
In one preferred embodiment, the device of the present invention further comprises one or more auxiliary balloons attached to the outer surface of the internal membrane close to the distal end of said device. These balloons (which will be described in more detail hereinbelow) may be either continuous, ring-like balloons, or alternatively, may be individual, discrete balloons located in proximity to the positions where the “virtual channels” will form upon expansion of the inflatable channels.
All of the aforementioned inflatable channels and auxiliary balloons are connected by means of supply lines or channels to a reservoir of inflation fluid (such as saline) which resides proximal to the device, outside of the patient's body.
In another embodiment, the device may further comprise a proximal plug fitted in an annular manner around the external surface of said device, wherein said plug is adapted to form a fluid-tight seal when placed in the anal opening.
In yet another preferred embodiment of the invention, the device may further comprise pressure sensor elements located in various regions of said device, wherein said sensor elements are capable of detecting and reporting the fluid pressure levels within said regions.
In another aspect, the present invention also provides a system for use in cleansing a body cavity comprising:
In addition, the above-defined system may also comprise:
In a further embodiment, the aforementioned proximal control console of the presently-disclosed system comprises:
In another aspect, the present invention also provides a method for cleansing a body cavity comprising the steps of:
In one preferred embodiment of the method of the present invention, the body cavity to be cleansed is the colon, and the elongate medical instrument is a colonoscope.
The present invention is also directed to a method for delivering endoscopic tools and accessories to a desired surgical site and for controlling the location of said tools and accessories at said site, comprising the steps of:
In one preferred embodiment, the method described immediately hereinabove is used to control the insertion and positioning of endoscopic surgery tools and accessories as part of a natural orifice transluminal endoscopic surgery (NOTES) procedure.
All the above and other characteristics and advantages of the present invention will be further understood from the following illustrative and non-limitative examples of preferred embodiments thereof.
The present invention is illustrated by way of example in the figures of the accompanying drawings, in which like references indicate similar elements and in which:
There is, therefore, provided according to the present invention, a novel type of device, constructed in the form of a thin sleeve having various channels attached thereto or formed therein, wherein said device is connected at its proximal end to a specialized pump which can pump fluid (and/or gas) forward within a lumen or lumens of the device, and pump fluid (and/or gas) backward through either a different lumen or the same lumen, as will be further explained in the text. The anterograde pumping action supplies fluid that functions as a fecal dematerialization and degradation agent, allowing easier removal of fecal material, and filling for the anchoring balloon elements of the device, as will be further explained in the text. The device, in its non-active (deflated) state, is fitted over the external surface of a colonoscope (or any other medical instrument or device of elongate form that may be inserted into a body cavity, such as a catheter, intubation tube or drain), in a sleeve-like fashion, prior to performing the colonoscopy procedure. The colonoscope can then be advanced within the colon as regularly performed to conduct the procedure. During the procedure, if the operator encounters debris (fecal material), the device of the invention can be operated to safely and effectively remove the debris, thus cleansing the colon and allowing continuation of the procedure.
Operation of the device may include the steps of:
The same cleansing device and method may be used repeatedly throughout the procedure, if required, without the need for removing the colonoscope from the colon.
In one preferred embodiment, the device comprises two separate sets of channels: firstly, inflatable, balloon-like channels whose functions includes anchoring of the device within the colon) or other body cavity, prevention of intestinal wall collapse during high pressure aspiration and the creation of a series of “virtual channels” (used for high pressure aspiration) upon inflation of said inflatable channels. The second type of channel is a fluid channel, the purpose of which is to carry irrigation fluid pumped from a proximally located extracorporeal reservoir towards a series of jet-spray apertures that perforate said channels at various locations.
In another preferred embodiment, the device comprises a single set of channels, the aforementioned inflatable channels. In this case, the aforementioned virtual channels will be used for both supply of irrigation fluid in one direction, and high-pressure aspiration in the opposite direction.
An additional preferred embodiment may include anchoring of the device using the fluid channels (shown as 3 in
All of these various embodiments will be described in more detail hereinbelow.
The presently-disclosed device possesses the following desirable and advantageous properties:
The above advantages of the present invention are, to a certain degree, a consequence of the unique pumping mechanism employed, which provides the capability for forward and backward pumping, and preferably includes a pressure sensor. Furthermore, the device itself can be deployed on the external surface of a colonoscope or other elongate medical instrument (such as a catheter tube), in a sleeve-like manner. Preferably, the device of the present invention is disposable, and intended for single use only.
The device comprises may comprise some or all of the following elements:
The various advantageous properties of the device that are listed hereinabove are a consequence of its unique structural and functional properties, as explained in the following section:
In summary, the device of the invention permits effective and safe cleansing of the colon during a colonoscopy procedure, without requiring removal of the colonoscope from the patient's body, and without requiring the use of the internal working channel of the colonoscope, thus preventing the need to prematurely stop the procedure in the case that bowel preparation proves to be insufficiently thorough, and the need to send the patient to perform the procedure again. Thus, the device may be used in the preparation of patients for all lower GI track procedures for which a thoroughly clean colon is a prerequisite.
In addition, the device of the invention allows the monitoring of pressures during a colonoscopy procedure, thus increasing the safety of the procedure, and preventing the occurrence of bowel perforation.
It is to be noted that while the description of the present invention hereinabove and hereinbelow generally refers to the use of the device of the invention within the colonic lumen, this is for illustrative purposes only, and the scope of the invention is intended to encompass a broader use and application of such a device within any lumen of the body, as will be appreciated by the skilled artisan in this field. Other, non-limiting, examples, which will not be further elaborated in the text, are the use with endoscopes in the upper GI system (for example the esophagus, stomach and small intestines), and in the urinary system (for example, in the urinary bladder and ureters).
The present invention is primarily directed to a system, method and apparatus for cleansing the colon during a colonoscopy procedure, without the need for removal of the colonoscope from its operating position or from the body.
In one preferred embodiment of the invention the system includes an extracorporeal pumping unit, with the ability to both deliver fluid into the lumen and extract material (fluid, solid and semi-solid) from the lumen, and a disposable sleeve unit, which is fitted over the colonoscope prior to the procedure, in a deflated state, and is used to immobilize and remove debris when needed, by inflating one or more anchoring balloon elements, spraying fluid jets on the site of the debris, and employing suction to remove the debris.
In some preferred embodiments, the aforementioned pumping unit may be connected to, or form part of, an external control unit comprising a console fitted with a display unit (e.g. an LCD unit) as well as elements for controlling the inflation and deflation of the inflatable balloon-like channels (which will be discussed in more detail hereinbelow). These control elements will also be used, in some embodiments, to control the peristaltic-like inflation and deflation of segmented and multi-chamber inflatable channels, as well as the similar inflation-deflation cycle of circumferential balloons used to dislodge trapped debris and move same in a proximal direction. All of these inflatable elements will be described in more detail hereinbelow. In some embodiments, the external control unit will also receive input from one or more pressure sensors located at different sites within the sleeve-like device. In other preferred embodiments, the external control unit will also receive input from cameras and other detection instruments, positioned within the sleeve-like device.
The fluid jets can assist with the breakdown and shredding of material within the lumen. The device may then extract the material from the colonic lumen, thus cleansing the lumen. Alternatively or additionally, the device may also be used to collect samples or other objects from the lumen such as large resected polyps, gall bladder stones and other foreign objects. In addition, the device can administer specific material, such as medications, into the lumen.
In a preferred embodiment of the invention the lumen is the colonic (large bowel) lumen, and the device is used to cleanse the lumen during a colonoscopy procedure, and/or to collect material from the colon, and/or to deliver medication into the colon.
The fluid jets applied by the device may be generated using any type of appropriate fluid, including, but not limited to, water, saline, cathartic agents, polyethylene glycol, phosphate preparations and medications. The fluid may include small rigid particles to create a mechanical sand-wash effect.
The fluid may be heated within the pump, to various temperatures prior to its expulsion into the colon, for example it may be warmed to about 36 degrees Celsius, thereby accommodating body heat and increasing the comfort of the patient being treated.
As mentioned hereinabove, the fluid that is sprayed into the colon or other body cavity may contain therapeutic agents such as chemotherapy agents (for example Xeloda, Oxaliplatin and CPT) and biologic solutions (for example Erbitux and Avastin).
Suitable pumps that may be used for the purposes of expanding the inflatable channels and for pumping the cleansing fluid include (but are not limited to) simple water pumps, centrifugal, and peristaltic pumps. Similarly, suction pressure may be generated with water pumps and vacuum pumps, as are well know to the skilled artisan in the field.
Exemplary materials for construction of the device of the invention are plastic, elastomers and polymers such as silicon, polyurethane, nylon, Pebax and blends of nylon and Pebax. The device may include elastic and non elastic materials.
Each of the inflatable anchoring channels 2 may be formed as a single tube, or alternatively may be formed as multiple-chambered tube elements. In one preferred embodiment, this may be achieved by means of constructing the inflatable channel as a series of interconnected chambers (the appearance of which may be likened to a “string of sausages”) which are in fluid connection with each other and with a single inflation/deflation line. This embodiment is schematically illustrated in
It is to be noted that the inflatable channel balloons need not be restricted to balloons that have a circular cross-sectional shape. Rather, in certain circumstance it will be found advantageous to utilize pre-shaped balloons that may adopt particular conformations upon inflation, thereby altering the size and shape of the virtual channels formed upon said inflation. The effect of incorporating balloons having different expanded shapes on the form and size of the virtual channels is illustrated in
In some preferred embodiments of the present invention, the device further comprises additional inflatable, balloon-like, elements that may be used to assist the retrograde movement (i.e. towards the proximal end of the device) of fecal debris that may sometimes become trapped inside the virtual lumens. Thru, in one embodiment, a balloon situated at the distal extremity of the device is inflated, in order to increase pressure within the virtual lumen(s). Then, a series of two or more circumferential balloons mounted on the external membrane or sleeve of the device are inflated sequentially, thereby applying a constrictive force to the virtual lumen(s) in a peristaltic-like manner, beginning at the distal end of the device and moving proximally. In this way, the trapped solid and/or semi-solid debris within the virtual lumen is both compressed in a radial direction and in a longitudinal (distal-to-proximal) direction, thereby assisting in the transportation of said debris towards the proximal end of the device. A typical example of the use of three such balloons is depicted in
In other preferred embodiments of the present invention, additional balloons may be incorporated into the device, by means of attaching them to the inner membrane thereof, such that they are positioned adjacent to the median wall of virtual channels. Such balloons may either be short, individual balloons extending over only a small part of the circumference of the inner membrane (i.e. only in those areas above which a virtual channel will appear during use of the device), or alternatively, the balloon may be in the form of a ring, attached around the entire circumference of the inner membrane. Such balloons may be used to selectively apply pressure to the distal portions of one or more virtual channels, in order to change the distance between the distal exits of said channels and hence the distance between the surgical tools and accessories (e.g. needles, graspers, knives, cameras, fiber optics etc.) that are placed in said channels. This ability to control the inter-tool separation distance is of great clinical significance, particularly in complex procedures such as NOTES, and constitutes a highly significant over prior art solutions that are characterized by multiple fixed working channels.
In addition, the presence of these additional balloons may also be advantageously used to control the angular direction of the virtual channel exit port. In this way, it is possible to move the virtual focus point of the tools contained within two or more virtual channels. Thus, in the device illustrated in
It may thus be seen from the drawings discussed immediately hereinabove that the incorporation of the auxiliary balloons in the distal region of the virtual channels confers highly significant advantages on the present invention in terms of its ability to precisely direct the surgical tools that pass through said channels into the tissues that are situated beyond the distal end of the device.
It is to be noted that regardless of the specific balloon configuration actually used, the present invention makes provision for both the simultaneous inflation of each of the inflation channels, and also for the selective inflation of only some of said channels.
Fluid channels 3 may include jet-stream apertures of different dimensions and structures, different numbers and geometrical arrangement, and the apertures may cover the whole or part of the device (for example, only at the distal tip of the channel). Additionally, the device may include a plug or cap-like element 4. This element may be located at the proximal end of the device and may either be freely movable along the device or be provided as a separate element. The element 4 is inserted into the anus during activation of the device, to act like a plug and prevent leakage of fecal material from the colon. Element 4 may be rigid, semi-rigid, or elastic, and made to conform to the structure of the anus. In another embodiment of the invention, element 4 may be inflatable, using a fluid or gas. Additionally, the device comprises fluid (or gas) supply channels, leading from (and into) an external pumping mechanism (not shown in the illustrations) into (and from) the channels of the device. In the exemplary embodiment of the device shown in the figure, channel 5 connects the pump to inflatable channels 2 of the device, channel 6 connects the pump to plug element 4 of the device, and channel 7 connects the pump to fluid channels 3 of the device. In addition, the colonoscope distal end 8 is illustrated, exemplifying how the device of the invention may be fitted over the colonoscope, in a sleeve-like manner.
In one embodiment, the device may be designed, configured, and constructed, by starting with a single, unitary, tube, to which additional tubes are connected (for example by welding). To form apertures in fluid channel tubes 3, mechanical cutters or laser cutters may be used to remove selected material from the tube, until only the desired geometry, shape, and dimensions of the tube and the apertures remain.
There are several different approaches that may be employed in the manufacture of the device of the invention. One such exemplary approach comprises the steps of:
Parts of the device can be manufactured, for example, by injection molding, which involves heating and injecting plastic material under pressure into a closed metal mould tool. The molten plastic cools & hardens into the shape inside the mould tool, which then opens to allow the moldings to be removed.
Referring again to
Exemplary dimensions of the device of the invention are as follows. The longitudinal dimension is in the range of about 20 cm to about 200 cm, preferably, about 150 cm. The diameter of the anchoring balloon elements is in the range of about 0.2 cm to about 1.5 cm, preferably, about 1 cm. The diameter of the fluid channel elements is in the range of between about 0.5 mm to about 5 mm, preferably, about 2 mm. The general thickness of the material used in the construction of the device is typically in the range of between about 0.01 mm (10 microns) and about 1.0 mm (1000 microns), preferably, about 0.5 mm (300 microns).
Referring again to the drawings,
Referring again to the drawings,
Referring again to the drawings,
Referring again to the drawings,
The virtual channels (shown as 15 in
Referring again to the drawings,
It is known that rapid changes in lumen diameter may lead to turbulent flow, for instance when a fluid passes from the larger diameter lumen to the narrower nozzle, as shown in
In this example, upon inflation of the balloons (inflatable channels) 32, three longitudinally-disposed virtual lumens are created: a large lumen 35 having a cross-sectional area of 30 mm2 and two smaller lumens 36, each having a cross-section area of 6.5 mm2. Each of these three lumens may be used for evacuation of debris and/or for irrigation (i.e. by means of pumping irrigation fluid such as saline therethrough). In addition, at different stages of the procedure, the lumens may also be used as working channels for the passage of instrumentation, as described hereinabove. The larger lumen is particularly advantageous in this regard, in view of its large surface area and volume, which permits the passage therethrough of larger instruments than would be possible through the working channel of the colonoscope itself.
In this typical working example, the inflatable channels (balloons) 32 are constructed from silicon rubber while the external membrane 38 is formed from Nylon 66 and the inner sleeve 37 from silicon rubber.
While the invention has been described in conjunction with specific embodiments and examples thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within its spirit and broad scope.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2008/053881 | 9/24/2008 | WO | 00 | 6/7/2010 |
Number | Date | Country | |
---|---|---|---|
60974490 | Sep 2007 | US |