This application relates generally to virtual reality (VR) technology, and more specifically, to a VR head-mounted apparatus.
VR technology uses a computer graphics system and various control interfaces to generate an interactive environment on a computer and thus provides three-dimensional immersive scenes for a user. Existing technologies may create VR experience through a VR head-mounted apparatus, such as VR glasses or a VR helmet.
However, due to unique characteristics of VR technology, technical solutions that may work on traditional electronic devices, such as mobile phones or PCs, may not work well on a VR apparatus. For example, when acquiring an infrared image of an eye of a user wearing a VR apparatus, image acquisition conditions for conventional methods may be difficult to satisfy due to structural constraints within the VR apparatus, resulting in difficulties to successfully complete tasks such as biometric recognition, eye tracking, etc. Therefore, a VR apparatus that can quickly and accurately acquire an image of an eye of a user is desired.
In view of the limitations of existing technologies described above, this application provides a VR head-mounted apparatus. The apparatus may provide improved acquisition accuracy for an infrared image of an eye of a user wearing the VR apparatus.
A first aspect of this specification provides a VR head-mounted apparatus. The VR head-mounted apparatus disclosed herein may comprise a convex lens, a first camera and a partial-reflection partial-transmission lens for reflecting infrared light. The partial-reflection partial-transmission lens may be located on a side of the convex lens towards a user when the user wears the VR head-mounted apparatus, and a lens surface of the partial-reflection partial-transmission lens may be disposed obliquely to reflect an infrared image of an eye of the user to the first camera.
In some embodiments, the partial-reflection partial-transmission lens may have a high transmittance for visible light and a low transmittance for infrared light.
In some embodiments, the partial-reflection partial-transmission lens may include an infrared dichroic mirror.
In some embodiments, the infrared dichroic mirror may comprise a TiO2-Ag—TiO2 infrared reflective film or a ZnS—Ag—ZnS infrared reflective film.
In some embodiments, the first camera may be located outside a visible area of the convex lens with respect to the user.
In some embodiments, the partial-reflection partial-transmission lens may have a plate shape, the lens surface of the partial-reflection partial-transmission lens may be inclined upward, the first camera may be located at a top of the apparatus, and a lens of the first camera may face downward. Alternatively, the lens surface of the partial-reflection partial-transmission lens may be inclined downward, the first camera may be located at a bottom of the apparatus, and a lens of the first camera may face upward.
In some embodiments, the partial-reflection partial-transmission lens may have a wedge-shaped cross section, a back surface of the partial-reflection partial-transmission may be disposed vertically, the lens surface of the partial-reflection partial-transmission lens is inclined downward, the first camera may be located at a bottom of the apparatus, and a lens of the first camera may face upward.
In some embodiments, the partial-reflection partial-transmission lens may include an upper lens structure and a lower lens structure disposed obliquely, and a joint of the upper lens structure and the lower lens structure may be located in the middle of the partial-reflection partial-transmission lens. The apparatus may further include a second camera, the first camera may be located at a top of the apparatus with a lens of the first camera facing the upper lens structure, and the second camera may be located at the bottom of the apparatus with a lens of the second camera facing the lower lens structure.
In some embodiments, the upper lens structure and the lower lens structure may be symmetrical with respect to a horizontal plane going through the middle of the partial-reflection partial-transmission lens.
In some embodiments, the partial-reflection partial-transmission lens may include an upper lens structure and a lower lens structure disposed obliquely, and a joint of the upper lens structure and the lower lens structure may be located at an upper part of the partial-reflection partial-transmission lens. The apparatus may further comprise a second camera. The first camera may be located at a top of the apparatus and a lens of the first camera may face the upper lens structure, and the second camera may be located at a bottom of the apparatus and a lens of the second camera may face the lower lens structure.
In some embodiments, the apparatus may further include a protective frame, which may form an accommodating space adapted to the partial-reflection partial-transmission lens and the convex lens, so as to accommodate and fix the partial-reflection partial-transmission lens and the convex lens to the apparatus.
In some embodiments, the apparatus may further include an adjustment component, configured to perform angle adjustment on the first camera, such that the lens of the first camera may be kept towards a virtual infrared image of the eye formed by the partial-reflection partial-transmission lens.
According to a second aspect, this specification provides a VR head-mounted apparatus. The VR head-mounted apparatus comprises a convex lens, a camera, and a partial-reflection partial-transmission lens for reflecting infrared light. The partial-reflection partial-transmission lens may be located on a side of the convex lens towards a user when the user wears the VR apparatus, and a lens surface of the partial-reflection partial-transmission lens may be disposed obliquely to reflect an infrared image of an eye of the user to the camera. The VR head-mounted apparatus may further include a VR playing component on a side of the convex lens away from the user and configured to display VR content.
In some embodiments, the VR playing component may be a mobile phone or a tablet, and the VR content may be displayed through a screen of the VR playing component.
In some embodiments, the VR playing component may be a display component connected to an external apparatus, which may generate the VR content for the VR playing component to display.
In some embodiments, the external apparatus may be a personal computer or a game console.
In some embodiments, the partial-reflection partial-transmission lens may have a high transmittance for visible light and a low transmittance for infrared light.
In some embodiments, the partial-reflection partial-transmission lens may include an infrared dichroic mirror.
In some embodiments, the infrared dichroic mirror may include a TiO2-Ag—TiO2 infrared reflective film or a ZnS—Ag—ZnS infrared reflective film.
The VR head-mounted apparatus of this application may comprise a partial-reflection partial-transmission lens, and a lens surface of the partial-reflection partial-transmission lens may be disposed obliquely. Therefore, without interfering with a user's viewing of VR display content, an infrared image of an eye of the user may be reflected to a camera by the partial-reflection partial-transmission lens, and a deviation angle of a camera during the acquisition of the infrared image of the eye may be reduced. The VR head-mounted apparatus may reduce the deformation and distortion, and improves the acquisition accuracy of the infrared image of the eye.
Specific, non-limiting embodiments of the present invention will be described with reference to the drawings. It should be understood that particular features and aspects of any embodiment disclosed herein may be used and/or combined with particular features and aspects of any other embodiment disclosed herein. It should also be understood that such embodiments are by way of example and are merely illustrative of a small number of embodiments within the scope of the present invention. Various changes and modifications obvious to one skilled in the art to which the present invention pertains are deemed to be within the spirit, scope and contemplation of the present invention as further defined in the appended claims.
Using a VR helmet as an example, detail structures of a VR head-mounted apparatus of this application are described below through several embodiments.
More specifically, a lens surface 30 of the partial-reflection partial-transmission lens 3 may be disposed obliquely. Positions of the partial-reflection partial-transmission lens 3 and the camera 4 may correspond to each other, so that the lens surface 30 of the partial-reflection partial-transmission lens 3 can reflect the infrared light S2 corresponding to the infrared image of the eye 6 towards the camera 4. For example, in the embodiment shown in
Moreover, since the size of the eye 6 of the user tends to be smaller than the size of the aperture of the convex lens 2, a visible area formed between the eye 6 and the convex lens 2 may have a trapezoidal shape as shown in
The technical solutions of this application may be applied to any type of VR head-mounted apparatus. For example, as shown in
In the embodiments of this application, the partial-reflection partial-transmission lens 3 for reflecting infrared light may refer to a lens having a low transmittance for an infrared spectrum and a high transmittance for other spectra such as visible light. Most, if not all, of light in the low-transmittance infrared spectrum may be reflected by the partial-reflection partial-transmission lens 3 (i.e., “partial-reflection”). Meanwhile, most, if not all, of light in other spectra such as high-transmittance visible light may pass through the partial-reflection partial-transmission lens 3 almost unaffected, so that the partial-reflection partial-transmission lens 3's impact on light in other spectra, such as visible light, can be minimized (i.e., “partial-transmission”).
In some embodiments, the foregoing partial-reflection partial-transmission lens 3 for reflecting infrared light may be an infrared dichroic mirror, such that light in a visible spectrum may be mostly, if not completely, transmitted and light in an infrared spectrum may be mostly, if not completely, reflected. More specifically, in one embodiment, an infrared reflective film such as a TiO2-Ag—TiO2 infrared reflective film or a ZnS—Ag—ZnS infrared reflective film may be coated on a surface of an optical lens that has a high transmittance for visible light to form the infrared dichroic mirror. In another embodiment, a lens may be made entirely of materials in the foregoing infrared reflective film or a similar preparation material to form the infrared dichroic mirror.
In this application, the VR head-mounted apparatus comprises a partial-reflection partial-transmission lens 3, and a lens surface 30 of the partial-reflection partial-transmission lens 3 may be obliquely disposed. Without interfering with a user's viewing of VR display content, an infrared image of an eye of the user may be reflected to a camera by the partial-reflection partial-transmission lens 3. A deviation angle of a camera 4 during the acquisition of the infrared image of the eye may be reduced, which reduces the deformation and distortion of the infrared image of the eye, and improves the acquisition accuracy of the infrared image of the eye.
The partial-reflection partial-transmission lens 3 in this specification may have a plate shape as shown in
In the embodiment shown in
In some embodiments, the VR helmet 1 may include two cameras, as shown in
Since users wearing the VR apparatus may have different shapes and sizes on traits such as their heads, faces and eyes, and the VR apparatus may be uniformly manufactured by a manufacturer, a positional relationship between the eye 6 and the partial-reflection partial-transmission lens 3 may be different for different users wearing a same VR apparatus. For example, the eye 6 may not be exactly located in a middle position of the VR helmet 1 as shown in
To address the foregoing deficiency, the VR head-mounted apparatus presented in
For example, when the eye 6 is located near the middle position of the VR helmet 1, an upper region of the infrared image of the eye 6 may correspond to a first infrared ray S21, and a lower region of the infrared image of the eye 6 may correspond to a second infrared ray S22. The first infrared ray S21 may be reflected by an upper lens surface 30A of the upper lens structure 3A to form a first reflected infrared ray S21′, which may be acquired by the first camera 4A. The second infrared ray S22 may be reflected by a lower lens surface 30B of the lower lens structure 3B to form a second reflected infrared ray S22′, which may be acquired by the second camera 4B. Then, the first reflected infrared ray S21′ and the second reflected infrared ray S22′ may be combined to form the infrared image of the eye 6.
In some embodiments, the eye 6 may shift upward, as shown in
In some embodiments, the eye 6 may shift downward, as shown in
In one embodiment, the upper lens structure 3A and the lower lens structure 3B of the partial-reflection partial-transmission lens 3 shown in
In some embodiments, as shown in
Additionally, the VR head-mounted apparatus of this application may further include a protective frame 8, as shown in
It should also be noted that the terms “include”, “comprise” and any other variants mean to cover the non-exclusive inclusion. Thereby, the process, method, article, or device which include a series of elements not only include those elements, but also include other elements which are not clearly listed, or include the inherent elements of the process, method, article and device. Without further limitation, the element defined by a phrase “include one . . . ” does not exclude other same elements in the process, method, article or device which include the element.
References are made in detail to exemplary embodiments, examples of which are illustrated in the accompanying drawings. The above description refers to the accompanying drawings in which the same numbers in different drawings represent the same or similar elements unless otherwise represented. The implementations set forth in the following description of exemplary embodiments do not represent all implementations consistent with this application. Instead, they are merely examples of apparatuses and methods consistent with aspects related to this application as recited in the appended claims.
The terms used in this application are merely for the purpose of describing specific embodiments, and are not intended to limit this application. The terms “a”, “said” and “the” of singular forms used in this application and the appended claims are also intended to include plural forms, unless otherwise specified in the context clearly. It should also be understood that, the term “and/or” used herein indicates and includes any or all possible combinations of one or more associated listed items.
It should be understood that although the terms such as first, second, and third may be used herein to describe various information, such information should not be limited to these terms. These terms are merely used for distinguishing information of the same type from each other. For example, within the scope of this application, first information may also be referred to as second information, and similarly, second information may also be referred to as first information. Depending on the context, the term “if” as used herein may be interpreted as “when . . . ” or “upon . . . ” or “in response to determining.”
The foregoing descriptions are merely exemplary embodiments of this application, but are not intended to limit this application. Any modification, equivalent replacement, or improvement made without departing from the spirit and principle of this application should fall within the protection scope of this application.
Number | Date | Country | Kind |
---|---|---|---|
201710109486.6 | Feb 2017 | CN | national |
This application is a continuation application of International Patent Application No. PCT/CN2018/077285, filed on Feb. 26, 2018, which is based on and claims priority of the Chinese Patent Application No. 201710109486.6, filed on Feb. 27, 2017 and entitled “VIRTUAL REALITY HEAD-MOUNTED APPARATUS.” The above-referenced applications are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4227113 | Walsh | Oct 1980 | A |
5347400 | Hunter | Sep 1994 | A |
5621424 | Shimada | Apr 1997 | A |
5689619 | Smyth | Nov 1997 | A |
5771124 | Kintz | Jun 1998 | A |
5815741 | Okuyama | Sep 1998 | A |
6018630 | Arai | Jan 2000 | A |
6043799 | Tidwell | Mar 2000 | A |
6191892 | Isaka | Feb 2001 | B1 |
6433760 | Vaisie et al. | Aug 2002 | B1 |
7522344 | Curatu | Apr 2009 | B1 |
8482859 | Border et al. | Jul 2013 | B2 |
9285589 | Osterhout et al. | Mar 2016 | B2 |
9329689 | Osterhout et al. | May 2016 | B2 |
9625723 | Lou | Apr 2017 | B2 |
9788714 | Krueger | Oct 2017 | B2 |
10445573 | Wilson | Oct 2019 | B2 |
10485420 | Calpe Maravilla | Nov 2019 | B2 |
10488917 | Ollila | Nov 2019 | B2 |
10546518 | Perreault | Jan 2020 | B2 |
10627627 | Martinez | Apr 2020 | B2 |
10788677 | Geng | Sep 2020 | B2 |
10788892 | Sharma | Sep 2020 | B2 |
20010009478 | Yamazaki | Jul 2001 | A1 |
20070058261 | Sugihara et al. | Mar 2007 | A1 |
20080316606 | Inoguchi | Dec 2008 | A1 |
20100164990 | Doom | Jul 2010 | A1 |
20100321409 | Komori et al. | Dec 2010 | A1 |
20110043436 | Yamamoto | Feb 2011 | A1 |
20110169730 | Sugihara | Jul 2011 | A1 |
20120194418 | Osterhout et al. | Aug 2012 | A1 |
20120249797 | Haddick et al. | Oct 2012 | A1 |
20130107371 | Devaul | May 2013 | A1 |
20140340286 | Machida et al. | Nov 2014 | A1 |
20140361957 | Hua | Dec 2014 | A1 |
20150009313 | Noda | Jan 2015 | A1 |
20150009574 | Liesecke | Jan 2015 | A1 |
20150242680 | Thukral | Aug 2015 | A1 |
20150348327 | Zalewski | Dec 2015 | A1 |
20160062121 | Border et al. | Mar 2016 | A1 |
20160081547 | Gramatikov | Mar 2016 | A1 |
20160180591 | Shiu et al. | Jun 2016 | A1 |
20160291326 | Evans | Oct 2016 | A1 |
20160370591 | Wilson | Dec 2016 | A1 |
20160378176 | Shiu et al. | Dec 2016 | A1 |
20170115689 | Liu | Apr 2017 | A1 |
20170140224 | Wilson | May 2017 | A1 |
20170147859 | Zhang | May 2017 | A1 |
20170176749 | Ouderkirk et al. | Jun 2017 | A1 |
20170205876 | Vidal | Jul 2017 | A1 |
20170214905 | Wu | Jul 2017 | A1 |
20170262703 | Wilson | Sep 2017 | A1 |
20170285337 | Wilson | Oct 2017 | A1 |
20170285736 | Young | Oct 2017 | A1 |
20170287112 | Stafford | Oct 2017 | A1 |
20170287446 | Young | Oct 2017 | A1 |
20180068449 | Malaika | Mar 2018 | A1 |
20180157320 | Trail | Jun 2018 | A1 |
20180203505 | Trail | Jul 2018 | A1 |
20180239423 | Mardanbegi | Aug 2018 | A1 |
20180330652 | Perreault | Nov 2018 | A1 |
20190101757 | Martinez | Apr 2019 | A1 |
20190101767 | Geng | Apr 2019 | A1 |
20190113968 | Huang | Apr 2019 | A1 |
20190258314 | Ollila | Aug 2019 | A1 |
20190361523 | Sharma | Nov 2019 | A1 |
20200379561 | Sharma | Dec 2020 | A1 |
Number | Date | Country |
---|---|---|
101077232 | Nov 2007 | CN |
200994790 | Dec 2007 | CN |
202198569 | Apr 2012 | CN |
104407440 | Mar 2015 | CN |
205103761 | Mar 2016 | CN |
105718046 | Jun 2016 | CN |
105955491 | Sep 2016 | CN |
205721634 | Nov 2016 | CN |
106214118 | Dec 2016 | CN |
106406509 | Feb 2017 | CN |
106406543 | Feb 2017 | CN |
205942608 | Feb 2017 | CN |
106908951 | Jun 2017 | CN |
206584118 | Oct 2017 | CN |
202016104179 | Aug 2016 | DE |
H06-121254 | Apr 1994 | JP |
H11-249588 | Sep 1999 | JP |
1020160143749 | Dec 2016 | KR |
201608281 | Mar 2016 | TW |
2009150747 | Dec 2009 | WO |
20150157016 | Oct 2015 | WO |
20150198502 | Dec 2015 | WO |
Entry |
---|
International Preliminary Report on Patentability Chapter I for PCT Application No. PCT/CN2018/077285 dated Sep. 6, 2019 (11 pages). |
Office Action and Search Report for Taiwanese Application No. 106139871 dated Oct. 22, 2018 (7 pages). |
Written Opinion of the International Searching Authority and International Search Report for PCT Application No. PCT/CN2018/077285 dated May 25, 2018 with partial English translation (12 pages). |
First Office Action and First Search for Chinese Application No. 201710109486.6 dated Oct. 17, 2018 (5 pages). |
Second Office Action for Chinese Application No. 201710109486.6 dated Jun. 28, 2019 with machine English translation (12 pages). |
Search Report for European Application No. 18758081.6, dated Jan. 8, 2020, 4 pages. |
Examination Report for European Application No. 18758081.6, dated Jan. 20, 2020, 5 pages. |
Written Opinion for Singapore Application No. 11201906874W, dated Apr. 7, 2020, 8 pages. |
Office Action for Korean Application No. 10-2019-7022644 dated Nov. 3, 2020. |
Office Action for Japanese Application No. 2019-546360 dated Oct. 27, 2020. |
Notice of Allowance for Korean Application No. 10-2019-7022644 dated May 9, 2021. |
Number | Date | Country | |
---|---|---|---|
20190339527 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2018/077285 | Feb 2018 | US |
Child | 16511353 | US |