Virtual input system

Abstract
For a user having a user input actuator, a virtual interface device, such as for a gaming machine, for determining actuation of a virtual input by the input actuator is disclosed. The device comprises a position sensing device for determining a location of the user input actuator and a controller coupled to the position sensing device, the controller determining whether a portion of the user input actuator is within a virtual input location in space defining the virtual input.
Description
TECHNICAL FIELD

The present invention relates to a system for providing a virtual input, such as for an electronic gaming machine.


BACKGROUND OF THE INVENTION

Player interaction with a gaming machine is typically limited to touching a touch screen sensor or depressing an electro-mechanical switch. A touch screen sensor usually fits the shape and size of an associated active display, such as an LCD or a CRT.


A typical gaming touch screen assembly consists of a touch screen sensor attached to the front surface of an active display device, such as a CRT or an LCD. The sensor is connected to a touch screen controller, which sends touch position data to the game controller. The basic sensor material is typically plastic or glass and requires a transparent conductive oxide (TCO) layer, such as Iridium Tin Oxide (ITO), wires or acoustic components to work. The specifics depend on the type of touch screen technology (capacitive, resistive, acoustic and near-field).


The sensor surfaces are typically flat, but could be slightly curved, such as for example CRT's. All of these conventional sensor technologies have limitations when dealing with large surface sizes, non-planar or discontinuous surfaces, and no-contact requirements. This limits the areas where a touch screen can be used on a gaming machine, or other systems requiring such user input.


Additionally, electro-mechanical switches have limitations. Electro-mechanical switches have been used on gaming machines for decades. The number of switches is limited by the size of the mechanical panel. And when the game on the gaming machine is changed, the switches and/or labels must be replaced. Therefore, they are not programmable and must be located in a convenient location for the player to reach.


A primary objective of this invention is to provide another form of user input, such as for a gaming machine, other than using a conventional physical surface or mechanical device. The present system is able to sense a touch on a virtual surface. The virtual surface may be in the middle of the air. The virtual surface may be close to the actual surface, so close it seems that it was a physical touch.


SUMMARY

This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This summary is not intended to identify key features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.





DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:



FIG. 1 is a block diagram of a virtual input system according to the present invention;



FIG. 2 is a block diagram of a Doppler radar sensor module as utilized by the virtual input system of FIG. 1;



FIG. 3 is a block diagram of an ultrasonic sensor module as utilized by the virtual input system of FIG. 1;



FIGS. 4a and 4b are respective front and side views of a gaming machine top box which utilizes the virtual input system of FIG. 1;



FIG. 5 is a view of a hemispherical display of the top box of FIGS. 4a and 4b;



FIG. 6 is a block diagram of an IR camera sensor according to the present invention; and



FIG. 7 is a block diagram of an IR/laser scanning sensor, according to the invention.





DETAILED DESCRIPTION

While this invention is susceptible of embodiments in many different forms, there is shown in the drawings and will herein be described in detail, preferred embodiments of the invention with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the broad aspect of the invention to the embodiments illustrated.


The present invention is described herein with respect to an interactive game surface device (IGSD) 10, a specific embodiment for use in conjunction with a gaming machine. It should be understood that the present invention is also applicable for use with other systems requiring similar user input.


The IGSD 10 allows any surface, non-conductive or otherwise, to be used for player input. It allows a player to touch an animated figure or a non-planar display in a top box of a gaming device, discussed below. The IGSD 10 also allows the player to use a hand or body movement as an interactive input.


In a first embodiment, the IGSD 10 includes a first sensor module, such as a lower power Doppler radar sensor module 12, and a second sensor module, such as an ultrasonic sensor module 14. Alternatively, and as discussed further below, the IGSD may include only single Doppler radar sensor module, multiple Doppler radar sensor modules, an IR camera, or an infrared/laser scan sensor.


According to Doppler radar theory, a constant frequency signal that is reflected off a moving surface, in this case the skin or clothing of the player, will result in a reflected signal at the same frequency, but with a time varying phase indicative of the relative motion.


In the first embodiment, the Doppler radar sensor module 12 senses movement of all or part of the body via skin or clothing reflections. The Doppler radar sensor module 12 could sense the light movement of the fingers, even the beating of a heart.


With software mapping, the Doppler radar sensor module 12 can sense net amount of motion, mean speed, and average direction for objects in its field of view. With frequency modulation, the Doppler radar sensor module 12 can sense range.


The Doppler radar sensor module 12 must be physically located such that it has a view of the player unobstructed by a surface which is opaque to radar, such as a conductive surface. The center of the field of sensing of the Doppler radar sensor module 12 is usually perpendicular to the orientation of its antenna. The Doppler radar sensor module 12 could be mounted at the side of the gaming machine and aimed so that its field of sensing goes across, or on top of, a surface, which could be metal. The field of sensing would be limited, but this might be desirable for a particular application.


The ultrasonic sensor module 14 utilizes sound energy, or sonar signals, at frequencies of 20 to 100 Kh range. Solid objects reflect this sound energy, and the time difference between transmission and reception indicates range and direction.


Radar signals and sonar signals have different reflective and speed characteristics. Therefore, they are a good combination when dealing with distances between 2-3 cm to 5 meters.


The IGSD 10 also includes an IGSD controller 18, such as a dedicated embedded controller or a standard microprocessor. The IGSD controller 18 provides control, power, interface, and data translation for the Doppler radar and ultrasonic sensor modules 12, 14. The IGSD controller 18 also includes a conventional USB communication channel 20 to a host 24.


The Doppler radar sensor module 12 uses a low power (<10 mw) 2.45 Ghz microwave sensor. Referring to FIG. 2, the Doppler radar sensor module 12 includes a first micro-patch array 26 as a receiving antenna and a second micro-patch array 28 as a transmitting antenna.


The radar module 12 can be configured for continuous wave (CW) operation or for frequency modulated/continuous wave (FM-CW) operation. The CW configuration provides simple motion detection only. The FM-CW configuration adds range sensing.


The Doppler radar sensor module 12 is provided with a 15 to 20 degree beam-width with a range of 20 to 1 feet. Depending on the location of the antennas 26, 28 of the Doppler radar sensor module 12 within the gaming machine, not only can the Doppler radar sensor module 12 detect objects at the front of the gaming machine, but also hands and fingers touching the surface of the gaming machine.


The Doppler radar sensor module 12 can provide motion and range detection. However when the Doppler radar sensor module 12 is used alone, there can be problems with reflections and noise from multiple sources, such as large groups of people or metal carts in the vicinity of the gaming machine. This potential problem can be minimized or prevented by using multiple radar modules 12, discussed below. However, one can preferably also use ultrasonic sensors on the low side of the electromagnetic frequency spectrum, as also discussed below.


As illustrated in FIG. 3, the ultrasonic sensor module 14 drives several 38-80 kHz ultrasonic transceivers, or sensors, 30. Each of the ultrasonic sensors 30 includes an ultrasonic transmitter 30a and an ultrasonic receiver 30b. The ultrasonic sensors 30 are small, cylindrical sensors which can be installed in various points on the gaming machine. The sensors 30 connect to the rest of the ultrasonic module 14 via cable. Using data processing, the IGSD controller 18 determines the best data image.


Although the IGSD controller 18 preferably includes dual ultrasonic sensors, one sensor can be used, or two of the same type of sensor. Other types of sensors could be used if the application requires such, such as an optical sensor.


Referring to FIG. 1, the IGSD controller 18 provides control and data translation. The USB communication interface 20 is provided between the IGSD controller 18 and the host system 24. The host system 24 provides set-up information, which is used by the IGSD controller 18 and the sensor modules 12, 14.


The sensor modules 12, 14 acquire data in the form of sensor images. After data processing, the modules 12, 14 send data streams to the IGSB controller 18. The IGSD controller 18 processes this data, looking for sequences and combinations that match parameters loaded in during a set-up routine. For example, the host system 24 wants the IGSD 10 to perform two functions: 1) provide a people sensor during an attract mode; and 2) provide touch data during bonus mode.


The host system 24 continuously provides mode status to the IGSD 10, which in turn changes the parameters for determining what data, and when data, is sent to the host system 24.


Each of the sensor modules 12, 14, includes a respective processor 12a, 14a. The present system was designed to maximize the workload of the processors 12a, 14a, on each respective sensor module 12, 14, allowing the IGSD controller 18 to handle the integration of both data images from the modules 12, 14. This could be a function of the host system 24 if the processor of the host system 24 could handle the extra workload and use USB communication. This would eliminate the IGSD controller 18, or at least function of the IGSD controller 18.


The Doppler radar sensor module 12 is illustrated in detail in FIG. 2. The Doppler radar sensor module 12 interfaces to the IGSD controller 18 via a conventional USB connection. The processor 12a of the Doppler radar sensor module 12 is a digital signal processor (DSP), such as a Texas Instruments TMS320 series DSP. The radar sensor module 12 uses the radar sensor module processor 12a for control, sampling, filtering and data processing.


The radar sensor module 12 includes an RF Oscillator 34 set for 2.45 Ghz. In the CW mode, this is the frequency of the transmitting signal. In the FM-CW mode, a voltage controlled oscillator (VCO) 36 provides a frequency control voltage to the RF Oscillator 34. The output of the RF oscillator 34 drives the transmitting antenna 28 via a directional coupler 35. The signal is coupled to the receiving input, which is mixed by a mixer 38 with the signal from the receiving antenna 26. The output of the mixer 38 is an IF frequency signal, which is the difference of the transmitted and received signals.


In the CW mode, the IF frequency signal relates to the relative velocity of the object. In the FM-CW mode, the IF frequency signal relates to the distance due to function of time. The IF frequency signal is amplified by a programmable IF amplifier 39 and fed to a filter circuit 40, which helps remove noise. The output of the filter circuit 40 is connected to an AID input of the radar module processor 12a. The radar module processor 12a processes the signal, using peak detection, digital filtering, and measurements, providing a digital image. If the digital image meets certain parameters, depending on the set-up, the radar module processor 12a could send a complete data stream or just a message.


It should be understood that other radar designs would work. A frequency of 2.45 Ghz is used here because it is in the ISM frequency band, an unlicensed range. However as a result, power output is limited (˜20 dbm) due to FCC rules. There could be other frequencies that would operate with more accuracy.


A 4×4 array is used for the micro-strip patch array antennas 26, 28 of the present embodiment. The 4×4 array is formed of 16 small squares connected together. PCB cladding material is used as part of the layout. The antenna array mandates the sensor be mounted behind a non-conductive surface. Depending on the frequency, the antenna array will change in type and size. Using an array of 4″×4″, or smaller, one can place the array in a plastic structure or behind a glass panel. Commercially specialized antennas are available which are designed for specific beam patterns. Other optimal antenna configurations are possible, such as phased antennas, different sized arrays or a helical configuration for narrow beam width. With increased sensitivity and increased data processing, one could sense the vital signs of people standing in front of the machine.


Referring to FIG. 3, ultrasonic sensors operate in the basic mode of transmitting a burst of ultrasonic frequency, and then waiting a certain period of time. Following this period of time, a reflected signal, or echo, of the pulse previously transmitted is received. As is well known, the time between transmission and reception is proportional to the object's distance. Depending on the sensor device, the beam width can be adapted to the application. Using multiple sensor devices and angulation processing improves resolution and accuracy.


The processor 14a of the ultrasonic module 14 is a microprocessor controller (MPC) 14a, such as a Philips Semiconductors P8051. The processor 14a controls operation of the sensor devices and interfaces to the IGSD controller 18 via a conventional USB communications link.


The processor 14a is connected to an ultrasonic sensor 30. However, the processor 14a could control multiple ultrasonic sensors 30. The limitation is the number of I/O lines on the processor 14a, and cost. An oscillator 42 oscillates at a frequency set for 38 kHz, matching the sensor specification. The oscillator 42 has two outputs; one is 38 kHz (digital) for the processor 14a, and the other is a 38 kHz (sin wave) for the transmitters. A gated amplifier 44 controls the length of the burst, plus provide a high voltage output for the transmitter 30a. The processor 14a provides control. If multiple sensors 30 are utilized, it is important to gate each ultrasonic transmitter to turn on one at a time, especially if multiple receivers will detect the reflected signal.


Although the beam width for the transmitter is narrow, >10 degrees, and the range is short (5 ft to 2 in), the reflections can be multi-directional depending on the object. All 38 kHz signals are ignored beyond an established time limit. These signals could be reflecting off an object greater than 5 ft or caused by a nearby noise source. A combination filter/peak detector 46 eliminates unwanted frequencies and converts the AC signal into a digital signal for the ultrasonic module controller 14a.


Data processing by the ultrasonic module controller 14a provides data analysis, comparing the 38 kHz signal from the oscillator 42 to the received signal in order to determine range and direction. If there are multiple ultrasonic sensors 30, the ultrasonic module controller 14a performs various triangulation computations for increased accuracy. The ultrasonic sensor module controller 14a then sends a data image to the IGSD controller 18.


There are different circuits and types of ultrasonic sensors that could alternately be used. The 38 kHz sensor is used here because such sensors are very available. However, higher frequencies could be better for using the Doppler effect for detecting moving objects.


Both the Doppler radar sensor module 12 and the ultrasonic sensor module 14 are plagued by unwanted reflections. Accordingly, circuitry is provided to set the receive sensitivity of both the modules 12, 14.


The Doppler radar sensor module 12 works better by first adjusting to its environment, so the programmable IF amplifier 39 is utilized. The radar sensor processor 12a is coupled to the programmable IF amplifier 39. This provides a 4-level (2 bits binary) programmable control for the programmable IF amplifier 39.


Referring again to FIG. 3, the programmable Ultrasonic receiver 30b The ultrasonic sensor processor 14a is coupled to a programmable amplifier 47 located between the filter/peak detector and the receiver 30b. The programmable amplifier 47 is also coupled to the processor 14a, and has eight (3 bits) levels of sensitivity. The programmable amplifies 47 adjusts the sensitivity of the filter/peak detector 46. When the IGSD 10 is turned on, or goes through a reset, the IGSD controller 18 sends out a control signal to the programmable amplifies 47 to adjust the receiver 30b for optimal sensitivity. Optimal sensitivity is achieved by adjusting the respective received signal, measuring any reflections, and then readjusting and repeating. This continues until optimized, under control of the IGSD controller 18, because it's important to limit only unwanted reflections, not true ones.


After setting optimal operating parameters, if multiple ultrasonic sensors 30 are utilized, the sensors 30 cooperate, using their programmable capabilities. As the reflections move closer to the machine, the ultrasonic sensors 30 are given the command to reduce sensitivities, removing background reflections. There could be cases when one wants the sensors to adjust for maximum sensitivity.


According to a second embodiment, a second Doppler radar sensor modules 12 is utilized instead of the ultrasonic sensor module 14. Using two Doppler radar sensor modules 12 provides greater flexibility in design. A Doppler radar sensor will not work behind conducting surfaces, such as steel, aluminum, and the like, and the location is important to sense direction of motion. But with two Doppler radar sensors, one can physically locate them in two different areas with overlapping fields of scan where one wants the player to touch. It allows the object to stay in view of both, or at least one, sensor at any time, resulting in no blind spots. Plus, it provides a three dimensional field of view in certain areas, providing a greater detection of other hand movements that could be used for other than playing the machine. For example, one could request a drink by making a particular hand gesture, and the machine will send a signal to the bar ordering the drink. Although this configuration improves accuracy, the cost is higher.


Configuration of the Doppler radar sensor module 12 and the ultrasonic sensor module 14 is as follows. Once set for optimal, both sensors 12, 14 must report an object in the field of sensing to start the process. If one or both sensors 12, 14 report an object getting closer, the ultrasonic sensor module 14 reduces its output to check. With more control over the ultrasonic sensor module 14, one can reduce the number of reflections because the distance the signal can be received from the source has been limited per the square law rule. If a valid reflection is sensed, the Doppler and ultrasonic sensor modules 12, 14 re-adjust and then re-verify. This repeats until the object is in front of the gaming machine by a player distance. To maximize people interaction with the machine, one could use different attract visuals and sound depending on the distance of the object sensed. Absent software analysis of the motion of the detected object, the IGSD 10 does not know whether it has detected a human, or whether it has detected some other object, such as a vacuum cleaner. With both sensor modules 12, 14 verifying each other, accuracy is improved.


Once there's an action to begin play of the machine, such as by insertion of a coin, the IGSD 10 knows it has detected a human. The application sends commands to the Doppler radar sensor module 12 via the controller to change the transmitting and receiving parameters to focus on the area between the player and the touch area. If the touch area is very close to the sensor modules 12, 14, the ultrasonic sensor module 14 is used to sense the touch, but the Doppler radar sensor module has already notified the IGSD controller 18 that a hand or arm is approaching.


A top-box 50 is illustrated in FIGS. 4a and 4b. The top-box 50 is a mechanical structure located above a main cabinet or main game area of a gaming machine (not shown). Top-box designs are used for player attraction and bonus game play, as are well known. There are many types of images displayed on top-boxes, such as spinning wheels, rotating reels, mechanically animated devices or other displays. Some top-box displays have a non-planar shape, such as a hemispherically formed screen 52. In one example, as illustrated in FIG. 5, the image spins or rotates as part of a bonus game. The player can cause the image to stop by touching the image, or extending the player's arm toward the image, but not making actual contact with the actual image.


According to the present invention; the Doppler radar sensor module 12 is located above a video projection unit 54 inside the top-box 50. Because the surface of the screen 52 is made of rear projection material, the screen 52 has a clear field of view towards the player. The ultrasonic sensors 30 are installed around the bottom of the display and provide additional coverage if the Doppler radar sensor module 12 has a so-called dead spot near the edges of the screen 52.


Other top-box designs can be in the form of mechanical doors. The player points to one of the doors and/or touches the door; which opens to reveal the amount of the bonus. In this top-box design, the Doppler radar antennas are mounted above the top-box doors, and a respective one of the ultrasonic sensors 30 is located next to each door. The host system 24 notifies the IGSD controller 18 that the game is in a bonus mode. The IGSD controller 18 begins to monitor and translate the data streams from the sensor modules 12, 14. In this example, the doors are too far from the player, so the player is required to point to the door. Data from Doppler radar sensor module 12 shows motion and a set direction. The ultrasonic sensor module 14 shows position and a set direction. Triangulation confirms the angle and set direction. Motion stop and data is verified. The IGSD controller 18 sends the result to the host controller 24.


Typically gaming machines have a silk-screened glass panel below the main play area called the belly glass. Some gaming machines have another one above the main play area called the top glass. Because these glass panels typically go through a silk-screen process, it would be very difficult to use it as a touch-sensor, especially if these touch-sensor/glass panels required a wired connection. This would result in the disconnecting and connecting of the glass panels every time the machine is accessed for troubleshooting or the glass panel is replaced. Using the IGSD 10 of the present invention, no direct connection to the glass panel is required. The Doppler radar sensor module 12 is placed behind the glass panel, and one is able to use the glass panel as a player input.


Another use of the IGSD 10 is for player attraction. Gaming machines use a combination of visuals and sounds to attract players to the machines. With the IGSD 10, one can have a dynamic attraction. The IGSD 10 can sense people walking by the gaming machine, or stopping to look. This in turn can cause a change in the visuals and sounds, attracting a possible player. Sensing the position and direction, the gaming machine would again change the visuals and sounds as the person nears the machine. Gender can be determined, which enables a different set of visuals and sounds.


In a third embodiment, only a single Doppler radar sensor module 12 is utilized, no ultrasonic, or other sensor. The single Doppler radar sensor module 12 can detect any object in its field of sensing, moving or range and motion, depending on microwave type. The single Doppler radar sensor module 12 will sense motion, speed and direction as an object approaches the machine. It could be used as an object sensor, which would be used to change attract modes. It is unable to distinguish a human from an inanimate object, unless the sensor has the sensitivity, and the IGSD controller 18 has the computing power, to be able to detect heartbeat by sensing the blood flow in the arm or hand, but, such would be a relatively complex configuration.


For example a top box display could respond to the approaching object, with a welcome screen or a preview of a bonus play. The only way to verify the object is a player is to use the attract mode changes, but wait until the host 24 detects the start of a game, such as upon insertion of a coin, before using it as a touch sensor. The disadvantage of the simple configuration compared to configurations with multiple sensors is the possibility of blind area. These are areas within the field of sensing that motion detection can be easily blocked, so the location of the sensor is important. Also, the touch area cannot be too close to the sensor because the Doppler radar sensor module 12 typically cannot detect close objects, such as those within 1 ft. The main advantage of this simple configuration is the cost and the size of the sensor module.


An embodiment utilizing an IR camera sensor 59 is illustrated in FIG. 6. The IR camera sensor 59 includes an IR camera sensor processor 59a coupled via an LED driver 60 to an IR emitter array 62. The IR camera sensor 59 further includes an IR camera 64, also coupled to the IR camera sensor processor 59a. The most common configuration of the LED emitter array 62 is a circle of LEDS around the lens of the IR camera 64. The IR camera 64 has several manual or programmable features, such as focus, sensitivity, and the like. An application program in the IR camera sensor processor 59a provides noise filtering, gray level conversion, and detection.


The IR emitter array 62 floods the area around the machine with infrared light. To a human, this light is invisible, but not to the IR camera 64. The human eye acts like a mirror to the IR wavelength. When looking at the machine, the IR light reflects off the retina of the eye, and the lens of the eye focuses this reflected light towards the IR camera 64. The IR camera 64, being sensitive to IR light, will sense reflected light, and the IGSD controller 18 can determine, via software application, if the received IR light is actually an eye reflection.


The IR camera 64 can also be used to detect motion, using angular processing as reflections move. However, it cannot accurately determine distance. The IR camera sensor 59 would appear as another device connected to the IGSD controller 18. The IR camera sensor 59 would be used in conjunction with any of the above described systems.


Alternatively, a standard camera, also designated 64, can be utilized to detect human form. All of this is to determine if the object detected for motion is actually a human player, rather than some inanimate device


A final embodiment utilizing an infrared laser scan sensor 70 is illustrated in FIG. 7. The infrared laser scan sensor 70 is preferably utilized in conjunction with the ultrasonic sensor 30, discussed above. The infrared laser scan sensor 70 is capable of being mounted in small areas. It can be mounted behind metallic surfaces, although it would require a small opening in the surface. The opening could be covered with plastic or glass, provided the covering is not opaque to the infrared light.


The infrared laser scan sensor comprises an infrared projector 72 and an infrared detector 74. The infrared projector 72 comprises: (1) an IR or red laser 76; (2) a reflector device 78, such as a digital micro-mirror device (DMD), as provided by Texas Instruments, or a MEMS (Micro-Electrical mechanical system) scanner; and (3) a lens 80. The projector 72 further includes a scanner interface 82 and a laser driver 84. The scanner interface 82 can be digital drivers, or a DAC, depending on the type of reflector device 78. The laser module 76 can be continuous, pulsed or modulated, all under control of the processor 70a.


The reflective device 78 is extremely small, and requires a narrow beam. The lens 80 assures the light beam covers the entire surface to be scanned.


The infrared projector 72 beams light into a prismatoid shaped pattern in front of the sensor opening. As is known in the art, the DMD and MEMS use mechanical action to sequentially reflect light from an X-Y array of reflectors under control of the processor 70a. The reflector located in the upper left corner is first activated, sending the reflected beam out toward a first point in space. Then the next reflector is activated, sending the reflected beam toward a second, adjacent point in space. This continues until each reflector has been activated, at which time the process is repeated.


The high rate of switching between individual reflectors of the reflector device 78 causes a laser beam to be reflected in an X-Y pattern through the lens, forming a prismatoid field of sensing. A physical object is in this field is be scanned by the laser. The infrared detector 74 is coupled to the processor 70a by a programmable amplifier 86 and a filter/peak detector 88. The detector 74 detects the reflection of the laser spot (beam) off of the object, generating an output trigger signal. This trigger signal with information identifying the particular reflector activated at that time indicates the location of the illuminated point of the object. The IR detector 78 has a wide field of sensing, and a programmable amplifier 86, under control of the processor, adjusts the output of the detector 78.


A hand in the field of scanning could generate hundreds of triggers and each trigger will appear at different X-Y locations. The IGSD 10, or the host 24 would use angular processing providing motion detection and location, but referencing these as if they were on a single plane of the three dimensional space. Accordingly, the ultrasonic sensor 30 would work in conjunction with the infrared laser sensor 70


Relative position is determined by using the X-Y coordinates as a reflected signal is detected. Motion can be determined be comparing the relative changes in the reflected signals or by using the Doppler effect. One feature of the laser scan sensor 70 is its ability to outline objects in the field of sensing, such as to distinguish a human outline from that of a cart. The laser scan sensor 70 can also determine the number of people standing in front of the machine. This feature can be used for very interesting attract modes.


Alternatively, an IR camera system could be used to detect the X-Y location of the reflected beam and then use the next set of scans to determine angular movement, although this would be more complex.


The beam scan gets larger further away from the source, like an inverted pyramid. When the ultrasonic sensor detects the object is in the virtual touch area, and the infrared laser scan sensor sends the correct X-Y coordinate, the system determines the touch is valid.


While the specific embodiment has been illustrated and described, numerous modifications come to mind without significantly departing from the spirit of the invention, and the scope of protection is only limited by the scope of the accompanying claims.

Claims
  • 1. A device comprising: at least one location sensor that detects a location of an object;at least one motion sensor that detects motion at a virtual input location; anda controller that determines a user input at the virtual input location based at least in part on whether at least a portion of the motion at the virtual input location detected by the motion sensor is at the location of the object detected by the location sensor.
  • 2. The device of claim 1, wherein the at least one location sensor comprises an infrared sensor.
  • 3. The device of claim 1, wherein the virtual input location is defined by a three-dimensional space.
  • 4. The device of claim 1, wherein the at least one location sensor comprises a Doppler radar sensor.
  • 5. The device of claim 4, wherein the Doppler radar sensor comprises at least two micro-patch arrays.
  • 6. The device of claim 4, wherein the Doppler radar sensor operates using a frequency modulated/continuous wave operation.
  • 7. The device of claim 1, wherein the at least one motion sensor comprises an infrared emitter and an infrared camera.
  • 8. The device of claim 1, wherein the at least one motion sensor comprises a visible light camera.
  • 9. The device of claim 1, further comprising: a surface, wherein the virtual input location is defined substantially on the surface.
  • 10. The device of claim 9, wherein the surface comprises an indication of the virtual input location.
  • 11. The device of claim 10, further comprising: a projector that projects the indication on the surface.
  • 12. The device of claim 11, wherein the projector projects the image as moving on the surface.
  • 13. The device of claim 9, wherein the surface is non-planar.
  • 14. The device of claim 1, further comprising an object sensor that detects a human form.
  • 15. The device of claim 14, wherein the controller further determines the user input based on whether the object is a human.
  • 16. A method comprising: detecting, by at least one location sensor, a location of an object;detecting, by at least one motion sensor, motion at a virtual input location; anddetermining, by a controller, a user input at the virtual input location based at least in part on whether at least a portion of the motion at the virtual input location detected by the motion sensor is at the location of the object detected by the location sensor.
  • 17. The method of claim 16, wherein the at least one location sensor comprises an infrared sensor.
  • 18. The method of claim 16, wherein the virtual input location is defined by a three-dimensional space.
  • 19. The method of claim 16, wherein the at least one motion sensor comprises a camera.
  • 20. The method of claim 16, wherein the virtual input location is defined substantially on a surface.
  • 21. The method of claim 16, further comprising: detecting, by an object sensor, a human form.
  • 22. The method of claim 21, wherein said determining the user input is further based on whether the object is a human.
  • 23. A method comprising: determining a location of a user input at a virtual input location by at least one location sensor;detecting motion at the virtual input location by at least one camera; anddetermining whether a portion of the user input is within the virtual input location in a space that defines a virtual input by a controller coupled to the at least one location sensor and the at least one camera.
  • 24. The method of claim 23 wherein the at least one location sensor comprises an infrared sensor.
  • 25. The method of claim 23, wherein the space that defines the virtual input is a three-dimensional space.
  • 26. A system comprising: at least one location sensor that detects a location of a user input at a virtual input location;at least one camera that detects motion at the virtual input location; anda controller that determines whether a portion of the user input is within the virtual input location in a space that defines a virtual input, wherein the controller is coupled to the at least one location sensor and the at least one camera.
  • 27. The system of claim 26 wherein the at least one location sensor comprises an infrared sensor.
  • 28. The system of claim 26, wherein the space that defines the virtual input is a three-dimensional space.
  • 29. A system comprising: at least one location sensor that detects a location of a user input at a virtual input location;a first controller in communication with the at least one location sensor;at least one camera that detects motion at the virtual input location;a second controller in communication with the at least one camera;wherein the controllers determine whether a portion of the user input is within the virtual input location in a space that defines a virtual input.
  • 30. The system of claim 29, wherein the at least one location sensor comprises an infrared sensor.
  • 31. The system of claim 29, wherein the space that defines the virtual input is a three-dimensional space.
CROSS-REFERENCES TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/834,007, filed Aug. 24, 2015, which is a continuation of U.S. patent application Ser. No. 14/158,013, filed Jan. 17, 2014, now U.S. Pat. No. 9,116,543, issued Aug. 25, 2015, which is a continuation of U.S. patent application Ser. No. 13/618,910, filed Sep. 14, 2012, now U.S. Pat. No. 8,668,584, issued Mar. 11, 2014, which is a continuation of U.S. patent application Ser. No. 13/077,606, filed Mar. 31, 2011, now U.S. Pat. No. 8,398,488, issued Mar. 19, 2013, which is a continuation of U.S. patent application Ser. No. 10/921,518, filed Aug. 19, 2004, now U.S. Pat. No. 7,942,744, issued May 17, 2011, the entire contents of each of which are incorporated herein by reference.

US Referenced Citations (336)
Number Name Date Kind
3662105 Hurst et al. May 1972 A
3697698 Oswald et al. Oct 1972 A
3724932 Cornsweet et al. Apr 1973 A
3986030 Teltscher Oct 1976 A
4071689 Talmage et al. Jan 1978 A
4072930 Lucero et al. Feb 1978 A
4109145 Graf Aug 1978 A
4283709 Lucero et al. Aug 1981 A
4339798 Hedges et al. Jul 1982 A
4348696 Beier Sep 1982 A
4553222 Kurland et al. Nov 1985 A
4595990 Garwin et al. Jun 1986 A
4836670 Hutchinson Jun 1989 A
4837728 Barrie et al. Jun 1989 A
4856787 Itkis Aug 1989 A
4950069 Hutchinson Aug 1990 A
4973149 Hutchinson Nov 1990 A
5033744 Bridgeman et al. Jul 1991 A
5038022 Lucero Aug 1991 A
5042809 Richardson Aug 1991 A
5048831 Sides Sep 1991 A
5059959 Barry Oct 1991 A
5116055 Tracy May 1992 A
5179517 Sarbin et al. Jan 1993 A
5280809 Tive Jan 1994 A
5288078 Capper et al. Feb 1994 A
5367315 Pan Nov 1994 A
5371345 LeStrange et al. Dec 1994 A
5429361 Raven et al. Jul 1995 A
5442168 Gurner et al. Aug 1995 A
5470079 LeStrange et al. Nov 1995 A
5474082 Junker Dec 1995 A
5517021 Kaufman et al. May 1996 A
5536016 Thompson Jul 1996 A
5577731 Jones Nov 1996 A
5605334 McCrea, Jr. Feb 1997 A
5616078 Oh Apr 1997 A
5618045 Kagan et al. Apr 1997 A
5638826 Wolpaw et al. Jun 1997 A
5643086 Alcorn et al. Jul 1997 A
5655961 Acres et al. Aug 1997 A
5655966 Werdin, Jr. et al. Aug 1997 A
5702304 Acres et al. Dec 1997 A
5704836 Norton et al. Jan 1998 A
5716273 Yuen Feb 1998 A
5718632 Hayashi Feb 1998 A
5741183 Acres et al. Apr 1998 A
5759102 Pease et al. Jun 1998 A
5761647 Boushy Jun 1998 A
5766076 Pease et al. Jun 1998 A
5768382 Schneier et al. Jun 1998 A
5769716 Saffari et al. Jun 1998 A
5770533 Franchi Jun 1998 A
5779545 Berg et al. Jul 1998 A
5788573 Baerlocher et al. Aug 1998 A
5795228 Trumbull et al. Aug 1998 A
5796389 Bertram et al. Aug 1998 A
5797085 Beuk et al. Aug 1998 A
5803809 Yoseloff Sep 1998 A
5809482 Strisower Sep 1998 A
5811772 Lucero Sep 1998 A
5816918 Kelly et al. Oct 1998 A
5818954 Tomono et al. Oct 1998 A
5833536 Davids et al. Nov 1998 A
5833540 Miodunski et al. Nov 1998 A
5844824 Newman et al. Dec 1998 A
5851148 Brune et al. Dec 1998 A
5855515 Pease et al. Jan 1999 A
5871398 Schneier et al. Feb 1999 A
5885158 Torango et al. Mar 1999 A
5892566 Bullwinkel Apr 1999 A
5910048 Feinberg Jun 1999 A
5913727 Ahdoot Jun 1999 A
5919091 Bell et al. Jul 1999 A
5951397 Dickinson Sep 1999 A
5954583 Green Sep 1999 A
5957776 Hoehne Sep 1999 A
5967896 Jorasch et al. Oct 1999 A
5971271 Wynn et al. Oct 1999 A
5982326 Chow et al. Nov 1999 A
5984779 Bridgeman et al. Nov 1999 A
5999808 LaDue Dec 1999 A
6001016 Walker et al. Dec 1999 A
6003013 Boushy et al. Dec 1999 A
6003651 Waller et al. Dec 1999 A
6008800 Pryor Dec 1999 A
6010404 Walker et al. Jan 2000 A
6012832 Saunders et al. Jan 2000 A
6012983 Walker et al. Jan 2000 A
6038666 Hsu et al. Mar 2000 A
6048269 Burns et al. Apr 2000 A
6050895 Luciano, Jr. et al. Apr 2000 A
6062981 Luciano, Jr. May 2000 A
6068552 Walker et al. May 2000 A
6077163 Walker et al. Jun 2000 A
6089975 Dunn Jul 2000 A
6099408 Schneier et al. Aug 2000 A
6104815 Alcorn et al. Aug 2000 A
6106396 Alcorn et al. Aug 2000 A
6110041 Walker et al. Aug 2000 A
6110043 Olsen Aug 2000 A
6113492 Walker et al. Sep 2000 A
6113493 Walker et al. Sep 2000 A
6113495 Walker et al. Sep 2000 A
6135884 Hedrick et al. Oct 2000 A
6135887 Pease et al. Oct 2000 A
6139431 Walker et al. Oct 2000 A
6142876 Cumbers Nov 2000 A
6146273 Olsen Nov 2000 A
6149522 Alcorn et al. Nov 2000 A
6161059 Tedesco et al. Dec 2000 A
6162121 Morro et al. Dec 2000 A
6162122 Acres et al. Dec 2000 A
6168522 Walker et al. Jan 2001 B1
6174234 Seibert, Jr. et al. Jan 2001 B1
6182221 Hsu et al. Jan 2001 B1
6183362 Boushy Feb 2001 B1
6190256 Walker et al. Feb 2001 B1
6191773 Maruno et al. Feb 2001 B1
6210279 Dickinson Apr 2001 B1
6227972 Walker et al. May 2001 B1
6227974 Eilat et al. May 2001 B1
6234900 Cumbers May 2001 B1
6244958 Acres Jun 2001 B1
6247643 Lucero Jun 2001 B1
6253119 Dabrowski Jun 2001 B1
6264560 Goldberg et al. Jul 2001 B1
6264561 Saffari et al. Jul 2001 B1
6267671 Hogan Jul 2001 B1
6270410 DeMar et al. Aug 2001 B1
6280328 Holch et al. Aug 2001 B1
6285868 LaDue Sep 2001 B1
6293866 Walker et al. Sep 2001 B1
6302790 Brossard Oct 2001 B1
6307956 Black Oct 2001 B1
6313871 Schubert Nov 2001 B1
6319125 Acres Nov 2001 B1
6341353 Herman et al. Jan 2002 B1
6346044 McCrea, Jr. Feb 2002 B1
6368216 Hedrick et al. Apr 2002 B1
6371852 Acres Apr 2002 B1
6375572 Masuyama et al. Apr 2002 B1
6379246 Dabrowski Apr 2002 B1
6383076 Tiedeken May 2002 B1
6409595 Uihlein et al. Jun 2002 B1
6409602 Wiltshire et al. Jun 2002 B1
6439993 O'Halloran Aug 2002 B1
6443843 Walker et al. Sep 2002 B1
6450885 Schneier et al. Sep 2002 B2
6471591 Crumby Oct 2002 B1
6488585 Wells et al. Dec 2002 B1
6508710 Paravia et al. Jan 2003 B1
6511376 Walker et al. Jan 2003 B2
6511377 Weiss Jan 2003 B1
6519607 Mahoney et al. Feb 2003 B1
6530835 Walker et al. Mar 2003 B1
6554705 Cumbers Apr 2003 B1
6561903 Walker et al. May 2003 B2
6582310 Walker et al. Jun 2003 B1
6585592 Crumby Jul 2003 B1
6599193 Baerlocher et al. Jul 2003 B2
6607443 Miyamoto et al. Aug 2003 B1
6611253 Cohen Aug 2003 B1
6620047 Alcorn et al. Sep 2003 B1
6624561 Nakamura et al. Sep 2003 B2
6628939 Paulsen Sep 2003 B2
6629890 Johnson Oct 2003 B2
6637883 Tengshe et al. Oct 2003 B1
6645077 Rowe Nov 2003 B2
6645078 Mattice Nov 2003 B1
6650318 Amon Nov 2003 B1
6651985 Sines et al. Nov 2003 B2
6652378 Cannon et al. Nov 2003 B2
6676522 Rowe et al. Jan 2004 B2
6682421 Rowe et al. Jan 2004 B1
6685480 Nishimoto et al. Feb 2004 B2
6685567 Cockerille et al. Feb 2004 B2
6712698 Paulsen et al. Mar 2004 B2
6720949 Pryor et al. Apr 2004 B1
6722985 Criss-Puszkiewicz et al. Apr 2004 B2
6739975 Nguyen et al. May 2004 B2
6743097 Walker et al. Jun 2004 B2
6776715 Price Aug 2004 B2
6783459 Cumbers Aug 2004 B2
6800029 Rowe et al. Oct 2004 B2
6801188 Longobardi Oct 2004 B2
6804763 Stockdale et al. Oct 2004 B1
6830515 Rowe Dec 2004 B2
6846238 Wells Jan 2005 B2
6852031 Rowe Feb 2005 B1
6863608 LeMay et al. Mar 2005 B1
6863609 Okuda et al. Mar 2005 B2
6866586 Oberberger et al. Mar 2005 B2
6884170 Rowe Apr 2005 B2
6908387 Hedrick et al. Jun 2005 B2
6921332 Fukunaga et al. Jul 2005 B2
6922276 Zhang et al. Jul 2005 B2
6939231 Mantyjarvi et al. Sep 2005 B2
6965868 Bednarek Nov 2005 B1
6997807 Weiss Feb 2006 B2
7001277 Walker et al. Feb 2006 B2
7022017 Halbritter et al. Apr 2006 B1
7035626 Luciano, Jr. Apr 2006 B1
7083518 Rowe Aug 2006 B2
7111141 Nelson Sep 2006 B2
7112138 Hedrick et al. Sep 2006 B2
7128651 Miyamoto et al. Oct 2006 B2
7168089 Nguyen et al. Jan 2007 B2
7217190 Weiss May 2007 B2
7255642 Sines et al. Aug 2007 B2
7275991 Burns et al. Oct 2007 B2
7384339 LeMay et al. Jun 2008 B2
7515718 Nguyen et al. Apr 2009 B2
7611407 Itkis et al. Nov 2009 B1
7815507 Parrott et al. Oct 2010 B2
7942744 Wells May 2011 B2
20010000118 Sines et al. Apr 2001 A1
20010028147 Ornstein et al. Oct 2001 A1
20010031663 Johnson Oct 2001 A1
20010039204 Tanskanen Nov 2001 A1
20010040572 Bradski et al. Nov 2001 A1
20020002072 Sines et al. Jan 2002 A1
20020022518 Okuda et al. Feb 2002 A1
20020036617 Pryor Mar 2002 A1
20020042297 Torango Apr 2002 A1
20020046100 Kinjo Apr 2002 A1
20020055383 Onda et al. May 2002 A1
20020075240 Lieberman Jun 2002 A1
20020098888 Rowe et al. Jul 2002 A1
20020103024 Jeffway, Jr. et al. Aug 2002 A1
20020103027 Rowe et al. Aug 2002 A1
20020107066 Seelig et al. Aug 2002 A1
20020133418 Hammond et al. Sep 2002 A1
20020142824 Kazaoka et al. Oct 2002 A1
20020142825 Lark et al. Oct 2002 A1
20020142844 Kerr Oct 2002 A1
20020142846 Paulsen Oct 2002 A1
20020147047 Letovsky et al. Oct 2002 A1
20020198052 Soltys et al. Dec 2002 A1
20030003988 Walker et al. Jan 2003 A1
20030017872 Oishi et al. Jan 2003 A1
20030027632 Sines et al. Feb 2003 A1
20030032485 Cockerille et al. Feb 2003 A1
20030045354 Giobbi Mar 2003 A1
20030050806 Friesen et al. Mar 2003 A1
20030054881 Hedrick et al. Mar 2003 A1
20030060280 Oles et al. Mar 2003 A1
20030069071 Britt et al. Apr 2003 A1
20030078101 Schneider et al. Apr 2003 A1
20030078103 LeMay et al. Apr 2003 A1
20030083132 Berg et al. May 2003 A1
20030083943 Adams et al. May 2003 A1
20030100361 Sharpless et al. May 2003 A1
20030109308 Rowe Jun 2003 A1
20030148808 Price Aug 2003 A1
20030148812 Paulsen et al. Aug 2003 A1
20030162593 Griswold Aug 2003 A1
20030179229 Van Erlach et al. Sep 2003 A1
20030190944 Manfredi et al. Oct 2003 A1
20030203756 Jackson Oct 2003 A1
20030228898 Rowe Dec 2003 A1
20040001182 Dyner Jan 2004 A1
20040002386 Wolfe et al. Jan 2004 A1
20040027450 Yoshino Feb 2004 A1
20040029635 Giobbi Feb 2004 A1
20040043814 Angell et al. Mar 2004 A1
20040046736 Pryor et al. Mar 2004 A1
20040053675 Nguyen et al. Mar 2004 A1
20040063480 Wang Apr 2004 A1
20040063481 Wang Apr 2004 A1
20040082385 Silva et al. Apr 2004 A1
20040085293 Soper et al. May 2004 A1
20040087370 Tarantino May 2004 A1
20040092310 Brosnan et al. May 2004 A1
20040116174 Baerlocher et al. Jun 2004 A1
20040127277 Walker et al. Jul 2004 A1
20040137987 Nguyen et al. Jul 2004 A1
20040147314 LeMay et al. Jul 2004 A1
20040162139 Blanco Aug 2004 A1
20040166937 Rothschild et al. Aug 2004 A1
20040189720 Wilson et al. Sep 2004 A1
20040193413 Wilson et al. Sep 2004 A1
20040199284 Hara Oct 2004 A1
20040203895 Balasuriya Oct 2004 A1
20040251630 Sines et al. Dec 2004 A1
20040254006 Lam et al. Dec 2004 A1
20050037844 Shum et al. Feb 2005 A1
20050059488 Larsen et al. Mar 2005 A1
20050076242 Breuer Apr 2005 A1
20050143169 Nguyen et al. Jun 2005 A1
20050212753 Marvit et al. Sep 2005 A1
20050255911 Nguyen et al. Nov 2005 A1
20050255922 Nguyen et al. Nov 2005 A1
20050261059 Nguyen et al. Nov 2005 A1
20050261060 Nguyen et al. Nov 2005 A1
20050261061 Nguyen et al. Nov 2005 A1
20050261816 DiCroce et al. Nov 2005 A1
20050273815 Orr et al. Dec 2005 A1
20050282603 Parrott et al. Dec 2005 A1
20060036874 Cockerille et al. Feb 2006 A1
20060040730 Walker et al. Feb 2006 A1
20060040739 Wells Feb 2006 A1
20060052109 Ashman, Jr. et al. Mar 2006 A1
20060058091 Crawford, III et al. Mar 2006 A1
20060073888 Nguyen et al. Apr 2006 A1
20060079333 Morrow et al. Apr 2006 A1
20060189365 Crawford, III et al. Aug 2006 A1
20060189367 Nguyen et al. Aug 2006 A1
20060189382 Muir et al. Aug 2006 A1
20060189384 Crawford, III et al. Aug 2006 A1
20060252530 Oberberger et al. Nov 2006 A1
20070004510 Underdahl et al. Jan 2007 A1
20070021198 Muir et al. Jan 2007 A1
20070052636 Kalt et al. Mar 2007 A1
20070202952 Francis et al. Aug 2007 A1
20070259716 Mattice et al. Nov 2007 A1
20070259717 Mattice et al. Nov 2007 A1
20070298873 Nguyen et al. Dec 2007 A1
20080076505 Nguyen et al. Mar 2008 A1
20080076506 Nguyen et al. Mar 2008 A1
20080146344 Rowe et al. Jun 2008 A1
20090069090 Moser et al. Mar 2009 A1
20090098925 Gagner et al. Apr 2009 A1
20090197658 Polchin Aug 2009 A1
20090280910 Gagner et al. Nov 2009 A1
20090325686 Davis et al. Dec 2009 A1
20100087241 Nguyen et al. Apr 2010 A1
20100245237 Nakamura Sep 2010 A1
20100255902 Goldstein et al. Oct 2010 A1
20110065490 Lutnick Mar 2011 A1
20110212778 Wells Sep 2011 A1
20110275432 Lutnick et al. Nov 2011 A1
20130044130 Geisner Feb 2013 A1
20140198079 Huebner Jul 2014 A1
20160023101 Leyland Jan 2016 A1
20160166924 Leyland Jun 2016 A1
Foreign Referenced Citations (51)
Number Date Country
704691 Apr 1997 AU
2005265179 Jan 2011 AU
1969301 May 2007 CN
10034275 Jan 2002 DE
0698858 Feb 1996 EP
0744786 Nov 1996 EP
0769769 Apr 1997 EP
0924657 Jun 1999 EP
0942285 Aug 2001 EP
1120757 Aug 2001 EP
1231577 Aug 2002 EP
1482459 Dec 2004 EP
1494182 Jan 2005 EP
2284913 Jun 1995 GB
2429564 Feb 2007 GB
2001-218982 Aug 2001 JP
2003-181137 Jul 2003 JP
2004-113755 Apr 2004 JP
07299248 Nov 2007 JP
1995024689 Sep 1995 WO
1996000950 Jan 1996 WO
1998050876 Nov 1998 WO
1998058509 Dec 1998 WO
9907153 Feb 1999 WO
1999010061 Mar 1999 WO
2001000291 Jan 2001 WO
2001001379 Jan 2001 WO
2001003786 Jan 2001 WO
2001027759 Apr 2001 WO
2001048712 Jul 2001 WO
2001076710 Oct 2001 WO
2002024288 Mar 2002 WO
2002050652 Jun 2002 WO
2002055163 Jul 2002 WO
2002058020 Jul 2002 WO
2003019486 Mar 2003 WO
2003084623 Oct 2003 WO
2004025595 Mar 2004 WO
2004027584 Apr 2004 WO
2004034905 Apr 2004 WO
2004056432 Jul 2004 WO
2004070591 Aug 2004 WO
2005023389 Mar 2005 WO
2006009917 Jan 2006 WO
2006010011 Jan 2006 WO
2006023285 Mar 2006 WO
2006090197 Aug 2006 WO
2008028148 Mar 2008 WO
2008030777 Mar 2008 WO
2009009224 Jan 2009 WO
2009009225 Jan 2009 WO
Non-Patent Literature Citations (43)
Entry
U.S. Office Action from U.S. Appl. No. 11/825,481, dated Nov. 24, 2010.
U.S. Office Action from U.S. Appl. No. 11/825,477, dated Nov. 15, 2010.
U.S. Restriction Requirement from U.S. Appl. No. 10/921,518, dated Nov. 15, 2007.
U.S. Office Action from U.S. Appl. No. 10/921,518, dated Mar. 17, 2008.
U.S. Restriction Requirement from U.S. Appl. No. 10/921,518, dated Nov. 21, 2008.
U.S. Final Office Action from U.S. Appl. No. 10/921,518, dated Apr. 20, 2010.
U.S. Notice of Allowance from U.S. Appl. No. 10/921,518, dated Oct. 21, 2010.
U.S. Notice of Allowance from U.S. Appl. No. 10/921,518, dated Feb. 2, 2011.
Australian Office Action from Application No. 2005265179, dated Jan. 28, 2010.
Chinese Office Action from Application No. 200580020194.0, dated Apr. 3, 2009.
Chinese Office Action from Application No. 200580020194.0, dated Aug. 5, 2010.
British Examination Report from Application No. 0625344.7, dated Oct. 5, 2007, 3 pages.
British Examination Report from Application No. 0625344.7, dated Sep. 12, 2008.
International Preliminary Report on Patentability from Application No. PCT/US2005/021605, dated Dec. 20, 2006.
International Search Report from Application No. PCT/US2005/021605, dated Sep. 29, 2005.
Written Opinion from Application No. PCT/US2005/021605, dated Sep. 29, 2005.
International Preliminary Report on Patentability from Application No. PCT/US2008/064779, dated Jan. 12, 2010.
International Search Report from Application No. PCT/US2008/064779, dated Sep. 30, 2008.
Written Opinion from Application No. PCT/US2008/064779, dated Sep. 30, 2008.
International Preliminary Report on Patentability from Application No. PCT/US2008/064776, dated Jan. 12, 2010.
International Search Report from Application No. PCT/US2008/064776, dated Sep. 29, 2008.
Written Opinion from Application No. PCT/US2008/064776, dated Sep. 29, 2008.
International Preliminary Report on Patentability dated Feb. 20, 2007 from Application No. PCT/US2005/027731.
International Search Report, dated Jan. 16, 2006, from corresponding International Application No. PCT/US2005/027731, 7 pages, including Notification of Transmittal.
Written Opinion of the International Searching Authority, dated Jan. 16, 2006, from corresponding International Application No. PCT/US2005/027731, 10 pages.
“CHI97: The Magic Carpet; Physical Sensing for Immersive Environments,” website, Nov. 8, 2004, <http://www.acm.org/sigchi/chi97/proceedings/short-demo/jp.htm>, 5 pages.
Paradiso, J.A., “Several Sensor Approaches That Retrofit Large Surfaces for Interactivity,” ACM Ubicomp 2002 Workshop on Collaboration with Interactive Walls and Tables, Gothenburg, Sweden, Sep. 29, 2002, 8 pages.
Canesta, Inc., “Getting Started With Canesta, Device Prototyping Program,” © 2002, Canesta, Inc., <http://www.canesta.com/devtools.htm>, 1 page.
Dean, K., “Wired News: Gesture Your Mouse Goodbye,” May 28, 2003, <http://www.wired.com/new/gizmos/0,1452,58978,00.html>, 2 pages.
LC Technologies, Inc., “Eyeglaze Technology, Solutions and Applications,” © 2003, <http://www.eyegaze.com/SOLUTIONS.htm>, 4 pages.
LC Technologies, Inc., “The Eyegaze Analysis System, Research Tools,” © 2003, <http://www.eyegaze.com/2Products/Development/Devlopmentmain.htm>, 9 pages.
Townsend, J.E., et al., “Mattel Power Glove FAQ version 0.1, May 7, 1993,” <http://www.ccs.new.edu/home/ivan/pglove/faq-0.1.html>, 11 pages.
U.S. Final Office Action from U.S. Appl. No. 11/825,481, dated May 3, 2011.
U.S. Final Office Action from U.S. Appl. No. 11/825,477, dated Apr. 19, 2011.
Canadian Office Action from Application No. 2,570,901, dated May 18, 2011.
Canadian Office Action from Application No. 2,570,901, dated May 3, 2012.
Third Party Submission for U.S. Appl. No. 13/077,606, filed Oct. 31, 2011.
U.S. Notice of Allowance from U.S. Appl. No. 13/077,606, dated Apr. 4, 2012.
U.S. Notice of Allowance from U.S. Appl. No. 13/077,606, dated Jul. 11, 2012.
Notice of Allowance dated Oct. 1, 2012, in U.S. Appl. No. 11/825,477, filed Jul. 6, 2007, 25 pages.
Office Action dated Jul. 16, 2014, in U.S. Appl. No. 14/158,013, filed Jan. 17, 2014, 6 pages.
Final Office Action dated Dec. 26, 2014, in U.S. Appl. No. 14/158,013, filed Jan. 17, 2014, 7 pages.
U.S. Notice of Allowance from U.S. Appl. No. 14/158,013, dated Apr. 20, 2015.
Related Publications (1)
Number Date Country
20170329457 A1 Nov 2017 US
Continuations (5)
Number Date Country
Parent 14834007 Aug 2015 US
Child 15468822 US
Parent 14158013 Jan 2014 US
Child 14834007 US
Parent 13618910 Sep 2012 US
Child 14158013 US
Parent 13077606 Mar 2011 US
Child 13618910 US
Parent 10921518 Aug 2004 US
Child 13077606 US