The traditional poppet valves fitted to the ports of an internal combustion engine are reliable and durable, and capable of withstanding the pressurized compression of the chamber and the subsequent explosion of the air fuel mixture. However, such valves are not amenable to adjusting or metering the flow of the air fuel mixture with the reciprocating motion that is produced by a fixed cam or pushrod profile. Whereas an iris shutter can be amenable to adjusting or metering the flow, it does not withstand the explosion of the combustion chamber. Thus by combining these two, the best feature of each can be used to produce the ideal intake and exhaust valve design.
Reference can be made to U.S. Pat. No. 4,094,492 issued Jun. 13, 1978 for an example of a variable orifice iris shutter system for controlling gas flow.
The present invention relates to a cylindrical housing assembly including an iris shutter system with linkage devices to allow easy external control to vary and adjust the flow of a gaseous mixture into or out of the intake or exhaust port of an internal combustion engine fitted with conventional poppet valves.
The iris shutter system is provided with overlapping blades which are similar in its principle of operation to the well known shutter used in photography to control the amount of light passing through the lenses. Its use for controlling the flow of gaseous mixture is shown in U.S. Pat. No. 4,094,492. Therefore the simplicity and reliability of the iris shutter system are well established and proven.
Referring concurrently to
The combustible gaseous mixture (or the exhaust gas) will flow through the entry portal opening 22 of a round cylindrical housing assembly 50 composed of three fixed separate round cylindrical casings 1, 4 and 6 interposed with optional ring gaskets (not shown): a first or front cylindrical casing 1 with the entry portal opening 22 within an entry conduit 10, a second or middle cylindrical casing 4 with a lead-out exit conduit 17 carrying the exit portal opening 32, and a third or rear cylindrical casing 6 with a slightly larger opening 29 to accommodate the presence of the lead out exit conduit 17 of the middle casing 4. These are attached to each other by screws or bolts 8 driven into drilled holes 19 of these adjacent front, middle and rear casings 1, 4 and 6 with the optional interposed gaskets (not shown) in between. The entry conduit 10 of the first (or front) casing 1 on one end of the housing assembly 50 is connectible to the external duct from the outside components (not shown). The lead out exit conduit 17 of the second (or middle) casing 4 will exit through the central opening 29 of the third (or rear) casing 6 containing the optional interposed gasket (not shown). The lead out exit conduit 17 of the exit end of housing assembly 50 is connectible to the external duct from the outside components (not shown). An iris shutter system 2 and the corresponding gaskets with the actuating mechanisms are contained inside the adjacent first and second (front and middle) cylindrical casings 1 and 4.
A gas receiving primary surface 12 of each of a plurality of curved blades 26 (best shown in
Each blade 26 is pivoted by the pinion 11 along the periphery on the interior side 23 (of
The reverse surface 12′ of each blade 26 will face a rotary hollow-center disc 3 (an annular or donut shaped disc) with the size and shape conforming to the interior of the cylindrical casing 1 and with radially cut grooves 13 that will guide either a second small pinion 11′ (of
The radially grooved rotary annular disc 3 has a pinion or stent 15 fitted on the reverse surface (best shown in
A second connecting pinion or stent 16 (of
Therefore by motion linkages from any external device mechanism fitted with chain, belt or gear drive, the serially connected discs 3 and 5 and arc 7 can be made to revolve and rotate within the first, second and third casings 1, 4 and 6 of housing assembly 50. The rotation of the cog-tooth arc 7 will rotate the second rotary annular disc 5, which will rotate the first grooved rotary annular disc 3 resulting in the blades 26 of the iris shutter system 2 moving centripetally or centrifugally, thus adjusting the orifice size of the said iris shutter system inside the device.
The second rotary annular disc 5 in the third (or rear) casing 6 and the cog-tooth arc 7 outside of the third (or rear) casing 6 will function as gaskets to seal off any gaseous medium from escaping. In addition, optional gasket rings between the casings and optional gas sealant type medium can be added to the rear casing 6 to further seal off gas escaping or blow-by.
Achieving a variable valve lift of the poppet valves for the traditional overhead valve engine can be very complex due to the complicated mechanism that converts the action of the fixed profile crankshaft and pushrod inside the engine block into the variable lifting motion of the poppet valves. In addition, the manufacturing of such a mechanism can be complicated as well. However, with the independently operated volumetric control apparatus as disclosed herein used in conjunction with the poppet valves, a variable valve lift can be simulated which is similar to that of the complex overhead cam design. The variable flow of fuel mixture or exhaust gas can be controlled independently but operated according to some pre-specified values. Rapid motion and response of the low inertia mass of the iris blades 26 can be achieved manually or with electro-mechanical, pneumatic or hydraulic assist such that the flow volume can be adjusted in real time synchronous to the opening and closing of the poppet valves during the ingress or egress of the gases to and from the combustion chamber. The technical importance and benefits of an instantaneous adjustable control of the flow to gain a better combustion efficiency, as well as the control of exhaust gas recirculation for pollution reduction varies with different load and condition.
In addition, the present invention can also be used in overhead cam engines to independently control the flow of gas into and out of a combustion chamber. This may obviate the need for a complex cam profiling necessary to produce the variable valve lift simply by using the independent flow control to augment or attenuate the flow as stated above.
Number | Name | Date | Kind |
---|---|---|---|
1595657 | Halloran | Aug 1926 | A |
2037663 | Lalor | Apr 1936 | A |
2321336 | Tondreau | Jun 1943 | A |
2649272 | Barbato | Aug 1953 | A |
2830617 | Brown | Apr 1958 | A |
3101736 | Egger | Aug 1963 | A |
4094492 | Beeman et al. | Jun 1978 | A |
4232595 | Cox | Nov 1980 | A |
5819540 | Massarani | Oct 1998 | A |
6375155 | Janssens | Apr 2002 | B1 |
6605176 | Tzu | Aug 2003 | B2 |
6666237 | De Antoni Migliorati et al. | Dec 2003 | B2 |
6796328 | Myles | Sep 2004 | B2 |
6896240 | Wijaya | May 2005 | B2 |
7819728 | Beckley | Oct 2010 | B2 |
7842898 | Adams | Nov 2010 | B2 |
20060112773 | Hedtke | Jun 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20090302252 A1 | Dec 2009 | US |