1. Field of the Invention
This invention pertains generally to particle accelerators, and more particularly to dielectric wall accelerators.
2. Description of Related Art
In a conventional induction accelerator, the beam pipe is conducting, so that an accelerating electric field is present only in the gaps between accelerator stages. Thus the accelerating field occupies only a relatively small fraction of the axial length of an accelerator cell.
In a dielectric wall accelerator (DWA), an insulating wall replaces the conducting beam pipe. The dielectric wall is energized by a pulsed power system. The accelerating fields can then be applied uniformly over the entire length of the accelerator, yielding a much higher gradient, e.g. 20 MeV/m or more, compared to about 0.75 MeV/m. A high gradient DWA can thus be made much more compact than a comparable conventional induction accelerator.
A number of technological developments have led to DWA designs with greatly enhanced performance. An insulator material, called a “high gradient insulator” (HGI), made of alternating layers of conductor and insulator with periods on the order of a mm or less, has a much higher surface flashover threshold than monolithic insulators. Solid dielectrics have high bulk breakdown strength and can be used in high voltage pulse generators. Photoconductive switches using wide band gap materials such as SiC or GaN are compatible with very high voltage gradients and are advantageous to initiate the output voltage pulse in a DWA.
An important part of the DWA is the pulse forming system. A wide variety of pulse generating lines employing closing switches are generically referred to as “Blumleins.” These lines are made up of two or more transmission lines, either planar strip lines or radial lines. The Blumlein is actuated to generate a pulse by closing a switch, typically a photoconductive switch. In a typical DWA configuration, two stacks of strip Blumleins are placed on opposite sides of the beam tube.
To efficiently accelerate charged particles axially along the beam tube, the particles should always be embedded in an accelerating field. To do so, the region of the dielectric wall exposed to a high electric field must move along with the accelerating particles. This can be done by making the Blumleins relatively thin and activating them in sequence to produce a region of excitation along the wall that maintains synchronism with the charged particles. Thus, as the electric field produced by the pulse generating Blumleins propagates down the bore of the accelerator, it pushes the packet of charged particles before it.
Although it has higher impedance and requires fewer switches than a radial line, the strip Blumlein suffers from parasitic coupling between different lines in a stack. This coupling occurs because electric and magnetic fields leak axially from layer to layer. This leakage causes temporal distortion of the pulse and a reduction in amplitude. Thus, the accelerating gradient is reduced from its theoretical ideal value.
Other problems with Blumlein actuated DWAs include the large number of switches required for the accelerator, about one switch per mm; the relatively large energy required to achieve high gradient, and the total laser energy required for the accelerator. During charging of the lines, the Blumlein switches are in the off state, and are subject to large voltage gradients for long periods of time, typically hundreds of nanoseconds or longer, producing high electrical stress on the switches. The Blumleins output into an open circuit to attain maximum gradient, leading to ringing of the lines and voltage reversals on the dielectric wall. There is also strong radial defocusing on the particle beam, and there is no room to add external focusing.
One area where a compact high gradient accelerator would be of great advantage is a proton accelerator for medical applications. The benefits of proton therapy over x-ray therapy are well known. However, at present proton beams are produced in very large accelerators, and very few medical facilities have such a machine. A compact proton accelerator that could replace x-ray machines would greatly expand the availability of proton treatment.
The invention is a dielectric wall accelerator in which a virtual moving accelerating gap is formed along an insulating beam tube by controlling the conductivity of the tube sequentially at localized regions by light illumination or other means so as to have an impressed voltage along the tube appear predominantly over a local region, the virtual gap, which moves along the tube. If the applied voltage across the tube is V and the gap width is w, acceleration through a tube of length l can result in an energy gain up to lV/w.
One way to locate the gap is by controlling the illumination of a photoconductive layer over an insulating tube of arbitrary cross-section. The illumination provides for a relatively high conductivity over most of the length of the tube such that the voltage applied across the length of the tube appears primarily over a small region from which illumination is absent. The tube is basically the stalk in an inductive adder. By changing the illumination pattern on the photoconductor, the accelerator configuration, i.e. gap location, can be changed.
Alternately, a series of adjacent photoconductive switches can be arranged to lie tangent to an insulating tube or insulated segments in place of a photoconductive tube, and individual switches momentarily turned off to remove illumination from a local region. The voltage applied across the tube may come from an electrostatic source or from an inductive voltage adder that is powered either externally, or internally by charged capacitors and series switches that connect the capacitors across induction gaps between cells.
Another way to generate a virtual gap is to place small photoconductive switches between each segment of a high gradient insulating (HGI) tube. All the switches are illuminated except where the virtual gap is desired.
Focussing, both linear and nonlinear, can be added. For example, if two strips 180° apart are illuminated, two virtual gaps may be formed that provide both acceleration and a quadrupole field. By spiraling the strips around the tube in a helical trajectory, a net transverse focusing force will be developed in all transverse directions. Any number of strips may be used in a similar manner to apply sextupole, octopole, or higher order fields. These virtual lenses or focusing sections can be created at any point along the tube by proper control of the illumination pattern or by laying down photoconductive material in the appropriate locations.
An additional means to provide focusing is to shape the insulating segments that hold the photoconductive switches and interconnecting conductors to have chevron (“V”) shapes. The chevron shaped segments lead to the generation of transverse electric fields that are proportional to the accelerating field that is developed along the tube. The chevron shaped segments can be alternated by 90° to provide alternating gradient focusing. The chevron shaped segments can be generalized to produce dipole, quadrupole, and higher order multipole fields. The chevron electrode concept may also be implemented by placing conductors on a cyclindrical tube where segments of the conductors are arcs of a helix that changes direction around the tube.
The voltage concentration works in two distinct regimes. The first, or subluminal regime, is appropriate for low particle energies. The condition for the subluminal regime is that the particle velocity is less than the speed of an electromagnetic wave along the coaxial system formed by the stalk and the inner surface of the induction cells. For higher particle energies, up to relativistic speeds, the second, or superluminal regime, is appropriate, where the particle speed is greater than the speed of an electromagnetic wave along the coaxial stalk-induction cell system. In this case, a low loss magnetic core can be placed radially between the resistive tube and the induction cells to reduce the speed of the electromagnetic wave below the particles. Another superluminal topology is to replace the stalk with a helical conductor to slow the electromagnetic wave speed. In this configuration the induction cells are powered internally with charged capacitor banks and series switches, e.g. light controlled resistors. By varying the conductivity of the individual induction cell switches in the appropriate pattern, a concentrated axial electric field can be made to move along the helix at a speed controlled by the timing of the switches in the induction cells.
Further aspects of the invention will be brought out in the following portions of the specification, wherein the detailed description is for the purpose of fully disclosing preferred embodiments of the invention without placing limitations thereon.
The invention will be more fully understood by reference to the following drawings which are for illustrative purposes only:
Referring more specifically to the drawings, for illustrative purposes the present invention is embodied in the apparatus and method generally shown in
The invention is a dielectric wall accelerator (DWA) in which a virtual, moving accelerating gap is formed along an insulating tube by controlling the conductivity of the tube at sequential local regions thereof. Localized voltage concentration is achieved by sequential activation of high resistance along a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a “virtual” traveling gap along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region (the virtual gap) where the resistance is high. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.
However, the charged particle would only be accelerated once, when it passes the stationary electric field 18 at gap 16. In an accelerator, a particle must be accelerated many times to achieve high energy. Of course, an accelerator could be built with many stages similar to that shown in
Conceptually, as shown in
One way to implement the virtual gap concept of
A practical way to implement the above-described concept of a virtual gap dielectric wall accelerator is to use a structure that is placed entirely within conventional induction cells. An induction voltage adder is a known device in which the voltages of a number of individual induction cells are summed up and the total voltage appears across a relatively narrow gap where it is impressed across a load. Thus the voltage of the entire structure is concentrated into the relatively small stationary gap in a conventional induction voltage adder.
The gap in an induction voltage adder can be made into a moving virtual gap by replacing the interior of the induction voltage adder with a stalk made of a material whose conductivity can be varied on command. This variable conductive material can be placed on the outer diameter of a “high gradient insulator” (HGI) beam tube. The conductivity of this layer of material is modulated locally and rapidly to create a moving virtual gap of low conductivity surrounded by high conductivity everywhere else along the tube. This moving virtual gap concentrates the voltages of the induction cells in a moving localized region. The virtual gap is moved in synchronization with a packet of charged particles moving down the tube so that the particles experience a continuous acceleration.
Bank 52 of induction cells 54 outside of (encircling) beam tube 42 and electrically connected thereto provides the voltage that is applied to the virtual gap 50 to create the electric field. Each induction cell 54 is made up of a conductive housing 56 and is separated from the next cell 54 by a gap 58. Housing 56 contains a ferromagnetic induction core 60 and a focusing solenoid 62. Induction cells 54 are connected by coaxial cables 64 to an external power source (not shown). The common grounds are connected to all cells 54 while the center conductors are connected to individual cells 54. The housing 56 would short out the cable 64 except for the magnetic core 60, which provides a large inductance across the cable 64. This produces a voltage across the gaps 58 between cells 54. The output voltage of bank 52 is the sum of the voltages of each cell 54. The encircling induction cells 54 allows the incorporation of focusing elements (solenoids 62) inside the induction cells 54 to prevent beam defocusing.
There are two distinct regimes, subluminal and superluminal. The subluminal regime occurs when the speed of the virtual wave is less than the electromagnetic wave propagation speed. The superluminal regime occurs when the speed of the virtual wave is greater than the electromagnetic wave propagation speed.
DWA 70, like DWA 40, is designed for the superluminal regime, while DWA 20 is designed for the subluminal regime. An accelerator for low energy heavy ions could be subluminal. An accelerator in which the particles are injected at high energy could be a superluminal configuration. However, in some cases particles will be injected at low energy and accelerated to high energy so that both regimes are encountered. In this case the accelerator could have a first subluminal section followed by a second superluminal section. For example, the magnetic cores 68 in
The operation of the virtual gap accelerator may use switches to change the conductivity of the tube; wide band gap photoconductive switches (photoswitches) are preferred.
Photoconductive switches are also suitable for electrical connections, e.g. as switches 78 in induction cells 74 of accelerator 70 in
The photoconductive switches described above using wide band gap material with below band gap illumination are suitable for placement along the beam tube of a virtual gap DWA. The configuration permits the long axis of the switch elements to lay parallel to the accelerator axis. Electrodes are alternately placed on the top and bottom of the switch elements offset axially from each other so that the electric field is properly oriented. Another way of using these switches is to place individual switches between each layer of a high gradient insulating (HGI) tube, with the long axis of the switch in the radial direction and the plane of the switch perpendicular to the axis of the accelerator tube.
The photoconductive switches in general are preferably of a type with photoconductive wide band gap semiconductor material (used as a variable resistor) whose conduction response to changes in amplitude of incident radiation is substantially linear throughout a non-saturation region to enable operation in non-avalanche mode. The photoconductive material may be selected from, for example, silicon carbide, gallium nitride, aluminum nitride, boron nitride, and diamond.
A modulated radiation source is used to produce amplitude modulated radiation which is directed on the variable resistor to modulate its conduction response, in particular within the non-saturation region. The modulated radiation source is preferably a modulated electromagnetic radiation source, e.g. a laser or an x-ray source, or a modulated particle radiation source, e.g. an electron (beta particle) source.
The area of controlled resistivity along the beam tube is a small portion of the beam tube but is readily achievable. Ideally the width of the virtual gap should be about three times the beam tube radius. For a 2 cm radius beam tube, the virtual gap width would be 6 cm. Thus a switch arrangement to control resistivity at this type of gap width is realistic. More than one switch can be actuated at one time to create the desired pattern.
The switch tube may be configured in such a way as to provide not only an accelerating field but also transverse focusing due to a multipole arrangement of the switch elements. For example, two switches at a given axial location which are oriented opposite to one another and connected by wires or strips can provide a quadrupole electric field. An example is shown in
The quality and strength of the quadrupole focusing field can be adjusted by shaping the switch electrodes and the conducting strips that connect switches on opposite sides of the accelerator axis. In particular, chevron (“V”) shaped strips can provide quadrupole fields. Multiple bends can provide even higher order multipole fields while a simple slant can produce a dipole field. Another configuration that can provide the same focusing is to alternate the conductor strip directions around the circumference of an insulating cylindrical tube every 90° of azimuth in a helical configuration. Net focusing in both transverse planes can be provided by either progressively changing the pitch of the chevrons (as in a helical configuration), or by alternating the orientation of the chevrons by 90°. To increase the resistance of surface flashover along the switch tube, the conducting strips on the chevrons connecting the switches can be arranged to be on opposite sides of the chevrons. Various of these features are illustrated in the following Figures.
The inherent focusing provided by the chevrons combined with the accelerating pulse allows construction of a single pulse RFQ (radio frequency quadrupole) that is capable of capturing particles from a continuous beam injector and bunching some fraction of the particles into a stable “bucket” that entails both transverse and longitudinal confinement.
The temporal pulse width of the virtual moving gap can be adjusted by suitably varying the temporal characteristics of the laser illumination of the switch elements. The temporal pulse width of the virtual moving gap can also be adjusted by introducing inductance in the interconnecting wires and strips between switch elements.
The invention thus provides a dielectric wall accelerator (DWA) that overcomes some of the limitations of the prior Blumlein DWAs. The virtual gap DWA of the invention has no parasitic coupling, no ringing and a nearly unipolar accelerating pulse. The switches are under maximum voltage for only about 1 ns while opening. There are far fewer switches, about 0.2 to 0.4 switches per mm. While there are still strong radial defocusing forces on the particles, solenoidal focusing can be provided.
The invention is particularly directed to producing a compact proton accelerator for cancer therapy. The goal is an accelerator 2 m long that can produce 200 MeV protons, with up to 50 Hz pulse repetition rate.
Although the description above contains many details, these should not be construed as limiting the scope of the invention but as merely providing illustrations of some of the presently preferred embodiments of this invention. Therefore, it will be appreciated that the scope of the present invention fully encompasses other embodiments which may become obvious to those skilled in the art, and that the scope of the present invention is accordingly to be limited by nothing other than the appended claims, in which reference to an element in the singular is not intended to mean “one and only one” unless explicitly so stated, but rather “one or more.” All structural and functional equivalents to the elements of the above-described preferred embodiment that are known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the present claims. Moreover, it is not necessary for a device to address each and every problem sought to be solved by the present invention, for it to be encompassed by the present claims. Furthermore, no element or component in the present disclosure is intended to be dedicated to the public regardless of whether the element or component is explicitly recited in the claims. No claim element herein is to be construed under the provisions of 35 U.S.C. 112, sixth paragraph, unless the element is expressly recited using the phrase “means for.”
This application claims priority to U.S. Provisional Application Ser. No. 61/170,057, titled “Virtual Gap Dielectric Wall Accelerator,” filed Apr. 16, 2009, incorporated by reference.
The United States Government has rights in this invention pursuant to Contract No. DE-AC52-07NA27344 between the United States Department of Energy and Lawrence Livermore National Security, LLC.
Number | Name | Date | Kind |
---|---|---|---|
5757146 | Carder | May 1998 | A |
5811944 | Sampayan et al. | Sep 1998 | A |
5821705 | Caporaso et al. | Oct 1998 | A |
6278239 | Caporaso et al. | Aug 2001 | B1 |
7576499 | Caporaso et al. | Aug 2009 | B2 |
20070092812 | Caporaso et al. | Apr 2007 | A1 |
20090261258 | Harris et al. | Oct 2009 | A1 |
Entry |
---|
G.J. Caporaso et al., “Compact accelerator concept for proton therapy” Apr. 22, 2007, Elsevier, Science Direct.com, Nuclear Instruments and Methods in Physics Research B 261 (2007) 777-781. |
G.J. Caporaso, et al., “Status of the dielectric wall accelerator”, Proceedings of Particle Accelerator Conference 2009, pp. 1-5. |
Number | Date | Country | |
---|---|---|---|
20110101891 A1 | May 2011 | US |
Number | Date | Country | |
---|---|---|---|
61170057 | Apr 2009 | US |