Virtual link aggregations across multiple fabric switches

Information

  • Patent Grant
  • 10075394
  • Patent Number
    10,075,394
  • Date Filed
    Thursday, July 21, 2016
    7 years ago
  • Date Issued
    Tuesday, September 11, 2018
    5 years ago
Abstract
One embodiment of the present invention provides a switch. The switch is configurable to be a member of a first fabric switch. The switch includes a link aggregation module. During operation, the link aggregation module marks an ingress-switch field of a frame with a virtual switch identifier. This virtual switch identifier is associated with the switch and a second switch, which is a member of a second fabric switch, and is from a range of identifier associated with the first fabric switch and the second fabric switch. Each of the first fabric switch and the second fabric switch is operable to accommodate a plurality of switches and operate as a single switch.
Description
BACKGROUND

Field


The present disclosure relates to network management. More specifically, the present disclosure relates to a method and system for facilitating link aggregation from one device to multiple fabric switches.


Related Art


The relentless growth of the Internet has brought with it an insatiable demand for bandwidth. As a result, equipment vendors race to build larger, faster, and more versatile switches to move traffic. However, the size of a switch cannot grow infinitely. It is limited by physical space, power consumption, and design complexity, to name a few factors. More importantly, because an overly large system often does not provide economy of scale due to its complexity, simply increasing the size and throughput of a switch may prove economically unviable due to the increased per-port cost.


A flexible way to improve the scalability of a switch system is to build a fabric switch. A fabric switch is a collection of individual member switches. These member switches form a single, logical switch that can have an arbitrary number of ports and an arbitrary topology. As demands grow, customers can adopt a “pay as you grow” approach to scale up the capacity of the fabric switch.


Meanwhile, layer-2 (e.g., Ethernet) switching technologies continue to evolve. More routing-like functionalities, which have traditionally been the characteristics of layer-3 (e.g., Internet Protocol or IP) networks, are migrating into layer-2. Notably, the recent development of the Transparent Interconnection of Lots of Links (TRILL) protocol allows Ethernet switches to function more like routing devices. TRILL overcomes the inherent inefficiency of the conventional spanning tree protocol, which forces layer-2 switches to be coupled in a logical spanning-tree topology to avoid looping. TRILL allows routing bridges (RBridges) to be coupled in an arbitrary topology without the risk of looping by implementing routing functions in switches and including a hop count in the TRILL header.


As more mission-critical applications are being implemented in data communication networks, high-availability operation is becoming progressively more important as a value proposition for network architects. It can be desirable to divide a conventional aggregated link (from one device to another) among multiple network devices, often belonging to different fabric switches, such that unavailability of one fabric switch would not affect the operation of the multi-homed device.


While a fabric switch brings many desirable features to a network, some issues remain unsolved when end devices are coupled to multiple fabric switches. Particularly, when an end device is coupled to multiple fabric switches using link aggregation, existing technologies do not provide a scalable and flexible solution that takes full advantage of a fabric switch.


SUMMARY

One embodiment of the present invention provides a switch. The switch is configurable to be a member of a first fabric switch. The switch includes a link aggregation module. During operation, the link aggregation module marks an ingress-switch field of a frame with a virtual switch identifier. This virtual switch identifier is associated with the switch and a second switch, which is a member of a second fabric switch, and is from a range of identifier associated with the first fabric switch and the second fabric switch. Each of the first fabric switch and the second fabric switch is operable to accommodate a plurality of switches and operate as a single switch.


In a variation on this embodiment, the switch also includes a packet processing module which identifies the virtual switch identifier as the egress switch identifier of a frame and, in response, determines that the switch is the egress switch for the frame.


In a variation on this embodiment, the switch also includes a suppression module which identifies the virtual switch identifier as egress switch identifier of a broadcast, unknown unicast, or multicast frame, and, in response, precludes the switch from determining a port associated with a local end device as the output port for the frame.


In a variation on this embodiment, the switch also includes a multicast module which identifies a frame to be a broadcast, unknown unicast, or multicast frame and, in response, mark an egress-switch field of the frame with a virtual root switch identifier. This virtual root switch identifier is associated with respective multicast root switches of the first fabric switch and the second fabric switch.


In a further variation, the switch also includes a failure detection module which, in response to detecting unavailability of the multicast root switch of the first fabric switch, identifies a new multicast root switch and associates the virtual root switch identifier with the new multicast root switch of the first fabric switch.


In a variation on this embodiment, the switch is a routing bridge (RBridge) operable in accordance with Transparent Interconnection of Lots of Links (TRILL) protocol.


In a further variation, the switch also includes a TRILL-supported edge port and a TRILL primary module. The TRILL-supported edge port is operable as an output port for frames destined outside of the first fabric switch. During operation, in response to determining a TRILL-encapsulated frame to be a broadcast, unknown unicast, or multicast frame, the TRILL primary module precludes the switch from removing TRILL encapsulation from the TRILL-encapsulated frame and determines the TRILL-supported edge port as the output port for the TRILL-encapsulated frame.


In a variation on this embodiment, the switch also includes a failure detection module which disassociates the switch from the virtual switch identifier in response to detecting unavailability of the second switch and marks an egress-switch field of a frame, which is received after detecting unavailability of the second switch, with a switch identifier of the local switch.


In a variation on this embodiment, the switch also includes a control module operable, which runs a control plane with automatic configuration capabilities based on a protocol associated with the first fabric switch and operate the first fabric switch as a single Ethernet switch based on the automatic configuration capabilities of the control plane. The control module also receives an automatically assigned identifier corresponding to the Ethernet switch and joins the first fabric switch via the control plane.


One embodiment of the present invention provides a switch. The switch is configurable to be a member of a first fabric switch. The switch includes a link aggregation module. During operation, the link aggregation module operates a first trunked link of the switch in conjunction with a second trunked link of a second switch of the first fabric switch as a virtual link aggregation. The virtual link aggregation is mapped to the switch and the second switch. A second fabric switch is reachable via the first and second trunked links. Each of the first fabric switch and the second fabric switch is operable to accommodate a plurality of switches and operate as a single switch.


In a variation on this embodiment, the virtual link aggregation is mapped to the switch based on a hash function.


In a variation on this embodiment, the switch selects respective output ports of the switch for the frames destined to the second fabric switch such that the frames are distributed across links of the first trunked link, thereby spraying the frames across the links of the first trunked link.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1A illustrates an exemplary virtual link aggregation across multiple fabric switches, in accordance with an embodiment of the present invention.



FIG. 1B illustrates an exemplary virtual link aggregation across multiple fabric switches coupled via TRILL forwarding link(s), in accordance with an embodiment of the present invention.



FIG. 2A presents a flowchart illustrating the process of forwarding a frame received via an edge port at a partner routing Bridge (RBridge) which participates in a virtual link aggregation across multiple fabric switches, in accordance with an embodiment of the present invention.



FIG. 2B presents a flowchart illustrating the process of an RBridge forwarding a TRILL-encapsulated unicast frame, in accordance with an embodiment of the present invention.



FIG. 3A presents a flowchart illustrating the process of forwarding a frame belonging to broadcast, unknown unicast, and multicast (BUM) traffic received via an edge port at a partner RBridge which participates in a virtual link aggregation across multiple fabric switches, in accordance with an embodiment of the present invention.



FIG. 3B presents a flowchart illustrating the process of an RBridge forwarding a TRILL-encapsulated frame destined to a virtual root RBridge, in accordance with an embodiment of the present invention.



FIG. 3C presents a flowchart illustrating the process of an RBridge forwarding a TRILL-encapsulated frame belonging to BUM traffic, in accordance with an embodiment of the present invention.



FIG. 4A illustrates exemplary failure scenarios associated with a virtual link aggregation across multiple fabric switches, in accordance with an embodiment of the present invention.



FIG. 4B presents a flowchart illustrating the process of handling a failure that affects a partner RBridge which participates in a virtual link aggregation across multiple fabric switches, in accordance with an embodiment of the present invention.



FIG. 4C presents a flowchart illustrating the process of handling a failure that affects a root RBridge which is associated with a virtual root RBridge, in accordance with an embodiment of the present invention.



FIG. 5A illustrates an exemplary hybrid virtual link aggregation across multiple fabric switches, in accordance with an embodiment of the present invention.



FIG. 5B illustrates an exemplary packet forwarding via a hybrid virtual link aggregation across multiple fabric switches, in accordance with an embodiment of the present invention.



FIG. 6 illustrates an exemplary RBridge which supports virtual link aggregation across multiple fabric switches, in accordance with an embodiment of the present invention.





In the figures, like reference numerals refer to the same figure elements.


DETAILED DESCRIPTION

The following description is presented to enable any person skilled in the art to make and use the invention, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present invention. Thus, the present invention is not limited to the embodiments shown, but is to be accorded the widest scope consistent with the claims.


Overview


In embodiments of the present invention, the problem of providing a scalable and flexible way of provisioning a virtual link aggregation across multiple fabric switches is solved by forming a logical, virtual switch and assigning a virtual switch identifier from a global identifier range known to the fabric switches. For example, if the communication within the fabric switches is based on Transparent Interconnection of Lots of Links (TRILL) protocol, when an end device is coupled to two separate routing bridges (RBridges) belonging to two separate fabric switches and the links to these RBridges form an aggregate link, a virtual RBridge identifier (ID) is generated, and the end device is considered to be logically coupled to the virtual RBridge. In the following description, RBridges which participate in a virtual link aggregation and form a virtual RBridge are referred to as “partner RBridges.”


If the virtual RBridge identifier associated with the virtual link aggregation is from a local identifier range of a fabric switch, partner RBridges, which are members of other fabric switches, do not recognize that virtual RBridge identifier as its own. As a result, these partner RBridges may not be able to perform operations associated with efficient deployment of a link aggregation, such as source suppression of BUM traffic. Furthermore, to distribute of BUM traffic in a fabric switch, a partner RBridge sets the destination RBridge identifier to be the RBridge identifier of the root RBridge (i.e., the root of a multicast tree) of the fabric switch. In some embodiments, this root RBridge is responsible for distributing BUM traffic in a fabric switch and usually is specific to the fabric switch. Hence, for a virtual link aggregation spanning multiple fabric switches, a fabric-specific root RBridge may not support BUM traffic distribution in the multiple fabric switches.


In embodiments of the present invention, the aforementioned problems are solved by assigning the virtual RBridge identifier, which is associated with a virtual link aggregation spanning multiple fabric switches, from a global identifier range. Identifiers belonging to this global identifier range are known to the multiple fabric switches. This allows partner RBridges in different fabric switches to recognize the same virtual RBridge identifier and perform source suppression for BUM traffic originating from the end device associated with the virtual link aggregation. Furthermore, a virtual root RBridge is created for forwarding BUM traffic in the fabric switches. This virtual root RBridge is associated with the root RBridge of respective fabric switch. A partner RBridge forwards BUM traffic toward the virtual root RBridge, which, in turn, is received by respective root RBridge in respective fabric switch. This enables a respective root RBridge to distribute BUM traffic within corresponding fabric switch.


In some embodiments, the fabric switch is an Ethernet fabric switch. In an Ethernet fabric switch, any number of switches coupled in an arbitrary topology may logically operate as a single switch. Any new switch may join or leave the fabric switch in “plug-and-play” mode without any manual configuration. A fabric switch appears as a single logical switch to an external device. In some further embodiments, the fabric switch is a TRILL network and a respective member switch of the fabric switch is a TRILL RBridge.


It should be noted that a fabric switch is not the same as conventional switch stacking. In switch stacking, multiple switches are interconnected at a common location (often within the same rack), based on a particular topology, and manually configured in a particular way. These stacked switches typically share a common address, e.g., IP address, so they can be addressed as a single switch externally. Furthermore, switch stacking requires a significant amount of manual configuration of the ports and inter-switch links. The need for manual configuration prohibits switch stacking from being a viable option in building a large-scale switching system. The topology restriction imposed by switch stacking also limits the number of switches that can be stacked. This is because it is very difficult, if not impossible, to design a stack topology that allows the overall switch bandwidth to scale adequately with the number of switch units.


In contrast, a fabric switch can include an arbitrary number of switches with individual addresses, can be based on an arbitrary topology, and does not require extensive manual configuration. The switches can reside in the same location, or be distributed over different locations. These features overcome the inherent limitations of switch stacking and make it possible to build a large “switch farm” which can be treated as a single, logical switch. Due to the automatic configuration capabilities of a fabric switch, an individual physical switch can dynamically join or leave the fabric switch without disrupting services to the rest of the network.


Furthermore, the automatic and dynamic configurability of a fabric switch allows a network operator to build its switching system in a distributed and “pay-as-you-grow” fashion without sacrificing scalability. The fabric switch's ability to respond to changing network conditions makes it an ideal solution in a virtual computing environment, where network loads often change with time.


Although the present disclosure is presented using examples based on the TRILL protocol, embodiments of the present invention are not limited to networks defined using TRILL, or a particular Open System Interconnection Reference Model (OSI reference model) layer. For example, embodiments of the present invention can also be applied to a multi-protocol label switching (MPLS) network. In this disclosure, the term “fabric switch” is used in a generic sense, and can refer to a network operating in any networking layer, sub-layer, or a combination of networking layers.


In this disclosure, the term “end device” can refer to a physical or virtual device coupled to a fabric switch. An end device can be a host, a server, a conventional layer-2 switch, a layer-3 router, or any other type of device. Additionally, an end device can be coupled to other switches or hosts further away from a network. An end device can also be an aggregation point for a number of network devices to enter the network. The terms “device” and “machine” are used interchangeably.


The term “frame” refers to a group of bits that can be transported together across a network. “Frame” should not be interpreted as limiting embodiments of the present invention to layer-2 networks. “Frame” can be replaced by other terminologies referring to a group of bits, such as “packet,” “cell,” or “datagram.”


The term “RBridge” refers to routing bridges, which are bridges implementing the TRILL protocol as described in Internet Engineering Task Force (IETF) Request for Comments (RFC) “Routing Bridges (RBridges): Base Protocol Specification,” available at http://tools.ietf.org/html/rfc6325, which is incorporated by reference herein. Embodiments of the present invention are not limited to application among RBridges. Other types of switches, routers, and forwarders can also be used.


The term “edge port” refers to a port in a fabric switch which exchanges data frames with an end device outside of the fabric switch. The term “inter-switch port” refers to a port which couples a member switch of a fabric switch with another member switch and is used for exchanging data frames between the member switches.


The term “RBridge identifier” refers to a group of bits that can be used to identify an RBridge. Note that the TRILL standard uses “RBridge ID” to denote a 48-bit intermediate-system-to-intermediate-system (IS-IS) System ID assigned to an RBridge, and “RBridge nickname” to denote a 16-bit value that serves as an abbreviation for the “RBridge ID.” In this disclosure, “RBridge identifier” is used as a generic term and is not limited to any bit format, and can refer to “RBridge ID” or “RBridge nickname” or any other format that can identify an RBridge.


The term “dual-homed end device” refers to an end device that has an aggregate link to two or more switches belonging to one or more fabric switches, where the aggregate link includes multiple physical links to the different RBridges. The aggregate link, which includes multiple physical links, functions as one logical link to the end station. Although the term “dual” is used here, the term “dual-homed end device” does not limit the number of physical RBridges sharing the aggregate link to two. In various embodiments, other numbers of physical RBridges can share the same aggregate link. Where “dual-homed end device” is used in the present disclosure, the term “multi-homed end device” can also be used.


Network Architecture



FIG. 1A illustrates an exemplary virtual link aggregation across multiple fabric switches, in accordance with an embodiment of the present invention. As illustrated in FIG. 1A, a fabric switch 110 includes member switches 112, 114, 116, and 118, and a fabric switch 120 includes member switches 122, 124, and 126. In some embodiments, one or more switches in fabric switches 110 and 120 can be virtual switches (e.g., a software switch running on a computing device).


In some embodiments, fabric switches 110 and 120 are TRILL networks and a respective member switch of fabric switches 110 and 120, such as switches 112 and 122, is a TRILL RBridge. RBridges in fabric switches 110 and 120 use edge ports to communicate to end devices and inter-switch ports to communicate to other member switches. For example, RBridge 118 is coupled to end device 106 via an edge ports and to RBridges 112, 114, and 116 via inter-switch ports and one or more links. Communication via an edge port can be based on Ethernet and via an inter-switch port can be based on TRILL protocol. Note that the link between fabric switches 110 and 120 is established via edge ports of switches 114 and 124.


RBridges 112 and 118 are configured to operate in a special “trunked” mode for multi-homed end device 104 and form a virtual link aggregation 150. End device 104 view these partner RBridges 112 and 118 as a common virtual RBridge 152, with a corresponding virtual RBridge identifier. Dual-homed end device 104 is considered to be logically coupled to virtual RBridge 152 via logical links represented by dotted lines. Virtual RBridge 152 is considered to be logically coupled to partner RBridges 112 and 118, optionally with zero-cost links (also represented by dotted lines). Incoming frames from end device 104 is marked with virtual RBridge 152's identifier as their ingress RBridge identifier. As a result, other RBridges in fabric switch 110 can learn that end device 104 is reachable via virtual RBridge 152. Furthermore, RBridges 112 and 118 can advertise their respective connectivity (optionally via zero-cost links) to virtual RBridge 152. Hence, multi-pathing can be achieved when other RBridges choose to send frames to virtual RBridge 152 (which is marked as the egress RBridge in the frames) via partner RBridges 112 and 118.


Since partner RBridges 112 and 118 function as a single logical RBridge 152, the MAC address reachability learned by a partner RBridge is shared with the other partner RBridge. For example, during normal operation, end device 104 may choose to send its outgoing frames only via the link to RBridge 118. As a result, only RBridge 118 learns end device 104's MAC address (and the corresponding port on RBridge 118 to which end device 104 is coupled). This information is then shared by RBridge 118 with RBridge 112. Since the frames coming from end device have virtual RBridge 152's identifier as their ingress RBridge identifier, when RBridges in network fabric switch 110 send frames back to end device 104, these frames have virtual RBridge 152's identifier as their egress RBridge identifier, and these frames can be sent to either RBridge 112 or 118.


In virtual link aggregation 150, RBridges 112 and 118 can forward BUM traffic to each other. If the BUM traffic is originated from end device 104, the RBridge receiving the BUM traffic performs source suppression by precluding the BUM traffic from being forwarded to end device 104 (i.e., by precluding the RBridge from determining an output port associated with end device 104 for the BUM traffic). For example, if RBridge 112 receives a frame belonging to BUM traffic, RBridge 112 checks the source RBridge identifier of the frame. If the source RBridge identifier is associated with virtual RBridge 152, RBridge considers the frame to be from end device 104 and suppress source forwarding by not forwarding the frame to end device 104.


In addition, ingress RBridge 112, 118, or both can receive a frame belonging to BUM traffic via virtual link aggregation 150 (i.e., from end device 104). Upon receiving the frame, ingress RBridge 112 and/or 118 forward the received frame to a root RBridge of a multicast tree in fabric switch 110. In this example, RBridges 116 and 126 can be the root RBridges of fabric switches 110 and 120, respectively. Ingress RBridge 112 and/or 118 set the destination RBridge identifier to be the RBridge identifier of root RBridge 116 and send the frame toward RBridge 116. Root RBridge 116, in turn, distributes the frame to a respective RBridge in fabric switch 110 via the multicast tree.


Similar to end device 104, end device 102 is also multi-homed and coupled to RBridges 112 and 122 of fabric switches 110 and 120, respectively. Hence, RBridges 112 and 122 form a virtual link aggregation 130 across fabric switches 110 and 120. End device 102 view RBridges 112 and 122 as a common virtual RBridge 132, with a corresponding virtual RBridge identifier. Dual-homed end device 102 is considered to be logically coupled to virtual RBridge 132 via logical links represented by dotted lines. Virtual RBridge 132 is considered to be logically coupled to partner RBridges 112 and 122, optionally with zero-cost links (also represented by dotted lines). Details about virtual link aggregation and virtual RBridge assignment can be found in U.S. patent application Ser. No. 12/725,249, the disclosure of which is incorporated herein.


Other RBridges in fabric switches 110 and 120 view end device 102 to be coupled to virtual RBridge 132. Incoming frames from end device 102 is marked with virtual RBridge 152's identifier as their ingress RBridge identifier. When RBridges in network fabric switches 110 and 120 send frames back to end device 102, these frames have virtual RBridge 152's identifier as their egress RBridge identifier. Frames from RBridges in fabric switch 110 are received by RBridge 112 and frames from RBridges in fabric switch 120 are received by RBridge 122.


However, source suppression of virtual link aggregation 150 may not be applicable to virtual link aggregation 130 because virtual link aggregation 130 spans two fabric switches. Typically, a fabric switch has a local identifier range associated with the fabric switch. A respective RBridge, physical or virtual, of that fabric switch is assigned an RBridge identifier from that corresponding local identifier range. As a result, virtual RBridge 152 is assigned an identifier from the local identifier range associated with fabric switch 110. Furthermore, the virtual RBridge identifier assigned by fabric switch 110 does not go beyond the boundaries of fabric switch 110. If virtual RBridge 132 is assigned an identifier from the local identifier range of fabric switch 110, RBridge 122 would not recognize the identifier and would not perform source suppression because virtual RBridge identifier is unknown to RBridge 122. Similarly, if virtual RBridge 132 is assigned an identifier from the local identifier range of fabric switch 120, RBridge 112 would not perform source suppression based on the unknown virtual RBridge identifier.


In addition, forwarding of BUM traffic from virtual link aggregation 150 may not be applicable to virtual link aggregation 130 because root RBridge is typically fabric specific. For example, to forward a frame belonging to BUM traffic, if RBridge 116 is assigned as the root RBridge, the frame is going to be distributed in fabric switch 110. On the other hand, if RBridge 126 is assigned as the root RBridge, the frame is going to be distributed in fabric switch 120. Hence, for virtual link aggregation 130 that spans multiple fabric switches, a fabric-specific root RBridge is not suitable for forwarding BUM traffic.


In embodiments of the present invention, the aforementioned problems are solved by assigning an identifier to virtual RBridge 132 from a global identifier range, which is known, recognizable, and unique in both fabric switches 110 and 120. This allows partner RBridges 112 and 122, which are in different fabric switches, to recognize the virtual RBridge identifier and perform source suppression for BUM traffic originating from end device 102 associated with virtual link aggregation 130. Furthermore, a virtual root RBridge 136 is created, which is associated with root RBridges 116 and 126. Virtual root RBridge 136 is considered to be logically coupled to root RBridges 116 and 126, optionally with zero-cost links (represented by dotted lines). Virtual root RBridge 136 is also assigned an identifier from the global identifier range, which is known, recognizable, and unique in both fabric switches 110 and 120. Upon receiving a frame belonging to BUM traffic, partner RBridges 112 and 122 set the identifier of virtual root RBridge 136 as the egress RBridge identifier of the TRILL encapsulation of the frame.


Because virtual RBridge 136 is considered to be logically coupled to root RBridges 116 and 126, virtual root RBridge 136 is mapped to the respective root RBridge of fabric switches 110 and 120. For example, in fabric switch 110, upon receiving a frame belonging to BUM traffic via virtual link aggregation 130, RBridge 112 encapsulates the frame in a multicast TRILL header and sets the egress RBridge identifier of the TRILL header to be virtual root RBridge 136's identifier. RBridge 112 then forwards this TRILL-encapsulated frame (can be referred to as a TRILL packet) toward virtual root RBridge 136. In this disclosure, the terms “TRILL-encapsulated frame” and “TRILL packet” are used interchangeably. Because virtual root RBridge 136 is logically coupled to root RBridge 116, the TRILL packet then reaches root RBridge 116. Upon receiving the TRILL packet, root RBridge 116 forwards the frame to respective RBridge in fabric switch 110. Similarly, in fabric switch 120, RBridge 122 sends a TRILL-encapsulated frame belonging to BUM traffic toward virtual root RBridge 136. Root RBridge 126 receives the frame and forwards the frame to respective RBridge in fabric switch 120.


For a respective frame from end device 102, the corresponding ingress RBridge (i.e., RBridge 112 if the traffic enters fabric switch 110, or RBridge 122 if the traffic enters fabric switch 120) attaches a TRILL header to the frame and sets the identifier of virtual RBridge 132 as the ingress RBridge identifier in the TRILL header. If the frame belongs to BUM traffic, regardless of whether the frame is sent to RBridge 112 or 122, the corresponding ingress RBridge sets the identifier of virtual RBridge 132 as the ingress RBridge identifier and the identifier of virtual root RBridge 136 as the egress RBridge identifier in the TRILL header.


Because virtual RBridge 132's identifier is known to both fabric switches 110 and 120, partner RBridges 122 and 122 can facilitate source suppression for BUM traffic from end device 102. For example, when RBridge 112 or 122 receives from another RBridge a TRILL packet with a TRILL ingress RBridge identifier set to be virtual RBridge 132's identifier, RBridge 112 or 122 recognizes the packet to be from end device 102 and drops the packet, thereby preventing undesired looping. Furthermore, because virtual root RBridge 136's identifier is known to both fabric switches 110 and 120, when a TRILL-encapsulated frame belonging to BUM traffic reaches an RBridge in either fabric switch, the RBridge forwards the packet toward the physical root RBridge of the fabric switch in which the RBridge is a member.


In some embodiments, there are at least two links between fabric switches 110 and 120. FIG. 1B illustrates an exemplary virtual link aggregation across multiple fabric switches coupled via TRILL forwarding link(s), in accordance with an embodiment of the present invention. In this example, RBridge 114 of fabric switch 110 and RBridge 124 of fabric switch 120 have two links 142 and 144 between them. Link 142 is referred to as a TRILL primary link. Link 142 is used for forwarding TRILL-encapsulated frame belonging to BUM traffic while retaining the TRILL encapsulation. Typically, TRILL encapsulation is specific to a fabric switch, and when a frame leaves a fabric switch, the TRILL encapsulation is removed. However, a TRILL-encapsulated frame belonging to BUM traffic forwarded via TRILL primary link 142 (i.e., via a TRILL-supported edge port of RBridge 114 coupled to link 142) retains the TRILL encapsulation. This allows the TRILL header to retain virtual RBridge 132's identifier as the ingress RBridge identifier and virtual root RBridge 136's identifier as the egress RBridge identifier.


During operation, end device 102 generates a frame belonging to BUM traffic and sends the frame to RBridge 112. Upon receiving the frame, RBridge 112 encapsulates the frame with a TRILL header with virtual RBridge 132's identifier as the ingress RBridge identifier and virtual root RBridge 136's identifier as the egress RBridge identifier. Subsequently, RBridge 112 forwards the TRILL packet toward virtual root RBridge 136. Because root RBridge 116 is logically coupled to virtual root RBridge 136, root RBridge 116 receives the TRILL packet and distributes this TRILL packet along its multicast tree to respective RBridge of fabric switch 110.


When this TRILL packet reaches RBridge 114, RBridge 114 forwards this TRILL packet via link 124 with the same ingress and egress RBridge identifiers. When RBridge 124 receives this TRILL packet, RBridge 124, in turn, forwards the packet toward virtual root RBridge 136. Because root RBridge 126 of fabric switch 120 is logically coupled to virtual root RBridge 136, root RBridge 126 receives the TRILL packet and distributes this TRILL packet along its multicast tree to respective RBridge of fabric switch 120. When this packet reaches RBridge 122, RBridge 122 prevents the packet from being forwarded to end device 102 because the packet's ingress RBridge identifier is virtual RBridge 132's identifier.


If end device 102 generates an Ethernet frame destined for an end device 108, which is coupled to fabric switch 120 via RBridge 126, and sends this frame to RBridge 112, RBridge 112 generates a TRILL header with an egress RBridge identifier set to be RBridge 114's identifier. Consequently, when the TRILL packet reaches RBridge 114, RBridge 114 decapsulates the packet's TRILL header and forwards the Ethernet frame via link 144. This link 144 can be referred to as an Ethernet primary link. When the Ethernet frame reaches RBridge 124 via Ethernet primary link 144, RBridge 124 generates a new TRILL header with RBridge 126's identifier as the egress RBridge identifier of the new TRILL header.


In some embodiments, RBridge 114 determines whether to forward via Ethernet primary link 144 based on the identifier range of the ingress RBridge identifier of a TRILL packet. For example, if the TRILL packet includes an Ethernet frame from end device 106, the ingress RBridge identifier of the TRILL packet is RBridge 118's identifier. Similarly, if the TRILL packet includes an Ethernet frame from end device 104, the ingress RBridge identifier of the TRILL packet is virtual RBridge 152's identifier. Because RBridge 118's identifier and virtual RBridge 152's identifier are from the local identifier range associated with fabric switch 110, RBridge 114 removes the TRILL encapsulation of the TRILL packet and forwards the Ethernet frame via link 144. However, if the identifier range of the ingress RBridge identifier of a TRILL packet corresponds to a global identifier range, RBridge 114 checks whether the packet belongs to BUM traffic, and forwards accordingly.


Frame Forwarding


In the example in FIG. 1B, partner RBridges 112 and 122 are responsible for forwarding frames received via local edge ports from end device 102. On the other hand, a respective RBridge in fabric switches 110 and 120 can forward a TRILL-encapsulated frame destined for end device 102. FIG. 2A presents a flowchart illustrating the process of forwarding a frame received via an edge port at a partner RBridge which participates in a virtual link aggregation across multiple fabric switches, in accordance with an embodiment of the present invention. Upon receiving a frame via a local edge port (operation 202), the partner RBridge identifies the destination media access control (MAC) address of the received frame (operation 204). The partner RBridge then identifies the egress RBridge identifier corresponding to the destination MAC address (operation 206). For example, if the destination MAC address corresponds to an end device coupled to another fabric switch, the egress RBridge identifier is the identifier of an RBridge coupled to the other fabric switch, as described in conjunction with FIG. 1B.


The partner RBridge encapsulates the frame in a TRILL header and sets the identified RBridge identifier as the egress RBridge identifier (operation 208) and sets a virtual RBridge identifier associated with the virtual link aggregation as the ingress RBridge identifier of the TRILL header (operation 210). The partner RBridge determines the next-hop RBridge based the egress RBridge identifier (operation 212), and sets the outer destination MAC address (MAC DA) corresponding to the next-hop RBridge and outer source MAC address (MAC SA) corresponding to the local RBridge (operation 214). The partner RBridge then determines the output port corresponding to the outer destination MAC address (operation 216) and transmits the TRILL-encapsulated frame via the determined output port (operation 218).



FIG. 2B presents a flowchart illustrating the process of an RBridge forwarding a TRILL-encapsulated unicast frame, in accordance with an embodiment of the present invention. Upon receiving a TRILL-encapsulated frame (operation 252), the RBridge checks whether the egress RBridge identifier is local (i.e., whether the egress RBridge identifier is associated with the local RBridge) (operation 254). In the example of FIG. 1A, virtual RBridge 132's identifier and RBridge 112's identifier both are associated with RBridge 112. Hence, if the egress RBridge identifier of the TRILL header corresponds to a virtual or physical RBridge identifier associated with the local RBridge, the RBridge determines that the egress RBridge identifier is local.


If the egress RBridge identifier is not local, the RBridge forwards the frame to the next-hop RBridge based on the egress RBridge identifier (operation 262). If the egress RBridge identifier is local, the RBridge removes the TRILL encapsulation (operation 256), determines the output port corresponding to the frame's inner destination MAC address (operation 258), and transmits the frame via the determined output port (operation 260).


In the example in FIG. 1B, partner RBridges 112 and 122 are responsible for forwarding frames belonging to BUM traffic received via local edge ports from end device 102. On the other hand, a respective RBridge in fabric switches 110 and 120 can forward a TRILL-encapsulated frame belonging to BUM traffic. FIG. 3A presents a flowchart illustrating the process of forwarding a frame belonging to BUM traffic received via an edge port at a partner RBridge which participates in a virtual link aggregation across multiple fabric switches, in accordance with an embodiment of the present invention. Upon receiving a frame belonging to BUM traffic via a local edge port (operation 302), the partner RBridge forwards the frame to other local edge ports associated with the BUM traffic (operation 304). For example, if the frame is a multicast frame of a multicast group, the partner RBridge forwards the frame to the local end devices, which are members of the multicast group.


The partner RBridge then identifies the virtual root RBridge identifier (operation 306), and encapsulates the frame in a TRILL header and sets the virtual root RBridge identifier as the egress RBridge identifier of the TRILL header (operation 308). The partner RBridge sets a virtual RBridge identifier associated with the virtual link aggregation as the ingress RBridge identifier of the TRILL header (operation 310). The partner RBridge determines the next-hop RBridge based the virtual root RBridge identifier (operation 312), and sets the outer destination MAC address corresponding to the next-hop RBridge and outer source MAC address corresponding to the local RBridge (operation 314). The partner RBridge then determines the output port corresponding to the outer destination MAC address (operation 316) and transmits the TRILL-encapsulated frame via the determined output port (operation 318).



FIG. 3B presents a flowchart illustrating the process of an RBridge forwarding a TRILL-encapsulated frame destined to a virtual root RBridge, in accordance with an embodiment of the present invention. Note that a frame destined to virtual root RBridge belongs to BUM traffic and the egress RBridge identifier of the TRILL header of the frame is the identifier of the virtual root RBridge. Upon receiving a TRILL-encapsulated frame destined to virtual root RBridge (operation 352), the RBridge checks whether the virtual root RBridge identifier is local (i.e., the virtual root RBridge identifier is associated with the local RBridge) (operation 354). In the example of FIG. 1A, virtual root RBridge 136's identifier is local to both RBridges 116 and 118.


If the virtual root RBridge identifier is not local, the RBridge forwards the frame to the next-hop RBridge based on the virtual root RBridge identifier (operation 358). Otherwise, the RBridge is the root RBridge of the corresponding fabric switch. Hence, the RBridge forwards the frame to respective other RBridges of the fabric switch (operation 356).



FIG. 3C presents a flowchart illustrating the process of an RBridge forwarding a TRILL-encapsulated frame belonging to BUM traffic, in accordance with an embodiment of the present invention. Upon receiving a TRILL-encapsulated frame belonging to BUM traffic from virtual root RBridge (operation 362), the RBridge checks whether the egress RBridge identifier is local (i.e., the egress RBridge identifier is associated with the local RBridge) (operation 364). If the egress RBridge identifier is not local, the RBridge forwards the frame to the next-hop RBridge based on the egress RBridge identifier (operation 374).


If the egress RBridge identifier is local, the RBridge checks whether the local RBridge has a TRILL primary link (operation 366). In the example of FIG. 1B, RBridges 114 and 124 have a TRILL primary link. If the RBridge has a TRILL primary link, the RBridge forwards the TRILL-encapsulated frame via the TRILL primary link without decapsulating the TRILL header (operation 368), as described in conjunction with FIG. 1B. If the RBridge does not have a TRILL primary link (operation 366) or has forwarded the TRILL-encapsulated frame via the TRILL primary link (operation 368), the RBridge removes the TRILL encapsulation (operation 370) and forwards the frame to local edge ports associated with BUM traffic (operation 372). For example, if the frame is a multicast frame of a multicast group, the RBridge forwards the frame to the local end devices, which are members of the multicast group.


Failure Handling



FIG. 4A illustrates exemplary failure scenarios associated with a virtual link aggregation across multiple fabric switches, in accordance with an embodiment of the present invention. Suppose that failure 412 disrupts the availability of RBridge 122 to end device 102 (e.g., reachability between RBridge 122 and end device 102). Examples of failure 412 include, but are not limited to, a failure of link 402 between RBridge 112 and end device 102, an interface card failure in RBridge 112 and/or end device 102 associated with link 402, node failure of RBridge 112, unavailability of fabric switch 110. Examples of a cause for unavailability of fabric switch 110 include, but are not limited to, software update, maintenance, and wiring updates to inter-switch links. Consequently, RBridge 112 can no longer couple end device 102 via virtual link aggregation 130.


As a result, RBridge 122 starts receiving frames from end device 102. Upon detecting failure 412, instead of virtual RBridge 132's identifier, RBridge 122 starts setting RBridge 122's identifier as the ingress RBridge identifier in the TRILL encapsulations of the frames from end device 102. In other words, since end device 102 no longer has virtual link aggregation 130 to both RBridges 112 and 122, virtual RBridge 132 no longer exists for end device 102. After the TRILL-encapsulated frames from end device 102 reach other egress RBridges in fabric switch 120, these RBridges learn that the MAC address corresponding to end device 102 is associated with RBridge 122, instead of virtual RBridge 132. Subsequent frames destined to end device 102 are sent to RBridge 122.


Note that, during the topology convergence process, other RBridges can continue to send frames to virtual RBridge 132. If RBridge 112 is available (e.g., has not suffered a node failure), RBridge 112 may continue to receive frames destined to end device 102. RBridge 112 can flood these frames to all the ports (except the ports from which the frames are received), or optionally forward these frames to RBridge 122 so there is minimal data loss.


Suppose that failure 414 disrupts the availability of root RBridge 126. Examples of failure 414 include, but are not limited to, one or more link failures disconnecting RBridge 126 from fabric switch 120, one or more interface card failures in RBridge 126 disconnecting RBridge 126 from fabric switch 120, node failure of RBridge 126, unavailability of fabric switch 120. Examples of a cause for unavailability of fabric switch 120 include, but are not limited to, software update, maintenance, and wiring updates to inter-switch links. Consequently, RBridge 126 can no longer serve as the root RBridge for fabric switch 120. In some embodiments, upon detecting the unavailability of RBridge 126, the active RBridges of fabric switch 120 elect another root RBridge among the active RBridges and associate virtual root RBridge 136 with the newly elected root RBridge of fabric switch 120. This newly elected root RBridge can be logically coupled to virtual root RBridge 136, optionally with zero-cost links.



FIG. 4B presents a flowchart illustrating the process of handling a failure that affects a partner RBridge which participates in a virtual link aggregation across multiple fabric switches, in accordance with an embodiment of the present invention. During operation, an RBridge detects unavailability of its partner RBridge (operation 452). The RBridge then disassociates the RBridge and the end device with the corresponding virtual RBridge (operation 454), and returns to the normal forwarding and/or flooding operation as for non-trunked ports. Furthermore, the RBridge configures local RBridge to set its own RBridge identifier as the ingress RBridge identifier in the TRILL header of the ingress frames from the end device (operation 456). Optionally, the RBridge can broadcast the MAC reachability of the end device via its own RBridge identifier to other RBridges in the corresponding fabric which (operation 458).



FIG. 4C presents a flowchart illustrating the process of handling a failure that affects a root RBridge which is associated with a virtual root RBridge, in accordance with an embodiment of the present invention. Upon detecting the unavailability of a root RBridge (operation 462), the active RBridges of the corresponding fabric switch elect another root RBridge among the active RBridges (operation 464) and associate the virtual root RBridge with the newly elected root RBridge (operation 466). This newly elected root RBridge can be logically coupled to the virtual root RBridge, optionally with zero-cost links.


Hybrid Virtual Link Aggregation



FIG. 5A illustrates an exemplary hybrid virtual link aggregation across multiple fabric switches, in accordance with an embodiment of the present invention. As illustrated in FIG. 5A, a fabric switch 510 includes member switches 512, 514 and 516, and a fabric switch 520 includes member switches 522, 524, and 526. One or more switches in fabric switches 510 and 520 can be virtual switches (e.g., a software switch running on a computing device). In some embodiments, fabric switches 510 and 520 are TRILL networks and a respective member switch of fabric switches 510 and 520, such as switch 512 and 522, are TRILL RBridges. End devices 502 and 504 are coupled to RBridges 516 and 526, respectively. RBridges in fabric switches 510 and 520 use edge ports to communicate to end devices and inter-switch ports to communicate to other member switches. Communication via an edge port can be based on Ethernet and via an inter-switch port can be based on TRILL protocol.


RBridges 512 and 522 are coupled to each other via a plurality of links. These links can be configured to operate as a trunk 532. Similarly, RBridges 514 and 524 are coupled to each other via a plurality of links. These links can be configured to operate as a trunk 534. In some embodiments, trunks 532 and 534 can be configured to operate in a special “trunked” mode and form a hybrid virtual link aggregation 536. Even though RBridge 512 is not coupled to RBridge 524, and RBridge 514 is not coupled to RBridge 522, trunks 532 and 534 can operate as one hybrid virtual link aggregation.


RBridges 516 considers hybrid virtual link aggregation 536 as one single link associated with two RBridges 512 and 514. Similarly, RBridges 526 considers hybrid virtual link aggregation 536 as one single link associated with two RBridges 522 and 524. As a result, to forward a frame toward RBridge 526, RBridge 516 first determines an egress RBridge between RBridges 512 and 514. Suppose that RBridge 516 determines RBridge 512 as the egress RBridge, encapsulates the frame in a TRILL header, and sends the TRILL-encapsulated frame to RBridge 512. Upon receiving the frame, RBridge 512 removes the TRILL header, selects a physical link in trunk 532, and forwards the frame via the selected link.



FIG. 5B illustrates an exemplary packet forwarding via a hybrid virtual link aggregation across multiple fabric switches, in accordance with an embodiment of the present invention. During operation, end device 502 is in communication with end device 504 and forwarding a plurality of frames toward end device 504. Upon receiving a frame from end device 502, ingress RBridge 516 first determines that end device 504 is coupled to fabric switch 510 via hybrid virtual link aggregation 536, which is associated with RBridges 512 and 514. In some embodiments, a respective RBridge in fabric switch 510 maintains a mapping between hybrid virtual link aggregation 536, and associated RBridges 512 and 514.


RBridge 516 then uses an arbitration mechanism 552 to determine an egress RBridge from RBridges 512 and 514 for a respective frame. In some embodiments, arbitration mechanism 552 can be a hash function. This hash function can select the egress RBridge such a way that frames from 516 are distributed among RBridges 512 and 514 based on a policy. Examples of a policy include, but are not limited to, load balancing, quality of service, security, network availability, and computing resources. Suppose that arbitration mechanism 552 selects RBridge 514 as the egress RBridge. RBridge 516 then encapsulates the frame in a TRILL header and forwards the frame toward RBridge 514 based the TRILL encapsulation. RBridge 514 receives the frame and removes the TRILL encapsulation. RBridge 514 then determines the physical link in trunk 534 via which the frame should be forwarded.


In some embodiments, RBridge 514 can forward frames across the multiple links in trunk 534, thereby achieving a desired distribution among the links in trunk 534. Such transmission allows RBridge 514 to perform spray operation 554 on frames by selecting respective output ports for the frames such a way that the frames are distributed to different links of trunk 534. Upon receiving a frame, RBridge 524 identifies that end device 504 is coupled to RBridge 526, encapsulates the frame in a TRILL header, sets RBridge 526's identifier as the egress RBridge identifier in the TRILL header, and forwards the TRILL packet toward egress RBridge 526.


Exemplary RBridge



FIG. 6 illustrates an exemplary RBridge which supports virtual link aggregation across multiple fabric switches, in accordance with an embodiment of the present invention. In this example, an RBridge 600 includes a number of communication ports 602, a packet processor 610, a link aggregation module 630, a suppression module 632, a multicast module 634, and a storage 650. In some embodiments, packet processor 610 adds a TRILL header to a packet. RBridge 600 can also include a fabric switch management module 620, which maintains a membership in a fabric switch. Switch 600 maintains a configuration database in storage 650 that maintains the configuration state of a respective switch within the fabric switch. Switch 600 maintains the state of the fabric switch, which is used to join other switches. Under such a scenario, communication ports 602 can include inter-switch communication channels for communication within a fabric switch. This inter-switch communication channel can be implemented via a regular communication port and based on any open or proprietary format (e.g., TRILL protocol).


During operation, link aggregation module 630 marks an ingress RBridge identifier field of a frame received via one of the communication ports 602 with a virtual RBridge identifier. Upon receiving a frame, packet processor 610 identifies the virtual RBridge identifier as the egress RBridge identifier of a frame and, in response, determines that RBridge 600 is the egress RBridge for the frame. If the frame belongs to BUM traffic, suppression module 632 precludes RBridge 600 from determining an output port associated with a local end device for the frame, as described in conjunction with FIG. 1A. If RBridge 600 receives a frame belonging to BUM traffic via an edge port, multicast module 634 identifies the frame and marks an egress-switch field of the frame with a virtual root RBridge identifier.


In some embodiments, RBridge 600 also includes a failure detection module 642. Failure detection module 642 can detect unavailability of the physical root RBridge of the fabric switch and, in response, identifies a new multicast root RBridge and associates the virtual root RBridge identifier with the new multicast root RBridge, as described in conjunction with FIG. 4C. Failure detection module 642 can also detect unavailability of a partner RBridge and, in response, disassociates the RBridge from the virtual switch identifier. For any frame received after detecting unavailability of the partner RBridge, failure detection module 642 marks an egress RBridge field of the frame with an RBridge identifier of RBridge 600, as described in conjunction with FIG. 4A.


In some embodiments, RBridge 600 also includes a TRILL-supported edge port in communication ports 602 and a TRILL primary module 644. The TRILL-supported edge port is determined as an output port for frames destined outside of the fabric switch. During operation, TRILL primary module 644 determines a TRILL-encapsulated frame to be belonging to BUM traffic. In response, TRILL primary module 644 precludes RBridge 600 from removing TRILL encapsulation from the TRILL-encapsulated frame and determines the TRILL-supported edge port as the output port for the TRILL-encapsulated frame, as described in conjunction with FIG. 3C.


In some embodiments, link aggregation module 630 operates a trunked link, which is coupled to RBridge 600 via a number of ports in communication ports 602, in conjunction with a second trunked link of a second RBridge of the fabric switch as a virtual link aggregation. The virtual link aggregation is mapped to RBridge 600 and the second RBridge. A second fabric switch is reachable from the fabric switch via the trunked links coupled to RBridge 600 and the second trunked links. In some embodiments, this virtual link aggregation is mapped to RBridge 600 based on a hash function. RBridge 600 can select respective output ports for the frames destined to the second fabric switch such that the frames are distributed across links of the trunked link, thereby spraying the frames across the links of the trunked link, as described in conjunction with FIG. 5B.


Note that the above-mentioned modules can be implemented in hardware as well as in software. In one embodiment, these modules can be embodied in computer-executable instructions stored in a memory which is coupled to one or more processors in RBridge 600. When executed, these instructions cause the processor(s) to perform the aforementioned functions.


In summary, embodiments of the present invention provide a switch and a method for providing virtual link aggregation across multiple fabric switches. In one embodiment, the switch is configurable to be a member of a first fabric switch. The switch includes a link aggregation module. During operation, the link aggregation module marks an ingress-switch field of a frame with a virtual switch identifier. This virtual switch identifier is associated with the switch and a second switch, which is a member of a second fabric switch, and is from a range of identifier associated with the first fabric switch and the second fabric switch. Each of the first fabric switch and the second fabric switch is operable to accommodate a plurality of switches and operate as a single switch.


The methods and processes described herein can be embodied as code and/or data, which can be stored in a computer-readable non-transitory storage medium. When a computer system reads and executes the code and/or data stored on the computer-readable non-transitory storage medium, the computer system performs the methods and processes embodied as data structures and code and stored within the medium.


The methods and processes described herein can be executed by and/or included in hardware modules or apparatus. These modules or apparatus may include, but are not limited to, an application-specific integrated circuit (ASIC) chip, a field-programmable gate array (FPGA), a dedicated or shared processor that executes a particular software module or a piece of code at a particular time, and/or other programmable-logic devices now known or later developed. When the hardware modules or apparatus are activated, they perform the methods and processes included within them.


The foregoing descriptions of embodiments of the present invention have been presented only for purposes of illustration and description. They are not intended to be exhaustive or to limit this disclosure. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art. The scope of the present invention is defined by the appended claims.

Claims
  • 1. A switch, comprising: fabric circuitry configured to maintain a membership in a first network of interconnected switches, wherein the first network of interconnected switches is identified by a first fabric identifier; andaggregation circuitry configured to: identify a virtual link aggregation group comprising a second switch and a third switch in the first network of interconnected switches, wherein a second network of interconnected switches is reachable via the virtual link aggregation group, and wherein the second network of interconnected switches is identified by a second fabric identifier; andmaintain a mapping between the second and third switches and the virtual link aggregation group; andforwarding circuitry configured to select, for a packet destined to the second network of interconnected switches, an egress switch between the second and third switches based on the mapping.
  • 2. The switch of claim 1, wherein the virtual link aggregation group further comprises a first trunked link of the second switch and a second trunked link of the third switch.
  • 3. The switch of claim 1, wherein the egress switch is selected based on an arbitration policy of the first network of interconnected switches, wherein the arbitration policy is based on one or more of: load balancing, quality of service, security, network availability, and computing resources.
  • 4. The switch of claim 2, wherein the arbitration policy is based on a hash function.
  • 5. The switch of claim 1, wherein the forwarding circuitry is further configured to select a port via which the egress switch is reachable for the packet destined to the second network of interconnected switches.
  • 6. The switch of claim 1, wherein the forwarding circuitry is configured to select the egress switch such that packets are distributed between the second and third switches.
  • 7. The switch of claim 1, wherein the forwarding circuitry is further configured to obtain an inner frame by decapsulating an encapsulation header of an encapsulated packet.
  • 8. A method, comprising: maintaining, for a switch, a membership in a first network of interconnected switches, wherein the first network of interconnected switches is identified by a first fabric identifier;identifying a virtual link aggregation group comprising a second switch and a third switch in the first network of interconnected switches, wherein a second network of interconnected switches is reachable via the virtual link aggregation group, and wherein the second network of interconnected switches is identified by a second fabric identifier;maintaining a mapping between the second and third switches and the virtual link aggregation group; andselecting, for a packet destined to the second network of interconnected switches, an egress switch between the second and third switches based on the mapping.
  • 9. The method of claim 8, wherein the virtual link aggregation group further comprises a first trunked link of the second switch and a second trunked link of the third switch.
  • 10. The method of claim 8, wherein the egress switch is selected based on an arbitration policy of the first network of interconnected switches, wherein the arbitration policy is based on one or more of: load balancing, quality of service, security, network availability, and computing resources.
  • 11. The method of claim 10, wherein the arbitration policy is based on a hash function.
  • 12. The method of claim 8, further comprising selecting a port via which the egress switch is reachable for the packet destined to the second network of interconnected switches.
  • 13. The method of claim 8, further comprising selecting the egress switch such that packets are distributed between the second and third switches.
  • 14. The method of claim 8, further comprising obtaining an inner frame by decapsulating an encapsulation header of an encapsulated packet.
  • 15. A computer system; comprising: a processor;a storage device coupled to the processor and storing instructions that when executed by the processor cause the processor to perform a method, the method comprising:maintaining a membership in a first network of interconnected switches, wherein the first network of interconnected switches is identified by a first fabric identifier;identifying a virtual link aggregation group comprising a second computer system and a third computer system in the first network of interconnected switches, wherein a second network of interconnected switches is reachable via the virtual link aggregation group, and wherein the second network of interconnected switches is identified by a second fabric identifier;maintaining a mapping between the second and third computer systems and the virtual link aggregation group; andselecting, for a packet destined to the second network of interconnected switches, an egress system between the second and third computer systems based on the mapping.
  • 16. The computer system of claim 15, wherein the virtual link aggregation group further comprises a first trunked link of the second computer system and a second trunked link of the third computer system.
  • 17. The computer system of claim 15, wherein the egress system is selected based on an arbitration policy of the first network of interconnected switches, and wherein the arbitration policy is based on a hash function.
  • 18. The computer system of claim 15, wherein the method further comprises selecting a port via which the egress system is reachable for the packet destined to the second network of interconnected switches.
  • 19. The computer system of claim 15, wherein the method further comprises selecting the egress switch such that packets are distributed between the second and third computer systems.
  • 20. The computer system of claim 18, wherein the method further comprises obtaining an inner frame by decapsulating an encapsulation header of an encapsulated packet.
RELATED APPLICATIONS

This application is a divisional application of U.S. patent application Ser. No. 14/064,029, titled “VIRTUAL LINK AGGREGATIONS ACROSS MULTIPLE FABRIC SWITCHES,” by inventors Suresh Vobbilisetty and Phanidhar Koganti, filed 25 Oct. 2013, which claims the benefit of U.S. Provisional Application No. 61/727,478, titled “Virtual Link Aggregations Across Multiple Fabric Switches,” by inventors Suresh Vobbilisetty and Phanidhar Koganti, filed 16 Nov. 2012, the disclosures of which are incorporated by reference herein. The present disclosure is related to U.S. patent application Ser. No. 13/087,239, titled “Virtual Cluster Switching,” by inventors Suresh Vobbilisetty and Dilip Chatwani, filed 14 Apr. 2011, and to U.S. patent application Ser. No. 12/725,249, titled “Redundant Host Connection in a Routed Network,” by inventors Somesh Gupta, Anoop Ghanwani, Phanidhar Koganti, and Shunjia Yu, filed 16 Mar. 2010, the disclosures of which are incorporated by reference herein.

US Referenced Citations (581)
Number Name Date Kind
829529 Keathley Aug 1906 A
2854352 Gronemeyer Sep 1958 A
5390173 Spinney Feb 1995 A
5802278 Isfeld Sep 1998 A
5878232 Marimuthu Mar 1999 A
5959968 Chin Sep 1999 A
5973278 Wehrill, III Oct 1999 A
5983278 Chong Nov 1999 A
6041042 Bussiere Mar 2000 A
6085238 Yuasa Jul 2000 A
6104696 Kadambi Aug 2000 A
6185214 Schwartz Feb 2001 B1
6185241 Sun Feb 2001 B1
6331983 Haggerty Dec 2001 B1
6438106 Pillar Aug 2002 B1
6498781 Bass Dec 2002 B1
6542266 Phillips Apr 2003 B1
6553029 Alexander Apr 2003 B1
6633761 Singhal Oct 2003 B1
6636963 Stein Oct 2003 B1
6771610 Seaman Aug 2004 B1
6870840 Hill Mar 2005 B1
6873602 Ambe Mar 2005 B1
6920503 Nanji Jul 2005 B1
6937576 DiBenedetto Aug 2005 B1
6956824 Mark Oct 2005 B2
6957269 Williams Oct 2005 B2
6975581 Medina Dec 2005 B1
6975864 Singhal Dec 2005 B2
7016352 Chow Mar 2006 B1
7061877 Gummalla Jun 2006 B1
7097308 Kim et al. Aug 2006 B2
7173934 Lapuh Feb 2007 B2
7197308 Singhal Mar 2007 B2
7206288 Cometto Apr 2007 B2
7310664 Merchant Dec 2007 B1
7313637 Tanaka Dec 2007 B2
7315545 Chowdhury et al. Jan 2008 B1
7316031 Griffith Jan 2008 B2
7330897 Baldwin Feb 2008 B2
7380025 Riggins May 2008 B1
7397768 Betker Jul 2008 B1
7397794 Lacroute Jul 2008 B1
7430164 Bare Sep 2008 B2
7453888 Zabihi Nov 2008 B2
7477894 Sinha Jan 2009 B1
7480258 Shuen Jan 2009 B1
7508757 Ge Mar 2009 B2
7558195 Kuo Jul 2009 B1
7558273 Grosser Jul 2009 B1
7571447 Ally Aug 2009 B2
7599901 Mital Oct 2009 B2
7653056 Dianes Jan 2010 B1
7688736 Walsh Mar 2010 B1
7688960 Aubuchon Mar 2010 B1
7690040 Frattura Mar 2010 B2
7706255 Kondrat et al. Apr 2010 B1
7716370 Devarapalli May 2010 B1
7720076 Dobbins May 2010 B2
7729296 Choudhary Jun 2010 B1
7787480 Mehta Aug 2010 B1
7792920 Istvan Sep 2010 B2
7796593 Ghosh Sep 2010 B1
7801021 Triantafillis Sep 2010 B1
7808992 Homchaudhuri Oct 2010 B2
7836332 Hara Nov 2010 B2
7843906 Chidambaram et al. Nov 2010 B1
7843907 Abou-Emara Nov 2010 B1
7860097 Lovett Dec 2010 B1
7898959 Arad Mar 2011 B1
7912091 Krishnan Mar 2011 B1
7924837 Shabtay Apr 2011 B1
7937438 Miller May 2011 B1
7937756 Kay May 2011 B2
7945941 Sinha May 2011 B2
7949638 Goodson May 2011 B1
7957386 Aggarwal Jun 2011 B1
8018938 Fromm Sep 2011 B1
8027354 Portolani Sep 2011 B1
8054832 Shukla Nov 2011 B1
8068442 Kompella Nov 2011 B1
8078704 Lee Dec 2011 B2
8090805 Chawla Jan 2012 B1
8102781 Smith Jan 2012 B2
8102791 Tang Jan 2012 B2
8116307 Thesayi Feb 2012 B1
8125928 Mehta Feb 2012 B2
8134922 Elangovan Mar 2012 B2
8155150 Chung Apr 2012 B1
8160063 Maltz Apr 2012 B2
8160080 Arad Apr 2012 B1
8170038 Belanger May 2012 B2
8175107 Yalagandula May 2012 B1
8095774 Lambeth Jun 2012 B1
8194674 Pagel Jun 2012 B1
8195774 Lambeth Jun 2012 B2
8204061 Sane Jun 2012 B1
8213313 Doiron Jul 2012 B1
8213336 Smith Jul 2012 B2
8230069 Korupolu Jul 2012 B2
8239960 Frattura Aug 2012 B2
8249069 Raman Aug 2012 B2
8270401 Barnes Sep 2012 B1
8295291 Ramanathan Oct 2012 B1
8295921 Wang Oct 2012 B2
8301686 Appajodu Oct 2012 B1
8339994 Gnanasekaran Dec 2012 B2
8351352 Eastlake Jan 2013 B1
8369335 Jha Feb 2013 B2
8369347 Xiong Feb 2013 B2
8392496 Linden Mar 2013 B2
8451717 Srikrishnan May 2013 B2
8462774 Page Jun 2013 B2
8465774 Page Jun 2013 B2
8467375 Blair Jun 2013 B2
8520595 Yadav Aug 2013 B2
8553710 White Oct 2013 B1
8595479 Radhakrishnan Nov 2013 B2
8599850 Jha Dec 2013 B2
8599864 Chung Dec 2013 B2
8615008 Natarajan Dec 2013 B2
8619788 Sankaran Dec 2013 B1
8625616 Vobbilisetty Jan 2014 B2
8705526 Hasan Apr 2014 B1
8706905 McGlaughlin Apr 2014 B1
8717895 Koponen May 2014 B2
8724456 Hong May 2014 B1
8792501 Rustagi Jul 2014 B1
8798055 An Aug 2014 B1
8804732 Hepting Aug 2014 B1
8804736 Drake Aug 2014 B1
8806031 Kondur Aug 2014 B1
8826385 Congdon Sep 2014 B2
8918631 Kumar Dec 2014 B1
8937865 Kumar Jan 2015 B1
8948181 Kapadia Feb 2015 B2
8971173 Choudhury Mar 2015 B1
8995272 Agarwal Mar 2015 B2
9019976 Gupta Apr 2015 B2
9178793 Marlow Nov 2015 B1
9231890 Vobbilisetty Jan 2016 B2
9401818 Venkatesh Jul 2016 B2
9438447 Basso Sep 2016 B2
9524173 Guntaka Dec 2016 B2
9626255 Guntaka Apr 2017 B2
9628407 Guntaka Apr 2017 B2
20010005527 Vaeth Jun 2001 A1
20010055274 Hegge Dec 2001 A1
20020019904 Katz Feb 2002 A1
20020021701 Lavian Feb 2002 A1
20020027885 Ben-Ami Mar 2002 A1
20020039350 Wang Apr 2002 A1
20020054593 Morohashi May 2002 A1
20020087723 Williams Jul 2002 A1
20020091795 Yip Jul 2002 A1
20030026290 Umayabashi Feb 2003 A1
20030041085 Sato Feb 2003 A1
20030097470 Lapuh May 2003 A1
20030123393 Feuerstraeter Jul 2003 A1
20030147385 Montalvo Aug 2003 A1
20030152075 Hawthorne Aug 2003 A1
20030174706 Shankar Sep 2003 A1
20030189905 Lee Oct 2003 A1
20030208616 Laing Nov 2003 A1
20030216143 Roese Nov 2003 A1
20030223428 BlanquerGonzalez Dec 2003 A1
20030233534 Bernhard Dec 2003 A1
20040001433 Gram Jan 2004 A1
20040003094 See Jan 2004 A1
20040010600 Baldwin Jan 2004 A1
20040088668 Bornowski Jan 2004 A1
20040047349 Fujita Mar 2004 A1
20040049699 Griffith Mar 2004 A1
20040057430 Paavolainen Mar 2004 A1
20040081171 Finn Apr 2004 A1
20040117508 Shimizu Jun 2004 A1
20040120326 Yoon Jun 2004 A1
20040156313 Hofmeister et al. Aug 2004 A1
20040165595 Holmgren Aug 2004 A1
20040165596 Garcia Aug 2004 A1
20040205234 Barrack Oct 2004 A1
20040213232 Regan Oct 2004 A1
20040225725 Enomoto Nov 2004 A1
20050007951 Lapuh Jan 2005 A1
20050025179 McLaggan Feb 2005 A1
20050036488 Kalkunte Feb 2005 A1
20050044199 Shiga Feb 2005 A1
20050074001 Mattes Apr 2005 A1
20050094568 Judd May 2005 A1
20050094630 Valdevit May 2005 A1
20050111352 Ho May 2005 A1
20050122979 Gross Jun 2005 A1
20050152335 Lodha Jul 2005 A1
20050157645 Rabie et al. Jul 2005 A1
20050157751 Rabie Jul 2005 A1
20050169188 Cometto Aug 2005 A1
20050195813 Ambe Sep 2005 A1
20050207423 Herbst Sep 2005 A1
20050213561 Yao Sep 2005 A1
20050220096 Friskney Oct 2005 A1
20050259586 Hafid Nov 2005 A1
20050265330 Suzuki Dec 2005 A1
20050265356 Kawarai Dec 2005 A1
20050278565 Frattura Dec 2005 A1
20060007869 Hirota Jan 2006 A1
20060018302 Ivaldi Jan 2006 A1
20060023707 Makishima Feb 2006 A1
20060029055 Perera Feb 2006 A1
20060034292 Wakayama Feb 2006 A1
20060036765 Weyman Feb 2006 A1
20060039366 Ghosh Feb 2006 A1
20060059163 Frattura Mar 2006 A1
20060062187 Rune Mar 2006 A1
20060072550 Davis Apr 2006 A1
20060083254 Ge Apr 2006 A1
20060092860 Higashitaniguchi May 2006 A1
20060093254 Mozdy May 2006 A1
20060098589 Kreeger May 2006 A1
20060126511 Youn Jun 2006 A1
20060140130 Kalkunte Jun 2006 A1
20060155828 Ikeda Jul 2006 A1
20060168109 Warmenhoven Jul 2006 A1
20060184937 Abels Aug 2006 A1
20060206655 Chappell Sep 2006 A1
20060221960 Borgione Oct 2006 A1
20060227776 Chandrasekaran Oct 2006 A1
20060235995 Bhatia Oct 2006 A1
20060242311 Mai Oct 2006 A1
20060242398 Fontijn Oct 2006 A1
20060245439 Sajassi Nov 2006 A1
20060251067 DeSanti Nov 2006 A1
20060256767 Suzuki Nov 2006 A1
20060265515 Shiga Nov 2006 A1
20060285499 Tzeng Dec 2006 A1
20060291388 Amdahl Dec 2006 A1
20060291480 Cho Dec 2006 A1
20070036178 Hares Feb 2007 A1
20070053294 Ho Mar 2007 A1
20070061817 Atkinson Mar 2007 A1
20070081530 Nomura Apr 2007 A1
20070083625 Chamdani Apr 2007 A1
20070086362 Kato Apr 2007 A1
20070094464 Sharma Apr 2007 A1
20070097968 Du May 2007 A1
20070098006 Parry May 2007 A1
20070116224 Burke May 2007 A1
20070116422 Reynolds May 2007 A1
20070121617 Kanekar May 2007 A1
20070156659 Lim Jul 2007 A1
20070177525 Wijnands Aug 2007 A1
20070177597 Ju Aug 2007 A1
20070183313 Narayanan Aug 2007 A1
20070206762 Chandra Sep 2007 A1
20070211712 Fitch Sep 2007 A1
20070226214 Smits Sep 2007 A1
20070230472 Jesuraj Oct 2007 A1
20070258449 Bennett Nov 2007 A1
20070274234 Kubota Nov 2007 A1
20070289017 Copeland, III Dec 2007 A1
20080052487 Akahane Feb 2008 A1
20080056135 Lee Mar 2008 A1
20080056300 Williams Mar 2008 A1
20080065760 Damm Mar 2008 A1
20080075078 Watanabe Mar 2008 A1
20080080517 Roy Apr 2008 A1
20080095160 Yadav Apr 2008 A1
20080101386 Gray May 2008 A1
20080112400 Dunbar et al. May 2008 A1
20080133760 Berkvens Jun 2008 A1
20080159260 Vobbilisetty Jul 2008 A1
20080159277 Vobbilisetty Jul 2008 A1
20080165705 Umayabashi Jul 2008 A1
20080172492 Raghunath Jul 2008 A1
20080181196 Regan Jul 2008 A1
20080181243 Vobbilisetty Jul 2008 A1
20080186968 Farinacci Aug 2008 A1
20080186981 Seto Aug 2008 A1
20080205377 Chao Aug 2008 A1
20080219172 Mohan Sep 2008 A1
20080225852 Raszuk Sep 2008 A1
20080225853 Melman Sep 2008 A1
20080228897 Ko Sep 2008 A1
20080240129 Elmeleegy Oct 2008 A1
20080253380 Cazares Oct 2008 A1
20080267179 Lavigne Oct 2008 A1
20080285458 Lysne Nov 2008 A1
20080285555 Ogasahara Nov 2008 A1
20080298248 Roeck Dec 2008 A1
20080304498 Jorgensen Dec 2008 A1
20080304519 Koenen Dec 2008 A1
20080310342 Kruys Dec 2008 A1
20090022069 Khan Jan 2009 A1
20090037607 Farinacci Feb 2009 A1
20090037977 Gai Feb 2009 A1
20090041046 Hirata Feb 2009 A1
20090042270 Dolly Feb 2009 A1
20090044270 Shelly Feb 2009 A1
20090067422 Poppe Mar 2009 A1
20090067442 Killian Mar 2009 A1
20090079560 Fries Mar 2009 A1
20090080345 Gray Mar 2009 A1
20090083445 Ganga Mar 2009 A1
20090092042 Yuhara Apr 2009 A1
20090092043 Lapuh Apr 2009 A1
20090094354 Rastogi Apr 2009 A1
20090106405 Mazarick Apr 2009 A1
20090116381 Kanda May 2009 A1
20090122700 Aboba May 2009 A1
20090129384 Regan May 2009 A1
20090129389 DeFretay May 2009 A1
20090138577 Casado May 2009 A1
20090138752 Graham May 2009 A1
20090161584 Guan Jun 2009 A1
20090161670 Shepherd Jun 2009 A1
20090168647 Holness Jul 2009 A1
20090199177 Edwards Aug 2009 A1
20090204965 Tanaka Aug 2009 A1
20090213783 Moreton Aug 2009 A1
20090222879 Kostal Sep 2009 A1
20090225752 Mitsumori Sep 2009 A1
20090232031 Vasseur Sep 2009 A1
20090245112 Okazaki Oct 2009 A1
20090245137 Hares Oct 2009 A1
20090245242 Carlson Oct 2009 A1
20090246137 Hadida Oct 2009 A1
20090252049 Ludwig Oct 2009 A1
20090252061 Small Oct 2009 A1
20090260083 Szeto Oct 2009 A1
20090279558 Davis Nov 2009 A1
20090279701 Moisand Nov 2009 A1
20090292858 Lambeth Nov 2009 A1
20090316721 Kanda Dec 2009 A1
20090323698 LeFaucheur Dec 2009 A1
20090323708 Ihle Dec 2009 A1
20090327392 Tripathi Dec 2009 A1
20090327462 Adams Dec 2009 A1
20100027420 Smith Feb 2010 A1
20100027429 Jorgens Feb 2010 A1
20100046471 Hattori Feb 2010 A1
20100054260 Pandey Mar 2010 A1
20100061269 Banerjee Mar 2010 A1
20100074175 Banks Mar 2010 A1
20100085981 Gupta Apr 2010 A1
20100097941 Carlson Apr 2010 A1
20100103813 Allan Apr 2010 A1
20100103939 Carlson Apr 2010 A1
20100131636 Suri May 2010 A1
20100157844 Casey Jun 2010 A1
20100158024 Sajassi Jun 2010 A1
20100165877 Shukla Jul 2010 A1
20100165995 Mehta Jul 2010 A1
20100168467 Johnston Jul 2010 A1
20100169467 Shukla Jul 2010 A1
20100169948 Budko Jul 2010 A1
20100182920 Matsuoka Jul 2010 A1
20100189119 Sawada Jul 2010 A1
20100192225 Ma Jul 2010 A1
20100195489 Zhou Aug 2010 A1
20100195529 Liu Aug 2010 A1
20100214913 Kompella Aug 2010 A1
20100215042 Sato Aug 2010 A1
20100215049 Raza Aug 2010 A1
20100220724 Rabie Sep 2010 A1
20100226368 Mack-Crane Sep 2010 A1
20100226381 Mehta Sep 2010 A1
20100246388 Gupta Sep 2010 A1
20100246580 Kaganoi Sep 2010 A1
20100257263 Casado Oct 2010 A1
20100258263 Douxchamps Oct 2010 A1
20100265849 Harel Oct 2010 A1
20100271960 Krygowski Oct 2010 A1
20100272107 Papp Oct 2010 A1
20100281106 Ashwood-Smith Nov 2010 A1
20100284414 Agarwal Nov 2010 A1
20100284418 Gray Nov 2010 A1
20100287262 Elzur Nov 2010 A1
20100287548 Zhou Nov 2010 A1
20100290464 Assarpour Nov 2010 A1
20100290472 Raman Nov 2010 A1
20100290473 Enduri Nov 2010 A1
20100299527 Arunan Nov 2010 A1
20100303071 Kotalwar Dec 2010 A1
20100303075 Tripathi Dec 2010 A1
20100303083 Belanger Dec 2010 A1
20100309820 Rajagopalan Dec 2010 A1
20100309912 Mehta Dec 2010 A1
20100316055 Belanger Dec 2010 A1
20100329110 Rose Dec 2010 A1
20100329265 Lapuh Dec 2010 A1
20110019678 Mehta Jan 2011 A1
20110032945 Mullooly Feb 2011 A1
20110035489 McDaniel Feb 2011 A1
20110035498 Shah Feb 2011 A1
20110044339 Kotalwar Feb 2011 A1
20110044352 Chaitou Feb 2011 A1
20110051723 Rabie Mar 2011 A1
20110058547 Waldrop Mar 2011 A1
20110064086 Xiong Mar 2011 A1
20110064089 Hidaka Mar 2011 A1
20110072208 Gulati Mar 2011 A1
20110085560 Chawla Apr 2011 A1
20110085562 Bao Apr 2011 A1
20110085563 Kotha Apr 2011 A1
20110088011 Ouali Apr 2011 A1
20110110266 Li May 2011 A1
20110134802 Rajagopalan Jun 2011 A1
20110134803 Dalvi Jun 2011 A1
20110134924 Hewson Jun 2011 A1
20110134925 Safrai Jun 2011 A1
20110142053 VanDerMerwe Jun 2011 A1
20110142062 Wang Jun 2011 A1
20110158113 Nanda Jun 2011 A1
20110161494 McDysan Jun 2011 A1
20110161695 Okita Jun 2011 A1
20110176412 Stine Jul 2011 A1
20110188373 Saito Aug 2011 A1
20110194403 Sajassi Aug 2011 A1
20110194563 Shen Aug 2011 A1
20110225540 d'Entremont Sep 2011 A1
20110228767 Singla Sep 2011 A1
20110228780 Ashwood-Smith Sep 2011 A1
20110231570 Altekar Sep 2011 A1
20110231574 Saunderson Sep 2011 A1
20110235523 Jha Sep 2011 A1
20110243133 Villait Oct 2011 A9
20110243136 Raman Oct 2011 A1
20110246669 Kanada Oct 2011 A1
20110255538 Srinivasan Oct 2011 A1
20110255540 Mizrahi Oct 2011 A1
20110261828 Smith Oct 2011 A1
20110268118 Schlansker Nov 2011 A1
20110268120 Vobbilisetty Nov 2011 A1
20110268125 Vobbilisetty Nov 2011 A1
20110273988 Tourrilhes Nov 2011 A1
20110274114 Dhar Nov 2011 A1
20110280572 Vobbilisetty Nov 2011 A1
20110286457 Ee Nov 2011 A1
20110286462 Kompella Nov 2011 A1
20110055274 Hegge Dec 2011 A1
20110296052 Guo Dec 2011 A1
20110299391 Vobbilisetty Dec 2011 A1
20110299413 Chatwani Dec 2011 A1
20110299414 Yu Dec 2011 A1
20110299527 Yu Dec 2011 A1
20110299528 Yu Dec 2011 A1
20110299531 Yu Dec 2011 A1
20110299532 Yu Dec 2011 A1
20110299533 Yu Dec 2011 A1
20110299534 Koganti Dec 2011 A1
20110299535 Vobbilisetty Dec 2011 A1
20110299536 Cheng Dec 2011 A1
20110317559 Kern Dec 2011 A1
20110317703 Dunbar et al. Dec 2011 A1
20120011240 Hara Jan 2012 A1
20120014261 Salam Jan 2012 A1
20120014387 Dunbar Jan 2012 A1
20120020220 Sugita Jan 2012 A1
20120027017 Rai Feb 2012 A1
20120033663 Guichard Feb 2012 A1
20120033665 Jacob Feb 2012 A1
20120033668 Humphries Feb 2012 A1
20120033669 Mohandas Feb 2012 A1
20120033672 Page Feb 2012 A1
20120039163 Nakajima Feb 2012 A1
20120042095 Kotha Feb 2012 A1
20120063363 Li Mar 2012 A1
20120075991 Sugita Mar 2012 A1
20120099567 Hart Apr 2012 A1
20120099602 Nagapudi Apr 2012 A1
20120106339 Mishra May 2012 A1
20120117438 Shaffer May 2012 A1
20120131097 Baykal May 2012 A1
20120131289 Taguchi May 2012 A1
20120134266 Roitshtein May 2012 A1
20120136999 Roitshtein May 2012 A1
20120147740 Nakash Jun 2012 A1
20120158997 Hsu Jun 2012 A1
20120163164 Terry Jun 2012 A1
20120170491 Kern Jul 2012 A1
20120177039 Berman Jul 2012 A1
20120210416 Mihelich Aug 2012 A1
20120230225 Matthews Sep 2012 A1
20120239918 Huang Sep 2012 A1
20120243359 Keesara Sep 2012 A1
20120243539 Keesara Sep 2012 A1
20120250502 Brolin Oct 2012 A1
20120260079 Mruthyunjaya Oct 2012 A1
20120275297 Subramanian Nov 2012 A1
20120275347 Banerjee Nov 2012 A1
20120278804 Narayanasamy Nov 2012 A1
20120281700 Koganti Nov 2012 A1
20120287785 Kamble Nov 2012 A1
20120294192 Masood Nov 2012 A1
20120294194 Balasubramanian Nov 2012 A1
20120230800 Kamble Dec 2012 A1
20120320800 Kamble Dec 2012 A1
20120320926 Kamath et al. Dec 2012 A1
20120327766 Tsai et al. Dec 2012 A1
20120327937 Melman et al. Dec 2012 A1
20130003535 Sarwar Jan 2013 A1
20130003549 Matthews Jan 2013 A1
20130003608 Lei Jan 2013 A1
20130003737 Sinicrope Jan 2013 A1
20130003738 Koganti Jan 2013 A1
20130028072 Addanki Jan 2013 A1
20130034015 Jaiswal Feb 2013 A1
20130034021 Jaiswal Feb 2013 A1
20130034094 Cardona Feb 2013 A1
20130044629 Biswas Feb 2013 A1
20130058354 Casado Mar 2013 A1
20130067466 Combs Mar 2013 A1
20130070762 Adams Mar 2013 A1
20130083693 Himura Apr 2013 A1
20130097345 Munoz Apr 2013 A1
20130114595 Mack-Crane et al. May 2013 A1
20130124707 Ananthapadmanabha May 2013 A1
20130124750 Anumala May 2013 A1
20130127848 Joshi May 2013 A1
20130136123 Ge May 2013 A1
20130145008 Kannan Jun 2013 A1
20130148546 Eisenhauer Jun 2013 A1
20130148663 Xiong Jun 2013 A1
20130194914 Agarwal Aug 2013 A1
20130201992 Masaki Aug 2013 A1
20130219473 Schaefer Aug 2013 A1
20130223221 Xu Aug 2013 A1
20130250951 Koganti Sep 2013 A1
20130250958 Watanabe Sep 2013 A1
20130259037 Natarajan Oct 2013 A1
20130266015 Qu Oct 2013 A1
20130268590 Mahadevan Oct 2013 A1
20130272135 Leong Oct 2013 A1
20130294451 Li Nov 2013 A1
20130301425 Chandra Nov 2013 A1
20130301642 Radhakrishnan Nov 2013 A1
20130315125 Ravishankar Nov 2013 A1
20130322427 Stiekes Dec 2013 A1
20130346583 Low Dec 2013 A1
20140013324 Zhang Jan 2014 A1
20140025736 Wang Jan 2014 A1
20140029419 Jain Jan 2014 A1
20140044126 Sabhanatarajan Feb 2014 A1
20140050223 Foo Feb 2014 A1
20140056298 Vobbilisetty Feb 2014 A1
20140059225 Gasparakis Feb 2014 A1
20140071987 Janardhanan et al. Mar 2014 A1
20140086253 Yong Mar 2014 A1
20140092738 Grandhi Apr 2014 A1
20140105034 Huawei Apr 2014 A1
20140112122 Kapadia Apr 2014 A1
20140140243 Ashwood-Smith May 2014 A1
20140169368 Grover Jun 2014 A1
20140192804 Ghanwani Jul 2014 A1
20140241147 Rajagopalan Aug 2014 A1
20140258446 Bursell Sep 2014 A1
20140269701 Kaushik Sep 2014 A1
20140269720 Srinivasan Sep 2014 A1
20140269733 Venkatesh Sep 2014 A1
20140355477 Moopath Dec 2014 A1
20140362854 Addanki Dec 2014 A1
20140362859 Addanki Dec 2014 A1
20150009992 Zhang Jan 2015 A1
20150010007 Matsuhira Jan 2015 A1
20150016300 Devireddy Jan 2015 A1
20150030031 Zhou Jan 2015 A1
20150092593 Kompella Apr 2015 A1
20150110111 Song Apr 2015 A1
20150110487 Fenkes Apr 2015 A1
20150117256 Sabaa Apr 2015 A1
20150139234 Hu May 2015 A1
20150143369 Zheng May 2015 A1
20150172098 Agarwal Jun 2015 A1
20150188753 Anumala Jul 2015 A1
20150248298 Gavrilov Sep 2015 A1
20150281066 Koley Oct 2015 A1
20160087885 Tripathi Mar 2016 A1
20160139939 Bosch May 2016 A1
20160182458 Shatzkamer Jun 2016 A1
20160344640 Soderlund et al. Nov 2016 A1
20170026197 Venkatesh Jan 2017 A1
20170097841 Chang Apr 2017 A1
Foreign Referenced Citations (38)
Number Date Country
1735062 Feb 2006 CN
1777149 May 2006 CN
101064682 Oct 2007 CN
101459618 Jun 2009 CN
101471899 Jul 2009 CN
101548511 Sep 2009 CN
101645880 Feb 2010 CN
102098237 Jun 2011 CN
102148749 Aug 2011 CN
102301663 Dec 2011 CN
102349268 Feb 2012 CN
102378176 Mar 2012 CN
102404181 Apr 2012 CN
102415065 Apr 2012 CN
102415065 Apr 2012 CN
102801599 Nov 2012 CN
102801599 Nov 2012 CN
102088388 Apr 2014 CN
0579567 May 1993 EP
0579567 Jan 1994 EP
0993156 Apr 2000 EP
0993156 Dec 2000 EP
1398920 Mar 2004 EP
1398920 Mar 2004 EP
1916807 Apr 2008 EP
2001167 Oct 2008 EP
2854352 Apr 2015 EP
2874359 May 2015 EP
2008056838 May 2008 WO
2009042919 Apr 2009 WO
2010111142 Sep 2010 WO
2010111142 Sep 2010 WO
2011132568 Oct 2011 WO
2011140028 Nov 2011 WO
2011140028 Nov 2011 WO
2012033663 Mar 2012 WO
2012093429 Jul 2012 WO
2014031781 Feb 2014 WO
Non-Patent Literature Citations (240)
Entry
Eastlake, D. et al., ‘RBridges: TRILL Header Options’, Dec. 24, 2009, pp. 1-17, TRILL Working Group.
Perlman, Radia et al., ‘RBridge VLAN Mapping’, TRILL Working Group, Dec. 4, 2009, pp. 1-12.
Touch, J. et al., ‘Transparent Interconnection of Lots of Links (TRILL): Problem and Applicability Statement’, May 2009, Network Working Group, pp. 1-17.
Switched Virtual Networks. ‘Internetworking Moves Beyond Bridges and Routers’ Data Communications, McGraw Hill. New York, US, vol. 23, No. 12, Sep. 1, 1994 (Sep. 1, 1994), pp. 66-70,72,74, XP000462385 ISSN: 0363-6399.
Knight S et al: ‘Virtual Router Redundancy Protocol’ Internet Citation Apr. 1, 1998 (Apr. 1, 1998), XP002135272 Retrieved from the Internet: URL:ftp://ftp.isi.edu/in-notes/rfc2338.txt [retrieved on Apr. 10, 2000].
Office Action dated Jun. 18, 2015, U.S. Appl. No. 13/098,490, filed May 2, 2011.
Perlman R: ‘Challenges and opportunities in the design of TRILL: a routed layer 2 technology’, 2009 IEEE GLOBECOM Workshops, Honolulu, HI, USA, Piscataway, NJ, USA, Nov. 30, 2009 (Nov. 30, 2009), pp. 1-6, XP002649647, DOI: 10.1109/GLOBECOM.2009.5360776 ISBN: 1-4244-5626-0 [retrieved on Jul. 19, 2011].
TRILL Working Group Internet-Draft Intended status: Proposed Standard RBridges: Base Protocol Specificaiton Mar. 3, 2010.
Office Action dated Jun. 16, 2015, U.S. Appl. No. 13/048,817, filed Mar. 15, 2011.
Knight P et al: ‘Layer 2 and 3 Virtual Private Networks: Taxonomy, Technology, and Standardization Efforts’, IEEE Communications Magazine, IEEE Service Center, Piscataway, US, vol. 42, No. 6, Jun. 1, 2004 (Jun. 1, 2004), pp. 124-131, XP001198207, ISBN: 0163-0804, DOI: 10.1109/MCOM.2004.1304248.
Office Action for U.S. Appl. No. 13/092,873, filed Apr. 22, 2011, dated Nov. 29, 2013.
Perlman, Radia et al., ‘RBridges: Base Protocol Specification; Draft-ietf-trill-rbridge-protocol-16.txt’, Mar. 3, 2010, pp. 1-117.
‘An Introduction to Brocade VCA Fabric Technology’, Brocade white paper, http://community.brocade.com/docs/DOC-2954, Dec. 3, 2012.
‘RBridges: Base Protocol Specification’, IETF Draft, Perlman et al., Jun. 26, 2009.
Abawajy J. “An Approach to Support a Single Service Provider Address Image for Wide Area Networks Environment” Centre for Parallel and Distributed Computing, School of Computer Science Carleton University, Ottawa, Ontario, K1S 5B6, Canada.
U.S. Appl. No. 13/030,806 Office Action dated Dec. 3, 2012.
Office action dated Apr. 26, 2012, U.S. Appl. No. 12/725,249, filed Mar. 16, 2010.
Office action dated Sep. 12, 2012, U.S. Appl. No. 12/725,249, filed Mar. 16, 2010.
Office action dated Dec. 21, 2012, U.S. Appl. No. 13/098,490, filed May 2, 2011.
Office action dated Mar. 27, 2014, U.S. Appl. No. 13/098,490, filed May 2, 2011.
Office action dated Jul. 9, 2013, U.S. Appl. No. 13/098,490, filed May 2, 2011.
Office action dated Jun. 8, 2015, U.S. Appl. No. 14/178,042, filed Feb. 11, 2014.
Office action dated May 22, 2013, U.S. Appl. No. 13/087,239, filed Apr. 14, 2011.
Office action dated Dec. 5, 2012, U.S. Appl. No. 13/087,239, filed Apr. 14, 2011.
Office action dated Apr. 9, 2014, U.S. Appl. No. 13/092,724, filed Apr. 22, 2011.
Office action dated Feb. 5, 2013, U.S. Appl. No. 13/092,724, filed Apr. 22, 2011.
Office action dated Jan. 10, 2014, U.S. Appl. No. 13/092,580, filed Apr. 22, 2011.
Office action dated Jun. 10, 2013, U.S. Appl. No. 13/092,580, filed Apr. 22, 2011.
Office action dated Jan. 16, 2014, U.S. Appl. No. 13/042,259, filed Mar. 7, 2011.
Office action dated Mar. 18, 2013, U.S. Appl. No. 13/042,259, filed Mar. 7, 2011
Office action dated Jul. 31, 2013, U.S. Appl. No. 13/042,259, filed Mar. 7, 2011.
Office action dated Aug. 29, 2014, U.S. Appl. No. 13/042,259, filed Mar. 7, 2011.
Office action dated Mar. 14, 2014, U.S. Appl. No. 13/092,460, filed Apr. 22, 2011.
Office action dated Jun. 21, 2013, U.S. Appl. No. 13/092,460, filed Apr. 22, 2011.
Office action dated Aug. 14, 2014, U.S. Appl. No. 13/092,460, filed Apr. 22, 2011.
Office action dated Jan. 28, 2013, U.S. Appl. No. 13/092,701, filed Apr. 22, 2011.
Office Action dated Mar. 26, 2014, U.S. Appl. No. 13/092,701, filed Apr. 22, 2011.
Office action dated Jul. 3, 2013, U.S. Appl. No. 13/092,701, filed Apr. 22, 2011.
Office action dated Oct. 2, 2014, for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011.
Office Action dated Apr. 9, 2014, U.S. Appl. No. 13/092,752, filed Apr. 22, 2011.
Office action dated Jul. 18, 2013, U.S. Appl. No. 13/092,752, filed Apr. 22, 2011.
Office action dated Dec. 20, 2012, U.S. Appl. No. 12/950,974, filed Nov. 19, 2010.
Office action dated May 24, 2012, U.S. Appl. No. 12/950,974, filed Nov. 19, 2010.
Office action dated Jan. 6, 2014, U.S. Appl. No. 13/092,877, filed Apr. 22, 2011.
Office action dated Sep. 5, 2013, U.S. Appl. No. 13/092,877, filed Apr. 22, 2011.
Office action dated Mar. 4, 2013, U.S. Appl. No. 13/092,877, filed Apr. 22, 2011.
Office action dated Jan. 4, 2013, U.S. Appl. No. 12/950,968, filed Nov. 19, 2010.
Office action dated Jun. 7, 2012, U.S. Appl. No. 12/950,968, filed Nov. 19, 2010.
Office action dated Sep. 19, 2012, U.S. Appl. No. 13/092,864, filed Apr. 22, 2011.
Office action dated May 31, 2013, U.S. Appl. No. 13/098,360, filed Apr. 29, 2011.
Office action dated Jul. 7, 2014, for U.S. Appl. No. 13/044,326, filed Mar. 9, 2011.
Office action dated Oct. 2, 2013, U.S. Appl. No. 13/044,326, filed Mar. 9, 2011.
Office Action dated Dec. 19, 2014, for U.S. Appl. No. 13/044,326, filed Mar. 9, 2011.
Office action dated Dec. 3, 2012, U.S. Appl. No. 13/030,806, filed Feb. 18, 2011.
Office action dated Apr. 22, 2014, U.S. Appl. No. 13/030,806, filed Feb. 18, 2011.
Office action dated Jun. 11, 2013, U.S. Appl. No. 13/030,806, filed Feb. 18, 2011.
Office action dated Apr. 25, 2013, U.S. Appl. No. 13/030,688, filed Feb. 18, 2011.
Office action dated Feb. 22, 2013, U.S. Appl. No. 13/044,301, filed Mar. 9, 2011.
Office action dated Jun. 11, 2013, U.S. Appl. No. 13/044,301, filed Mar. 9, 2011.
Office action dated Oct. 26, 2012, U.S. Appl. No. 13/050,102, filed Mar. 17, 2011.
Office action dated May 16, 2013, U.S. Appl. No. 13/050,102, filed Mar. 17, 2011.
Office action dated Aug. 4, 2014, U.S. Appl. No. 13/050,102, filed Mar. 17, 2011.
Office action dated Jan. 28, 2013, U.S. Appl. No. 13/148,526, filed Jul. 16, 2011.
Office action dated Dec. 2, 2013, U.S. Appl. No. 13/184,526, filed Jul. 16, 2011.
Office action dated May 22, 2013, U.S. Appl. No. 13/148,526, filed Jul. 16, 2011.
Office action dated Aug. 21, 2014, U.S. Appl. No. 13/184,526, filed Jul. 16, 2011.
Office action dated Nov. 29, 2013, U.S. Appl. No. 13/092,873, filed Apr. 22, 2011.
Office action dated Jun. 19, 2013, U.S. Appl. No. 13/092,873, filed Apr. 22, 2011.
Office Action dated May 21, 2015, U.S. Appl. No. 13/288,822, filed Nov. 3, 2011.
Office action dated Jul. 18, 2013, U.S. Appl. No. 13/365,808, filed Feb. 3, 2012.
Office Action dated Mar. 6, 2014, U.S. Appl. No. 13/425,238, filed Mar. 20, 2012.
Office action dated Nov. 12, 2013, U.S. Appl. No. 13/312,903, filed Dec. 6, 2011.
Office action dated Jun. 13, 2013,U.S. Appl. No. 13/312,903, filed Dec. 6, 2011.
Office Action dated Jun. 18, 2014, U.S. Appl. No. 13/440,861, filed Apr. 5, 2012.
Office action dated Apr. 30, 2015, U.S. Appl. No. 13/351,513, filed Jan. 17, 2012.
Office Action dated Feb. 28, 2014, U.S. Appl. No. 13/351,513, filed Jan. 17, 2012.
Office Action dated May 9, 2014, U.S. Appl. No. 13/484,072, filed May 30, 2012.
Office Action dated May 14, 2014, U.S. Appl. No. 13/533,843, filed Jun. 26, 2012.
Office Action dated Feb. 20, 2014, U.S. Appl. No. 13/598,204, filed Aug. 29, 2012.
Office Action dated Apr. 1, 2015 U.S. Appl. No. 13/656,438 filed Oct. 19, 2012.
Office Action dated Jun. 6, 2014, U.S. Appl. No. 13/669,357, filed Nov. 5, 2012.
Office Action dated Jun. 10, 2015, U.S. Appl. No. 13/890,150, filed May 8, 2013.
Brocade, ‘Brocade Fabrics OS (FOS) 6.2 Virtual Fabrics Feature Frequently Asked Questions’, pp. 1-6, 2009 Brocade Communications Systems, Inc.
Brocade, ‘FastIron and TurboIron 24x Configuration Guide’, Feb. 16, 2010.
Brocade, ‘The Effortless Network: Hyperedge Technology for the Campus LAN’ 2012.
Brocade ‘An Introduction to Brocade VCS Fabric Technology’, Dec. 3, 2012.
Brocade ‘Brocade Unveils’ The Effortless Network, http://newsroom.brocade.com/press-releases/brocade-unveils-the-effortless-network-nasdaq-brcd-0859535, 2012.
Christensen, M. et al., ‘Considerations for Internet Group Management Protocol (IGMP) and Multicast Listener Discovery (MLD) Snooping Switches’, May 2006.
FastIron Configuration Guide Supporting Ironware Software Release 07.0.00, Dec. 18, 2009.
Foundary Fastlron Configuration Guide, Software Release FSX 04.2.00b, Software Release FWS 04.3.00, Software Release FGS 05.0.00a, Sep. 2008.
Huang, Nen-Fu et al., ‘An Effective Spanning Tree Algorithm for a Bridged LAN’, Mar. 16, 1992.
Knight, ‘Network Based IP VPN Architecture using Virtual Routers’, May 2003.
Kompella, Ed K. et al., ‘Virtual Private LAN Service (VPLS) Using BGP for Auto-Discovery and Signaling’ Jan. 2007.
Kreeger, L. et al., ‘Network Virtualization Overlay Control Protocol Requirements draft-kreeger-nvo3-overlay-cp-00’, Jan. 30, 2012.
Lapuh, Roger et al., ‘Split Multi-link Trunking (SMLT)’, draft-lapuh-network-smlt-08, Jul. 2008.
Lapuh, Roger et al., ‘Split Multi-Link Trunking (SMLT)’, Network Working Group, Oct. 2012.
Lapuh, Roger et al., ‘Split Multi-link Trunking (SMLT) draft-lapuh-network-smlt-08’, Jan. 2009.
Louati, Wajdi et al., ‘Network-based virtual personal overlay networks using programmable virtual routers’, IEEE Communications Magazine, Jul. 2005.
Mahalingam “VXLAN: A Framework for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks” Oct. 17, 2013 pp. 1-22, Sections 1, 4 and 4.1.
Mckeown, Nick et al. “OpenFlow: Enabling Innovation in Campus Networks”, Mar. 14, 2008, www.openflow.org/documents/openflow-wp-latest.pdf.
Narten, T. et al., ‘Problem Statement: Overlays for Network Virtualization d raft-narten-n vo3-over l ay-problem-statement-01’, Oct. 31, 2011.
Office Action for U.S. Appl. No. 13/030,688, filed Feb. 18, 2011, dated Jul. 17, 2014.
Office Action for U.S. Appl. No. 13/042,259, filed Mar. 7, 2011, dated Jan. 16, 2014.
Office Action for U.S. Appl. No. 13/044,326, filed Mar. 9, 2011, dated Jul. 7, 2014.
Office Action for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011, dated Apr. 9, 2014.
Office Action for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011, dated Jul. 18, 2013.
Office Action for U.S. Appl. No. 13/092,873, filed Apr. 22, 2011, dated Jul. 25, 2014.
Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011, dated Jun. 20, 2014.
Office Action for U.S. Appl. No. 13/312,903, filed Dec. 6, 2011, dated Aug. 7, 2014.
Office Action for U.S. Appl. No. 13/351,513, filed Jan. 17, 2012, dated Jul. 24, 2014.
Office Action for U.S. Appl. No. 13/365,993, filed Feb. 3, 2012, dated Jul. 23, 2013.
Office Action for U.S. Appl. No. 13/425,238, filed Mar. 20, 2012, dated Mar. 6, 2014.
Office Action for U.S. Appl. No. 13/556,061, filed Jul. 23, 2012, dated Jun. 6, 2014.
Office Action for U.S. Appl. No. 13/742,207 dated Jul. 24, 2014, filed Jan. 15, 2013.
Office Action for U.S. Appl. No. 13/950,974, filed Nov. 19, 2010, dated Dec. 2, 2012.
Office Action for U.S. Appl. No. 12/725,249, filed Mar. 16, 2010, dated Apr. 26, 2013.
Office Action for U.S. Appl. No. 12/725,249, filed Mar. 16, 2010, dated Sep. 12, 2012.
Office Action for U.S. Appl. No. 12/950,968, filed Nov. 19, 2010, dated Jan. 4, 2013.
Office Action for U.S. Appl. No. 12/950,968, filed Nov. 19, 2010, dated Jun. 7, 2012.
Office Action for U.S. Appl. No. 12/950,974, filed Nov. 19, 2010, dated Dec. 20, 2012.
Office Action for U.S. Appl. No. 12/950,974, filed Nov. 19, 2010, dated May 24, 2012.
Office Action for U.S. Appl. No. 13/030,688, filed Feb. 18, 2011, dated Apr. 25, 2013.
Office Action for U.S. Appl. No. 13/030,806, filed Feb. 18, 2011, dated Dec. 3, 2012.
Office Action for U.S. Appl. No. 13/030,806, filed Feb. 18, 2011, dated Jun. 11, 2013.
Office Action for U.S. Appl. No. 13/042,259, filed Mar. 7, 2011, dated Feb. 23, 2015.
Office Action for U.S. Appl. No. 13/042,259, filed Mar. 7, 2011, dated Mar. 18, 2013.
Office Action for U.S. Appl. No. 13/042,259, filed Mar. 7, 2011, dated Jul. 31, 2013.
Office Action for U.S. Appl. No. 13/044,301, filed Mar. 9, 2011, dated Feb. 22, 2013.
Office Action for U.S. Appl. No. 13/044,301, filed Mar. 9, 2011, dated Jun. 11, 2013.
Office Action for U.S. Appl. No. 13/044,326, filed Mar. 9, 2011, dated Oct. 2, 2013.
Office Action for U.S. Appl. No. 13/050,102, filed Mar. 17, 2011, dated Oct. 26, 2012.
Office Action for U.S. Appl. No. 13/050,102, filed Mar. 17, 2011, dated May 16, 2013.
Office Action for U.S. Appl. No. 13/087,239, filed Apr. 14, 2011, dated May 22, 2013.
Office Action for U.S. Appl. No. 13/092,460, filed Apr. 22, 2011, dated Jun. 21, 2013.
Office Action for U.S. Appl. No. 13/092,580, filed Apr. 22, 2011, dated Jun. 10, 2013.
Office Action for U.S. Appl. No. 13/092,701, filed Apr. 22, 2011, dated Jan. 28, 2013.
Office Action for U.S. Appl. No. 13/092,701, filed Apr. 22, 2011, dated Jul. 3, 2013.
Office Action for U.S. Appl. No. 13/092,724, filed Apr. 22, 2011, dated Feb. 5, 2013.
Office Action for U.S. Appl. No. 13/092,724, filed Apr. 22, 2011, dated Jul. 16, 2013.
Office Action for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011, dated Feb. 5, 2013.
Office Action for U.S. Appl. No. 13/092,864, filed Apr. 22, 2011, dated Sep. 19, 2012.
Office Action for U.S. Appl. No. 13/092,873, filed Apr. 22, 2011, dated Jun. 19, 2013.
Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011, dated Mar. 4, 2013.
Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011, dated Sep. 5, 2013.
Office Action for U.S. Appl. No. 13/098,360, filed Apr. 29, 2011, dated May 31, 2013.
Office Action for U.S. Appl. No. 13/098,490, filed May 2, 2011, dated Dec. 21, 2012.
Office Action for U.S. Appl. No. 13/098,490, filed May 2, 2011, dated Mar. 27, 2014.
Office Action for U.S. Appl. No. 13/098,490, filed May 2, 2011, dated Jul. 9, 2013.
Office Action for U.S. Appl. No. 13/184,526, filed Jul. 16, 2011, dated Jan. 28, 2013.
Office Action for U.S. Appl. No. 13/184,526, filed Jul. 16, 2011, dated May 22, 2013.
Office Action for U.S. Appl. No. 13/312,903, filed Dec. 6, 2011, dated Jun. 13, 2013.
Office Action for U.S. Appl. No. 13/044,301, filed Mar. 9, 2011, dated Jan. 29, 2015.
Office Action for U.S. Appl. No. 13/044,301, dated Mar. 9, 2011.
Office Action for U.S. Appl. No. 13/050,102, filed Mar. 17, 2011, dated Jan. 26, 2015.
Office Action for U.S. Appl. No. 13/087,239, filed Apr. 14, 2011, dated Dec. 5, 2012.
Office Action for U.S. Appl. No. 13/092,460, filed Apr. 22, 2011, dated Mar. 13, 2015.
Office Action for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011, dated Feb. 27, 2015.
Office Action for U.S. Appl. No. 13/092,873, filed Apr. 22, 2011, dated Nov. 7, 2014.
Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011, dated Nov. 10, 2014.
Office Action for U.S. Appl. No. 13/157,942, filed Jun. 10, 2011.
Office Action for U.S. Appl. No. 13/184,526, filed Jul. 16, 2011, dated Jan. 5, 2015.
Office Action for U.S. Appl. No. 13/184,526, filed Jul. 16, 2011, dated Dec. 2, 2013.
Office Action for U.S. Appl. No. 13/351,513, filed Jan. 17, 2012, dated Feb. 28, 2014.
Office Action for U.S. Appl. No. 13/365,808, filed Jul. 18, 2013, dated Jul. 18, 2013.
Office Action for U.S. Appl. No. 13/425,238, filed Mar. 20, 2012, dated Mar. 12, 2015.
Office Action for U.S. Appl. No. 13/533,843, filed Jun. 26, 2012, dated Oct. 21, 2013.
Office Action for U.S. Appl. No. 13/598,204, filed Aug. 29, 2012, dated Jan. 5, 2015.
Office Action for U.S. Appl. No. 13/598,204, filed Aug. 29, 2012, dated Feb. 20, 2014.
Office Action for U.S. Appl. No. 13/669,357, filed Nov. 5, 2012, dated Jan. 30, 2015.
Office Action for U.S. Appl. No. 13/786,328, filed Mar. 5, 2013, dated Mar. 13, 2015.
Office Action for U.S. Appl. No. 13/851,026, filed Mar. 26, 2013, dated Jan. 30, 2015.
Office Action for U.S. Appl. No. 14/577,785, filed Dec. 19, 2014, dated Apr. 13, 2015.
Office Action for U.S. Appl. No. 13/092,887 dated Jan. 6, 2014.
Perlman, Radia et al., ‘Challenges and Opportunities in the Design of TRILL: a Routed layer 2 Technology’, 2009.
Rosen, E. et al., “BGP/MPLS VPNs”, Mar. 1999.
S. Nadas et al., ‘Virtual Router Redundancy Protocol (VRRP) Version 3 for IPv4 and IPv6’, Internet Engineering Task Force, Mar. 2010.
Siamak Azodolmolky et al. “Cloud computing networking: Challenges and opportunities for innovations”, IEEE Communications Magazine, vol. 51, No. 7, Jul. 1, 2013.
Zhai F. Hu et al. ‘RBridge: Pseudo-Nickname; draft-hu-trill-pseudonode-nickname-02.txt’, May 15, 2012.
Office Action dated Jul. 31, 2015, U.S. Appl. No. 13/598,204, filed Aug. 29, 2014.
Office Action dated Jul. 31, 2015, U.S. Appl. No. 14/473,941, filed Aug. 29, 2014.
Office Action dated Jul. 31, 2015, U.S. Appl. No. 14/488,173, filed Sep. 16, 2014.
Office Action dated Aug. 21, 2015, U.S. Appl. No. 13/776,217, filed Feb. 25, 2013.
Office Action dated Aug. 19, 2015, U.S. Appl. No. 14/156,374, filed Jan. 15, 2014.
Office Action dated Sep. 2, 2015, U.S. Appl. No. 14/151,693, filed Jan. 9, 2014.
Office Action dated Sep. 17, 2015, U.S. Appl. No. 14/577,785, filed Dec. 19, 2014.
Office Action dated Sep. 22, 2015 U.S. Appl. No. 13/656,438, filed Oct. 19, 2012.
Office Action dated Nov. 5, 2015, U.S. Appl. No. 14/178,042, filed Feb. 11, 2014.
Office Action dated Oct. 19, 2015, U.S. Appl. No. 14/215,996, filed Mar. 17, 2014.
Office Action dated Sep. 18, 2015, U.S. Appl. No. 13/345,566, filed Jan. 6, 2012.
Open Flow Switch Specification Version 1.1.0, Feb. 28, 2011.
Open Flow Switch Specification Version 1.0.0, Dec. 31, 2009.
Open Flow Configuration and Management Protocol 1.0 (OF-Config 1.0) Dec. 23, 2011.
Open Flow Switch Specification Version 1.2 Dec. 5, 2011.
Office action dated Feb. 2, 2016, U.S. Appl. No. 13/092,460, filed Apr. 22, 2011.
Office Action dated Feb. 2, 2016. U.S. Appl. No. 14/154,106, filed Jan. 13, 2014.
Office Action dated Feb. 3, 2016, U.S. Appl. No. 13/098,490, filed May 2, 2011.
Office Action dated Feb. 4, 2016, U.S. Appl. No. 13/557,105, filed Jul. 24, 2012.
Office Action dated Feb. 11, 2016, U.S. Appl. No. 14/488,173, filed Sep. 16, 2014.
Office Action dated Feb. 24, 2016, U.S. Appl. No. 13/971,397, filed Aug. 20, 2013.
Office Action dated Feb. 24, 2016, U.S. Appl. No. 12/705,508, filed Feb. 12, 2010.
Office Action dated Jul. 6, 2016, U.S. Appl. No. 14/618,941, filed Feb. 10, 2015.
Office Action dated Jul. 20, 2016, U.S. Appl. No. 14/510,913, filed Oct. 9, 2014.
Office Action dated Jan. 31, 2017, U.S. Appl. No. 13/184,526, filed Jul. 16, 2011.
Office Action dated Jan. 27, 2017, U.S. Appl. No. 14/216,292, filed Mar. 17, 2014.
Office Action dated Jan. 26, 2017, U.S. Appl. No. 13/786,328, filed Mar. 5, 2013.
Office Action dated Dec. 2, 2016, U.S. Appl. No. 14/512,268, filed Oct. 10, 2014.
Office Action dated Dec. 1, 2016, U.S. Appl. No. 13/899,849, filed May 22, 2013.
Office Action dated Dec. 1, 2016, U.S. Appl. No. 13/656,438, filed Oct. 19, 2012.
Office Action dated Nov. 30, 2016, U.S. Appl. No. 13/598,204, filed Aug. 29, 2012.
Office Action dated Nov. 21, 2016, U.S. Appl. No. 13/669,357, filed Nov. 5, 2012.
Office Action dated Feb. 8, 2017, U.S. Appl. No. 14/473,941, filed Aug. 29, 2014.
Office Action dated Feb. 8, 2017, U.S. Appl. No. 14/822,380, filed Aug. 10, 2015.
Office Action for U.S. Appl. No. 14/662,095, dated Mar. 24, 2017.
Office Action for U.S. Appl. No. 15/005,967, dated Mar. 31, 2017.
Office Action for U.S. Appl. No. 15/215,377, dated Apr. 7, 2017.
Office Action for U.S. Appl. No. 13/098,490, dated Apr. 6, 20170.
Office Action for U.S. Appl. No. 14/662,092, dated Mar. 29, 2017.
Office Action for U.S. Appl. No. 14/817,097, dated May 4, 2017.
Office Action for U.S. Appl. No. 14/872,966, dated Apr. 20, 2017.
Office Action for U.S. Appl. No. 14/680,915, dated May 3, 2017.
Office Action for U.S. Appl. No. 14/792,166, dated Apr. 26, 2017.
Office Action for U.S. Appl. No. 14/660,803, dated May 17, 2017.
Office Action for U.S. Appl. No. 14/488,173, dated May 12, 2017.
Office Action for U.S. Appl. No. 13/288,822, dated May 26, 2017.
Office Action for U.S. Appl. No. 14/329,447, dated Jun. 8, 2017.
Office Action for U.S. Appl. No. 14/510,913, dated Jun. 30, 2017.
Office Action for U.S. Appl. No. 15/005,946, dated Jul. 14, 2017.
Office Action for U.S. Appl. No. 13/092,873, dated Jul. 19, 2017.
Office Action for U.S. Appl. No. 15/047,539, dated Aug. 7, 2017.
Office Action for U.S. Appl. No. 14/830,035, dated Aug. 28, 2017.
Office Action for U.S. Appl. No. 13/098,490, dated Aug. 24, 2017.
Office Action for U.S. Appl. No. 13/786,328, dated Aug. 21, 2017.
“Network based IP VPN Architecture using Virtual Routers” Paul Knight et al.
Yang Yu et al “A Framework of using OpenFlow to handle transient link failure”, TMEE, 2011 International Conference on, IEEE, Dec. 16, 2011.
Office Action for U.S. Appl. No. 15/227,789, dated Feb. 27, 2017.
Office Action for U.S. Appl. No. 14/822,380, dated Feb. 8, 2017.
Office Action for U.S. Appl. No. 14/704,660, dated Feb. 27, 2017.
Office Action for U.S. Appl. No. 14/510,913, dated Mar. 3, 2017.
Office Action for U.S. Appl. No. 14/473,941, dated Feb. 8, 2017.
Office Action for U.S. Appl. No. 14/329,447, dated Feb. 10, 2017.
Related Publications (1)
Number Date Country
20160330141 A1 Nov 2016 US
Provisional Applications (1)
Number Date Country
61727478 Nov 2012 US
Divisions (1)
Number Date Country
Parent 14064029 Oct 2013 US
Child 15216374 US