The instant disclosure relates to network devices. More specifically, this disclosure relates to securing virtual machines executing on network devices.
Virtual machines running in a cloud are not well protected from other machines in the cloud, or from devices with physical access to the cloud. For example, virtual machines executing in a cloud may receive communications from any device in the cloud, whether a public cloud or a private cloud. Further, data transmitted by the virtual machine in the cloud may be intercepted by unintended recipients.
In a conventional solution, a network may include a plurality of virtual or hardware servers hosting virtual machines leased by tenants. The virtual machines may start and stop based on demand for the tenant's services. Because the virtual machines are frequently starting and stopping there are no dedicated resources for the tenant. This reduces the cost for the tenant, because resources are only used when they are needed. Thus, the tenant only pays for resources as they are used. However, because there is no leased hardware for the tenant, the tenant's virtual machines may start on any one of a number of server systems in the network.
For example, a tenant may be a customer owning one or more virtual machines executing within the network. Because the virtual machines execute on shared hardware with other virtual machines belonging to other tenants, the transmission to and/or from the virtual machine may be intercepted by another tenant. Conventional solutions for isolating hardware of one tenant from hardware of another tenant are not useful for improving security, because any tenant's virtual machine may execute on hardware with another tenant's virtual machines.
Furthermore, remote devices, not a part of the network hosting the plurality of servers, may need access to the virtual machines or other devices on the shared network. Conventionally, the remote device may connect to the network through a tunnel, such as a virtual private network (VPN). The tunnel encrypts data between the network and the remote device. However, because the network does not belong to a single tenant, but is shared by multiple tenants, such a solution would allow the remote device access to virtual machines and other devices on the network that may be owned or leased by another tenant.
Remote devices may access hosts on a shared network through a virtual device relay hosted on the shared network. When a remote device, such as cellular phone, smart phone or a tablet, attempts to access a shared network, a virtual machine executing a virtual device relay may start. The virtual device relay may receive communications from the remote device and provide access to devices on the shared network. When the virtual device relay starts, authorization information received from the remote device may be used to determine one or more community-of-interests to assign to the virtual device relay. The remote device may then have access to other devices in the assigned communities-of-interest through the virtual device relay.
According to one embodiment, a system includes a virtual private network (VPN) appliance coupled to a shared network. The system also includes a remote device in communication with the VPN appliance. The system further includes a virtual device relay in communication with the VPN appliance and the shared network.
According to another embodiment, an apparatus includes a virtual device broker configured to execute virtual channel connections. The virtual channel connections include a virtual device relay and a router in communication with the virtual device relay.
According to yet another embodiment, a method includes receiving an incoming connection from a remote device. The method also includes starting a virtual device broker on a shared network executing a virtual device relay. The method further includes receiving data from the remote device. The method also includes relaying the data from the virtual device relay to a device on the shared network.
According to one embodiment, a method includes receiving, at a virtual device relay, data from a remote device. The method also includes forwarding the data to a host, when the virtual device relay and the host share a community-of-interest.
According to another embodiment, a computer program includes a computer-readable medium having code to receive, at a virtual device relay, data from a remote device. The medium also includes code to forward the data to a host, when the virtual device relay and the host share a community-of-interest.
According a further embodiment, an apparatus includes a memory and a processor coupled to the memory. The processor is configured to receive, at a virtual device relay, data from a remote device. The processor also is configured to forward the data to a host, when the virtual device relay and the host share a community-of-interest.
According to one embodiment, a method includes initiating, by a remote device, a secure connection to a router executing in a virtual machine of a server. The method also includes transmitting, through the secure connection, data to the router destined for another virtual host on a shared network within the server.
According to another embodiment, a computer program product includes a computer-readable medium having code to initiate a secure connection to a router executing in a virtual machine of a server. The medium also includes code to transmit data to the router destined for a host on a shared network within the server.
According to a further embodiment, an apparatus includes a memory and a processor coupled to the memory. The processor is configured to initiate a secure connection to a router executing in a virtual machine of a server. The processor is also configured to transmit data to the router destined for a host on a shared network within the server.
The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter that form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims. The novel features that are believed to be characteristic of the invention, both as to its organization and method of operation, together with further objects and advantages will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended as a definition of the limits of the present invention.
For a more complete understanding of the disclosed system and methods, reference is now made to the following descriptions taken in conjunction with the accompanying drawings.
At block 104, a common community-of-interest is identified between the first and the second virtual machines. Virtual machines executing on one or more servers may each be assigned one or more communities-of-interest (COI). The communities-of-interest may allow an administrator to create logical organizations of virtual machines. A community-of-interest may be defined by a role of the virtual machines in the COI. For example, an administrative COI may be created for virtual machines handling administrative tasks. A community-of-interest may also be defined by the capabilities of the virtual machines in the COI. For example, a high-performance COI may be created for virtual machines having more than one processor available for calculations. The communities-of-interest may further be used to separate communications between virtual machines, even when the virtual machines of different communities-of-interest share a physical network connection and/or physical hardware.
A first virtual machine may identify whether the second virtual machine is a member of at least one community-of-interest with the first virtual machine by consulting a look-up table and/or querying the second virtual machine. When the first and the second virtual machine share several communities-of-interest, a priority scheme may be used to select a particular one of the communities-of-interest for transmitting the message. For example, a client community-of-interest group may be preferred over an administrative community-of-interest group. Further, a community-of-interest may also be prioritized based on other members of the community-of-interest, such as when the first virtual machine does not desire certain virtual machines other than the second virtual machine to be able to receive the message. For example, when multiple communities-of-interest are shared between the first and the second virtual machine, the community-of-interest with the least number of members may be prioritized for communications to limit potential eavesdroppers.
At block 106, the message is encrypted with a key corresponding to the community-of-interest. A session key may be created for transmitting the message from the first virtual machine to the second virtual machine. The session key may be encrypted with a key corresponding to the community-of-interest and transmitted from the first virtual machine to the second virtual machine. Only other virtual machines that are a member of the community-of-interest may decode the session key. The message received at block 102 may be transmitted with this session key, which may be only known to the second virtual machine. Thus, communications between the first and the second virtual machine may be cryptographically isolated from other virtual machines, particularly virtual machines owned by other tenants in the network.
The virtual machines 208a-e may be assigned to one or more communities-of-interest (COI). For example, the virtual machines 208a, 208c, and 208e may be assigned to COI 224. In another example, the virtual machines 208d and 208e may be assigned to COI 214. Communities-of-interest may also include only a single virtual machine, such as when other virtual machines assigned to the COI have been stopped. For example, COI 222 may include the virtual machine 208b. Further, communities-of-interest may also include devices located outside of the enclave 204. For example, COI 216 may include the virtual machine 208a and the client 210.
A virtual machine 208e may be instructed to transmit a message to the virtual machine 208a. For example, software executing on the virtual machine 208e may request data from a database server executing on the virtual machine 208a. When the virtual machine 208e receives the message destined for the virtual machine 208a, the virtual machine 208e, or a device hosting the virtual machine 208e, may identify a community-of-interest in common between the virtual machine 208e and the virtual machine 208a. The COI 224 may be identified as a community-of-interest shared between the virtual machine 208e and the virtual machine 208a. Thus, a key corresponding to the COI 224 may be used to encrypt the message, which is then transmitted to the virtual machine 208a. The key may be a session key previously transmitted to the virtual machine 208a, after being generated by the virtual machine 208e and encrypted with a key for the COI 224.
Additional details regarding communities-of-interest and the provisioning of devices within a community-of-interest may be found in U.S. patent application Ser. No. 13/547,138 (TN562), Ser. No. 13/547,143 (TN563), Ser. No. 13/547,160 (TN564), and Ser. No. 13/547,148 (TN565), which are hereby incorporated by reference in their entirety.
A virtual device broker (vDB) 310 may execute on a server in a virtualized environment. The vDB 310 may be located remote from the devices 302a-c, such as within a server farm. Within the vDB 310, several virtual machines may execute to perform different tasks. For example, a router 312 may be virtualized within the vDB 310 to handle communication to and from virtual machines within the vDB 310. Communications between the vDB host 310 and the remote devices 302a-c may be virtual channel connections. The router 312 may be coupled to a network 314. The network 314 may have no security measures, such as when the network 314 is a clear-text network suitable for security-related deep-packet inspection. A host 316 may execute within the vDB 310 and be in communication with the network 314. The host 316 may execute one or more virtual device relays 318a-c. The virtual device relays 318a-c may be in communication with a shared network 320. The virtual device relays 318a-c may be virtual machines executing on the vDB 310, such as the virtual machines 208a-e of
Also in communication with the shared network 320 may be the hosts 324 and 326 executing within the vDB 310. The hosts 324 and 326 may also be virtual machines, such as the virtual machines 208a-e of
The virtual device relays 318a-c may be assigned different community-of-interests to allow access to a remote device to particular hosts in communication with the shared network 320. For example, the remote device 302a may be allowed access to the host 324 through the virtual device relay 318a but not the host 326 by assigning a community-of-interest to the virtual device relay 318a that is shared by the host 324 and not the host 326.
According to one embodiment, one virtual device relay is instantiated for each of the remote hosts 302a-c. That is, the virtual device relay 318a may handle communications with the remote device 302a, the virtual device relay 318b may handle communications with the remote device 302b, and the virtual device relay 318c may handle communications with the remote device 302c. Each of the virtual device relays 318a-c may be assigned one or more community-of-interests, and a respective encryption key for each community-of-interest, to allow the remote devices 302a-c, respectively, access to particular appliances or virtual machines in communication with the shared network 320.
In one embodiment, the user interface device 810 is referred to broadly and is intended to encompass a suitable processor-based device such as a desktop computer, a laptop computer, a personal digital assistant (PDA) or tablet computer, a smartphone or other a mobile communication device having access to the network 808. The user interface device 810 may be used to access a web service executing on the server 802. When the device 810 is a mobile device, sensors (not shown), such as a camera or accelerometer, may be embedded in the device 810. When the device 810 is a desktop computer the sensors may be embedded in an attachment (not shown) to the device 810. In a further embodiment, the user interface device 810 may access the Internet or other wide area or local area network to access a web application or web service hosted by the server 802 and provide a user interface for enabling a user to enter or receive information.
The network 808 may facilitate communications of data, such as dynamic license request messages, between the server 802 and the user interface device 810. The network 808 may include any type of communications network including, but not limited to, a direct PC-to-PC connection, a local area network (LAN), a wide area network (WAN), a modem-to-modem connection, the Internet, a combination of the above, or any other communications network now known or later developed within the networking arts which permits two or more computers to communicate.
In one embodiment, the user interface device 810 accesses the server 802 through an intermediate server (not shown). For example, in a cloud application the user interface device 810 may access an application server. The application server may fulfill requests from the user interface device 810 by accessing a database management system (DBMS). In this embodiment, the user interface device 810 may be a computer or phone executing a Java application making requests to a JBOSS server executing on a Linux server, which fulfills the requests by accessing a relational database management system (RDMS) on a mainframe server.
The computer system 900 also may include random access memory (RAM) 908, which may be synchronous RAM (SRAM), dynamic RAM (DRAM), synchronous dynamic RAM (SDRAM), or the like. The computer system 900 may utilize RAM 908 to store the various data structures used by a software application. The computer system 900 may also include read only memory (ROM) 906 which may be PROM, EPROM, EEPROM, optical storage, or the like. The ROM may store configuration information for booting the computer system 900. The RAM 908 and the ROM 906 hold user and system data, and both the RAM 908 and the ROM 906 may be randomly accessed.
The computer system 900 may also include an input/output (I/O) adapter 910, a communications adapter 914, a user interface adapter 916, and a display adapter 922. The I/O adapter 910 and/or the user interface adapter 916 may, in certain embodiments, enable a user to interact with the computer system 900. In a further embodiment, the display adapter 922 may display a graphical user interface (GUI) associated with a software or web-based application on a display device 924, such as a monitor or touch screen.
The I/O adapter 910 may couple one or more storage devices 912, such as one or more of a hard drive, a solid state storage device, a flash drive, a compact disc (CD) drive, a floppy disk drive, and a tape drive, to the computer system 900. According to one embodiment, the data storage 912 may be a separate server coupled to the computer system 900 through a network connection to the I/O adapter 910. The communications adapter 914 may be adapted to couple the computer system 900 to the network 808, which may be one or more of a LAN, WAN, and/or the Internet. The communications adapter 914 may also be adapted to couple the computer system 900 to other networks such as a global positioning system (GPS) or a Bluetooth network. The user interface adapter 916 couples user input devices, such as a keyboard 920, a pointing device 918, and/or a touch screen (not shown) to the computer system 900. The keyboard 920 may be an on-screen keyboard displayed on a touch panel. Additional devices (not shown) such as a camera, microphone, video camera, accelerometer, compass, and or gyroscope may be coupled to the user interface adapter 916. The display adapter 922 may be driven by the CPU 902 to control the display on the display device 924. Any of the devices 902-922 may be physical and/or logical.
The applications of the present disclosure are not limited to the architecture of computer system 900. Rather the computer system 900 is provided as an example of one type of computing device that may be adapted to perform the functions of a server 802 and/or the user interface device 810. For example, any suitable processor-based device may be utilized including, without limitation, personal data assistants (PDAs), tablet computers, smartphones, computer game consoles, and multi-processor servers. Moreover, the systems and methods of the present disclosure may be implemented on application specific integrated circuits (ASIC), very large scale integrated (VLSI) circuits, or other circuitry. In fact, persons of ordinary skill in the art may utilize any number of suitable structures capable of executing logical operations according to the described embodiments. For example, the computer system 800 may be virtualized for access by multiple users and/or applications.
In another example, hardware in a computer system may be virtualized through a hypervisor.
If implemented in firmware and/or software, the functions described above may be stored as one or more instructions or code on a computer-readable medium. Examples include non-transitory computer-readable media encoded with a data structure and computer-readable media encoded with a computer program. Computer-readable media includes physical computer storage media. A storage medium may be any available medium that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer. Disk and disc includes compact discs (CD), laser discs, optical discs, digital versatile discs (DVD), floppy disks and blu-ray discs. Generally, disks reproduce data magnetically, and discs reproduce data optically. Combinations of the above should also be included within the scope of computer-readable media.
In addition to storage on computer readable medium, instructions and/or data may be provided as signals on transmission media included in a communication apparatus. For example, a communication apparatus may include a transceiver having signals indicative of instructions and data. The instructions and data are configured to cause one or more processors to implement the functions outlined in the claims.
Although the present disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the disclosure as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the present invention, disclosure, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present disclosure. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
Number | Name | Date | Kind |
---|---|---|---|
697576 | Brockert | Apr 1902 | A |
1254043 | James | Jan 1918 | A |
1545441 | Newman et al. | Jul 1925 | A |
1707810 | Kops | Apr 1929 | A |
2491360 | Brown | Dec 1949 | A |
2522010 | Woodruff | Sep 1950 | A |
D166167 | Annis | Mar 1952 | S |
2682662 | Bonnett | Jul 1954 | A |
2857600 | Finn | Oct 1958 | A |
2918920 | Lutsky | Dec 1959 | A |
2958327 | Geissmann | Nov 1960 | A |
3036574 | Jeffrey | May 1962 | A |
3093137 | Dugan | Jun 1963 | A |
3217713 | Kunel | Nov 1965 | A |
3333589 | Cohen et al. | Aug 1967 | A |
3628539 | Fredricks | Dec 1971 | A |
3913146 | Zero | Oct 1975 | A |
4074066 | Ehrsam et al. | Feb 1978 | A |
4187855 | Paulus et al. | Feb 1980 | A |
4238853 | Ehrsam et al. | Dec 1980 | A |
4421117 | Klausen et al. | Dec 1983 | A |
4538615 | Pundyk | Sep 1985 | A |
4654894 | Kudo | Apr 1987 | A |
4761785 | Clark et al. | Aug 1988 | A |
4916755 | Feigenbaum et al. | Apr 1990 | A |
5083316 | Kuehner | Jan 1992 | A |
5105424 | Flaig et al. | Apr 1992 | A |
5151899 | Thomas et al. | Sep 1992 | A |
5199072 | White et al. | Mar 1993 | A |
5357509 | Ohizumi | Oct 1994 | A |
5359713 | Moran et al. | Oct 1994 | A |
5359732 | Waldman et al. | Nov 1994 | A |
5431030 | Ishizaki et al. | Jul 1995 | A |
5461725 | Witczak | Oct 1995 | A |
5499335 | Silver et al. | Mar 1996 | A |
5572521 | Pauwels et al. | Nov 1996 | A |
5603003 | Akizawa et al. | Feb 1997 | A |
5623549 | Ritter | Apr 1997 | A |
5666514 | Cheriton | Sep 1997 | A |
5699559 | Sano | Dec 1997 | A |
5867827 | Wilkinson et al. | Feb 1999 | A |
5915531 | Hilpert et al. | Jun 1999 | A |
5950238 | Klein | Sep 1999 | A |
5968003 | Sisson | Oct 1999 | A |
5978963 | Moskowitz et al. | Nov 1999 | A |
5996120 | Balit | Dec 1999 | A |
6023780 | Iwatani | Feb 2000 | A |
6062946 | Rosenberg | May 2000 | A |
6067635 | DeKoning et al. | May 2000 | A |
6101188 | Sekine et al. | Aug 2000 | A |
6101543 | Alden et al. | Aug 2000 | A |
6167531 | Sliwinski | Dec 2000 | A |
6174217 | Judson | Jan 2001 | B1 |
6182214 | Hardjono | Jan 2001 | B1 |
6231488 | Dicker et al. | May 2001 | B1 |
6276175 | Browder, Jr. | Aug 2001 | B1 |
6283124 | Schleuning et al. | Sep 2001 | B1 |
6296618 | Gaber | Oct 2001 | B1 |
6338666 | Ishii | Jan 2002 | B1 |
6377690 | Witschorik | Apr 2002 | B1 |
6389550 | Carter | May 2002 | B1 |
6522627 | Mauger | Feb 2003 | B1 |
6553511 | DeKoning et al. | Apr 2003 | B1 |
6636512 | Lorrain et al. | Oct 2003 | B1 |
6640304 | Ginter et al. | Oct 2003 | B2 |
6751219 | Lipp et al. | Jun 2004 | B1 |
6860789 | Bell et al. | Mar 2005 | B2 |
6889210 | Vainstein | May 2005 | B1 |
6931402 | Pereira, III | Aug 2005 | B1 |
6936021 | Smith | Aug 2005 | B1 |
6950818 | Dennis et al. | Sep 2005 | B2 |
6968498 | Pal | Nov 2005 | B1 |
6983489 | Caprio | Jan 2006 | B2 |
7000069 | Bruning et al. | Feb 2006 | B2 |
7055056 | Bessire | May 2006 | B2 |
7058806 | Smeets et al. | Jun 2006 | B2 |
7077720 | Schneider et al. | Jul 2006 | B2 |
7096356 | Chen et al. | Aug 2006 | B1 |
7099944 | Anschutz et al. | Aug 2006 | B1 |
7103915 | Redlich et al. | Sep 2006 | B2 |
7115015 | Horii et al. | Oct 2006 | B2 |
7144294 | Bell et al. | Dec 2006 | B2 |
7187771 | Dickinson et al. | Mar 2007 | B1 |
7243240 | Wang | Jul 2007 | B2 |
7272848 | Meyer et al. | Sep 2007 | B1 |
D556978 | Thunstedt | Dec 2007 | S |
7328366 | Michelman | Feb 2008 | B2 |
7346048 | Vogel | Mar 2008 | B1 |
7383406 | McBride et al. | Jun 2008 | B2 |
7391865 | Orsini et al. | Jun 2008 | B2 |
7443983 | Tanizawa et al. | Oct 2008 | B2 |
7496674 | Jorgensen | Feb 2009 | B2 |
7533157 | Hu et al. | May 2009 | B2 |
7650500 | Matoba | Jan 2010 | B2 |
7673048 | O'Toole et al. | Mar 2010 | B1 |
7676672 | Phillips et al. | Mar 2010 | B2 |
7689822 | Maggenti et al. | Mar 2010 | B2 |
7702906 | Karr et al. | Apr 2010 | B1 |
7707453 | Winokur | Apr 2010 | B2 |
7853714 | Moberg | Dec 2010 | B1 |
7865741 | Wood et al. | Jan 2011 | B1 |
7921288 | Hildebrand | Apr 2011 | B1 |
7926090 | Blevins et al. | Apr 2011 | B2 |
7971261 | Pestoni | Jun 2011 | B2 |
8059153 | Barreto et al. | Nov 2011 | B1 |
8135134 | Orsini et al. | Mar 2012 | B2 |
8166308 | Smith et al. | Apr 2012 | B2 |
8316226 | Kshirsagar et al. | Nov 2012 | B1 |
8335931 | Lee et al. | Dec 2012 | B2 |
8769699 | Orsini et al. | Jul 2014 | B2 |
8839346 | Murgia et al. | Sep 2014 | B2 |
8954740 | Moscaritolo et al. | Feb 2015 | B1 |
9183028 | Brandwine et al. | Nov 2015 | B1 |
9325676 | Tola, Jr. | Apr 2016 | B2 |
9344883 | Perry et al. | May 2016 | B2 |
20010008008 | Mori | Jul 2001 | A1 |
20010044932 | Hashimoto et al. | Nov 2001 | A1 |
20020004898 | Droge | Jan 2002 | A1 |
20020007507 | Duran | Jan 2002 | A1 |
20020016912 | Johnson | Feb 2002 | A1 |
20020035664 | Yates et al. | Mar 2002 | A1 |
20020080888 | Shu et al. | Jun 2002 | A1 |
20020087866 | Berson et al. | Jul 2002 | A1 |
20020091975 | Redlich et al. | Jul 2002 | A1 |
20020101989 | Markandey et al. | Aug 2002 | A1 |
20020101997 | Curtis et al. | Aug 2002 | A1 |
20020106086 | Kamiya et al. | Aug 2002 | A1 |
20020157007 | Sashihara | Oct 2002 | A1 |
20020169987 | Meushaw | Nov 2002 | A1 |
20030044020 | Aboba et al. | Mar 2003 | A1 |
20030058873 | Geiger et al. | Mar 2003 | A1 |
20030070172 | Matsuzaki et al. | Apr 2003 | A1 |
20030072445 | Kuhlman et al. | Apr 2003 | A1 |
20030084290 | Murty et al. | May 2003 | A1 |
20030126272 | Corl et al. | Jul 2003 | A1 |
20030147369 | Singh et al. | Aug 2003 | A1 |
20030161305 | Hakkarainen et al. | Aug 2003 | A1 |
20030188153 | Demoff et al. | Oct 2003 | A1 |
20030191970 | Devine et al. | Oct 2003 | A1 |
20030208693 | Yoshida | Nov 2003 | A1 |
20040019820 | Whitlow | Jan 2004 | A1 |
20040024962 | Chatterjee et al. | Feb 2004 | A1 |
20040025018 | Haas et al. | Feb 2004 | A1 |
20040028231 | Sako | Feb 2004 | A1 |
20040030822 | Rajan et al. | Feb 2004 | A1 |
20040049687 | Orsini et al. | Mar 2004 | A1 |
20040064693 | Pabla et al. | Apr 2004 | A1 |
20040103205 | Larson et al. | May 2004 | A1 |
20040123139 | Aiello | Jun 2004 | A1 |
20040133577 | Miloushev et al. | Jul 2004 | A1 |
20040151318 | Duncanson | Aug 2004 | A1 |
20040181589 | Suleiman | Sep 2004 | A1 |
20040221049 | Blumenau et al. | Nov 2004 | A1 |
20040221218 | Grob et al. | Nov 2004 | A1 |
20040226044 | Goode | Nov 2004 | A1 |
20040250131 | Swander et al. | Dec 2004 | A1 |
20040260891 | Jeddeloh et al. | Dec 2004 | A1 |
20050044356 | Srivastava et al. | Feb 2005 | A1 |
20050065925 | Weissman et al. | Mar 2005 | A1 |
20050069130 | Kobayashi | Mar 2005 | A1 |
20050076264 | Rowan et al. | Apr 2005 | A1 |
20050109841 | Ryan et al. | May 2005 | A1 |
20050114862 | Bisdikian et al. | May 2005 | A1 |
20050125692 | Cox et al. | Jun 2005 | A1 |
20050163093 | Garg et al. | Jul 2005 | A1 |
20050165972 | Miyata et al. | Jul 2005 | A1 |
20050210234 | Best et al. | Sep 2005 | A1 |
20050223269 | Stolowitz | Oct 2005 | A1 |
20050232263 | Sagara | Oct 2005 | A1 |
20050273686 | Turner et al. | Dec 2005 | A1 |
20050278563 | Durham et al. | Dec 2005 | A1 |
20060002391 | Takihiro et al. | Jan 2006 | A1 |
20060029062 | Rao et al. | Feb 2006 | A1 |
20060045005 | Blackmore et al. | Mar 2006 | A1 |
20060047712 | Shitomi et al. | Mar 2006 | A1 |
20060075478 | Hyndman et al. | Apr 2006 | A1 |
20060090084 | Buer | Apr 2006 | A1 |
20060112243 | McBride et al. | May 2006 | A1 |
20060117213 | Chapman et al. | Jun 2006 | A1 |
20060129817 | Borneman et al. | Jun 2006 | A1 |
20060155988 | Hunter et al. | Jul 2006 | A1 |
20060166600 | Ravoiu et al. | Jul 2006 | A1 |
20060171380 | Chia | Aug 2006 | A1 |
20060173969 | Wilson | Aug 2006 | A1 |
20060174336 | Chen | Aug 2006 | A1 |
20060177061 | Orsini et al. | Aug 2006 | A1 |
20060177067 | Kim et al. | Aug 2006 | A1 |
20060198366 | Liang et al. | Sep 2006 | A1 |
20060233166 | Bou-Diab et al. | Oct 2006 | A1 |
20070006015 | Rao et al. | Jan 2007 | A1 |
20070016802 | Wingert et al. | Jan 2007 | A1 |
20070028045 | Hung | Feb 2007 | A1 |
20070067644 | Flynn et al. | Mar 2007 | A1 |
20070079083 | Gladwin et al. | Apr 2007 | A1 |
20070088972 | Srivastava et al. | Apr 2007 | A1 |
20070124313 | Kim et al. | May 2007 | A1 |
20070127719 | Selander et al. | Jun 2007 | A1 |
20070130463 | Law et al. | Jun 2007 | A1 |
20070143529 | Bacastow | Jun 2007 | A1 |
20070147821 | Gaessler et al. | Jun 2007 | A1 |
20070160198 | Orsini et al. | Jul 2007 | A1 |
20070183376 | Arai | Aug 2007 | A1 |
20070206788 | Hagiwara et al. | Sep 2007 | A1 |
20070255977 | Liccione et al. | Nov 2007 | A1 |
20070258468 | Bennett | Nov 2007 | A1 |
20080016300 | Yim et al. | Jan 2008 | A1 |
20080016386 | Dror et al. | Jan 2008 | A1 |
20080019529 | Kahn et al. | Jan 2008 | A1 |
20080072035 | Johnson | Mar 2008 | A1 |
20080084847 | Xia et al. | Apr 2008 | A1 |
20080104355 | Moore et al. | May 2008 | A1 |
20080141336 | Haller | Jun 2008 | A1 |
20080147821 | Dietrich et al. | Jun 2008 | A1 |
20080183975 | Foster et al. | Jul 2008 | A1 |
20080183992 | Martin et al. | Jul 2008 | A1 |
20080209041 | Kobayashi et al. | Aug 2008 | A1 |
20080229095 | Kalimuthu et al. | Sep 2008 | A1 |
20080232592 | Lee et al. | Sep 2008 | A1 |
20080240441 | Kawakami | Oct 2008 | A1 |
20080244277 | Orsini et al. | Oct 2008 | A1 |
20080263370 | Hammoutene et al. | Oct 2008 | A1 |
20080275925 | Kimmel | Nov 2008 | A1 |
20080301433 | Vito | Dec 2008 | A1 |
20090016357 | Blevins et al. | Jan 2009 | A1 |
20090073895 | Morgan | Mar 2009 | A1 |
20090077313 | Trika et al. | Mar 2009 | A1 |
20090077413 | Dake et al. | Mar 2009 | A1 |
20090092252 | Noll et al. | Apr 2009 | A1 |
20090097661 | Orsini et al. | Apr 2009 | A1 |
20090132819 | Lu et al. | May 2009 | A1 |
20090155574 | Pakiza | Jun 2009 | A1 |
20090177894 | Orsini et al. | Jul 2009 | A1 |
20090222653 | Findeisen et al. | Sep 2009 | A1 |
20090254750 | Bono et al. | Oct 2009 | A1 |
20090259854 | Cox et al. | Oct 2009 | A1 |
20090279701 | Moisand et al. | Nov 2009 | A1 |
20090287500 | Benjamin et al. | Nov 2009 | A1 |
20090287895 | Foley et al. | Nov 2009 | A1 |
20090288084 | Astete et al. | Nov 2009 | A1 |
20090292917 | Lebovitz et al. | Nov 2009 | A1 |
20090300407 | Kamath et al. | Dec 2009 | A1 |
20090319782 | Lee | Dec 2009 | A1 |
20090327731 | Appenzeller et al. | Dec 2009 | A1 |
20090327798 | D'Amato et al. | Dec 2009 | A1 |
20100023700 | Chen et al. | Jan 2010 | A1 |
20100023778 | Hauck et al. | Jan 2010 | A1 |
20100064137 | McGrew et al. | Mar 2010 | A1 |
20100077203 | Ogawa et al. | Mar 2010 | A1 |
20100095119 | Tachibana | Apr 2010 | A1 |
20100115101 | Lain et al. | May 2010 | A1 |
20100154028 | Wainner et al. | Jun 2010 | A1 |
20100161964 | Dodgson | Jun 2010 | A1 |
20100162001 | Dodgson | Jun 2010 | A1 |
20100162011 | Min | Jun 2010 | A1 |
20100169706 | Winokur | Jul 2010 | A1 |
20100185845 | Takayama et al. | Jul 2010 | A1 |
20100199099 | Wu | Aug 2010 | A1 |
20100199329 | Walker | Aug 2010 | A1 |
20100225959 | Selvaraj et al. | Sep 2010 | A1 |
20100238855 | Yoshida et al. | Sep 2010 | A1 |
20100257263 | Casado et al. | Oct 2010 | A1 |
20100287363 | Thorsen | Nov 2010 | A1 |
20100291924 | Antrim et al. | Nov 2010 | A1 |
20100306530 | Johnson et al. | Dec 2010 | A1 |
20100325703 | Etchegoyen | Dec 2010 | A1 |
20110010417 | Yoshida | Jan 2011 | A1 |
20110023105 | Islam et al. | Jan 2011 | A1 |
20110035604 | Habraken | Feb 2011 | A1 |
20110113235 | Erickson | May 2011 | A1 |
20110173682 | Perry et al. | Jul 2011 | A1 |
20110179271 | Orsini et al. | Jul 2011 | A1 |
20110179287 | Orsini et al. | Jul 2011 | A1 |
20110264905 | Ovsiannikov | Oct 2011 | A1 |
20110277027 | Hayton et al. | Nov 2011 | A1 |
20110321040 | Sobel et al. | Dec 2011 | A1 |
20120023554 | Murgia et al. | Jan 2012 | A1 |
20120054842 | Rodriguez et al. | Mar 2012 | A1 |
20120084544 | Farina | Apr 2012 | A1 |
20120084545 | Farina et al. | Apr 2012 | A1 |
20120084562 | Farina et al. | Apr 2012 | A1 |
20120084566 | Chin et al. | Apr 2012 | A1 |
20120084838 | Inforzato et al. | Apr 2012 | A1 |
20120159607 | Wei et al. | Jun 2012 | A1 |
20120170750 | Orsini et al. | Jul 2012 | A1 |
20120226792 | Johnson et al. | Sep 2012 | A1 |
20130014106 | Imai et al. | Jan 2013 | A1 |
20130086376 | Haynes | Apr 2013 | A1 |
20130086557 | Alwar et al. | Apr 2013 | A1 |
20130086685 | Haynes | Apr 2013 | A1 |
20130325703 | Kingsley et al. | Dec 2013 | A1 |
20130339716 | Hamid | Dec 2013 | A1 |
20140052980 | Siegel et al. | Feb 2014 | A1 |
20140218046 | Nakayama et al. | Aug 2014 | A1 |
20140282500 | Parthiban et al. | Sep 2014 | A1 |
20140297597 | Matsubara et al. | Oct 2014 | A1 |
20140317350 | Langas et al. | Oct 2014 | A1 |
20140317394 | Buhler et al. | Oct 2014 | A1 |
20150033305 | Shear et al. | Jan 2015 | A1 |
20150067804 | Maxwell | Mar 2015 | A1 |
20150302319 | Elder et al. | Oct 2015 | A1 |
20160100070 | Nauta et al. | Apr 2016 | A1 |
Number | Date | Country |
---|---|---|
0249091 | Dec 1987 | EP |
0488782 | Jun 1992 | EP |
1818847 | Aug 2007 | EP |
2189922 | May 2010 | EP |
2403212 | Jan 2012 | EP |
9815086 | Apr 1998 | WO |
0027090 | May 2000 | WO |
0101241 | Jan 2001 | WO |
0252787 | Jul 2002 | WO |
2005041045 | May 2005 | WO |
2006069194 | Jun 2006 | WO |
2006113566 | Oct 2006 | WO |
2007081810 | Jul 2007 | WO |
2007120429 | Oct 2007 | WO |
2007120437 | Oct 2007 | WO |
2007120438 | Oct 2007 | WO |
2008118227 | Oct 2008 | WO |
Entry |
---|
Final Office Action, U.S. Appl. No. 13/105,154, filed Feb. 24, 2016, 39 pgs. |
Final Office Action, U.S. Appl. No. 13/105,154, filed Mar. 10, 2014, 15 pgs. |
Final Office Action, U.S. Appl. No. 13/664,505, filed Jan. 4, 2019, 10 pgs. |
Final Office Action, U.S. Appl. No. 13/664,505, filed Jul. 3, 2014, 7 pgs. |
Final Office Action, U.S. Appl. No. 13/664,505, filed Nov. 13, 2017, 10 pgs. |
Final Office Action, U.S. Appl. No. 13/664,505, filed Nov. 17, 2015, 8 pgs. |
Final Office Action, U.S. Appl. No. 13/664,505, filed Oct. 28, 2019, 10 pgs. |
Non-Final Office Action, U.S. Appl. No. 13/105,154, filed Aug. 23, 2016, 39 pgs. |
Non-Final Office Action, U.S. Appl. No. 13/105,154, filed Jun. 27, 2013, 13 pgs. |
Non-Final Office Action, U.S. Appl. No. 13/105,154, filed Jun. 3, 2015, 37 pgs. |
Non-Final Office Action, U.S. Appl. No. 13/664,505, filed Jan. 27, 2015, 7 pgs. |
Non-Final Office Action, U.S. Appl. No. 13/664,505, filed Jul. 7, 2020, 10 pgs. |
Non-Final Office Action, U.S. Appl. No. 13/664,505, filed Jul. 9, 2018, 11 pgs. |
Non-Final Office Action, U.S. Appl. No. 13/664,505, filed Mar. 23, 2017, 7 pgs. |
Non-Final Office Action, U.S. Appl. No. 13/664,505, filed May 14, 2019, 10 pgs. |
Non-Final Office Action, U.S. Appl. No. 13/664,505, filed Oct. 1, 2013, 8 pgs. |
Number | Date | Country | |
---|---|---|---|
20210294891 A1 | Sep 2021 | US |
Number | Date | Country | |
---|---|---|---|
61389511 | Oct 2010 | US | |
61389535 | Oct 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13664505 | Oct 2012 | US |
Child | 17338345 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13105154 | May 2011 | US |
Child | 13664505 | US |