User interfaces for appliances, industrial equipment, automobiles, electronic equipment, and the like commonly include knobs as control input devices. A conventional knob used to control, for example, a burner or oven of a gas or electric range, typically is attached to the end of a shaft extending through a perforation in an exterior panel or substrate of the range to a gas valve or rheostat. Similarly, a knob used to control the volume of a car radio or climate control system typically is attached to the end of a shaft extending through a perforation in the car's dash panel to a rheostat or rotary switch. These perforations typically are not sealed. As such, they provide a path for contaminants, for example, cooking spills, dust, and dirt, to reach and adversely affect the operation and/or service life of the associated valve, rheostat, switch, or other attached device.
Substrate 12 could be made of glass, plastic, wood, or any other suitable material, as would be recognized by one skilled in the art. Substrate 12 could be embodied as a panel of a corresponding controlled device, for example, a dash panel of an automobile. Alternatively, substrate 12 could be embodied as a panel attached to a corresponding controlled device, for example, a glass or plastic user interface panel attached to an appliance such as a range or dishwasher. In other embodiments, substrate 12 could be part of a control panel located remotely from a corresponding controlled device, for example, a tethered or wireless remote control or other control or user interface panel.
Touch sensors 18 could be embodied as any suitable form of sensor that can be actuated by proximity or touch of a user's finger or other object, as would be recognized by one skilled in the art. For example, touch sensors 18 could be embodied as one or more sensing electrodes coupled to a TS-100 ASIC available from TouchSensor Technologies, LLC of Wheaton, Ill. (“TouchSensor”). Such touch sensors are described in U.S. Pat. No. 6,320,282 and related patents and applications. Alternatively, touch sensors 18 could be embodied as the touch sensors disclosed in U.S. Pat. Nos. 5,594,222 and 6,310,611 assigned to TouchSensor. These references disclose touch sensors including a substantially planar or electrode in the form of a conductive pad and could further include an electrode substantially surrounding the conductive pad. Such sensing electrodes could be curved, as well, to conform to a curved surface. These references also disclose control circuits that generates an electric field extending generally perpendicularly from such sensing electrode(s) and, therefore, from a surface on which the sensing electrode(s) might be located, as would be understood by one skilled in the art. The control circuits detect disturbances to the electric field caused by proximity of a stimulus, for example, a user's finger or other object. In other embodiments, touch sensors 18 could be embodied as capacitive touch sensors having one or more sensing electrodes and corresponding control circuitry, as would be understood by one skilled in the art.
Touch sensors 18 and/or the sensing electrodes thereof are shown as being disposed on a circuit carrier 20, which in turn is attached to substrate 12. Alternatively, touch sensors 18 could be at least partially embedded within circuit carrier 20. In other embodiments, touch sensors 18 could be disposed directly onto substrate 12 or at least partially embedded within substrate 12. In such embodiments, circuit carrier 20 could be omitted, or it could be provided to carry other circuitry.
When used, circuit carrier 20 could be any suitable form of rigid or flexible circuit carrier, as would be recognized by one skilled in the art. For example, circuit carrier 20 could be embodied as a rigid substrate, such as a printed wiring board made of FR4 or other suitable material. In other embodiments, circuit carrier 20 could be a flexible circuit carrier made of polyester or other suitable material. Circuit carrier 20 could be attached to substrate 12 in any suitable manner. For example, circuit carrier 20 could be attached to substrate using adhesives, mechanical fasteners, snap-fit structures, and/or other means, as would be recognized by one skilled in the art.
Virtual knob 14 is illustrated as a generally circular disc having a perimeter portion 14A and a face 14B. Perimeter portion 14A is shown in
As set forth above, virtual knob 14 functions to guide a user's finger or other object along a path corresponding to the arrangement of touch sensors 18 associated with substrate 12. In some embodiments, for example, the embodiment shown in
In other embodiments, for example, the embodiments shown in
Groove 26 is shown in
Virtual knob 14 is shown in
In other embodiments, virtual knob 14 could be removably attached to substrate 12 using, for example, releasable adhesives, hook and loop fasteners or press-fit structures in place of adhesive 16. Such press-fit structures could include posts extending from substrate 12 and corresponding receptacles on or in virtual knob 14 or vice versa. Preferably, such structures would not perforate substrate 12. In such embodiments, virtual knob interface 10 could be provided with reed switches and magnets (similar to reed switches 128 and magnets 122 discussed further below) for detecting the presence or absence of virtual knob 14. Such reed switches could be incorporated into control circuitry that could disable the device or function controlled by virtual knob interface 10 in the absence of virtual knob 14.
Touch sensors 18 could be tuned or calibrated such that they would not be actuated by touch or proximity to portions of virtual knob 14 or substrate 12 other than the portions directly overlying touch sensors 18 or the sensing electrodes thereof.
Substrate 112 is generally analogous to, and generally can have the attributes of, substrate 12 discussed above. Touch sensors 118 are generally analogous to, and generally can have the attributes of, touch sensors 20 discussed above. Touch sensors 118 and/or the sensing electrodes thereof could be disposed directly onto or partially or fully embedded within substrate 112. Alternatively, touch sensors 118 could be disposed on or at least partially embedded within a circuit carrier 120, which generally is analogous to, and generally can have the attributes of, circuit carrier 20, discussed above. As shown in
Retention ring 124 could be a magnetic coupler in the form of a magnet or ferromagnetic ring associated with substrate 112. Retention ring 124 could be attached to substrate 112 in numerous ways. For example, retention ring 124 could be adhered to substrate 112 using an adhesive or mechanical fasteners, as discussed above. In other embodiments, retention ring 124 could be partially or fully embedded in substrate 112. Alternatively, retention ring 124 could be attached to or embedded within circuit carrier 120, which in turn could be attached to the rear surface of substrate 112. In such embodiments, retention ring 124 could be attached to circuit carrier 120 in any suitable way. For example, retention ring 124 could be press-fit into and/or adhesively attached to perforation 130 of circuit carrier 120 or a recess in circuit carrier 120. In other embodiments, retention ring 124 could be surface mounted to circuit carrier 120 using any suitable means. In other embodiments, discrete magnets (not shown) or ferromagnetic elements (not shown) could replace retention ring 124.
Virtual knob 114 is shown as a disc including a number of magnets 122 and conductive masses 126 therein. Virtual knob 114 could have other shapes, as well. For example, virtual knob 114 could have a square, ovoid, or other regular or irregular shape. Magnets 122 and/or conductive masses 126 could be molded or otherwise embedded into virtual knob 114 or otherwise attached thereto. Virtual knob 114 is shown as including two magnets 122 and two conductive masses 126, but virtual knob 114 could include more or fewer magnets 122 and conductive masses 126. When virtual knob 114 is brought near retention ring 124, magnets 122 magnetically couple with retention ring 124 and the associated magnetic force removably secures virtual knob 114 to substrate 112. A damper 132 made of felt or other suitable material could be provided to prevent direct contact of virtual knob 114 with substrate 112. Damper 132 could be affixed to the rear surface of virtual knob 114 or to the face of substrate 112 using an adhesive, a hook and loop fastener, or other means.
The magnetic coupling between magnets 122 and retention ring 124 could alone be sufficient to locate virtual knob 114 in the desired position on substrate 112, as would be understood by one skilled in the art. Increasing the number of magnets 122 provided in association with virtual knob 114 could improve the tendency of the magnetic coupling to locate virtual knob 114 in the desired position. In other embodiments, as shown in
Other means could be provided to locate virtual knob 114 in the desired position with respect to substrate 112. For example, as shown in
Virtual knob 114 could be removed from substrate 112 by simply applying enough pull or lateral force to overcome the magnetic force between magnets 122 and retention ring 124 that otherwise attaches virtual knob 114 to substrate 112. As such, virtual knob 114 could readily be removed and replaced with another virtual knob 114 having a different color or general appearance, thus simplifying customization (particularly by an end user) of a control panel using virtual knob interface 110.
Various features could be provided to preclude operation of the device or function controlled by virtual knob 114 when virtual knob 114 is removed from substrate 112. For example, virtual knob interface 110 could include a control circuit that enables operation of the device or function controlled by virtual knob interface 110 only if the control circuit receives simultaneous or near-simultaneous input from any two or more, or a specific two or more, of touch sensors 118. Such actuation would be difficult to simulate by an unauthorized user attempting to stimulate touch sensors 118 by simply placing the user's finger or other object in proximity to portion of substrate 112 corresponding to touch sensors 118 in the absence of virtual knob 114.
Further, one or more reed switches 128 could be associated with substrate 112 in a manner that enables the reed switches to open and close in response to the presence or absence of the magnetic field about magnets 122.
In any of the foregoing embodiments, touch sensors 18,118 could be coupled to a control circuit including means for generating a signal to excite the touch sensors, and for detecting an event actuating the touch sensors, for example, the proximity or touch of a user's finger or other object to virtual knob 14 or substrate 12 or the movement of conductive masses 126 in and out of proximity to touch sensors 18,118, as would be recognized by one skilled in the art. Such a control circuit could further include means for determining, based on signals received from individual ones of touch sensors 18,118, the speed, direction, and angular displacement or other extent of movement of the user's finger, other object, or conductive mass relative to touch sensors 18,118, as would be understood by one skilled in the art.
In alternate embodiments, one or more optical sensors could take the place of touch sensors 118. In such embodiments, virtual knob 114 need not include conductive masses 126.
In yet another embodiment, touch sensors 118 could be arranged relative to virtual knob 114 in a manner similar to that shown in
Substrates 12,112 are shown as including only a single virtual knob interface 10,110. In other embodiments, substrates 12,112 could include multiple virtual knob interfaces 10,110, as well as other switching mechanisms, indicators, displays, annunciators, and the like (not shown).
Virtual knob 14,114 could include haptic feedback, lighting, and/or other active features. Haptic feedback could be provided by one or more haptic feedback generators, for example, vibrators, mounted in or on virtual knob 14,114. Lighting could be embodied as one or more lamps, LEDs or other light sources located in or on virtual knob 14,114. Such devices could be powered by one or more batteries located in virtual knob 14,114, by means of an inductive coupling associated with, for example, substrate 12,112 or circuit carrier 20,120, or by another suitable power source. Virtual knob 14,114 also could be illuminated by means of an optical coupling between virtual knob 14,114 and a light source located on substrate 12,112, circuit carrier 20,120, or other elsewhere. Such an optical coupling could include one or more light pipes for conveying light from the light source to virtual knob 14,114 and a diffuser. Such lighting and haptic feedback could be selectively energized in response to manipulation of virtual knob 14,114, to identify or draw attention to virtual knob 14,114, or otherwise.
This disclosure illustrates and describes certain embodiments of a virtual knob interface. The disclosure is not intended to limit the scope of the present invention, and one skilled in the art would recognize that these embodiments could be modified without departing from the scope of the present invention, which is defined by the following claims.
This application claims priority from, and incorporates by reference the disclosure of, U.S. Provisional Patent Application No. 61/166,575, filed on Apr. 3, 2009.
Number | Date | Country | |
---|---|---|---|
61166575 | Apr 2009 | US |