This disclosure relates generally to computer based process modeling techniques and, more particularly, to virtual sensor based control systems and methods using process models.
Physical sensors are widely used in many products, such as modem machines, to measure and monitor physical phenomena, such as temperature, speed, and emissions from mobile machines. Physical sensors often take direct measurements of the physical phenomena and convert these measurements into measurement data to be further processed by control systems. Although physical sensors take direct measurements of the physical phenomena, physical sensors and associated hardware are often costly and, sometimes, unreliable. Further, when control systems rely on physical sensors to operate properly, a failure of a physical sensor may render such control systems inoperable. For example, the failure of a speed or timing sensor in an engine may result in shutdown of the engine entirely even if the engine itself is still operable.
Instead of direct measurements, Virtual sensors are developed to process other various physically measured values and to produce values that are previously measured directly by physical sensors. For example, U.S. Pat. No. 5,386,373 (the '373 patent) issued to Keeler et al. on Jan. 31, 1995, discloses a virtual continuous emission monitoring system with sensor validation. The '373 patent uses a back propagation-to-activation model and a monte-carlo search technique to establish and optimize a computational model used for the virtual sensing system to derive sensing parameters from other measured parameters. However, such conventional techniques often fail to address inter-correlation between individual measured parameters, especially at the time of generation and/or optimization of computational models, or to correlate the other measured parameters to the sensing parameters.
Further, such conventional techniques do not address failures of one or more physical or virtual sensor, where other physical sensors or virtual sensors may provide information to correct the failed physical or virtual sensor.
Methods and systems consistent with certain features of the disclosed systems are directed to solving one or more of the problems set forth above.
One aspect of the present disclosure includes a method for a virtual sensor system corresponding to a target physical sensor. The method may include selecting a plurality of measured parameters provided by a set of physical sensors based on operational characteristics of the virtual sensor system. The method may also include establishing a virtual sensor process model indicative of interrelationships between one or more sensing parameter and the plurality of measured parameters. Further the method may include obtaining a set of values corresponding to the plurality of measured parameters; calculating a value of the sensing parameter based upon the set of values corresponding to the plurality of measured parameters and the virtual sensor process model; and providing the value of the sensing parameter to a control system.
Another aspect of the present disclosure includes a computer system for establishing a virtual sensor system corresponding to a target physical sensor. The computer system may include a database and a processor. The database may be configured to store information relevant to a virtual sensor process model of the virtual sensor system. The processor may be configured to select a plurality of measured parameters provided by a set of physical sensors based on operational characteristics of the virtual sensor system. The processor may also be configured to establish the virtual sensor process model indicative of interrelationships between one or more sensing parameter and the plurality of measured parameters. Further, the processor may be configured to obtain a set of values corresponding to the plurality of measured parameters; to calculate a value of the sensing parameter based upon the set of values corresponding to the plurality of measured parameters and the virtual sensor process model; and to provide the value of the sensing parameter to a control system.
Another aspect of the present disclosure includes a machine. The machine may include a power source configured to provide power to the machine and a control system configured to control the power source. The machine may also a virtual sensor system corresponding to a target physical sensor. The virtual sensor system may include a virtual sensor process model indicative of interrelationships between one or more sensing parameter and a plurality of measured parameters. The virtual sensor system may be configured to perform a method. The method may include selecting a plurality of measured parameters provided by a set of physical sensors based on operational characteristics of the virtual sensor system. The method may also include establishing a virtual sensor process model indicative of interrelationships between one or more sensing parameter and the plurality of measured parameters. Further, the method may include obtaining a set of values corresponding to the plurality of measured parameters; calculating a value of the sensing parameter based upon the set of values corresponding to the plurality of measured parameters and the virtual sensor process model; and providing the value of the sensing parameter to a control system.
Reference will now be made in detail to exemplary embodiments, which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
As shown in
ECM 120 may be coupled to data link 150 to receive data from and send data to other components, such as engine 110, physical sensors 140 and 142, virtual sensor system 130, and/or any other components (not shown) of machine 100. Data link 150 may include any appropriate type of data communication medium, such as cable, wires, wireless radio, and/or laser, etc. Physical sensor 140 may include one or more sensors provided for measuring certain parameters of vehicle operating environment. For example, physical sensor 140 may include emission sensors for measuring emissions of machine 100, such as Nitrogen Oxides (NOx), Sulfur Dioxide (SO2), Carbon Monoxide (CO), total reduced Sulfur (TRS), etc. In particular, NOx emission sensing and reduction may be important to normal operation of engine 110. Physical sensor 142, on the other hand, may include any appropriate sensors that are used inside engine 110 or other components (not show) to provide various measured parameters about engine 110 or other components, such as temperature, speed, etc.
Further, machine 100 may include physical sensors for multiple systems or subsystems on machine 100. For example, machine 100 may include physical sensors for a fuel system and physical sensors for an air system. Thus, physical sensors 140 and 142 may include sensors from same or different systems or subsystems during the operation.
Virtual sensor system 130 may include any appropriate type of control system that generates values of sensing parameters based on a computational model and a plurality of measured parameters. The sensing parameters may refer to those measurement parameters that are directly measured by a particular physical sensor. For example, a physical NOx emission sensor may measure the NOx emission level of machine 100 and provide values of NOx emission level, the sensing parameter, to other components, such as ECM 120. Sensing parameters, however, may also include any output parameters that may be measured indirectly by physical sensors and/or calculated based on readings of physical sensors. On the other hand, the measured parameters may refer to any parameters relevant to the sensing parameters and indicative of the state of a component or components of machine 100, such as engine 110. For example, for the sensing parameter NOx emission level, measured parameters may include environmental parameters, such as compression ratios, turbocharger efficiency, after cooler characteristics, temperature values, pressure values, ambient conditions, fuel rates, and engine speeds, etc.
Further, virtual sensor system 130 may be configured as a separate control system or, alternatively, may coincide with other control systems such as ECM 120.
As shown in
Processor 202 may include any appropriate type of general purpose microprocessor, digital signal processor, or microcontroller. Processor 202 may be configured as a separate processor module dedicated to controlling engine 110. Alternatively, processor 202 may be configured as a shared processor module for performing other functions unrelated to virtual sensors.
Memory module 204 may include one or more memory devices including, but not limited to, a ROM, a flash memory, a dynamic RAM, and a static RAM. Memory module 204 may be configured to store information used by processor 202. Database 206 may include any type of appropriate database containing information on characteristics of measured parameters, sensing parameters, mathematical models, and/or any other control information.
Further, I/O interface 208 may also be connected to data link 150 to obtain data from various sensors or other components (e.g., physical sensors 140 and 142) and/or to transmit data to these components and to ECM 120. Network interface 210 may include any appropriate type of network device capable of communicating with other computer systems based on one or more communication protocols. Storage 212 may include any appropriate type of mass storage provided to store any type of information that processor 202 may need to operate. For example, storage 212 may include one or more hard disk devices, optical disk devices, or other storage devices to provide storage space.
As explained above, virtual sensor system 130 may include a process model to provide values of certain sensing parameters to ECM 120.
As shown in
In certain embodiments, virtual sensor system 130 may include a NOx virtual sensor to provide levels of NOx emitted from an exhaust system (not shown) of machine 100. Input parameters 302 may include any appropriate type of data associated with NOx emission levels. For example, input parameters 302 may include parameters that control operations of various response characteristics of engine 110 and/or parameters that are associated with conditions corresponding to the operations of engine 110. For example, input parameters 302 may include fuel injection timing, compression ratios, turbocharger efficiency, after cooler characteristics, temperature values (e.g., intake manifold temperature), pressure values (e.g., intake manifold pressure), ambient conditions (e.g., ambient humidity), fuel rates, and engine speeds, etc. Other parameters, however, may also be included. Input parameters 302 may be measured by certain physical sensors, such as physical sensor 142, or created by other control systems such as ECM 120. Virtual sensor system 130 may obtain values of input parameters 302 via an input 310 coupled to data link 150.
On the other hand, output parameters 306 may correspond to sensing parameters. For example, output parameters 306 of a NOx virtual sensor may include NOx emission level, and/or any other types of output parameters used by NOx virtual sensing application. Output parameters 306 (e.g., NOx emission level) may be sent to ECM 120 via output 320 coupled to data link 150.
Virtual sensor process model 304 may include any appropriate type of mathematical or physical model indicating interrelationships between input parameters 302 and output parameters 306. For example, virtual sensor process model 304 may be a neural network based mathematical model that is trained to capture interrelationships between input parameters 302 and output parameters 306. Other types of mathematic models, such as fuzzy logic models, linear system models, and/or non-linear system models, etc., may also be used. Virtual sensor process model 304 may be trained and validated using data records collected from a particular engine application for which virtual sensor process model 304 is established. That is, virtual sensor process model 304 may be established according to particular rules corresponding to a particular type of model using the data records, and the interrelationships of virtual sensor process model 304 may be verified by using part of the data records.
After virtual sensor process model 304 is trained and validated, virtual sensor process model 304 may be optimized to define a desired input space of input parameters 302 and/or a desired distribution of output parameters 306. The validated or optimized virtual sensor process model 304 may be used to produce corresponding values of output parameters 306 when provided with a set of values of input parameters 102. In the above example, virtual sensor process model 304 may be used to produce NOx emission level based on measured parameters, such as ambient humidity, intake manifold pressure, intake manifold temperature, fuel rate, and engine speed, etc.
Returning to
Processor 202 may perform a virtual sensor process model generation and optimization process to generate and optimize virtual sensor process model 304.
As shown in
The data records may also be collected from experiments designed for collecting such data. Alternatively, the data records may be generated artificially by other related processes, such as other emission modeling or analysis processes. The data records may also include training data used to build virtual sensor process model 304 and testing data used to validate virtual sensor process model 304. In addition, the data records may also include simulation data used to observe and optimize virtual sensor process model 304.
The data records may reflect characteristics of input parameters 102 and output parameters 106, such as statistic distributions, normal ranges, and/or precision tolerances, etc. Once the data records are obtained (step 402), processor 202 may pre-process the data records to clean up the data records for obvious errors and to eliminate redundancies (step 404). Processor 202 may remove approximately identical data records and/or remove data records that are out of a reasonable range in order to be meaningful for model generation and optimization. After the data records have been pre-processed, processor 202 may select proper input parameters by analyzing the data records (step 406).
The data records may be associated with many input variables, such as variables corresponding to fuel injection timing, compression ratios, turbocharger efficiency, after cooler characteristics, various temperature parameters, various pressure parameters, various ambient conditions, fuel rates, and engine speeds, etc. The number of input variables may be greater than the number of a particular set of input parameters 102 used for virtual sensor process model 304. That is, input parameters 102 may be a subset of the input variables. For example, input parameter 302 may include intake manifold temperature, intake manifold pressure, ambient humidity, fuel rate, and engine speed, etc., of the input variables.
A large number of input variables may significantly increase computational time during generation and operations of the mathematical models. The number of the input variables may need to be reduced to create mathematical models within practical computational time limits. Additionally, in certain situations, the number of input variables in the data records may exceed the number of the data records and lead to sparse data scenarios. Some of the extra input variables may have to be omitted in certain mathematical models such that practical mathematical models may be created based on a reduced variable number.
Processor 202 may select input parameters 302 from the input variables according to predetermined criteria. For example, processor 202 may choose input parameters 302 by experimentation and/or expert opinions. Alternatively, in certain embodiments, processor 202 may select input parameters based on a mahalanobis distance between a normal data set and an abnormal data set of the data records. The normal data set and abnormal data set may be defined by processor 202 using any appropriate method. For example, the normal data set may include characteristic data associated with input parameters 302 that produce desired output parameters. On the other hand, the abnormal data set may include any characteristic data that may be out of tolerance or may need to be avoided. The normal data set and abnormal data set may be predefined by processor 202.
Mahalanobis distance may refer to a mathematical representation that may be used to measure data profiles based on correlations between parameters in a data set. Mahalanobis distance differs from Euclidean distance in that mahalanobis distance takes into account the correlations of the data set. Mahalanobis distance of a data set X (e.g., a multivariate vector) may be represented as
MDi=(Xi−μx)Σ−1(Xi−μx)′ (1)
where μx is the mean of X and Σ−1 is an inverse variance-covariance matrix of X. MDi weights the distance of a data point Xi from its mean μx such that observations that are on the same multivariate normal density contour will have the same distance. Such observations may be used to identify and select correlated parameters from separate data groups having different variances.
Processor 202 may select input parameter 302 as a desired subset of input variables such that the mahalanobis distance between the normal data set and the abnormal data set is maximized or optimized. A genetic algorithm may be used by processor 202 to search input variables for the desired subset with the purpose of maximizing the mahalanobis distance. Processor 202 may select a candidate subset of the input variables based on a predetermined criteria and calculate a mahalanobis distance MDnormal of the normal data set and a mahalanobis distance MDabnormal of the abnormal data set. Processor 202 may also calculate the mahalanobis distance between the normal data set and the abnormal data (i.e., the deviation of the mahalanobis distance MDx=MDnormal−MDabnormal). Other types of deviations, however, may also be used.
Processor 202 may select the candidate subset of input variables if the genetic algorithm converges (i.e., the genetic algorithm finds the maximized or optimized mahalanobis distance between the normal data set and the abnormal data set corresponding to the candidate subset). If the genetic algorithm does not converge, a different candidate subset of input variables may be created for further searching. This searching process may continue until the genetic algorithm converges and a desired subset of input variables (e.g., input parameters 302) is selected. Optionally, mahalanobis distance may also be used to reduce the number of data records by choosing a part of data records that achieve a desired mahalanobis distance, as explained above.
After selecting input parameters 302 (e.g., intake manifold temperature, intake manifold pressure, ambient humidity, fuel rate, and engine speed, etc.), processor 202 may generate virtual sensor process model 304 to build interrelationships between input parameters 302 and output parameters 306 (step 408). In certain embodiments, virtual sensor process model 304 may correspond to a computational model, such as, for example, a computational model built on any appropriate type of neural network. The type of neural network computational model that may be used includes back propagation, feed forward models, cascaded neural networks, and/or hybrid neural networks, etc. Particular types or structures of the neural network used may depend on particular applications. Other types of computational models, such as linear system or non-linear system models, etc., may also be used.
The neural network computational model (i.e., virtual sensor process model 304) may be trained by using selected data records. For example, the neural network computational model may include a relationship between output parameters 306 (e.g., NOx emission level, etc.) and input parameters 302 (e.g., intake manifold temperature, intake manifold pressure, ambient humidity, fuel rate, and engine speed, etc.). The neural network computational model may be evaluated by predetermined criteria to determine whether the training is completed. The criteria may include desired ranges of accuracy, time, and/or number of training iterations, etc.
After the neural network has been trained (i.e., the computational model has initially been established based on the predetermined criteria), processor 202 may statistically validate the computational model (step 410). Statistical validation may refer to an analyzing process to compare outputs of the neural network computational model with actual or expected outputs to determine the accuracy of the computational model. Part of the data records may be reserved for use in the validation process.
Alternatively, processor 202 may also generate simulation or validation data for use in the validation process. This may be performed either independently of a validation sample or in conjunction with the sample. Statistical distributions of inputs may be determined from the data records used for modeling. A statistical simulation, such as Latin Hypercube simulation, may be used to generate hypothetical input data records. These input data records are processed by the computational model, resulting in one or more distributions of output characteristics. The distributions of the output characteristics from the computational model may be compared to distributions of output characteristics observed in a population. Statistical quality tests may be performed on the output distributions of the computational model and the observed output distributions to ensure model integrity.
Once trained and validated, virtual sensor process model 304 may be used to predict values of output parameters 306 when provided with values of input parameters 302. Further, processor 202 may optimize virtual sensor process model 304 by determining desired distributions of input parameters 302 based on relationships between input parameters 302 and desired distributions of output parameters 306 (step 412).
Processor 202 may analyze the relationships between desired distributions of input parameters 302 and desired distributions of output parameters 306 based on particular applications. For example, processor 202 may select desired ranges for output parameters 306 (e.g., NOx emission level that is desired or within certain predetermined range). Processor 202 may then run a simulation of the computational model to find a desired statistic distribution for an individual input parameter (e.g., one of intake manifold temperature, intake manifold pressure, ambient humidity, fuel rate, and engine speed, etc.). That is, processor 202 may separately determine a distribution (e.g., mean, standard variation, etc.) of the individual input parameter corresponding to the normal ranges of output parameters 306. After determining respective distributions for all individual input parameters, processor 202 may combine the desired distributions for all the individual input parameters to determine desired distributions and characteristics for overall input parameters 302.
Alternatively, processor 202 may identify desired distributions of input parameters 302 simultaneously to maximize the possibility of obtaining desired outcomes. In certain embodiments, processor 202 may simultaneously determine desired distributions of input parameters 302 based on zeta statistic. Zeta statistic may indicate a relationship between input parameters, their value ranges, and desired outcomes. Zeta statistic may be represented as
where
Under certain circumstances,
Processor 202 may identify a desired distribution of input parameters 302 such that the zeta statistic of the neural network computational model (i.e., virtual sensor process model 304) is maximized or optimized. An appropriate type of genetic algorithm may be used by processor 202 to search the desired distribution of input parameters 302 with the purpose of maximizing the zeta statistic. Processor 202 may select a candidate set values of input parameters 302 with predetermined search ranges and run a simulation of virtual sensor process model 304 to calculate the zeta statistic parameters based on input parameters 302, output parameters 306, and the neural network computational model. Processor 202 may obtain
Processor 202 may select the candidate set of values of input parameters 302 if the genetic algorithm converges (i.e., the genetic algorithm finds the maximized or optimized zeta statistic of virtual sensor process model 304 corresponding to the candidate set of input parameters 302). If the genetic algorithm does not converge, a different candidate set of values of input parameters 302 may be created by the genetic algorithm for further searching. This searching process may continue until the genetic algorithm converges and a desired set of values of input parameters 302 is identified. Processor 202 may further determine desired distributions (e.g., mean and standard deviations) of input parameters 302 based on the desired input parameter set. Once the desired distributions are determined, processor 202 may define a valid input space that may include any input parameter within the desired distributions (step 414).
In one embodiment, statistical distributions of certain input parameters may be impossible or impractical to control. For example, an input parameter may be associated with a physical attribute of a device, such as a dimensional attribute of an engine part, or the input parameter may be associated with a constant variable within virtual sensor process model 304 itself. These input parameters may be used in the zeta statistic calculations to search or identify desired distributions for other input parameters corresponding to constant values and/or statistical distributions of these input parameters.
Further, optionally, more than one virtual sensor process model may be established. Multiple established virtual sensor process models may be simulated by using any appropriate type of simulation method, such as statistical simulation. Output parameters 306 based on simulation of these multiple virtual sensor process models may be compared to select a most-fit virtual sensor process model based on predetermined criteria, such as smallest variance with outputs from corresponding physical sensors, etc. The selected most-fit virtual sensor process model 304 may be deployed in virtual sensor applications.
Returning to
In certain embodiments, virtual sensor system 130 may be used to replace corresponding physical sensors. For example, virtual sensor system 130 may replace one or more NOx emission sensors used by ECM 120. ECM 120 may perform a control process based on virtual sensor system 130.
As shown in
As explained above, virtual sensor system 130 includes virtual sensor process model 304. Virtual sensor system 130 may provide the measured parameters (e.g., intake manifold temperature, intake manifold pressure, ambient humidity, fuel rate, and engine speed, etc.) to virtual sensor process model 304 as input parameters 302. Virtual sensor process model 304 may then provide output parameters 306, such as NOx emission level.
ECM 120 may obtain output parameters 306 (e.g., NOx emission level) from virtual sensor system 130 via data link 150 (step 506). In certain situations, ECM 120 may be unaware the source of output parameters 306. That is, ECM 120 may be unaware whether output parameters 306 are from virtual sensor system 130 or from physical sensors. For example, ECM 120 may obtain NOx emission level from data link 150 without discerning the source of such data. After ECM 120 obtains the NOx emission level from virtual sensor system 130 (step 506), ECM 120 may control engine 110 and/or other components of machine 100 based on the NOx emission level (step 508). For example, ECM 120 may perform certain emission enhancing or minimization processes.
In certain other embodiments, virtual sensor system 130 may be used in combination with physical sensors or as a back up for physical sensors. For example, virtual sensor system 130 may be used when one or more physical NOx emission sensors have failed. ECM 120 may perform a control process based on virtual sensor system 130 and corresponding physical sensors.
As shown in
Further, ECM 120 may obtain output parameters (e.g., NOx emission level) from virtual sensor system 130 via data link 150 (step 606). Additionally and/or concurrently, ECM 120 may also obtain NOx emission level from one or more physical sensors, such as physical sensor 142 (step 608). ECM 120 may check operational status on the physical sensors (step 610). ECM 120 may include certain logic devices to determine whether the physical sensors have failed. For example, if ECM 120 determines that a difference between output parameter values of a physical sensor and a virtual sensor exceeds a predetermined threshold, ECM 120 may determine that the physical sensor has failed. If the physical sensors have failed (step 610; yes), ECM 120 may obtain NOx emission level from virtual sensor system 130 and control engine 110 and/or other components of machine 100 based on the NOx emission level from virtual sensor system 130 (step 612).
On the other hand, if the physical sensors have not failed (step 610; no), ECM 120 may use NOx emission level from the physical sensors to control engine 110 and/or other components of machine 100 (step 614). Alternatively, ECM 120 may obtain NOx emission levels from virtual sensor system 130 and the physical sensors to determine whether there is any deviation between the NOx emission levels. If the deviation is beyond a predetermined threshold, ECM 120 may declare a failure and switch to virtual sensor system 130 or use a preset value that is neither from virtual sensor system 130 nor from the physical sensors.
In addition, ECM 120 may also obtain measuring parameters that may be unavailable in physical sensors 140 and 142. For example, virtual sensor system 130 may include a process model indicative of interrelationships between oxygen density in a certain geographical area (e.g., the state of Colorado, etc.) and space-based satellite and weather data. That is, virtual sensor system 130 may provide ECM 120 with measuring parameters, such as the oxygen density, that may be otherwise unavailable on physical sensors.
In certain embodiments, virtual sensor system 130 may be used to back up any one of multiple physical sensors providing measured parameters to ECM 120 or to any other virtual sensor systems. For example, virtual sensor system 130 may provide backup for any appropriate type of physical sensor used in machine 100, such as fuel pressure, fuel rate, fuel type, guide vane, flow rate, or bleed air, etc. Other types of physical sensors may also be used.
When provided for backup physical sensors with measured parameters, virtual sensor system 130 may be established, trained, simulated, and/or optimized as described above. Further, interrelationships among measured parameters may be used to further optimize virtual sensor system 130. For example, virtual sensor system 130 may include multiple process models and each model may have a different set of input parameters based on the interrelationships among the measured parameters and operational characteristics of virtual sensor system 130.
The operational characteristics of a virtual sensor system, as used herein, may refer to any appropriate control and operational algorithm the virtual sensor system is using. For example, a virtual sensor system may use a close loop control algorithm instead of an open loop control algorithm. Other types of control algorithms, however, may also be used.
To back up a particular physical sensor, virtual sensor system 130 may be established based on measured parameters of other physical sensors.
As shown in
Each sensor group may correspond to a system or subsystem of engine 110, as physical sensors providing measured parameters may belong to same or different systems or subsystems of engine 110. For example, when physical sensors such as a fuel pressure sensor, a fuel rate sensor, a fuel type sensor, a guide vane sensor, a flow rate sensor, and/or a bleed air sensor, etc., are provided, the fuel pressure sensor, the fuel rate sensor, and the fuel type sensor, etc., may belong to a fuel subsystem of engine 110, while the guide vane sensor, the flow rate sensor, or the bleed air sensor, etc., may belong to an air subsystem of engine 110, a different subsystem.
Further, processor 202 may determine operational characteristics of virtual sensor system 130 (step 706). For processor 202 may determine the operational characteristics of virtual sensor system 130 based on a predetermined criteria, such as an inquiry to database 208, or types of algorithms used in virtual sensor system 130, etc. Processor 202 may determine whether virtual sensor system 130 uses a close loop based control algorithm (step 708). A close loop based control algorithm, as used herein, may refer to any appropriate control algorithm applying feedback to control states or outputs of a control system. The close loop based control system may be unstable if the feedback closely correlated with the inputs of the control system due to the feedback.
If processor 202 determines that virtual sensor system 130 uses a close loop based control algorithm (step 708; yes), processor 202 may exclude measured parameters provided by physical sensors in the same group as the particular physical sensor corresponding to virtual sensor system 130 (step 710). For example, if virtual sensor system 130 is provided to back up the guide vane physical sensor, and processor 202 determines that virtual sensor system 130 uses a close loop based control algorithm, processor 202 may exclude measured parameters provided by the flow rate sensor and the bleed air sensor from being included in input parameters of virtual sensor system 130. Because sensors from the same system or subsystem may be interrelated in a greater degree than those from different systems or subsystems, excluding the measured parameters from physical sensors from the same system or subsystem may substantially reduce the chance of unstability caused by undesired feedback.
On the other hand, if processor 202 determines that virtual sensor system 130 does not use a close loop control algorithm (step 708; no), processor 202 may include only measured parameters from physical sensors in the same group as the particular physical sensor corresponding to virtual sensor system 130 (step 712). In the example above, if virtual sensor system 130 is provided to backup the guide vane physical sensor, and processor 202 determines that virtual sensor system 130 does not use a close loop based control algorithm, processor 202 may only select measured parameters provided by the flow rate sensor and the bleed air sensor to be included in input parameters for virtual sensor system 130. That is, processor 202 may exclude measured parameters provided by physical sensors from other different systems or subsystems. Because sensors from the system or subsystem may be interrelated in a greater degree than those from different systems or subsystems, the measured parameters provided by those sensors may provide more accurate information to reflect the measured parameter of a failed physical sensor (e.g., the guide vane sensor) without potential unstability.
After selecting the measured parameters as input parameters to virtual sensor system 130 and, more specifically, to virtual sensor process model 304, processor 202 may create virtual sensor process model 304 and virtual sensor system 130 (step 714). As explained above, processor 202 may establish, train, simulate, optimize, and/or operate virtual sensor system 130 to provide a back up for the physical sensor corresponding to virtual sensor system 130.
Optionally or alternatively, processor 202 may create both virtual sensor process models (e.g., one with input parameters only taken from physical sensors from a same system or subsystem, and the other with input parameters not provided by the physical sensors from the same system or subsystem). Processor 202 may execute both virtual sensor process models during operation, and may choose one model as the backup virtual sensor for the corresponding physical sensor in real time. Processor 202 may choose the one model based on any appropriate criteria, such as operational characteristics of virtual sensor system 130, user inputs, and/or differences between output values of the two models, etc.
The disclosed systems and methods may provide efficient and accurate virtual sensor process models in substantially less time than other virtual sensing techniques. Such technology may be used in a wide range of virtual sensors, such as sensors for engines, structures, environments, and materials, etc. In particular, the disclosed systems and methods provide practical solutions when process models are difficult to build using other techniques due to computational complexities and limitations. When input parameters are optimized simultaneously to derive output parameters, computation may be minimized. The disclosed systems and methods may be used in combination with other process modeling techniques to significantly increase speed, practicality, and/or flexibility.
The disclosed systems and methods may provide flexible solutions as well. The disclosed virtual sensor system may used interchangeably with a corresponding physical sensor. By using a common data link for both the virtual sensor and the physical sensor, the virtual sensor model of the virtual sensor system may be trained by the same physical sensor that the virtual sensor system replaces. Control systems may operate based on either the virtual sensor system or the physical sensor without differentiating which one is the data source.
The disclosed virtual sensor system may be used to replace the physical sensor and may operate separately and independently of the physical sensor. The disclosed virtual sensor system may also be used to back up the physical sensor. Moreover, the virtual sensor system may provide parameters that are unavailable from a single physical sensor, such as data from outside the sensing environment.
The disclosed systems and methods may also be used by vehicle manufacturers to reduce cost and increase reliability by replacing costly or failure-prone physical sensors. Reliability and flexibility may also be improved by adding backup sensing resources via the disclosed virtual sensor system. The disclosed virtual sensor techniques may be used to provide a wide range of parameters in components such as emission, engine, transmission, navigation, and/or control, etc. Further, parts of the disclosed system or steps of the disclosed method may also be used by computer system providers to facilitate or integrate other process models.
The disclosed methods and systems may also provide a desired and/or accurate solution to choose input parameters of the disclosed virtual sensor systems based on interrelationships among multiple physical sensors belonging to different systems or subsystems and also based on operational characteristics of the disclosed virtual sensor system. The disclosed virtual sensor system may thus be able to use desired input parameters to build and operate virtual sensor systems to backup physical sensors.
Other embodiments, features, aspects, and principles of the disclosed exemplary systems will be apparent to those skilled in the art and may be implemented in various environments and systems.
Number | Name | Date | Kind |
---|---|---|---|
3316395 | Lavin | Apr 1967 | A |
4136329 | Trobert | Jan 1979 | A |
4533900 | Muhlberger et al. | Aug 1985 | A |
5014220 | McMann et al. | May 1991 | A |
5163412 | Neu et al. | Nov 1992 | A |
5262941 | Saladin et al. | Nov 1993 | A |
5341315 | Niwa et al. | Aug 1994 | A |
5386373 | Keeler et al. | Jan 1995 | A |
5434796 | Weininger | Jul 1995 | A |
5539638 | Keeler et al. | Jul 1996 | A |
5548528 | Keeler et al. | Aug 1996 | A |
5561610 | Schricker et al. | Oct 1996 | A |
5566091 | Schricker et al. | Oct 1996 | A |
5585553 | Schricker | Dec 1996 | A |
5594637 | Eisenberg et al. | Jan 1997 | A |
5598076 | Neubauer et al. | Jan 1997 | A |
5604306 | Schricker | Feb 1997 | A |
5604895 | Raimi | Feb 1997 | A |
5608865 | Midgely et al. | Mar 1997 | A |
5666297 | Britt et al. | Sep 1997 | A |
5682317 | Keeler et al. | Oct 1997 | A |
5698780 | Mizutani et al. | Dec 1997 | A |
5727128 | Morrison | Mar 1998 | A |
5750887 | Schricker | May 1998 | A |
5752007 | Morrison | May 1998 | A |
5835902 | Jannarone | Nov 1998 | A |
5842202 | Kon | Nov 1998 | A |
5914890 | Sarangapani et al. | Jun 1999 | A |
5925089 | Fujime | Jul 1999 | A |
5950147 | Sarangapani et al. | Sep 1999 | A |
5966312 | Chen | Oct 1999 | A |
5987976 | Sarangapani | Nov 1999 | A |
6086617 | Waldon et al. | Jul 2000 | A |
6092016 | Sarangapani et al. | Jul 2000 | A |
6119074 | Sarangapani | Sep 2000 | A |
6145066 | Atkin | Nov 2000 | A |
6195648 | Simon et al. | Feb 2001 | B1 |
6199007 | Zavarehi et al. | Mar 2001 | B1 |
6208982 | Allen, Jr. et al. | Mar 2001 | B1 |
6223133 | Brown | Apr 2001 | B1 |
6236908 | Cheng et al. | May 2001 | B1 |
6240343 | Sarangapani et al. | May 2001 | B1 |
6269351 | Black | Jul 2001 | B1 |
6298718 | Wang | Oct 2001 | B1 |
6370544 | Krebs et al. | Apr 2002 | B1 |
6405122 | Yamaguchi | Jun 2002 | B1 |
6438430 | Martin et al. | Aug 2002 | B1 |
6442511 | Sarangapani et al. | Aug 2002 | B1 |
6477660 | Sohner | Nov 2002 | B1 |
6513018 | Culhane | Jan 2003 | B1 |
6546379 | Hong et al. | Apr 2003 | B1 |
6584768 | Hecker et al. | Jul 2003 | B1 |
6594989 | Hepburn et al. | Jul 2003 | B1 |
6698203 | Wang | Mar 2004 | B2 |
6711676 | Zomaya et al. | Mar 2004 | B1 |
6721606 | Kaji et al. | Apr 2004 | B1 |
6725208 | Hartman et al. | Apr 2004 | B1 |
6763708 | Ting et al. | Jul 2004 | B2 |
6775647 | Evans et al. | Aug 2004 | B1 |
6785604 | Jacobson | Aug 2004 | B2 |
6810442 | Lin et al. | Oct 2004 | B1 |
6823675 | Brunell et al. | Nov 2004 | B2 |
6859770 | Ramsey | Feb 2005 | B2 |
6859785 | Case | Feb 2005 | B2 |
6865883 | Gomulka | Mar 2005 | B2 |
6882929 | Liang et al. | Apr 2005 | B2 |
6895286 | Kaji et al. | May 2005 | B2 |
6935313 | Jacobson | Aug 2005 | B2 |
6941287 | Vaidyanathan et al. | Sep 2005 | B1 |
6952662 | Wegerich et al. | Oct 2005 | B2 |
6976062 | Denby et al. | Dec 2005 | B1 |
7000299 | Gere | Feb 2006 | B2 |
7024343 | El-Ratal | Apr 2006 | B2 |
7027953 | Klein | Apr 2006 | B2 |
7035834 | Jacobson | Apr 2006 | B2 |
7117079 | Streichsbier et al. | Oct 2006 | B2 |
7124047 | Zhang et al. | Oct 2006 | B2 |
7127892 | Akins et al. | Oct 2006 | B2 |
7133570 | Schreier et al. | Nov 2006 | B1 |
7174284 | Dolansky et al. | Feb 2007 | B2 |
7191161 | Rai et al. | Mar 2007 | B1 |
7194392 | Tuken et al. | Mar 2007 | B2 |
7213007 | Grichnik | May 2007 | B2 |
7239983 | Praskovsky et al. | Jul 2007 | B2 |
7178328 | Solbrig | Feb 2008 | B2 |
7356393 | Schlatre et al. | Apr 2008 | B1 |
7369925 | Morioka et al. | May 2008 | B2 |
20020014294 | Okano et al. | Feb 2002 | A1 |
20020016701 | Duret et al. | Feb 2002 | A1 |
20020042784 | Kerven et al. | Apr 2002 | A1 |
20020049704 | Vanderveldt et al. | Apr 2002 | A1 |
20020103996 | LeVasseur et al. | Aug 2002 | A1 |
20020198821 | Munoz | Dec 2002 | A1 |
20030018503 | Shulman | Jan 2003 | A1 |
20030055607 | Wegerich et al. | Mar 2003 | A1 |
20030093250 | Goebel | May 2003 | A1 |
20030126053 | Boswell et al. | Jul 2003 | A1 |
20030126103 | Chen et al. | Jul 2003 | A1 |
20030130855 | Babu et al. | Jul 2003 | A1 |
20030167354 | Peppers et al. | Sep 2003 | A1 |
20030187567 | Sulatisky et al. | Oct 2003 | A1 |
20030187584 | Harris | Oct 2003 | A1 |
20030200296 | Lindsey | Oct 2003 | A1 |
20040030420 | Ulyanov et al. | Feb 2004 | A1 |
20040034857 | Mangino et al. | Feb 2004 | A1 |
20040059518 | Rothschild | Mar 2004 | A1 |
20040077966 | Yamaguchi et al. | Apr 2004 | A1 |
20040122702 | Sabol et al. | Jun 2004 | A1 |
20040122703 | Walker et al. | Jun 2004 | A1 |
20040128058 | Andres et al. | Jul 2004 | A1 |
20040135677 | Asam | Jul 2004 | A1 |
20040138995 | Hershkowitz et al. | Jul 2004 | A1 |
20040153227 | Hagiwara et al. | Aug 2004 | A1 |
20040230404 | Messmer et al. | Nov 2004 | A1 |
20040267818 | Hartenstine | Dec 2004 | A1 |
20050047661 | Mauer | Mar 2005 | A1 |
20050055176 | Clarke et al. | Mar 2005 | A1 |
20050091093 | Bhaskaran et al. | Apr 2005 | A1 |
20050209943 | Ballow et al. | Sep 2005 | A1 |
20050210337 | Chester et al. | Sep 2005 | A1 |
20050240539 | Olavson | Oct 2005 | A1 |
20050261791 | Chen et al. | Nov 2005 | A1 |
20050262031 | Saidi et al. | Nov 2005 | A1 |
20050278227 | Esary et al. | Dec 2005 | A1 |
20050278432 | Feinleib et al. | Dec 2005 | A1 |
20060010057 | Bradway et al. | Jan 2006 | A1 |
20060010142 | Kim et al. | Jan 2006 | A1 |
20060010157 | Dumitrascu et al. | Jan 2006 | A1 |
20060025897 | Shostak et al. | Feb 2006 | A1 |
20060026270 | Sadovsky et al. | Feb 2006 | A1 |
20060026587 | Lemarroy et al. | Feb 2006 | A1 |
20060064474 | Feinleib et al. | Mar 2006 | A1 |
20060068973 | Kappauf et al. | Mar 2006 | A1 |
20060129289 | Kumar et al. | Jun 2006 | A1 |
20060130052 | Allen et al. | Jun 2006 | A1 |
20060229753 | Seskin et al. | Oct 2006 | A1 |
20060229769 | Grichnik et al. | Oct 2006 | A1 |
20060229852 | Grichnik et al. | Oct 2006 | A1 |
20060229854 | Grichnik et al. | Oct 2006 | A1 |
20060230018 | Grichnik et al. | Oct 2006 | A1 |
20060230097 | Grichnik et al. | Oct 2006 | A1 |
20060230313 | Grichnik et al. | Oct 2006 | A1 |
20060241923 | Xu et al. | Oct 2006 | A1 |
20060247798 | Subbu et al. | Nov 2006 | A1 |
20070061144 | Grichnik et al. | Mar 2007 | A1 |
20070094048 | Grichnik | Apr 2007 | A1 |
20070094181 | Tayebnejad et al. | Apr 2007 | A1 |
20070118338 | Grichnik et al. | May 2007 | A1 |
20070124237 | Sundararajan et al. | May 2007 | A1 |
20070150332 | Grichnik et al. | Jun 2007 | A1 |
20070168494 | Liu et al. | Jul 2007 | A1 |
20070179769 | Grichnik et al. | Aug 2007 | A1 |
20070203864 | Grichnik | Aug 2007 | A1 |
20080154811 | Grichnik et al. | Jun 2008 | A1 |
20080201054 | Grichnik et al. | Aug 2008 | A1 |
20080243354 | Grichnik et al. | Oct 2008 | A1 |
Number | Date | Country |
---|---|---|
1103926 | May 2001 | EP |
1367248 | Dec 2003 | EP |
1418481 | May 2004 | EP |
10-332621 | Dec 1998 | JP |
11-351045 | Dec 1999 | JP |
2002-276344 | Sep 2002 | JP |
WO97042581 | Nov 1997 | WO |
WO02057856 | Jul 2002 | WO |
WO2006017453 | Feb 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20090063087 A1 | Mar 2009 | US |