The present invention is directed to radar systems, and in particular to radar systems for vehicles.
The use of radar to determine range and velocity of objects in an environment is important in a number of applications including automotive radar and gesture detection. A radar typically transmits a signal and listens for the reflection of the signal from objects in the environment. By comparing the transmitted radio signals with the received radio signals, a radar system can determine the distance to an object. Using Doppler processing, the velocity of an object can be determined. Using various transmitter and receiver combinations, the location (angle) of an object can also be determined.
The present invention provides multiple-input, multiple-output (MIMO) virtual array methods and a system for achieving better performance in a radar system in determining the angles of an object/target. MIMO antenna techniques offer the potential for substantial improvements in azimuth and elevation angle accuracy and resolution.
Automotive radar with MIMO technology is now entering the market place with modest improvements in angle capability, primarily in the azimuth angle dimension, with less capability in the elevation angle dimension. To support autonomous driving, substantially better capability in both azimuth and elevation will be required to detect and determine the angles of closely spaced objects and to image individual objects.
Therefore, improved MIMO antenna configurations are needed to provide the required resolution in azimuth and elevation within the constraints of the physical antenna size and performance/cost of the radio frequency (RF) and digital signal processing components. Improved MIMO antenna configurations are disclosed herein.
A radar sensing system for a vehicle in accordance with an embodiment of the present invention includes a plurality of transmitters, a plurality of receivers, and a plurality of receive antennas and transmit antennas. The plurality of transmitters is configured for installation and use on a vehicle, and operable to transmit radio signals. The plurality of receivers is configured for installation and use on the vehicle, and operable to receive radio signals that include transmitted radio signals reflected from objects in the environment. A selected antenna configuration provides a quantity of receive antennas and transmit antennas for a desired two-dimensional angle capability for a given board size.
A radar sensing system for a vehicle in accordance with an embodiment of the present invention includes a plurality of transmitters and a plurality of receivers, and a plurality of receive and transmit antennas arranged according to MIMO antenna topologies that comprise transmit and receive antennas with uniform spacing of virtual phase centers as well as sparse array configurations with non-uniform spacing of the virtual phase centers in both horizontal and vertical dimensions.
A radar sensing system for a vehicle in accordance with an embodiment of the present invention includes a plurality of transmitters and a plurality of receivers, and a plurality of receive and transmit antennas arranged according to MIMO antenna topologies that provide a virtual receive sub-array with antennas spaced by half a wavelength (λ/2) while using transmit and receive antennas spaced by greater than λ/2 through the uniform spacing of the transmit antennas by an integer multiple of λ/2 and uniform spacing of the receive antennas by a different integer multiple of λ/2.
A radar sensing system for a vehicle in accordance with an embodiment of the present invention includes a plurality of transmitters and a plurality of receivers, and a plurality of receive antennas and transmit antennas in an MIMO antenna configuration comprising one of: (i) a MIMO configuration with a minimum quantity of antennas and minimum antenna board size for a desired 2D angle capability; (ii) a MIMO configuration comprising TX antenna and/or RX antenna spacing substantially greater than half a wavelength (λ/2) and compatible with wide field of view (FOV), wherein selected TX antenna and/or RX antenna sizes are selected for enhanced detection range while still yielding a virtual uniform linear array (ULA) of λ/2 spacing with no grating lobes; (iii) a MIMO configuration comprising TX antenna and/or RX antenna spacing substantially greater than λ/2 that yields a virtual receive array with uniform phase center spacing of less than the TX or RX phase center spacing, but greater than λ/2, yet with the capability to suppress resulting grating lobes; (iv) a MIMO configuration wherein at least one of quantity, size, and spacing of TX antennas and RX antennas are selected for a desired 2D angle capability; and (v) a MIMO configuration with a selected spacing and/or layout for a desired level of azimuth and elevation capability for a given quantity of TX and RX antennas.
These and other objects, advantages, purposes and features of the present invention will become apparent upon review of the following specification in conjunction with the drawings.
The present invention will now be described with reference to the accompanying figures, wherein numbered elements in the following written description correspond to like-numbered elements in the figures.
Exemplary embodiments of the present invention accomplish better two-dimensional (2D) angle capability over the current state of the art via exemplary multiple input, multiple output (MIMO) antenna topologies in accordance with the present invention. Improvement in angle capability includes better angle resolution for more reliable detection of multiple closely spaced objects as well as better quality imaging for contour detection and identification of individual objects.
Angle resolution is known to scale linearly with the length of the MIMO virtual receiver array, which in turn depends on the number of transmit and receive antennas and their spatial distribution.
Therefore, as described herein, the present invention provides methods and a system for achieving better 2D angle performance in a radar system where a MIMO antenna configuration provides an efficient quantity of antennas and antenna board size for a given level of two-dimensional angle capability.
In an aspect of the present invention, the exemplary MIMO antenna topologies are scalable in the size and spacing of the TX and RX antennas, as well as the number of antennas, and the resulting 2D angle capability.
Radars with a single transmitter/antenna and a single receiver/antenna can determine distance to a target/object but cannot determine a direction or an angle of an object from the radar sensor or system (unless the transmit antenna or receive antenna is mechanically scanned). To achieve angular information, either multiple transmitters/antennas or multiple receivers/antennas or both are needed. The larger the number of transmitters and receivers (with corresponding antennas), the better the resolution possible. A system with multiple transmitters and multiple receivers is also called a multiple input, multiple output or MIMO system. As discussed herein, a quantity of virtual receivers/antennas (a quantity of physical transmitters times a quantity of physical receivers equals a quantity of virtual receivers/antennas).
An exemplary MIMO radar system is illustrated in
The radar sensing system of the present invention may utilize aspects of the radar systems described in U.S. Pat. Nos. 9,753,121; 9,599,702; 9,575,160; 9,689,967; 9,772,397; 9,806,914; 9,791,564; 9,846,228, and/or 9,791,551, and/or U.S. patent applications, Ser. No. 15/492,159, filed Apr. 20, 2017, now U.S. Pat. No. 9,945,935, Ser. No. 15/496,038, filed Apr. 25, 2017, Ser. No. 15/496,039, filed Apr. 25, 2017, now U.S. Pat. No. 9,954955, Ser. No. 15/598,664, filed May 18, 2017, and/or Ser. No. 15/689,273, filed Aug. 29, 2017, and/or U.S. provisional application Ser. No. 62/528,789, filed Jul. 5, 2017, which are all hereby incorporated by reference herein in their entireties.
With MIMO radar systems, each transmitter signal is rendered distinguishable from every other transmitter by using appropriate differences in the modulation, for example, different digital code sequences. Each receiver correlates with each transmitter signal, producing a number of correlated outputs equal to the product of the number of receivers with the number of transmitters. The outputs are deemed to have been produced by a number of virtual receivers, which can exceed the number of physical receivers. In general, if there are N transmitters (T×N) and M receivers (R×M), there will be N×M virtual receivers, one for each transmitter-receiver pair.
In a preferred radar system of the present invention, there are 1-8 transmitters and 4-8 receivers, or more preferably 4-8 transmitters and 8-16 receivers, and most preferably 16 or more transmitters and 16-64 or more receivers.
Two-Dimensional Arrays for Desired Virtual Radar Configurations:
In an aspect of the present invention,
The MIMO virtual array 540 formed by the antenna configuration of
As described above, MIMO configurations in accordance with the present invention may be arranged that provide 2D angle capability with aperture doubling in both the horizontal and vertical dimensions with only 3 transmit antennas and with placement of the transmit and receive antennas in a manner that minimizes the physical size of the antenna board for the given level of 2D angle capability. The given level of 2D angle capability (and antenna board size) scales by the number of receive antennas incorporated (NH+NV=N) and their spacing (ΔH and DV).
The MIMO configuration and virtual receiver arrays illustrated in
The symbols “X” in
In general, each of the various transmit and receive antennas can be of different size and incorporate a different number and/or configuration of radiators. The size of the individual transmit and receive antennas will constrain the minimum spacing between their phase centers (for example, ΔH and ΔV in
The MIMO antennas can be implemented using well known antenna structures and fabrication techniques, including multi-layer printed circuit board antennas with, for example, microstrip feed lines and patch radiators, substrate integrated waveguide (SIW) feed lines and SIW slotted radiators, coplanar waveguide feed lines with SIW slotted radiators, or suitable combinations thereof. Other common types of feed and radiator structures can be used as well. The antenna illustrated in
In general, to improve radar detection range and/or angle capability, large arrays of antennas are needed leading to increased size and/or cost. The number of antennas in the array can be reduced by spacing the individual antennas by a distance greater than λ/2 (where λ is wavelength of the transmitted radio signal) with the inherent penalty of grating lobes (multiple ambiguous replicas of the mainlobe and/or large radiation side lobes produced by antenna arrays when element spacing is too large).
In another aspect of the present invention,
Furthermore, larger higher-gain antennas can be incorporated compared to MIMO configurations with antennas spaced by λ/2. Benefits of this exemplary style of MIMO configuration that incorporates larger higher-gain antennas in a manner that produces a longer virtual receive array with λ/2 spacing can include enhanced detection range and improved angle capability without introducing grating lobes.
The enabling innovation that synthesizes a MIMO virtual receive sub-array with antennas spaced λ/2 while using transmit and receive antennas spaced by greater than λ/2 is uniform spacing of the transmit antennas by an integer multiple of λ/2 and uniform spacing of the receive antennas by a different integer multiple of λ/2. The resulting MIMO virtual receive array may produce a few antennas at either end with a non-uniform spacing greater than λ/2. These antennas with non-uniform spacing can either be discarded or the “holes” (640) in the virtual array can be filled to further extend the length of the uniform virtual linear array 630. A number of different known techniques can be used to fill the holes. These techniques, which include linear prediction methods, fill the resulting holes produced through the non-uniform spacings and extend the length of the portion of the virtual receive sub-array with uniform spacing of virtual antennas via array interpolation techniques.
For the MIMO antenna configuration of
In another aspect of the present invention,
The various sub-arrays illustrated in
For example, the benefit of the more fully filled (less sparse) 2D virtual receive array (780) shown in
The 1D horizontal virtual sub-array 790 with λ/2 spacing of
For a given MIMO antenna configuration, it's known that interchanging the transmit antennas and the receive antennas will yield the same MIMO virtual receive array. For example, referring to
For a given MIMO antenna configuration, it's also know that the virtual receive array is determined by the relative location of the transmit antennas to each other and the relative location of the receive antennas to each other but not the relative location of the transmit antennas to the receive antennas. Hence the position of the set of transmit antennas relative to the position of the set of receive antennas can be adapted as needed to tailor the antenna board dimensions without affecting the resulting MIMO virtual receive array. For example, referring to
Note, it is known that the MIMO virtual receive array represents the far field response of the MIMO antenna layout. Although the far field response of the MIMO antenna layout is not affected by the relative position of the set of transmit antennas to the set of receive antennas, the near field response is affected and can be determined using ray tracing techniques for the specific layout of the transmit antennas and receive antennas.
The 2D MIMO configurations as depicted herein do not necessarily provide symmetrical angle capability in the horizontal and vertical directions. Depending on the application, it may be appropriate to provide asymmetrical angle capability, for example, better angle capability in the horizontal direction compared to the vertical direction. For the 2D MIMO configurations herein, angle capability in a given direction can be adapted by the variable parameters illustrated and/or by suitable orientation of the sets of transmit antennas and receive antennas.
In accordance with aspects of the present invention,
The above exemplary MIMO antenna configurations include eight exemplary configurations to yield a desired outcome. The quantity of TX, RX, and Vrx antennas involve tradeoffs in angle resolution versus the requirements imposed on the physical size of the antenna board as well as the requirements imposed on the radio frequency (RF) and digital signal processing components and the resulting cost implications.
Radar horizontal and vertical angle resolution determine the capability to distinguish (discriminate) multiple closely spaced objects and to image a single distributed object. Horizontal and vertical angle resolution are proportional to the azimuth and elevation beamwidths of the (virtual) receive array and can be further improved via angle super-resolution processing techniques. In the automotive radar frequency band of 77 GHz, the 2D MIMO configurations here-in can yield azimuth and elevation beamwidths from 5.0 to 1.5 deg. while incorporating from 3 TX×8 RX (24 Vrx) antennas to 12 TX×16 RX (192 Vrx) antennas. The corresponding physical size of the antenna board would vary from about 40 mm×40 mm to 100 mm×100 mm. The number of antennas is within the emerging capabilities of low-cost, single chip RFCMOS MMICs now being developed.
Automotive radar with azimuth and elevation beamwidth less than 1.5 deg. can be accomplished with 2D MIMO configurations here-in incorporating additional antennas, for example up to 24 TX×32 RX (768 Vrx), at the expense of increased physical size of the antenna board and increased cost of the supporting RF, analog and digital chipset (e.g., the need for multiple RFCMOS MMICs).
Angle resolution for the purposes of target imaging is typically on the order of the antenna beamwidth. Using super-resolution signal processing, angle resolution can be improved to on the order of one-half to one-third of the beamwidth. For adequate imaging capability for automotive radar, it is estimated that angle resolution on the order of one to two degrees is needed. For a given angle resolution metric, the radar image quality (object contour quality) will depend on the distribution of radar signal scattering in position and strength along the contour of the object.
Thus, embodiments of the present invention provide adequate accuracy and resolution capabilities necessary to support a variety of convenience and safety functions including full speed range adaptive cruise control, forward and side collision warning and avoidance, and automated parking as well as emerging autonomous driving functions including traffic jam pilot and highway pilot up to fully autonomous operation. As discussed herein, the exemplary embodiments incorporate MIMO configurations with uniform spacing of the virtual phase centers as well as sparse array MIMO configurations with non-uniform spacing of the virtual phase centers in both the horizontal and vertical dimensions.
Changes and modifications in the specifically described embodiments can be carried out without departing from the principles of the present invention which is intended to be limited only by the scope of the appended claims, as interpreted according to the principles of patent law including the doctrine of equivalents.
This application is a continuation of U.S. patent application Ser. No. 15/705,627, filed Sep. 15, 2017, now U.S. Pat. No. 9,869,762, which claims the filing benefit of U.S. provisional application Ser. No. 62/395,583, filed Sep. 16, 2016, which is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1882128 | Fearing | Oct 1932 | A |
3374478 | Blau | Mar 1968 | A |
3735398 | Ross | May 1973 | A |
3750169 | Strenglein | Jul 1973 | A |
3896434 | Sirven | Jul 1975 | A |
4078234 | Fishbein et al. | Mar 1978 | A |
4176351 | De Vita et al. | Nov 1979 | A |
4566010 | Collins | Jan 1986 | A |
4882668 | Schmid et al. | Nov 1989 | A |
4939685 | Feintuch | Jul 1990 | A |
5001486 | Bachtiger | Mar 1991 | A |
5034906 | Chang | Jul 1991 | A |
5087918 | May et al. | Feb 1992 | A |
5151702 | Urkowitz | Sep 1992 | A |
5175710 | Hutson | Dec 1992 | A |
5218619 | Dent | Jun 1993 | A |
5272663 | Jones et al. | Dec 1993 | A |
5280288 | Sherry et al. | Jan 1994 | A |
5302956 | Asbury et al. | Apr 1994 | A |
5341141 | Frazier et al. | Aug 1994 | A |
5345470 | Alexander | Sep 1994 | A |
5379322 | Kosaka et al. | Jan 1995 | A |
5497162 | Kaiser | Mar 1996 | A |
5508706 | Tsou et al. | Apr 1996 | A |
5657021 | Ehsani-Nategh et al. | Aug 1997 | A |
5657023 | Lewis et al. | Aug 1997 | A |
5712640 | Andou | Jan 1998 | A |
5724041 | Inoue et al. | Mar 1998 | A |
5892477 | Wehling | Apr 1999 | A |
5917430 | Greneker, III et al. | Jun 1999 | A |
5920285 | Benjamin | Jul 1999 | A |
5931893 | Dent et al. | Aug 1999 | A |
5959571 | Aoyagi et al. | Sep 1999 | A |
5970400 | Dwyer | Oct 1999 | A |
6067314 | Azuma | May 2000 | A |
6069581 | Bell et al. | May 2000 | A |
6121872 | Weishaupt | Sep 2000 | A |
6121918 | Tullsson | Sep 2000 | A |
6151366 | Yip | Nov 2000 | A |
6163252 | Nishiwaki | Dec 2000 | A |
6184829 | Stilp | Feb 2001 | B1 |
6191726 | Tullsson | Feb 2001 | B1 |
6288672 | Asano et al. | Sep 2001 | B1 |
6307622 | Lewis | Oct 2001 | B1 |
6347264 | Nicosia et al. | Feb 2002 | B2 |
6400308 | Bell et al. | Jun 2002 | B1 |
6411250 | Oswald et al. | Jun 2002 | B1 |
6417796 | Bowlds | Jul 2002 | B1 |
6424289 | Fukae et al. | Jul 2002 | B2 |
6583753 | Reed | Jun 2003 | B1 |
6614387 | Deadman | Sep 2003 | B1 |
6624784 | Yamaguchi | Sep 2003 | B1 |
6674908 | Aronov | Jan 2004 | B1 |
6714956 | Liu et al. | Mar 2004 | B1 |
6747595 | Hirabe | Jun 2004 | B2 |
6768391 | Dent et al. | Jul 2004 | B1 |
6975246 | Trudeau | Dec 2005 | B1 |
7119739 | Struckman | Oct 2006 | B1 |
7289058 | Shima | Oct 2007 | B2 |
7299251 | Skidmore et al. | Nov 2007 | B2 |
7338450 | Kristofferson et al. | Mar 2008 | B2 |
7395084 | Anttila | Jul 2008 | B2 |
7460055 | Nishijima et al. | Dec 2008 | B2 |
7545310 | Matsuoka | Jun 2009 | B2 |
7545321 | Kawasaki | Jun 2009 | B2 |
7564400 | Fukuda | Jul 2009 | B2 |
7567204 | Sakamoto | Jul 2009 | B2 |
7609198 | Chang | Oct 2009 | B2 |
7642952 | Fukuda | Jan 2010 | B2 |
7663533 | Toennesen | Feb 2010 | B2 |
7728762 | Sakamoto | Jun 2010 | B2 |
7791528 | Klotzbuecher | Sep 2010 | B2 |
7847731 | Wiesbeck et al. | Dec 2010 | B2 |
7855677 | Negoro et al. | Dec 2010 | B2 |
7859450 | Shirakawa et al. | Dec 2010 | B2 |
8019352 | Rappaport et al. | Sep 2011 | B2 |
8049663 | Frank et al. | Nov 2011 | B2 |
8059026 | Nunez | Nov 2011 | B1 |
8102306 | Smith, Jr. et al. | Jan 2012 | B2 |
8154436 | Szajnowski | Apr 2012 | B2 |
8330650 | Goldman | Dec 2012 | B2 |
8390507 | Wintermantel | Mar 2013 | B2 |
8471760 | Szajnowski | Jun 2013 | B2 |
8532159 | Kagawa et al. | Sep 2013 | B2 |
8547988 | Hadani et al. | Oct 2013 | B2 |
8686894 | Fukuda et al. | Apr 2014 | B2 |
8694306 | Short et al. | Apr 2014 | B1 |
9121943 | Stirlin-Gallacher et al. | Sep 2015 | B2 |
9239378 | Kishigami et al. | Jan 2016 | B2 |
9239379 | Burgio et al. | Jan 2016 | B2 |
9282945 | Smith et al. | Mar 2016 | B2 |
9335402 | Maeno et al. | May 2016 | B2 |
9541639 | Searcy et al. | Jan 2017 | B2 |
9568600 | Alland | Feb 2017 | B2 |
9575160 | Davis et al. | Feb 2017 | B1 |
9599702 | Bordes et al. | Mar 2017 | B1 |
9689967 | Stark et al. | Jun 2017 | B1 |
9720073 | Davis et al. | Aug 2017 | B1 |
9753121 | Davis | Sep 2017 | B1 |
9753132 | Bordes et al. | Sep 2017 | B1 |
9772397 | Bordes et al. | Sep 2017 | B1 |
9791551 | Eshraghi et al. | Oct 2017 | B1 |
9791564 | Harris et al. | Oct 2017 | B1 |
9806914 | Bordes et al. | Oct 2017 | B1 |
9829567 | Davis et al. | Nov 2017 | B1 |
9846228 | Davis et al. | Dec 2017 | B2 |
9869762 | Alland | Jan 2018 | B1 |
20010002919 | Sourour et al. | Jun 2001 | A1 |
20020004692 | Nicosia et al. | Jan 2002 | A1 |
20020044082 | Woodington et al. | Apr 2002 | A1 |
20020075178 | Woodington et al. | Jun 2002 | A1 |
20020118522 | Ho et al. | Aug 2002 | A1 |
20020130811 | Voigtaender | Sep 2002 | A1 |
20020147534 | Delcheccolo et al. | Oct 2002 | A1 |
20020155811 | Prismantas | Oct 2002 | A1 |
20030001772 | Woodington et al. | Jan 2003 | A1 |
20030011519 | Breglia et al. | Jan 2003 | A1 |
20030058166 | Hirabe | Mar 2003 | A1 |
20030102997 | Levin et al. | Jun 2003 | A1 |
20030235244 | Pessoa et al. | Dec 2003 | A1 |
20040012516 | Schiffmann | Jan 2004 | A1 |
20040015529 | Tanrikulu et al. | Jan 2004 | A1 |
20040066323 | Richter | Apr 2004 | A1 |
20040138802 | Kuragaki et al. | Jul 2004 | A1 |
20050069162 | Haykin | Mar 2005 | A1 |
20050156780 | Bonthron et al. | Jul 2005 | A1 |
20050201457 | Allred et al. | Sep 2005 | A1 |
20050225476 | Hoetzel et al. | Oct 2005 | A1 |
20060012511 | Dooi et al. | Jan 2006 | A1 |
20060036353 | Wintermantel | Feb 2006 | A1 |
20060050707 | Sterin | Mar 2006 | A1 |
20060093078 | Lewis et al. | May 2006 | A1 |
20060109170 | Voigtlaender et al. | May 2006 | A1 |
20060109931 | Asai | May 2006 | A1 |
20060114324 | Farmer et al. | Jun 2006 | A1 |
20060140249 | Kohno | Jun 2006 | A1 |
20060181448 | Natsume et al. | Aug 2006 | A1 |
20060244653 | Szajnowski | Nov 2006 | A1 |
20060262007 | Bonthron | Nov 2006 | A1 |
20060262009 | Watanabe | Nov 2006 | A1 |
20070018884 | Adams | Jan 2007 | A1 |
20070018886 | Watanabe et al. | Jan 2007 | A1 |
20070109175 | Fukuda | May 2007 | A1 |
20070120731 | Kelly, Jr. et al. | May 2007 | A1 |
20070132633 | Uchino | Jun 2007 | A1 |
20070152870 | Woodington et al. | Jul 2007 | A1 |
20070152871 | Puglia | Jul 2007 | A1 |
20070152872 | Woodington | Jul 2007 | A1 |
20070164896 | Suzuki et al. | Jul 2007 | A1 |
20070171122 | Nakano | Jul 2007 | A1 |
20070182619 | Honda et al. | Aug 2007 | A1 |
20070182623 | Zeng | Aug 2007 | A1 |
20070188373 | Shirakawa et al. | Aug 2007 | A1 |
20070200747 | Okai | Aug 2007 | A1 |
20070279303 | Schoebel | Dec 2007 | A1 |
20080208472 | Morcom | Aug 2008 | A1 |
20080272955 | Yonak et al. | Nov 2008 | A1 |
20090015459 | Mahler et al. | Jan 2009 | A1 |
20090015464 | Fukuda | Jan 2009 | A1 |
20090051581 | Hatono | Feb 2009 | A1 |
20090073025 | Inoue et al. | Mar 2009 | A1 |
20090079617 | Shirakawa et al. | Mar 2009 | A1 |
20090085827 | Orime et al. | Apr 2009 | A1 |
20090121918 | Shirai et al. | May 2009 | A1 |
20090212998 | Szajnowski | Aug 2009 | A1 |
20090237293 | Sakuma | Sep 2009 | A1 |
20090267822 | Shinoda et al. | Oct 2009 | A1 |
20090289831 | Akita | Nov 2009 | A1 |
20090295623 | Falk | Dec 2009 | A1 |
20100116365 | McCarty | May 2010 | A1 |
20100156690 | Kim et al. | Jun 2010 | A1 |
20100198513 | Zeng et al. | Aug 2010 | A1 |
20100277359 | Ando | Nov 2010 | A1 |
20110006944 | Goldman | Jan 2011 | A1 |
20110032138 | Krapf | Feb 2011 | A1 |
20110074620 | Wintermantel | Mar 2011 | A1 |
20110187600 | Landt | Aug 2011 | A1 |
20110196568 | Nickolaou | Aug 2011 | A1 |
20110248796 | Pozgay | Oct 2011 | A1 |
20110279303 | Smith, Jr. et al. | Nov 2011 | A1 |
20110279307 | Song | Nov 2011 | A1 |
20110285576 | Lynam | Nov 2011 | A1 |
20110291874 | De Mersseman | Dec 2011 | A1 |
20110291875 | Szajnowski | Dec 2011 | A1 |
20110292971 | Hadani et al. | Dec 2011 | A1 |
20110298653 | Mizutani | Dec 2011 | A1 |
20120001791 | Wintermantel | Jan 2012 | A1 |
20120050093 | Heilmann et al. | Mar 2012 | A1 |
20120105268 | Smits et al. | May 2012 | A1 |
20120112957 | Nguyen et al. | May 2012 | A1 |
20120133547 | MacDonald et al. | May 2012 | A1 |
20120173246 | Choi et al. | Jul 2012 | A1 |
20120257643 | Wu et al. | Oct 2012 | A1 |
20120319900 | Johansson et al. | Dec 2012 | A1 |
20130016761 | Nentwig | Jan 2013 | A1 |
20130021196 | Himmelstoss | Jan 2013 | A1 |
20130027240 | Chowdhury | Jan 2013 | A1 |
20130069818 | Shirakawa et al. | Mar 2013 | A1 |
20130102254 | Cyzs | Apr 2013 | A1 |
20130113653 | Kishigami et al. | May 2013 | A1 |
20130135140 | Kishigami | May 2013 | A1 |
20130169485 | Lynch | Jul 2013 | A1 |
20130176154 | Bonaccio et al. | Jul 2013 | A1 |
20130214961 | Lee et al. | Aug 2013 | A1 |
20130229301 | Kanamoto | Sep 2013 | A1 |
20130244710 | Nguyen et al. | Sep 2013 | A1 |
20130314271 | Braswell et al. | Nov 2013 | A1 |
20130321196 | Binzer et al. | Dec 2013 | A1 |
20140022108 | Alberth, Jr. et al. | Jan 2014 | A1 |
20140028491 | Ferguson | Jan 2014 | A1 |
20140035774 | Khlifi | Feb 2014 | A1 |
20140070985 | Vacanti | Mar 2014 | A1 |
20140085128 | Kishigami et al. | Mar 2014 | A1 |
20140111372 | Wu | Apr 2014 | A1 |
20140159948 | Ishimori et al. | Jun 2014 | A1 |
20140220903 | Schulz et al. | Aug 2014 | A1 |
20140253345 | Breed | Sep 2014 | A1 |
20140285373 | Kuwahara et al. | Sep 2014 | A1 |
20140327566 | Burgio et al. | Nov 2014 | A1 |
20140348253 | Mobasher et al. | Nov 2014 | A1 |
20150002329 | Murad et al. | Jan 2015 | A1 |
20150002357 | Sanford et al. | Jan 2015 | A1 |
20150035662 | Bowers et al. | Feb 2015 | A1 |
20150061922 | Kishigami | Mar 2015 | A1 |
20150103745 | Negus et al. | Apr 2015 | A1 |
20150198709 | Inoue | Jul 2015 | A1 |
20150204966 | Kishigami | Jul 2015 | A1 |
20150204971 | Kuehnle | Jul 2015 | A1 |
20150226848 | Park | Aug 2015 | A1 |
20150234045 | Rosenblum | Aug 2015 | A1 |
20150247924 | Kishigami | Sep 2015 | A1 |
20150253419 | Alland | Sep 2015 | A1 |
20150255867 | Inoue | Sep 2015 | A1 |
20150301172 | Ossowska | Oct 2015 | A1 |
20150323660 | Hampikian | Nov 2015 | A1 |
20150331090 | Jeong et al. | Nov 2015 | A1 |
20160003939 | Stainvas Olshansky et al. | Jan 2016 | A1 |
20160018511 | Nayyar et al. | Jan 2016 | A1 |
20160033631 | Searcy et al. | Feb 2016 | A1 |
20160033632 | Searcy et al. | Feb 2016 | A1 |
20160041260 | Cao et al. | Feb 2016 | A1 |
20160061935 | McCloskey et al. | Mar 2016 | A1 |
20160084941 | Arage | Mar 2016 | A1 |
20160084943 | Arage | Mar 2016 | A1 |
20160091595 | Alcalde | Mar 2016 | A1 |
20160124086 | Jansen et al. | May 2016 | A1 |
20160139254 | Wittenberg | May 2016 | A1 |
20160146931 | Rao et al. | May 2016 | A1 |
20160154103 | Moriuchi | Jun 2016 | A1 |
20160238694 | Kishigami | Aug 2016 | A1 |
20170010361 | Tanaka | Jan 2017 | A1 |
20170023661 | Richert | Jan 2017 | A1 |
20170074980 | Adib | Mar 2017 | A1 |
20170153316 | Wintermantel | Jun 2017 | A1 |
20170293025 | Davis et al. | Oct 2017 | A1 |
20170293027 | Stark et al. | Oct 2017 | A1 |
20170307728 | Eshraghi et al. | Oct 2017 | A1 |
20170309997 | Alland et al. | Oct 2017 | A1 |
20170310758 | Davis et al. | Oct 2017 | A1 |
20170336495 | Davis et al. | Nov 2017 | A1 |
Number | Date | Country |
---|---|---|
0725480 | Nov 2011 | EP |
2374217 | Apr 2013 | EP |
2821808 | Jul 2015 | EP |
2751086 | Jan 1998 | FR |
WO2015175078 | Nov 2015 | WO |
WO2015185058 | Dec 2015 | WO |
WO2016011407 | Jan 2016 | WO |
WO2016030656 | Mar 2016 | WO |
WO2017187330 | Nov 2017 | WO |
Entry |
---|
Chambers et al., An article entitled “Real-Time Vehicle Mounted Multistatic Ground Penetrating Radar Imaging System for Buried Object Detection,” Lawrence Livermore National Laboratory Reports (LLNL-TR-615452), Feb. 4, 2013; Retrieved from the Internet from https://e-reports-ext.llnl.gov/pdf/711892.pdf. |
Fraser, “Design and simulation of a coded sequence ground penetrating radar,” In: Diss. University of British Columbia, Dec. 3, 2015. |
Zhou et al., “Linear extractors for extracting randomness from noisy sources,” In: Information Theory Proceedings (ISIT), 2011 IEEE International Symposium on Oct. 3, 2011. |
International Search Report and Written Opinion of the International Searching Authority from corresponding Patent Cooperation Treaty (PCT) Application No. PCT/IB2017/55608, dated Jan. 26, 2018. |
Number | Date | Country | |
---|---|---|---|
20180149736 A1 | May 2018 | US |
Number | Date | Country | |
---|---|---|---|
62395583 | Sep 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15705627 | Sep 2017 | US |
Child | 15871175 | US |