The present disclosure relates generally to vehicles and other transport structures, and more particularly, to virtual railroad and a peloton of vehicles.
Current highways are inefficient in preventing traffic congestions, which causes the vehicles travelling on these highways to waste large amounts of energy. Conventionally, to alleviate the stresses on highways is by introducing public railways between nearby cities to encourage citizens to travel using the public railways instead of road vehicles.
However, such public railways are substantially expensive and require significant time to complete them. Various cities and towns may not have the financial resources to build such public railways. Accordingly, such disadvantages have prevented more widespread implementation of public railways and have exacerbated the inefficiencies of the current highways.
The following presents a simplified summary of one or more aspects of the disclosure in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated aspects, and is intended to neither identify key or critical elements of all aspects nor delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.
In various aspects, a system is disclosed. The system may include one or more passenger vehicles of a peloton, and a first engine vehicle of the peloton. The first engine vehicle of the peloton may be communicatively connected to the one or more passenger vehicles. The first engine vehicle comprises a processor communicatively connected to a memory and configured to: receive status information of the one or more passenger vehicles, determine, based on the received status information, a set of current values for a set of vehicle attributes for each of the one or more passenger vehicles, and adjust, based on the set of current values for the set of vehicle attributes, a position of a corresponding passenger vehicle of the one or more passenger vehicles.
Other aspects will become readily apparent to those skilled in the art from the following detailed description, wherein is shown and described only several embodiments by way of illustration. As will be realized by those skilled in the art, concepts herein are capable of other and different embodiments, and several details are capable of modification in various other respects, all without departing from the present disclosure. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not as restrictive.
Various aspects of will now be presented in the detailed description by way of example, and not by way of limitation, in the accompanying drawings, wherein:
The detailed description set forth below in connection with the appended drawings is intended to provide a description of various exemplary embodiments of the concepts disclosed herein and is not intended to represent the only embodiments in which the disclosure may be practiced. The term “exemplary” used in this disclosure means “serving as an example, instance, or illustration,” and should not necessarily be construed as preferred or advantageous over other embodiments presented in this disclosure. The detailed description includes specific details for the purpose of providing a thorough and complete disclosure that fully conveys the scope of the concepts to those skilled in the art. However, the disclosure may be practiced without these specific details. In some instances, well-known structures and components may be shown in block diagram form, or omitted entirely, in order to avoid obscuring the various concepts presented throughout this disclosure.
As described above, existing highways are inefficient in preventing traffic congestions, which causes the vehicles travelling on these highways to waste large amounts of energy, and public railways are too expensive and time consuming to be implemented in an efficient manner to successfully improve the efficiency of existing highways.
Accordingly, the present disclosure is generally directed to systems and techniques for using one or more lanes of a highway, roadway, etc., for a virtual railroad (VRR). In various embodiments, existing lanes of a highway may be repurposed for the VRR, thereby saving the cost of constructing VRR lanes. The VRR described herein includes one or more passenger vehicles that are communicatively coupled with an engine vehicle to form a peloton of vehicles. The peloton may be led by the engine vehicle, and the engine vehicle may control the movement of the passenger vehicles communicatively coupled to the engine vehicle. Furthermore, the present disclosure provides a VRR system that includes a dedicated VRR lane for the VRR peloton to travel. In some implementations, the VRR lane may be a dedicated lane adjacent to regular traffic lanes. In some implementations, the VRR lane may include one or more aerodynamic features, which allow for the vehicles of the VRR peloton to travel faster while expending less energy.
Additional details of the VRR system are described herein with respect to
Turning now to
In some implementations, the VRR lane 102 may be added as an outer most lane of a highway system. For example, as shown in
The dedicated VRR lane 102 may be configured to be narrower than one or more regular and/or standard traffic lanes 104. For example, the width of the VRR lane 102 may be eight feet or close to eight feet. The narrower width of the VRR lane 102 may allow for a VRR lane to be more easily added into existing highway systems. The narrower width of the VRR lane 102 may allow for the VRR lane 102 to fit more easily within existing space limitations of a highway system. For example, a VRR lane 102 may be created from a portion of the space occupied by an existing regular traffic lane. In some implementations, the efficiency of a peloton or the VRR system described herein may be improved by selecting a road surface material of the VRR lane 102 that reduces rolling resistance of the engine and/or the passenger vehicles of the peloton.
Turning now to
The engine vehicle 204 of the peloton 202 may be an ICE vehicle, an electric vehicle, a hybrid vehicle, and the like. In some implementations, the vehicle 204 may have 400 horsepower (hp) and use net zero carbon fuel. In some implementations, the engine vehicle 204 may have specialized aerodynamic features to increase the overall energy efficiency of the peloton 202. For example, the engine vehicle 204 may be configured to have the lowest aerodynamic drag. In some implementations, the engine vehicle 204 may have a long slender body. In some implementations, the total aerodynamic efficiency of the passenger vehicles 206 and the engine vehicle 204 may be compounded as a result of the engine vehicle 204 and the passenger vehicles 206 forming the peloton 202. The aerodynamic efficiency of the peloton 202 may also reduce the energy consumption of the passenger vehicles 206 while they are travelling in the peloton 202.
The peloton 202, as shown in
By forming the peloton 202, the passenger vehicles 206 can draft behind the engine vehicle 204 to travel at high speeds (e.g., between 100-120 miles per hour (mph)). Additionally, due to the aerodynamic features of the engine vehicle 204 and the passenger vehicles 206, the engine vehicle 204 and the passenger vehicles 206 may travel at high speeds while saving significant amounts of energy while travelling.
The engine vehicle 204 may be configured to control the passenger vehicles 206 that are part of the peloton 202. For example, the engine vehicle 204 may be configured to control one or more operational aspects of one or more of the passenger vehicles, such as, the powertrain, braking, speed, and the like of the passenger vehicles 206. In some implementations, each vehicle of the peloton 202 may be physically connected to at least one other vehicle of the peloton 202. In some implementations, the engine vehicle 204 may configured to pull the passenger vehicles 206 when each of the engine vehicle 204 or the passenger vehicles 206 are connected to at least another vehicle of the peloton 202.
In some implementations, the engine vehicle 204 may be an autonomous vehicle. An autonomous vehicle that does not need to have a human driver riding along may offer advantages. For example, the engine vehicle 204 may be constructed from lightweight materials because it need not include one of more safety structures, such as crash rails, and the like. In some implementations, tires of an autonomous engine vehicle 204 may be formed from highly-efficient hard rubber because comfort is not a factor without a human occupant.
In some implementations, one or more passenger vehicles 206 may be configured to use their own power to travel in the peloton 202. For example, instead of the engine vehicle 204 pulling the passenger vehicles 206, the engine vehicle 204 may be configured to transmit an instruction and/or a message to the passenger vehicles 206 to cause them to travel at a desired speed. In some implementations, the desired speed may be a predetermined speed. In some implementations, the engine vehicle 204 may be configured to determine the desired speed based on environmental factors (e.g., weather, road conditions, and the like), operational factors of the vehicles of the peloton 202 (e.g., maximum speed of the passenger vehicles, maximum speed of the engine vehicle, and the like). In some implementations, the engine vehicle 204 may be operated by entity, such as an government entity, a transit authority, and the like. The engine vehicle 204 may be operated on a predetermined schedule throughout the day.
The passenger vehicles 206 may be autonomous vehicles. The passenger vehicles 206 may be configured to autonomously couple with a peloton of vehicles (e.g., peloton 202). In some implementations, the passenger vehicles 206 may be configured to autonomously couple with the peloton 202 once the passenger vehicle 206 is at a coupling location (e.g., a virtual station), and other operating conditions are satisfied.
In some implementations, each engine vehicle 204 and each passenger vehicle 206 may include one or more processors and memory to store instructions executable by the one or more processors. The engine vehicle 204 and the passenger vehicles 206 may be configured with a software application, which may be configured to schedule trips using the VRR peloton. The software application may allow the user to coordinate the trips such that the user's passenger vehicle 206 can couple with a regularly-scheduled engine vehicle at an appropriate location and time and decouple at the appropriate location.
In some implementations, the engine vehicle 204 may be configured to monitor operational status attributes and/or parameters (e.g., battery status, energy storage status, fuel level, operational range, travel range, tire health, wheel health, operational health, size of gap or distance between vehicles of the peloton, temperature of one or more components, and the like), emergency status attributes and/or parameters (e.g., any vehicle component failure, battery failure, brake failure, component temperatures exceeding predetermined temperature thresholds, and the like) and the like of itself and the passenger vehicles. In some implementations, passenger vehicle 206 may monitor its own operational status, including the size of gap or distance between itself and at least one other vehicle in the peloton (e.g., the vehicle ahead of it in the peloton) and communicate the operational status with the engine vehicle 204. The engine vehicle 204 and the passenger vehicles 206 may be include one or more sensors configured to monitor and record data related to the operational and/or emergency status attributes and/or parameters. In some implementations, the one or more sensors may be communicatively coupled with the one or more processors and/or memory of the vehicles (e.g., engine vehicle 204 and passenger vehicles 206). The engine vehicle 204 may be configured to determine and transmit instructions based on the status information of the operational and/or emergency attributes and/or parameters received from the passenger vehicles 206.
The engine vehicle 204 may be configured to receive status information of the passenger vehicles 206. The status information of a passenger vehicle may include information related to any of the operational status parameters and/or attributes (e.g., battery status, energy storage status, fuel level, operational range, travel range, operational health, and the like) of the passenger vehicles 206, destination information of the passenger vehicles 206, destination information the peloton, and the like. In some implementations, the passenger vehicles 206 may transmit their operational status information, destination information, and the like to the engine vehicle 204. In some implementations, the passenger vehicles 206 may be configured to transmit the operational status information and/or any emergency status information (e.g., any vehicle component failure, battery failure, brake failure, component temperatures exceeding predetermined temperature thresholds, and the like) periodically to the engine vehicle 204. The periodicity and/or frequency of transmission of information from the passenger vehicles 206 to engine vehicle 204 may be predetermined. In some implementations, the passenger vehicles 206 may transmit the emergency status information in real-time outside of the predetermined periodicity and/or frequency.
The engine vehicle 204, based on the received status information, may be configured to determine and/or identify a set of current values for a set of vehicle attributes (e.g., operational status attributes and/or parameters, emergency status and/or parameters, and the like described above) for each of the passenger vehicles. The engine vehicle 204, based on the determined and/or identified current values of a passenger vehicle 206, may be configured to adjust a position of a corresponding passenger vehicle 206.
The engine vehicle 204 may be configured to adjust a position of a passenger vehicle by causing the passenger vehicle to increase or decrease its speed. For example, the engine vehicle 204 may transmit an instruction and/or a message to the passenger vehicle 206 to increase or decrease its speed, and the passenger vehicle 206 may be configured to increase or decrease the speed in response to receiving the instruction. The engine vehicle 204 and the passenger vehicles 206 may be configured to increase or decrease speed by a predetermined amount.
In some implementations, the engine vehicle 204 may be configured to determine and/or identify a distance between a passenger vehicle and another vehicle (e.g., a passenger vehicle or an engine vehicle) of the peloton based on the operational status (e.g., distance between a first passenger vehicle and another vehicle of the peloton). Based on determined distance, the engine vehicle 204 may determine whether the determined distance fails to satisfy a desired gap size (e.g., gap size 210) between the passenger vehicle and the other vehicle of the peloton 202. The desired gap size (e.g., gap size 210) may be a predetermined gap size between two vehicles of a peloton. In some implementations, the engine vehicle 204 may determine whether the distance satisfies the desired gap size by determining whether the distance satisfies a large gap threshold value or a short gap threshold value. The large gap threshold value may indicate that the size of the gap between the vehicles of the peloton 202 is greater than a desired gap between vehicles of a peloton. Similarly, the engine vehicle 204 may determine whether the determined distance satisfies a short gap threshold value. The short gap threshold value may indicate that the size of the gap between the vehicles of the peloton 202 is less than a desired gap between vehicles of a peloton.
The engine vehicle 204 may be configured to cause the passenger vehicle to increase the speed when the determined distance satisfies the large gap threshold value. Similarly, the engine vehicle 204 may be configured to cause the passenger vehicle to decrease the speed when the determined distance satisfies short gap threshold value. In some implementations, if the size of the gap 210 between multiple sets of vehicles fails to satisfy a desired gap size between two vehicles of the peloton, then the engine vehicle 204 may cause passenger vehicle(s) of a first set to adjust its position (e.g., increase speed or decrease speed) until the size of the gap satisfies the desired gap size.
In some implementations, the engine vehicle 204 may be configured to adjust a position of a passenger vehicle by causing the passenger vehicle to uncouple from the peloton 202. The engine vehicle 204 may be configured to cause a passenger vehicle to uncouple from the peloton if any emergency conditions (e.g., failure of brakes, batteries, wheels, and the like) are satisfied. Similarly, the engine vehicle 204 may be configured to cause a passenger vehicle to uncouple from the peloton a current value of an operational status attribute and/or parameter satisfies a threshold level, For example, if a current fuel level, charge level, energy storage level and the like fails to satisfy a corresponding threshold level. In some implementations, the engine vehicle 204 may be configured to cause a vehicle to uncouple from the peloton if an upcoming virtual station is the virtual station at which a passenger vehicle 206 of the peloton 202 should exit. The engine vehicle 204 may determine whether an upcoming virtual station is the virtual station at which a passenger vehicle should exit based on the destination information of passenger vehicle. In some implementations, the engine vehicle 204 may receive destination information each of the passenger vehicles 206 of the peloton 202. In some implementations, the engine vehicle 204 may receive from a computing hub (e.g., a global computing hub) of the VRR system.
Turning now to
The deployable shrouds 308a, 308b, 308c, collectively referred to as deployable shrouds 308, may increase the aerodynamic efficiency of the peloton 302 when the shrouds 308 are deployed. The deployable shrouds 308 may cover the top areas of the gaps between the vehicles of the peloton 302, as shown in
As described above, in some implementations, engine vehicles and/or passenger vehicles may be electric vehicles. For example, engine vehicle 304 may be an electric vehicle and the passenger vehicles 306 may be an electric vehicle, and the corresponding deployable shrouds 308 of these vehicles may include electrical wiring that can electrically connect with a trailing vehicle in an automatic way when a passenger vehicle joins the peloton and electrically disconnect from the trailing vehicle in an automatic way when a passenger vehicle uncouples from the peloton. For example, as a passenger vehicle 306 exits or uncouples from the peloton 302, its electrical connection can be automatically disconnected, and when a passenger vehicle 306 join the peloton 302, their electrical connections can be automatically connected. In this way, all of the passenger vehicles 306 in the peloton 302 may be electrically connected in parallel with the engine vehicle 304. With such electrical connections, in some implementations, the engine vehicle 304 can supply electricity to charge the batteries of the passenger vehicles 306 while they are in the peloton. As such the peloton 302 may be a moving charging station in between destinations.
The electrical connections described above may allow the passenger vehicles 306 to have greater range in the VRR and/or may allow the passenger vehicles 306 to have smaller batteries than they would otherwise. For example, the batteries in the passenger vehicles 306 may be sized smaller such that they are able to make the “last mile” drives to and from the virtual stations of the VRR system, because the passenger vehicles 306 can rely on the peloton 302 as a moving charging station in between destinations. Additional details of the virtual stations are described in
Turning now to
In some implementations, the walls 406 may include gaps, as shown in
Turning now to
One or more passenger vehicles or engine vehicles may enter virtual station lane 508 at the wall opening 510 and exit from the virtual station lane 508 at the wall opening 512. In some implementations, the passenger vehicles may enter the virtual station lane 508 and temporarily park at a designated area (not shown in
By allowing acceleration and/or deceleration to be performed in a dedicated lane separate from both the VRR lane 502 and the regular traffic lanes 504, the virtual station lane 508 improves safety of the VRR system 500 and the safety for the passengers and the passenger vehicles of the pelotons travelling in lane 502. The virtual station lane 508 may also improve efficiency of peloton of vehicles travelling in the VRR lane 502 by allowing the peloton of vehicles to continue at speed. For example, the peloton may continue to travel at its maximum speed and the one or more passenger vehicles that are exiting from the peloton may uncouple from the peloton and decelerate in the virtual station lane 508 to safely merge into regular traffic lanes 504. Similarly, a vehicle coupling with a peloton traveling in the VRR lane 502 may accelerate in the virtual station lane 508 until the vehicle reaches a speed (e.g., the speed at which the peloton is travelling at) at which it can safely couple with the peloton. Additional details of vehicles coupling with and uncoupling from a peloton are described herein with respect to
Turning now to
The virtual station lane 606 may include a designated area for vehicles to wait before joining a peloton travelling in VRR lane 602. For example, as shown in
In some implementations, the vehicle 610 may transmit user's destination information (e.g., a destination address) to a global central computing hub (not shown separately) or a local central computing hub (not shown separately) of the VRR system 600. The global or a central computing hub of the VRR system 600 may include one or more computing devices and/or processors that are configured to assign positions to vehicles within a queue 608, within a peloton travelling in the VRR lane 602, and the like. In some implementations, a local central computing hub may be located at a virtual station lane (e.g., virtual station lane 606) of a VRR system (e.g., VRR system 600). A local and/or the global central computing hub may be configured to wirelessly communicate with one or more vehicles in the virtual station lane 606 and/or vehicles of a peloton in the virtual lane 602.
In some implementations, vehicles that enter the virtual station lane 606 may be configured to transmit destination information (e.g., destination address, distance to destination, and the like), operational status information (e.g., current fuel level, current charge level, current battery level, current operational range, current operational health, and the like), and the like, to the global and/or a local central computing hub of the VRR system 600 when the vehicles enter the virtual station lane 606.
The global and/or local central computing hub of the VRR system 600 may be configured to determine a position for the vehicle 610 within the queue 608. In some implementations, the global and/or a local central computing hub of the VRR system 600 based on the destination information of the vehicles (e.g., vehicle 610) that entered the virtual station lane 606. In some implementations, the global and/or a local central computing hub of the VRR system 600 may determine a distance to the destination of the vehicle 610 from the queue 608, based on the received destination information, and assign a position in the queue area based on the determined distance. In some implementations, the computing hub may determine the virtual station VRR station that the vehicle 610 must exit to get to its destination, and assign a position in the queue based on the exit VRR station. For example, the global and/or a local central computing hub of the VRR system 600 may assign an earlier position in the queue 608 (i.e., a position more forward in the queue) to a vehicle with a larger distance or a later VRR exit station and a later position in the queue 608 (i.e., a position more rearward in the queue) to a vehicle with a shorter distance or earlier exit VRR station. For example, as shown in
In some implementations, once a vehicle enters the virtual station lane 606 and/or the queue 608, the global and/or local computing hub of the VRR system 600 may control the movement of the vehicle including, but not limited to, repositioning the vehicle in the queue 608, accelerating the vehicle, decelerating the vehicle, and the like. For example, as shown in
The global and/or local computing hub of the VRR system 600 can also ensure that the order of vehicles in the queue 608 is in the appropriate order in which the vehicles will join the peloton. For example, if vehicle 612 had arrived at the virtual station 606 before vehicle 610, the VRR system 600 can park vehicle 612 in a temporary spot. When vehicle 610 arrives, the global and/or local computing hub of the VRR system 600 can control vehicle 610 to drive ahead of the parked vehicle 612 to the front of the queue, and then control vehicle 612 to drive from the temporary parking spot to its position behind vehicle 610 in the queue 608. In some implementations, the positions of the vehicles relative to each other in the queue area 608, may correspond to their relative positions when they join the peloton. For example, as shown in
Turning now to
In some implementations, the passenger vehicle 618 may uncouple from the peloton 630 and begin to decelerate in the VRR lane 602. The vehicles in the queue area 608 (e.g., vehicles 610 and 612) that are to join the peloton 630 can begin to accelerate in the virtual station lane 606, as shown in
The engine vehicle 614 may receive and/or determine the positions in the peloton 630 at which the vehicles 610 and 612 may join and the engine vehicle 614 may create gaps between the vehicles based on the positions of the vehicles 610 and 612 in the peloton 630. For example, if the position of the vehicle 610 in the peloton 630 is determined to be between the engine vehicle 614 and passenger vehicle 616a, then the engine vehicle 614 may create a gap 622 between the engine vehicle 614 and passenger vehicle 616a such that the vehicle 610 can merge into the VRR lane 602 and join the peloton 630 by merging into gap 622 between the engine vehicle 614 and the passenger vehicle 616a. In some implementations, the engine vehicle 614 may create gaps in the peloton 630 by causing all the vehicles ahead of the desired gap to accelerate. For example, as shown in
In the example of
The global and/or local computing hub of the VRR system 600 may control the exiting vehicle 618. For example, the global and/or local computing hub of the VRR system 600 may cause the exiting vehicle 618 to continue to decelerate in the VRR lane 602. The global and/or local computing hub of the VRR system 600 may control the vehicle 618 to exit from the VRR lane 602 into the virtual station lane 606, as shown in
In some implementations, the global and/or local computing hub of the VRR system can hand over control of the passenger vehicle to the user while in the virtual station lane 606, after exiting from the VRR lane 602 and after the vehicle has been slowed down to regular traffic speed while still in the virtual station lane. In this way, the virtual station lane 606 can provide a buffer to allow the user to regain control of the vehicle. If the user cannot regain control, for example, the vehicle can continue in the virtual station lane 606 without entering regular traffic (e.g., the virtual station lane can continue beyond the exit opening as an emergency lane). Once the user takes control of the passenger vehicle, the user can merge into the regular traffic lane and continue to drive to the destination.
The techniques described above for creating gaps in a peloton and controlling certain joining vehicles to merge into the gaps allows the VRR system 600 to order the vehicles in the peloton such that vehicles that will exit next are always at the back end of the peloton. This ensures that the procedure described herein can be used for exiting vehicles, i.e., the next-exiting vehicles are always positioned at the back end of the peloton, so that these exiting vehicles can separate from the peloton prior to arriving at a virtual station and can decelerate because the exiting vehicles have no vehicles behind them that are continuing with the peloton. This can allow the rest of the peloton to remain at speed. Therefore, in some implementations, the VRR system 600 can determine where in the peloton to place joining passenger vehicles based on the order in which the vehicles in the peloton will exit at future virtual stations.
In the example shown in
In some implementations, the virtual station lanes (e.g., virtual station lane 606) of virtual stations may be configured to be long enough such that ordering of the vehicles of a peloton from back to front in order of increasing departure times, distance to destination, distance to target virtual stations, may be avoided. For example, if the virtual station lane 606 extended a great distance, then passenger vehicles of the peloton 630 could uncouple from the peloton 630 and switch into the virtual station lane 606 at high speed, and then decelerate safely in the virtual station lane 606. In this way, the exiting vehicles do not need to be positioned at the back end of the peloton. In some implementations of such an example, the exiting vehicles may exit from the peloton and the VRR lane 602 prior to the joining vehicles accelerating in the virtual station lane 606.
Turning now to
The aerodynamic features 706 may be configured to include dimples which can create a thin layer of turbulence. The thin layer of turbulence may reduce the drag of air flowing over the surface of the wall, and further increase the aerodynamic efficiency of the peloton traveling in the VRR lane between the walls. In some implementations, the sides and/or bottom of engine vehicles, passenger vehicles, and/or other vehicles configured to form a peloton as described herein may include aerodynamic features (not shown separately) which may even further increase the aerodynamic efficiency of the peloton. Such aerodynamic features may be similar to the aerodynamic features 706. For example, the aerodynamic features of the vehicles of a peloton may include dimples.
In some implementations, the aerodynamic features of a wall of a VRR lane and/or a virtual station lane may include openings and/or channels through the wall that may allow air to pass through the wall. For example, the wall may include slats that are angled to create channels that are generally angled in the direction of peloton travel (e.g., 30 degrees from the direction of travel) that can allow air pushed forward by the engine vehicle to escape the VRR lane through the walls, while generally disrupting crosswinds and preventing winds from entering perpendicular to the VRR lane. In some implementations, the slats can be angled generally opposite the direction of peloton travel (e.g., 60 degrees from the direction of travel) to allow air outside the VRR lane to be pulled into the VRR lane, as the peloton passes, to mitigate a drop in air pressure behind the peloton. Additional details of such openings and/or channels in a wall of a VRR lane and/or a virtual station lane are described herein with respect to
In
In
Turning now to
As mentioned above, the VRR system can include a global and/or a local central computing hub to control various aspects of the system. The global and/or a local central computing hub of the VRR system may include computer(s) controlling the VRR system and that are configured to performs various functions such as scheduling and coordinating user trips. For example, the global and/or a local central computing hub of the VRR system can receive trip information from user, including user starting location and destination location, and provide the user with one or more options for joining scheduled pelotons, including timing and route information to the virtual station. The global and/or a local central computing hub of the VRR system can utilize various map and traffic software and services to estimate when the user should depart from their origination location and drive to, e.g., the closest virtual station in time to meet and join a peloton in the regular schedule. The global and/or a local central computing hub of the VRR system may give the user various options of times/routes, for example, and may automatically update based on when the user departs from the origination location, if the user gets stuck in unexpected traffic, etc. For example, if the user is driving to the virtual station to join a peloton scheduled to pass by at 1 pm, but the user is delayed (e.g., by unexpected traffic) while driving to the virtual station and will not be able to reach the virtual station in time to join the scheduled peloton, the global and/or a local central computing hub of the VRR system may automatically indicate that the user must join a later-scheduled peloton based on the new arrival time at the virtual station, e.g., a peloton scheduled to pass by at 1:30 pm.
In some implementations, the global and/or a local central computing hub of the VRR system can detect or otherwise obtain information of the current fuel level, current charge level, and the like of the user's passenger vehicle prior (e.g., the passenger vehicle may transmit fuel level information to the user's cell phone, which relays the information to the global and/or a local central computing hub of the VRR system) prior to scheduling the trip and determine whether the user must add fuel before allowing the user to join a peloton. This might prevent users from entering a peloton with inadequate fuel to complete the journey and/or prevent the passenger vehicle from running out of fuel in between virtual stations, which might cause an interruption of VRR service while the stranded vehicle is removed from the VRR lane. Similarly, in some implementations, the global and/or a local central computing hub of the VRR system can monitor the passenger vehicle's fuel level or charge level while in the peloton, and if the fuel level/range drops below a threshold the computer system can require the vehicle exit the peloton before the vehicle runs out of fuel. For example, the computer system can determine the vehicle's current fuel level/range, determine fuel stations near one or more upcoming virtual stations, and give the user options for different combinations of virtual station and fuel station the user would like to use. For long journeys in particular, the global and/or a local central computing hub of the VRR system can determine appropriate virtual station/fuel station combinations ahead of time to allow the user time to consider which combination to use.
In some implementations, the global and/or a local central computing hub of the VRR system may monitor the health and/or fuel level of the engine vehicle and the passenger vehicles in a peloton. If the global and/or a local central computing hub of the VRR system detects an imminent failure in a passenger vehicle, for example, the global and/or a local central computing hub of the VRR system can command passenger vehicle to exit the peloton at the next virtual station, and may also provide information of service stations near the virtual station.
In some implementations, if the global and/or a local central computing hub of the VRR system detects an imminent failure in the engine vehicle, it may take various actions. For example, the global and/or a local central computing hub of the VRR system may command the engine vehicle and the entire peloton to exit at the next virtual station, and command the passenger vehicles to detach from the engine vehicle and await the next passing peloton to join. In some implementations, if the global and/or a local central computing hub of the VRR system determines the failure will not occur soon or the global and/or a local central computing hub of the VRR system determines the engine vehicle is running low on fuel, the computer global and/or a local central computing hub of the VRR system may dispatch another engine vehicle to meet with the peloton and “hot swap” with the ailing engine vehicle without slowing the peloton. For example, a variation of the method of joining a peloton described above may be used. Additional details of hot swapping an engine vehicle of a peloton with a new engine vehicle is described herein with respect to
Turning now to
As shown in
Once the first engine vehicle is far enough ahead of the peloton, it can have room to decelerate and exit the VRR lane at a safe speed. As shown in
While not shown in the
Similarly, exiting passenger vehicles will have separated from the peloton and decelerated prior to the arriving at the virtual station, and can exit as described above. Likewise, at the next virtual station, the first engine vehicle may decelerate and exit the VRR lane prior to the acceleration and merging of any passenger vehicles waiting in the queue, and exiting vehicles may follow the same separation and deceleration procedure described above with respect to
In some implementations, refueling can be accomplished in real time (i.e., while the engine vehicle is operating). For example, referring back to
As described above, the global and/or a local computing hub of the VRR system described herein may schedule passenger vehicles and/or determine positions for the passenger vehicles in a peloton based on one or more factors. In some implementations, in addition to or instead of scheduling passenger vehicles for a peloton or determining positions in a peloton based on users' originating and destination locations, current fuel level, current charge level, current operational range, and the like, the global and/or a local computing hub of the VRR system, may schedule the passenger vehicles for pelotons and/or determine positions within a peloton based on a range and/or commonality of destinations.
For example, if the global and/or a local computing hub of the VRR system determines that there are multiple users who wish to travel to the same or similar destination, the global and/or a local computing hub of the VRR system may schedule these users to be in the same peloton. For example, if the global and/or a local computing hub of the VRR system determines multiple Los Angeles users wish to travel to Las Vegas at approximately the same time, the system may schedule all the users to join the same peloton to Las Vegas. In this way, for example, the number of vehicles exiting and entering the peloton during the trip may be minimized, i.e., the number of merges may be minimized during the journey. The minimized merges may further improve the safety of the peloton, and the minimized merges may further improve energy efficiency of the vehicles of the peloton because the peloton, for example, can maintain its tight configuration without having to create gaps for merging.
In some implementations, the global and/or a local computing hub of the VRR system may be configured to determine scheduling of vehicles to a peloton and/or positions within a peloton based on energy efficiency. For example, if use of the VRR is below a threshold usage level (e.g., light usage), the global and/or a local computing hub of the VRR system may eliminate one or more scheduled engine vehicle routes and consolidate users into fewer, but longer, pelotons.
In some implementations, the global and/or a local computing hub of the VRR system may coordinate aspects at the user's destination, such as parking. For example, the global and/or a local computing hub of the VRR system may include sensors at one or more parking structures or locations near the user's destination and/or receive data from sensors near one or more parking structures or locations near the user's destination to detect parking capacity, and allow users to reserve parking at corresponding parking structures or locations near the user's destination.
Although this disclosure refers to the vehicles utilizing the VRR as “passenger vehicles,” one skilled in the art should appreciate that the vehicles utilizing the VRR may be any type of vehicles including, but not limited to, cargo vehicles, passenger vehicles, other kinds of vehicles, and the like. In some implementations, a VRR may be used by passenger, cargo, and other types of vehicles at the same time. In some implementations, vehicle utilizing the VRR may be may be fully autonomous, partially autonomous, or not autonomous.
Turning now to
The system 1100 may include various types of machine-readable media and interfaces. As illustrated, the system 1100 includes at least one interconnect 1120 (e.g., at least one bus), a permanent storage device 1122, random-access memory (RAM) 1124, at least one controller interface(s) 1126, read-only memory (ROM) 1128, at least one processor(s) 1130, and a network component 1132.
The interconnect 1120 may communicatively connect components and/or devices that are collocated with the system 1100, such as internal components and/or internal devices within a housing of the system 1100. For example, the interconnect 1120 may communicatively connect the processor(s) 1130 with the permanent storage device 1122, RAM 1124, and/or ROM 1128. The processor(s) 1130 may be configured to access and load computer-executable instructions from at least one of the permanent storage device 1122, RAM 1124, and/or ROM 1128.
The permanent storage 1122 may be non-volatile memory that stores instructions and data, independent of the power state (e.g., on or off) of the system 1100. For example, the permanent storage 1122 may be a hard disk, flash drive, or another read/write memory device.
ROM 1128 may store static instructions enabling basic functionality of the system 1100, as well as the components therein. For example, ROM 1128 may store instructions for the processor(s) 1130 to execute a set of processes associated with operations described herein in
RAM 1124 may include volatile read/write memory. RAM 1124 may store computer-executable instructions associated with runtime operation(s) by the processor(s) 1130. In addition, RAM 1124 may store real-time data captured of a vehicle, for example, as described with respect to one or more of
The processor(s) 1130 may be implemented with one or more general-purpose and/or special-purpose processors. Examples of general-purpose and/or special-purpose processors may include microprocessors, microcontrollers, DSP processors, and/or any other suitable circuitry configured to execute instructions loaded from at least one of the permanent storage device 1122, RAM 1124, and/or ROM 1128. Alternatively or additionally, the processor(s) 1130 may be implemented as dedicated hardware, such as at least one field programmable gate array (FPGA), at least one programmable logic device (PLD), at least one controller, at least one state machine, a set of logic gates, at least one discrete hardware component, or any other suitable circuitry and/or combination thereof.
The interconnect 1120 may further communicatively connect the system 1100 with one or more controller interface(s) 1126. The controller interface(s) 1126 may communicatively connect the system 1100 with various circuitry associated with one or more vehicles (e.g., engine vehicles, passenger vehicles, and the like), computing hubs (e.g., global computing hub, local computing hub, and the like) described herein. Instructions executed by the processor(s) 1130 may cause instructions to be communicated with vehicles (e.g., engine vehicles, passenger vehicles, and the like), computing hubs (e.g., global computing hub, local computing hub, and the like) through the controller interface(s) 1126, which may cause various operations of engine vehicles, passenger vehicles, and the like described herein with respect to
In some embodiments, the system 1100 may include a network component 1132. The network component 1132 may be configured to communicate over a network, for example, in order to transmit and/or receive instructions associated with the operations described herein with respect to
Various aspects described herein may be implemented at least partially as software processes of a computer-programming product. Such processes may be specified as a set of instructions recorded on a machine-readable storage medium. When a set of instructions is executed by the processor(s) 1130, the set of instructions may cause the processor(s) to perform operations indicated and recorded in the set of instructions.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these exemplary embodiments presented throughout this disclosure will be readily apparent to those skilled in the art. Thus, the claims are not intended to be limited to the exemplary embodiments presented throughout the disclosure, but are to be accorded the full scope consistent with the language claims. All structural and functional equivalents to the elements of the exemplary embodiments described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. § 112(f), or analogous law in applicable jurisdictions, unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for.”
This application claims the benefit of U.S. Provisional Application Ser. No. 63/136,966, entitled “VIRTUAL RAILROAD” and filed on Jan. 13, 2021, the disclosure of which is expressly incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5203226 | Hongou et al. | Apr 1993 | A |
5742385 | Champa | Apr 1998 | A |
5990444 | Costin | Nov 1999 | A |
6010155 | Rinehart | Jan 2000 | A |
6096249 | Yamaguchi | Aug 2000 | A |
6140602 | Costin | Oct 2000 | A |
6250533 | Otterbein et al. | Jun 2001 | B1 |
6252196 | Costin et al. | Jun 2001 | B1 |
6318642 | Goenka et al. | Nov 2001 | B1 |
6365057 | Whitehurst et al. | Apr 2002 | B1 |
6391251 | Keicher et al. | May 2002 | B1 |
6409930 | Whitehurst et al. | Jun 2002 | B1 |
6468439 | Whitehurst et al. | Oct 2002 | B1 |
6554345 | Jonsson | Apr 2003 | B2 |
6585151 | Ghosh | Jul 2003 | B1 |
6644721 | Miskech et al. | Nov 2003 | B1 |
6811744 | Keicher et al. | Nov 2004 | B2 |
6866497 | Saiki | Mar 2005 | B2 |
6919035 | Clough | Jul 2005 | B1 |
6926970 | James et al. | Aug 2005 | B2 |
7152292 | Hohmann et al. | Dec 2006 | B2 |
7344186 | Hausler et al. | Mar 2008 | B1 |
7500373 | Quell | Mar 2009 | B2 |
7586062 | Heberer | Sep 2009 | B2 |
7637134 | Burzlaff et al. | Dec 2009 | B2 |
7710347 | Gentilman et al. | May 2010 | B2 |
7716802 | Stern et al. | May 2010 | B2 |
7745293 | Yamazaki et al. | Jun 2010 | B2 |
7766123 | Sakurai et al. | Aug 2010 | B2 |
7852388 | Shimizu et al. | Dec 2010 | B2 |
7908922 | Zarabadi et al. | Mar 2011 | B2 |
7951324 | Naruse et al. | May 2011 | B2 |
8094036 | Heberer | Jan 2012 | B2 |
8163077 | Eron et al. | Apr 2012 | B2 |
8286236 | Jung et al. | Oct 2012 | B2 |
8289352 | Vartanian et al. | Oct 2012 | B2 |
8297096 | Mizumura et al. | Oct 2012 | B2 |
8354170 | Henry et al. | Jan 2013 | B1 |
8383028 | Lyons | Feb 2013 | B2 |
8408036 | Reith et al. | Apr 2013 | B2 |
8429754 | Jung et al. | Apr 2013 | B2 |
8437513 | Derakhshani et al. | May 2013 | B1 |
8444903 | Lyons et al. | May 2013 | B2 |
8452073 | Taminger et al. | May 2013 | B2 |
8599301 | Dowski, Jr. et al. | Dec 2013 | B2 |
8606540 | Haisty et al. | Dec 2013 | B2 |
8610761 | Haisty et al. | Dec 2013 | B2 |
8631996 | Quell et al. | Jan 2014 | B2 |
8675925 | Derakhshani et al. | Mar 2014 | B2 |
8678060 | Dietz et al. | Mar 2014 | B2 |
8686314 | Schneegans et al. | Apr 2014 | B2 |
8686997 | Radet et al. | Apr 2014 | B2 |
8694284 | Berard | Apr 2014 | B2 |
8720876 | Reith et al. | May 2014 | B2 |
8752166 | Jung et al. | Jun 2014 | B2 |
8755923 | Farahani et al. | Jun 2014 | B2 |
8787628 | Derakhshani et al. | Jul 2014 | B1 |
8818771 | Gielis et al. | Aug 2014 | B2 |
8873238 | Wilkins | Oct 2014 | B2 |
8978535 | Ortiz et al. | Mar 2015 | B2 |
9006605 | Schneegans et al. | Apr 2015 | B2 |
9071436 | Jung et al. | Jun 2015 | B2 |
9101979 | Hofmann et al. | Aug 2015 | B2 |
9104921 | Derakhshani et al. | Aug 2015 | B2 |
9126365 | Mark et al. | Sep 2015 | B1 |
9128476 | Jung et al. | Sep 2015 | B2 |
9138924 | Yen | Sep 2015 | B2 |
9149988 | Mark et al. | Oct 2015 | B2 |
9156205 | Mark et al. | Oct 2015 | B2 |
9186848 | Mark et al. | Nov 2015 | B2 |
9244986 | Karmarkar | Jan 2016 | B2 |
9248611 | Divine et al. | Feb 2016 | B2 |
9254535 | Buller et al. | Feb 2016 | B2 |
9266566 | Kim | Feb 2016 | B2 |
9269022 | Rhoads et al. | Feb 2016 | B2 |
9327452 | Mark et al. | May 2016 | B2 |
9329020 | Napoletano | May 2016 | B1 |
9332251 | Haisty et al. | May 2016 | B2 |
9346127 | Buller et al. | May 2016 | B2 |
9389315 | Bruder et al. | Jul 2016 | B2 |
9399256 | Buller et al. | Jul 2016 | B2 |
9403235 | Buller et al. | Aug 2016 | B2 |
9418193 | Dowski, Jr. et al. | Aug 2016 | B2 |
9457514 | Schwärzler | Oct 2016 | B2 |
9469057 | Johnson et al. | Oct 2016 | B2 |
9478063 | Rhoads et al. | Oct 2016 | B2 |
9481402 | Muto et al. | Nov 2016 | B1 |
9486878 | Buller et al. | Nov 2016 | B2 |
9486960 | Paschkewitz et al. | Nov 2016 | B2 |
9502993 | Deng | Nov 2016 | B2 |
9525262 | Stuart et al. | Dec 2016 | B2 |
9533526 | Nevins | Jan 2017 | B1 |
9555315 | Aders | Jan 2017 | B2 |
9555580 | Dykstra et al. | Jan 2017 | B1 |
9557856 | Send et al. | Jan 2017 | B2 |
9566742 | Keating et al. | Feb 2017 | B2 |
9566758 | Cheung et al. | Feb 2017 | B2 |
9573193 | Buller et al. | Feb 2017 | B2 |
9573225 | Buller et al. | Feb 2017 | B2 |
9586290 | Buller et al. | Mar 2017 | B2 |
9595795 | Lane et al. | Mar 2017 | B2 |
9597843 | Stauffer et al. | Mar 2017 | B2 |
9600929 | Young et al. | Mar 2017 | B1 |
9609755 | Coull et al. | Mar 2017 | B2 |
9610737 | Johnson et al. | Apr 2017 | B2 |
9611667 | GangaRao et al. | Apr 2017 | B2 |
9616623 | Johnson et al. | Apr 2017 | B2 |
9626487 | Jung et al. | Apr 2017 | B2 |
9626489 | Nilsson | Apr 2017 | B2 |
9643361 | Liu | May 2017 | B2 |
9662840 | Buller et al. | May 2017 | B1 |
9665182 | Send et al. | May 2017 | B2 |
9672389 | Mosterman et al. | Jun 2017 | B1 |
9672550 | Apsley et al. | Jun 2017 | B2 |
9676145 | Buller et al. | Jun 2017 | B2 |
9684919 | Apsley et al. | Jun 2017 | B2 |
9688032 | Kia et al. | Jun 2017 | B2 |
9690286 | Hovsepian et al. | Jun 2017 | B2 |
9700966 | Kraft et al. | Jul 2017 | B2 |
9703896 | Zhang et al. | Jul 2017 | B2 |
9713903 | Paschkewitz et al. | Jul 2017 | B2 |
9718302 | Young et al. | Aug 2017 | B2 |
9718434 | Hector, Jr. et al. | Aug 2017 | B2 |
9724877 | Flitsch et al. | Aug 2017 | B2 |
9724881 | Johnson et al. | Aug 2017 | B2 |
9725178 | Wang | Aug 2017 | B2 |
9731730 | Stiles | Aug 2017 | B2 |
9731773 | Gami et al. | Aug 2017 | B2 |
9741954 | Bruder et al. | Aug 2017 | B2 |
9747352 | Karmarkar | Aug 2017 | B2 |
9764415 | Seufzer et al. | Sep 2017 | B2 |
9764520 | Johnson et al. | Sep 2017 | B2 |
9765226 | Dain | Sep 2017 | B2 |
9770760 | Liu | Sep 2017 | B2 |
9773393 | Velez | Sep 2017 | B2 |
9776234 | Schaafhausen et al. | Oct 2017 | B2 |
9782936 | Glunz et al. | Oct 2017 | B2 |
9783324 | Embler et al. | Oct 2017 | B2 |
9783977 | Alqasimi et al. | Oct 2017 | B2 |
9789548 | Golshany et al. | Oct 2017 | B2 |
9789922 | Dosenbach et al. | Oct 2017 | B2 |
9796137 | Zhang et al. | Oct 2017 | B2 |
9802108 | Aders | Oct 2017 | B2 |
9809977 | Carney et al. | Nov 2017 | B2 |
9817922 | Glunz et al. | Nov 2017 | B2 |
9818071 | Jung et al. | Nov 2017 | B2 |
9821339 | Paschkewitz et al. | Nov 2017 | B2 |
9821411 | Buller et al. | Nov 2017 | B2 |
9823143 | Twelves, Jr. et al. | Nov 2017 | B2 |
9829564 | Bruder et al. | Nov 2017 | B2 |
9846933 | Yuksel | Dec 2017 | B2 |
9854828 | Langeland | Jan 2018 | B2 |
9858604 | Apsley et al. | Jan 2018 | B2 |
9862833 | Hasegawa et al. | Jan 2018 | B2 |
9862834 | Hasegawa et al. | Jan 2018 | B2 |
9863885 | Zaretski et al. | Jan 2018 | B2 |
9870629 | Cardno et al. | Jan 2018 | B2 |
9879981 | Dehghan Niri et al. | Jan 2018 | B1 |
9884663 | Czinger et al. | Feb 2018 | B2 |
9898776 | Apsley et al. | Feb 2018 | B2 |
9914150 | Pettersson et al. | Mar 2018 | B2 |
9919360 | Buller et al. | Mar 2018 | B2 |
9931697 | Levin et al. | Apr 2018 | B2 |
9933031 | Bracamonte et al. | Apr 2018 | B2 |
9933092 | Sindelar | Apr 2018 | B2 |
9957031 | Golshany et al. | May 2018 | B2 |
9958535 | Send et al. | May 2018 | B2 |
9962767 | Buller et al. | May 2018 | B2 |
9963978 | Johnson et al. | May 2018 | B2 |
9971920 | Derakhshani et al. | May 2018 | B2 |
9976063 | Childers et al. | May 2018 | B2 |
9987792 | Flitsch et al. | Jun 2018 | B2 |
9988136 | Tiryaki et al. | Jun 2018 | B2 |
9989623 | Send et al. | Jun 2018 | B2 |
9990565 | Rhoads et al. | Jun 2018 | B2 |
9994339 | Colson et al. | Jun 2018 | B2 |
9996890 | Cinnamon et al. | Jun 2018 | B1 |
9996945 | Holzer et al. | Jun 2018 | B1 |
10002215 | Dowski et al. | Jun 2018 | B2 |
10006156 | Kirkpatrick | Jun 2018 | B2 |
10011089 | Lyons et al. | Jul 2018 | B2 |
10011685 | Childers et al. | Jul 2018 | B2 |
10012532 | Send et al. | Jul 2018 | B2 |
10013777 | Mariampillai et al. | Jul 2018 | B2 |
10015908 | Williams et al. | Jul 2018 | B2 |
10016852 | Broda | Jul 2018 | B2 |
10016942 | Mark et al. | Jul 2018 | B2 |
10017384 | Greer et al. | Jul 2018 | B1 |
10018576 | Herbsommer et al. | Jul 2018 | B2 |
10022792 | Srivas et al. | Jul 2018 | B2 |
10022912 | Kia et al. | Jul 2018 | B2 |
10027376 | Sankaran et al. | Jul 2018 | B2 |
10029415 | Swanson et al. | Jul 2018 | B2 |
10040239 | Brown, Jr. | Aug 2018 | B2 |
10046412 | Blackmore | Aug 2018 | B2 |
10048769 | Selker et al. | Aug 2018 | B2 |
10052712 | Blackmore | Aug 2018 | B2 |
10052820 | Kemmer et al. | Aug 2018 | B2 |
10055536 | Maes et al. | Aug 2018 | B2 |
10058764 | Aders | Aug 2018 | B2 |
10058920 | Buller et al. | Aug 2018 | B2 |
10061906 | Nilsson | Aug 2018 | B2 |
10065270 | Buller et al. | Sep 2018 | B2 |
10065361 | Susnjara et al. | Sep 2018 | B2 |
10065367 | Brown, Jr. | Sep 2018 | B2 |
10068316 | Holzer et al. | Sep 2018 | B1 |
10071422 | Buller et al. | Sep 2018 | B2 |
10071525 | Susnjara et al. | Sep 2018 | B2 |
10072179 | Drijfhout | Sep 2018 | B2 |
10074128 | Colson et al. | Sep 2018 | B2 |
10076875 | Mark et al. | Sep 2018 | B2 |
10076876 | Mark et al. | Sep 2018 | B2 |
10081140 | Paesano et al. | Sep 2018 | B2 |
10081431 | Seack et al. | Sep 2018 | B2 |
10086568 | Snyder et al. | Oct 2018 | B2 |
10087320 | Simmons et al. | Oct 2018 | B2 |
10087556 | Gallucci et al. | Oct 2018 | B2 |
10099427 | Mark et al. | Oct 2018 | B2 |
10100542 | GangaRao et al. | Oct 2018 | B2 |
10100890 | Bracamonte et al. | Oct 2018 | B2 |
10107344 | Bracamonte et al. | Oct 2018 | B2 |
10108766 | Druckman et al. | Oct 2018 | B2 |
10113600 | Bracamonte et al. | Oct 2018 | B2 |
10118347 | Stauffer et al. | Nov 2018 | B2 |
10118579 | Lakic | Nov 2018 | B2 |
10120078 | Bruder et al. | Nov 2018 | B2 |
10124546 | Johnson et al. | Nov 2018 | B2 |
10124570 | Evans et al. | Nov 2018 | B2 |
10137500 | Blackmore | Nov 2018 | B2 |
10138354 | Groos et al. | Nov 2018 | B2 |
10144126 | Krohne et al. | Dec 2018 | B2 |
10145110 | Carney et al. | Dec 2018 | B2 |
10151363 | Bracamonte et al. | Dec 2018 | B2 |
10152661 | Kieser | Dec 2018 | B2 |
10160278 | Coombs et al. | Dec 2018 | B2 |
10161021 | Lin et al. | Dec 2018 | B2 |
10166752 | Evans et al. | Jan 2019 | B2 |
10166753 | Evans et al. | Jan 2019 | B2 |
10171578 | Cook et al. | Jan 2019 | B1 |
10173255 | TenHouten et al. | Jan 2019 | B2 |
10173327 | Kraft et al. | Jan 2019 | B2 |
10178800 | Mahalingam et al. | Jan 2019 | B2 |
10179640 | Wilkerson | Jan 2019 | B2 |
10183330 | Buller et al. | Jan 2019 | B2 |
10183478 | Evans et al. | Jan 2019 | B2 |
10189187 | Keating et al. | Jan 2019 | B2 |
10189240 | Evans et al. | Jan 2019 | B2 |
10189241 | Evans et al. | Jan 2019 | B2 |
10189242 | Evans et al. | Jan 2019 | B2 |
10190424 | Johnson et al. | Jan 2019 | B2 |
10195693 | Buller et al. | Feb 2019 | B2 |
10196539 | Boonen et al. | Feb 2019 | B2 |
10197338 | Melsheimer | Feb 2019 | B2 |
10200677 | Trevor et al. | Feb 2019 | B2 |
10201932 | Flitsch et al. | Feb 2019 | B2 |
10201941 | Evans et al. | Feb 2019 | B2 |
10202673 | Lin et al. | Feb 2019 | B2 |
10204216 | Nejati et al. | Feb 2019 | B2 |
10207454 | Buller et al. | Feb 2019 | B2 |
10209065 | Estevo, Jr. et al. | Feb 2019 | B2 |
10210662 | Holzer et al. | Feb 2019 | B2 |
10213837 | Kondoh | Feb 2019 | B2 |
10214248 | Hall et al. | Feb 2019 | B2 |
10214252 | Schellekens et al. | Feb 2019 | B2 |
10214275 | Goehlich | Feb 2019 | B2 |
10220575 | Reznar | Mar 2019 | B2 |
10220881 | Tyan et al. | Mar 2019 | B2 |
10221530 | Driskell et al. | Mar 2019 | B2 |
10226900 | Nevins | Mar 2019 | B1 |
10232550 | Evans et al. | Mar 2019 | B2 |
10234342 | Moorlag et al. | Mar 2019 | B2 |
10237477 | Trevor et al. | Mar 2019 | B2 |
10252335 | Buller et al. | Apr 2019 | B2 |
10252336 | Buller et al. | Apr 2019 | B2 |
10254499 | Cohen et al. | Apr 2019 | B1 |
10257499 | Hintz et al. | Apr 2019 | B2 |
10259044 | Buller et al. | Apr 2019 | B2 |
10268181 | Nevins | Apr 2019 | B1 |
10269225 | Velez | Apr 2019 | B2 |
10272860 | Mohapatra et al. | Apr 2019 | B2 |
10272862 | Whitehead | Apr 2019 | B2 |
10275564 | Ridgeway et al. | Apr 2019 | B2 |
10279580 | Evans et al. | May 2019 | B2 |
10285219 | Fetfatsidis et al. | May 2019 | B2 |
10286452 | Buller et al. | May 2019 | B2 |
10286603 | Buller et al. | May 2019 | B2 |
10286961 | Hillebrecht et al. | May 2019 | B2 |
10289263 | Troy et al. | May 2019 | B2 |
10289875 | Singh et al. | May 2019 | B2 |
10291193 | Dandu et al. | May 2019 | B2 |
10294552 | Liu et al. | May 2019 | B2 |
10294982 | Gabrys et al. | May 2019 | B2 |
10295989 | Nevins | May 2019 | B1 |
10303159 | Czinger et al. | May 2019 | B2 |
10307824 | Kondoh | Jun 2019 | B2 |
10310197 | Droz et al. | Jun 2019 | B1 |
10313651 | Trevor et al. | Jun 2019 | B2 |
10315252 | Mendelsberg et al. | Jun 2019 | B2 |
10336050 | Susnjara | Jul 2019 | B2 |
10337542 | Hesslewood et al. | Jul 2019 | B2 |
10337952 | Bosetti et al. | Jul 2019 | B2 |
10339266 | Urick et al. | Jul 2019 | B2 |
10343330 | Evans et al. | Jul 2019 | B2 |
10343331 | McCall et al. | Jul 2019 | B2 |
10343355 | Evans et al. | Jul 2019 | B2 |
10343724 | Polewarczyk et al. | Jul 2019 | B2 |
10343725 | Martin et al. | Jul 2019 | B2 |
10350823 | Rolland et al. | Jul 2019 | B2 |
10356341 | Holzer et al. | Jul 2019 | B2 |
10356395 | Holzer et al. | Jul 2019 | B2 |
10357829 | Spink et al. | Jul 2019 | B2 |
10357957 | Buller et al. | Jul 2019 | B2 |
10359756 | Newell et al. | Jul 2019 | B2 |
10369629 | Mendelsberg et al. | Aug 2019 | B2 |
10382739 | Rusu et al. | Aug 2019 | B1 |
10384393 | Xu et al. | Aug 2019 | B2 |
10384416 | Cheung et al. | Aug 2019 | B2 |
10389410 | Brooks et al. | Aug 2019 | B2 |
10391710 | Mondesir | Aug 2019 | B2 |
10392097 | Pham et al. | Aug 2019 | B2 |
10392131 | Deck et al. | Aug 2019 | B2 |
10393315 | Tyan | Aug 2019 | B2 |
10400080 | Ramakrishnan et al. | Sep 2019 | B2 |
10401832 | Snyder et al. | Sep 2019 | B2 |
10403009 | Mariampillai et al. | Sep 2019 | B2 |
10406750 | Barton et al. | Sep 2019 | B2 |
10412283 | Send et al. | Sep 2019 | B2 |
10416095 | Herbsommer et al. | Sep 2019 | B2 |
10421496 | Swayne et al. | Sep 2019 | B2 |
10421863 | Hasegawa et al. | Sep 2019 | B2 |
10422478 | Leachman et al. | Sep 2019 | B2 |
10425793 | Sankaran et al. | Sep 2019 | B2 |
10427364 | Alves | Oct 2019 | B2 |
10429006 | Tyan et al. | Oct 2019 | B2 |
10434573 | Buller et al. | Oct 2019 | B2 |
10435185 | Divine et al. | Oct 2019 | B2 |
10435773 | Liu et al. | Oct 2019 | B2 |
10436038 | Buhler et al. | Oct 2019 | B2 |
10438407 | Pavanaskar et al. | Oct 2019 | B2 |
10440351 | Holzer et al. | Oct 2019 | B2 |
10442002 | Benthien et al. | Oct 2019 | B2 |
10442003 | Symeonidis et al. | Oct 2019 | B2 |
10449696 | Elgar et al. | Oct 2019 | B2 |
10449737 | Johnson et al. | Oct 2019 | B2 |
10461810 | Cook et al. | Oct 2019 | B2 |
11614752 | Switkes | Mar 2023 | B2 |
20030173173 | Stephan | Sep 2003 | A1 |
20030173174 | Stephan | Sep 2003 | A1 |
20060108783 | Ni et al. | May 2006 | A1 |
20100256852 | Mudalige | Oct 2010 | A1 |
20120193153 | Wellborn et al. | Aug 2012 | A1 |
20140277669 | Nardi et al. | Sep 2014 | A1 |
20170113344 | Schönberg | Apr 2017 | A1 |
20170341309 | Piepenbrock et al. | Nov 2017 | A1 |
20190016583 | Dudar et al. | Jan 2019 | A1 |
20190249551 | Tessien | Aug 2019 | A1 |
20200388164 | Domprobst et al. | Dec 2020 | A1 |
20220097698 | Wang | Mar 2022 | A1 |
20220299336 | Oswald | Sep 2022 | A1 |
Number | Date | Country |
---|---|---|
112020025022 | Mar 2021 | BR |
1996036455 | Nov 1996 | WO |
1996036525 | Nov 1996 | WO |
1996038260 | Dec 1996 | WO |
2003024641 | Mar 2003 | WO |
2004108343 | Dec 2004 | WO |
2005093773 | Oct 2005 | WO |
2007003375 | Jan 2007 | WO |
2007110235 | Oct 2007 | WO |
2007110236 | Oct 2007 | WO |
2008019847 | Feb 2008 | WO |
2007128586 | Jun 2008 | WO |
2008068314 | Jun 2008 | WO |
2008086994 | Jul 2008 | WO |
2008087024 | Jul 2008 | WO |
2008107130 | Sep 2008 | WO |
2008138503 | Nov 2008 | WO |
2008145396 | Dec 2008 | WO |
2009083609 | Jul 2009 | WO |
2009098285 | Aug 2009 | WO |
2009112520 | Sep 2009 | WO |
2009135938 | Nov 2009 | WO |
2009140977 | Nov 2009 | WO |
2010125057 | Nov 2010 | WO |
2010125058 | Nov 2010 | WO |
2010142703 | Dec 2010 | WO |
2011032533 | Mar 2011 | WO |
2014016437 | Jan 2014 | WO |
2014187720 | Nov 2014 | WO |
2014195340 | Dec 2014 | WO |
2015193331 | Dec 2015 | WO |
2016116414 | Jul 2016 | WO |
2017036461 | Mar 2017 | WO |
2019030248 | Feb 2019 | WO |
2019042504 | Mar 2019 | WO |
2019048010 | Mar 2019 | WO |
2019048498 | Mar 2019 | WO |
2019048680 | Mar 2019 | WO |
2019048682 | Mar 2019 | WO |
2020164129 | Aug 2020 | WO |
Entry |
---|
US 9,202,136 B2, 12/2015, Schmidt et al. (withdrawn) |
US 9,809,265 B2, 11/2017, Kinjo (withdrawn) |
US 10,449,880 B2, 10/2019, Mizobata et al. (withdrawn) |
International Search Report and the Written Opinion issued for corresponding International Application No. PCT/US22/12324, dated Apr. 6, 2022. |
Number | Date | Country | |
---|---|---|---|
20220223048 A1 | Jul 2022 | US |
Number | Date | Country | |
---|---|---|---|
63136966 | Jan 2021 | US |