The present disclosure relates to light detection and ranging (LiDAR), and in particular to LiDAR systems and methods that use virtual windows to enhance safety.
Systems exist that enable vehicles to be driven semi-autonomously or fully autonomously. Such systems may use one or more range finding, mapping, or object detection systems to provide sensory input to assist in semi-autonomous or fully autonomous vehicle control. LiDAR systems, for example, can provide the sensory input required by a semi-autonomous or fully autonomous vehicle. LiDAR systems can use a laser that projects beams of light. As LiDAR system become more ubiquitous, safe operation of the laser is desired.
Embodiments discussed herein refer to LiDAR systems and methods that use a virtual window to monitor for potentially unsafe operation of a laser.
In one embodiment, a system for use in a vehicle is provided that can include a LiDAR system operative to direct light pulses originating from a light source to specific locations within a field of view, proximity detection system operative to detect presence of an object within a fixed distance of the LiDAR system, and control system operative to instruct the LiDAR system to deactivate the light source in response to detection of the object within the fixed distance.
In another embodiment, a method for selectively disabling a LiDAR system is provided. This method can include monitoring a virtual window with a proximity detection system, wherein the virtual window extends a fixed distance beyond a periphery of the LiDAR system, detecting, via the proximity detection system, presence of an object within the virtual window, and deactivating a portion of the LiDAR system in response to detecting the object within the virtual window, wherein the portion prevents emission of light pulses from the LiDAR system.
In another embodiment, a method for enforcing safe operation of a LiDAR system is provided by transmitting light pulses from the LiDAR system, detecting whether a person is located within a virtual window zone of the LiDAR system, and deactivating the LiDAR system when the person is detected to be within the virtual window zone.
A further understanding of the nature and advantages of the embodiments discussed herein may be realized by reference to the remaining portions of the specification and the drawings.
Illustrative embodiments are now described more fully hereinafter with reference to the accompanying drawings, in which representative examples are shown. Indeed, the disclosed LiDAR systems and methods may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Like numbers refer to like elements throughout.
In the following detailed description, for purposes of explanation, numerous specific details are set forth to provide a thorough understanding of the various embodiments. Those of ordinary skill in the art will realize that these various embodiments are illustrative only and are not intended to be limiting in any way. Other embodiments will readily suggest themselves to such skilled persons having the benefit of this disclosure.
In addition, for clarity purposes, not all of the routine features of the embodiments described herein are shown or described. One of ordinary skill in the art would readily appreciate that in the development of any such actual embodiment, numerous embodiment-specific decisions may be required to achieve specific design objectives. These design objectives will vary from one embodiment to another and from one developer to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming but would nevertheless be a routine engineering undertaking for those of ordinary skill in the art having the benefit of this disclosure.
Some light detection and ranging (LiDAR) systems use a single light source to produce one or more light signals of a single wavelength that scan the surrounding environment. The signals are scanned using steering systems that direct the pulses in one or two dimensions to cover an area of the surrounding environment (the scan area). When these systems use mechanical means to direct the pulses, the system complexity increases because more moving parts are required. Additionally, only a single signal can be emitted at any one time because two or more identical signals would introduce ambiguity in returned signals. In some embodiments of the present technology, these disadvantages and/or others are overcome.
For example, some embodiments of the present technology use one or more light sources that produce light of different wavelengths and/or along different optical paths. These light sources send light to a steering system at different angles so that the scan areas for the light signals are different (e.g., if two light sources are used to create two light signals, the scan area associated with each light source is different). This allows for tuning the signals to appropriate transmit powers and the possibility of having overlapping scan areas that cover scans of different distances. Longer ranges can be scanned with signals having higher power and/or slower repetition rate (e.g., when using pulsed light signals). Shorter ranges can be scanned with signals having lower power and/or high repetition rate (e.g., when using pulse light signals) to increase point density.
As another example, some embodiments of the present technology use signal steering systems with one or more dispersion elements (e.g., gratings, optical combs, prisms, etc.) to direct pulse signals based on the wavelength of the pulse. A dispersion element can make fine adjustments to a pulse's optical path, which may be difficult or impossible with mechanical systems. Additionally, using one or more dispersion elements allows the signal steering system to use few mechanical components to achieve the desired scanning capabilities. This results in a simpler, more efficient (e.g., lower power) design that is potentially more reliable (due to few moving components).
Some LiDAR systems use the time-of-flight of light signals (e.g., light pulses) to determine the distance to objects in the path of the light. For example, with respect to
Referring back to
By directing many light pulses, as depicted in
If a corresponding light pulse is not received for a particular transmitted light pulse, then it can be determined that there are no objects that can scatter sufficient amount of signal for the LiDAR light pulse within a certain range of LiDAR system 100 (e.g., the max scanning distance of LiDAR system 100). For example, in
In
The density of points in point cloud or image from a LiDAR system 100 is equal to the number of pulses within a frame divided by the field of view. Given that the field of view is fixed, to increase the density of points generated by one set of transmission-receiving optics, the LiDAR system should fire a pulse more frequently, in other words, a light source with a higher repetition rate is needed. However, by sending pulses more frequently the farthest distance that the LiDAR system can detect may be more limited by speed of light. For example, if a returned signal from a far object is received after the system transmits the next pulse, the return signals may be detected in a different order than the order in which the corresponding signals are transmitted and get mixed up if the system cannot correctly correlate the returned signals with the transmitted signals. To illustrate, consider an exemplary LiDAR system that can transmit laser pulses with a repetition rate between 500 kHz and 1 MHz. Based on the time it takes for a pulse to return to the LiDAR system and to avoid mix-up of returned pulses from consecutive pulses in conventional LiDAR design, the farthest distance the LiDAR system can detect may be 300 meters and 150 meters for 500 kHz and 1 Mhz, respectively. The density of points of a LiDAR system with 500 kHz repetition rate is half of that with 1 MHz. Thus, this example demonstrates that, if the system cannot correctly correlate returned signals that arrive out of order, increasing the repetition rate from 500 kHz to 1 MHz (and thus improving the density of points of the system) would significantly reduce the detection range of the system.
LiDAR system 100 can also include other components not depicted in
Signal steering system 404 includes any number of components for steering light signals generated by light source 402. In some examples, signal steering system 404 may include one or more optical redirection elements (e.g., mirrors or lens) that steer light pulses (e.g., by rotating, vibrating, or directing) along a transmit path to scan the external environment. For example, these optical redirection elements may include MEMS mirrors, rotating polyhedron mirrors, or stationary mirrors to steer the transmitted pulse signals to different directions. Signal steering system 404 optionally also includes other optical components, such as dispersion optics (e.g., diffuser lenses, prisms, or gratings) to further expand the coverage of the transmitted signal in order to increase the LiDAR system 100's transmission area (i.e., field of view). An example signal steering system is described in U.S. Patent Application Publication No. 2018/0188355, entitled “2D Scanning High Precision LiDAR Using Combination of Rotating Concave Mirror and Beam Steering Devices,” the content of which is incorporated by reference in its entirety herein for all purposes. In some examples, signal steering system 404 does not contain any active optical components (e.g., it does not contain any amplifiers). In some other examples, one or more of the components from light source 402, such as a booster amplifier, may be included in signal steering system 404. In some instances, signal steering system 404 can be considered a LiDAR head or LiDAR scanner.
Some implementations of signal steering systems include one or more optical redirection elements (e.g., mirrors or lens) that steers returned light signals (e.g., by rotating, vibrating, or directing) along a receive path to direct the returned light signals to the light detector. The optical redirection elements that direct light signals along the transmit and receive paths may be the same components (e.g., shared), separate components (e.g., dedicated), and/or a combination of shared and separate components. This means that in some cases the transmit and receive paths are different although they may partially overlap (or in some cases, substantially overlap).
Controller 408 contains components for the control of LiDAR system 100 and communication with external devices that use the system. For example, controller 408 optionally includes one or more processors, memories, communication interfaces, sensors, storage devices, clocks, ASICs, FPGAs, and/or other devices that control light source 402, signal steering system 404, and/or light detector 406. In some examples, controller 408 controls the power, rate, timing, and/or other properties of light signals generated by light source 402; controls the speed, transmit direction, and/or other parameters of light steering system 404; and/or controls the sensitivity and/or other parameters of light detector 406.
Controller 408 optionally is also configured to process data received from these components. In some examples, controller determines the time it takes from transmitting a light pulse until a corresponding returned light pulse is received; determines when a returned light pulse is not received for a transmitted light pulse; determines the transmitted direction (e.g., horizontal and/or vertical information) for a transmitted/returned light pulse; determines the estimated range in a particular direction; and/or determines any other type of data relevant to LiDAR system 100.
Proximity detection system 520 may use any suitable detection sensor or detection means to determine whether an object is located within a fixed distance of LiDAR system 510. For example, proximity detection system 520 may use one or more infrared sensors, ultrasonic sensors, cameras, proximity sensors, facial recognition systems, thermal sensors, radar, LiDAR, or any combination thereof. In some embodiments, proximity detection system 520 may be specifically configured for detection of human beings. For example, detection system 520 may be able to apply analytics to data to distinguish between persons and non-persons. Proximity detection system 520 may be able to project a virtual window beyond a periphery of LiDAR system 510. The virtual window may define a zone that is monitored for the presence of an object. If an object is detected within the virtual window zone, detection system 520 may communicate a signal indicating detection of the object to control system 530, which may instruct LiDAR system 510 to deactivate, or least deactivate a light source responsible for transmitting light pulses. In another embodiment, a shutter or other light blocking mechanism may be used to prevent transmission of the light pulses in response to detection of the object within the virtual window zone.
It should be understood that the steps in
It should be understood that the steps in
The embodiments discussed herein provide the necessary monitoring capabilities and laser shutdown mechanism to prevent unsafe laser exposure. It is believed that the disclosure set forth herein encompasses multiple distinct inventions with independent utility. While each of these inventions has been disclosed in its preferred form, the specific embodiments thereof as disclosed and illustrated herein are not to be considered in a limiting sense as numerous variations are possible. Each example defines an embodiment disclosed in the foregoing disclosure, but any one example does not necessarily encompass all features or combinations that may be eventually claimed. Where the description recites “a” or “a first” element or the equivalent thereof, such description includes one or more such elements, neither requiring nor excluding two or more such elements. Further, ordinal indicators, such as first, second or third, for identified elements are used to distinguish between the elements, and do not indicate a required or limited number of such elements, and do not indicate a particular position or order of such elements unless otherwise specifically stated.
Moreover, any processes described with respect to
It is to be understood that any or each module or state machine discussed herein may be provided as a software construct, firmware construct, one or more hardware components, or a combination thereof. For example, any one or more of the state machines or modules may be described in the general context of computer-executable instructions, such as program modules, that may be executed by one or more computers or other devices. Generally, a program module may include one or more routines, programs, objects, components, and/or data structures that may perform one or more particular tasks or that may implement one or more particular abstract data types. It is also to be understood that the number, configuration, functionality, and interconnection of the modules or state machines are merely illustrative, and that the number, configuration, functionality, and interconnection of existing modules may be modified or omitted, additional modules may be added, and the interconnection of certain modules may be altered.
Whereas many alterations and modifications of the present invention will no doubt become apparent to a person of ordinary skill in the art after having read the foregoing description, it is to be understood that the particular embodiments shown and described by way of illustration are in no way intended to be considered limiting. Therefore, reference to the details of the preferred embodiments is not intended to limit their scope.
This application is a continuation of U.S. application Ser. No. 16/546,702, entitled “VIRTUAL WINDOWS FOR LIDAR SAFETY SYSTEMS AND METHODS”, filed Aug. 21, 2019, which claims the benefit of U.S. Provisional Application No. 62/722,480, filed Aug. 24, 2018, the disclosure of which are incorporated herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3897150 | Bridges et al. | Jul 1975 | A |
4464048 | Farlow | Aug 1984 | A |
4923263 | Johnson | May 1990 | A |
5006721 | Cameron et al. | Apr 1991 | A |
5023818 | Wittensoldner et al. | Jun 1991 | A |
5157451 | Taboada et al. | Oct 1992 | A |
5319434 | Croteau et al. | Jun 1994 | A |
5369661 | Yamaguchi et al. | Nov 1994 | A |
5442358 | Keeler et al. | Aug 1995 | A |
5546188 | Wangler et al. | Aug 1996 | A |
5579153 | Laming et al. | Nov 1996 | A |
5657077 | Deangelis et al. | Aug 1997 | A |
5793491 | Wangler et al. | Aug 1998 | A |
5838239 | Stern et al. | Nov 1998 | A |
5864391 | Hosokawa et al. | Jan 1999 | A |
5926259 | Bamberger et al. | Jul 1999 | A |
5936756 | Nakajima | Aug 1999 | A |
6163378 | Khoury | Dec 2000 | A |
6317202 | Hosokawa et al. | Nov 2001 | B1 |
6584000 | Green et al. | Jul 2003 | B1 |
6650404 | Crawford | Nov 2003 | B1 |
6950733 | Stopczynski | Sep 2005 | B2 |
7128267 | Reichenbach et al. | Oct 2006 | B2 |
7202941 | Munro | Apr 2007 | B2 |
7345271 | Boehlau et al. | Mar 2008 | B2 |
7440084 | Kane | Oct 2008 | B2 |
7440175 | Di et al. | Oct 2008 | B2 |
7489885 | Varshneya et al. | Feb 2009 | B2 |
7502395 | Cheng et al. | Mar 2009 | B2 |
7508496 | Mettenleiter et al. | Mar 2009 | B2 |
7576837 | Liu et al. | Aug 2009 | B2 |
7830527 | Chen et al. | Nov 2010 | B2 |
7835068 | Brooks et al. | Nov 2010 | B1 |
7847235 | Krupkin et al. | Dec 2010 | B2 |
7880865 | Tanaka et al. | Feb 2011 | B2 |
7936448 | Albuquerque et al. | May 2011 | B2 |
7969558 | Hall | Jun 2011 | B2 |
7882861 | Abshire et al. | Jul 2011 | B2 |
8072582 | Meneely | Dec 2011 | B2 |
8471895 | Banks | Jun 2013 | B2 |
8736818 | Weimer et al. | May 2014 | B2 |
8749764 | Hsu | Jun 2014 | B2 |
8812149 | Doak | Aug 2014 | B2 |
8994928 | Shiraishi | Mar 2015 | B2 |
9048616 | Robinson | Jun 2015 | B1 |
9065243 | Asobe et al. | Jun 2015 | B2 |
9086273 | Gruver et al. | Jul 2015 | B1 |
9121703 | Droz et al. | Sep 2015 | B1 |
9194701 | Bosch | Nov 2015 | B2 |
9255790 | Zhu | Feb 2016 | B2 |
9300321 | Zalik et al. | Mar 2016 | B2 |
9304316 | Weiss et al. | Apr 2016 | B2 |
9318724 | Gehring et al. | Apr 2016 | B2 |
9354485 | Fermann et al. | May 2016 | B2 |
9510505 | Halloran et al. | Dec 2016 | B2 |
9575184 | Gilliland et al. | Feb 2017 | B2 |
9805998 | Nozawa | Mar 2017 | B2 |
9821878 | Federspiel | Apr 2017 | B2 |
9638799 | Goodwin et al. | May 2017 | B2 |
9696426 | Zuk | Jul 2017 | B2 |
9702966 | Batcheller et al. | Jul 2017 | B2 |
9804264 | Villeneuve et al. | Oct 2017 | B2 |
9810786 | Welford et al. | Nov 2017 | B1 |
9812838 | Villeneuve et al. | Nov 2017 | B2 |
9823353 | Eichenholz et al. | Nov 2017 | B2 |
9857468 | Eichenholz et al. | Jan 2018 | B1 |
9869754 | Campbell et al. | Jan 2018 | B1 |
9880278 | Uffelen et al. | Jan 2018 | B2 |
9880283 | Droz et al. | Jan 2018 | B2 |
9884585 | Lubbers | Feb 2018 | B1 |
9885778 | Dussan | Feb 2018 | B2 |
9897889 | Dussan | Feb 2018 | B2 |
9915726 | Bailey et al. | Mar 2018 | B2 |
9927915 | Frame et al. | Mar 2018 | B2 |
9958545 | Eichenholz et al. | May 2018 | B2 |
10007001 | LaChapelle et al. | Jun 2018 | B1 |
10012732 | Eichenholz et al. | Jul 2018 | B2 |
10042159 | Dussan et al. | Aug 2018 | B2 |
10081019 | Campbell et al. | Aug 2018 | B1 |
10073166 | Dussan | Sep 2018 | B2 |
10078133 | Dussan | Sep 2018 | B2 |
10094925 | LaChapelle | Oct 2018 | B1 |
10157630 | Vaughn et al. | Dec 2018 | B2 |
10185027 | O'Keeffe | Jan 2019 | B2 |
10191155 | Curatu | Jan 2019 | B2 |
10215847 | Scheim et al. | Feb 2019 | B2 |
10267898 | Campbell et al. | Apr 2019 | B2 |
10295656 | Li et al. | May 2019 | B1 |
10310058 | Campbell et al. | Jun 2019 | B1 |
10324170 | Enberg, Jr. et al. | Jun 2019 | B1 |
10324185 | McWhirter et al. | Jun 2019 | B2 |
10393877 | Hall et al. | Aug 2019 | B2 |
10422865 | Irish et al. | Sep 2019 | B2 |
10429495 | Wang et al. | Oct 2019 | B1 |
10444356 | Wu et al. | Oct 2019 | B2 |
10451716 | Hughes et al. | Oct 2019 | B2 |
10466342 | Zhu et al. | Nov 2019 | B1 |
10502831 | Eichenholz | Dec 2019 | B2 |
10509112 | Pan | Dec 2019 | B1 |
10520602 | Villeneuve et al. | Dec 2019 | B2 |
10557923 | Watnik et al. | Feb 2020 | B2 |
10571567 | Campbell et al. | Feb 2020 | B2 |
10578720 | Hughes et al. | Mar 2020 | B2 |
10591600 | Villeneuve et al. | Mar 2020 | B2 |
10627491 | Hall et al. | Apr 2020 | B2 |
10641672 | Dussan et al. | May 2020 | B2 |
10663596 | Dussan et al. | May 2020 | B2 |
10683564 | LaChapelle | May 2020 | B1 |
10683585 | McWhirter | May 2020 | B2 |
10684360 | Campbell | Aug 2020 | B2 |
10732281 | LaChapelle | Aug 2020 | B2 |
10908262 | Dussan | Feb 2021 | B2 |
10908265 | Dussan | Feb 2021 | B2 |
10908268 | Zhou et al. | Feb 2021 | B2 |
10969475 | Li et al. | Apr 2021 | B2 |
10983218 | Hall et al. | Apr 2021 | B2 |
11002835 | Pan et al. | May 2021 | B2 |
11009805 | Li et al. | May 2021 | B2 |
11016192 | Pacala et al. | May 2021 | B2 |
11022689 | Villeneuve et al. | Jun 2021 | B2 |
11035935 | Hinderling | Jun 2021 | B2 |
11194048 | Burbank et al. | Dec 2021 | B1 |
11567182 | Li et al. | Jan 2023 | B2 |
20020136251 | Green et al. | Sep 2002 | A1 |
20040135992 | Munro | Jul 2004 | A1 |
20050033497 | Stopczynski | Feb 2005 | A1 |
20050190424 | Reichenbach et al. | Sep 2005 | A1 |
20050195383 | Breed et al. | Sep 2005 | A1 |
20060071846 | Yanagisawa et al. | Apr 2006 | A1 |
20060132752 | Kane | Jun 2006 | A1 |
20070091948 | Di et al. | Apr 2007 | A1 |
20070216995 | Bollond et al. | Sep 2007 | A1 |
20080174762 | Liu et al. | Jul 2008 | A1 |
20080193135 | Du et al. | Aug 2008 | A1 |
20090010644 | Varshneya et al. | Jan 2009 | A1 |
20090051926 | Chen | Feb 2009 | A1 |
20090059201 | Willner et al. | Mar 2009 | A1 |
20090067453 | Mizuuchi et al. | Mar 2009 | A1 |
20090147239 | Zhu | Jun 2009 | A1 |
20090262760 | Krupkin et al. | Oct 2009 | A1 |
20090316134 | Michael et al. | Dec 2009 | A1 |
20100006780 | Lee et al. | Jan 2010 | A1 |
20100020306 | Hall | Jan 2010 | A1 |
20100020377 | Borchers et al. | Jan 2010 | A1 |
20100027602 | Abshire et al. | Feb 2010 | A1 |
20100045965 | Meneely | Feb 2010 | A1 |
20100053715 | O'Neill et al. | Mar 2010 | A1 |
20100077421 | Cohen | Mar 2010 | A1 |
20100128109 | Banks | May 2010 | A1 |
20100158055 | Giebel | Jun 2010 | A1 |
20100271614 | Albuquerque et al. | Oct 2010 | A1 |
20110181864 | Schmitt et al. | Jul 2011 | A1 |
20120038903 | Weimer et al. | Feb 2012 | A1 |
20120124113 | Zalik et al. | May 2012 | A1 |
20120221142 | Doak | Aug 2012 | A1 |
20120242974 | LaValley | Sep 2012 | A1 |
20130107016 | Federspeil | May 2013 | A1 |
20130116971 | Retkowski et al. | May 2013 | A1 |
20130241781 | Cooper et al. | Sep 2013 | A1 |
20130293867 | Hsu et al. | Nov 2013 | A1 |
20130293946 | Fermann et al. | Nov 2013 | A1 |
20130329279 | Nati et al. | Dec 2013 | A1 |
20130342822 | Shiraishi | Dec 2013 | A1 |
20140078514 | Zhu | Mar 2014 | A1 |
20140104594 | Gammenthaler | Apr 2014 | A1 |
20140347850 | Bosch | Nov 2014 | A1 |
20140350836 | Stettner et al. | Nov 2014 | A1 |
20140375752 | Shoemake et al. | Dec 2014 | A1 |
20150078123 | Batcheller et al. | Mar 2015 | A1 |
20150084805 | Dawber | Mar 2015 | A1 |
20150109803 | Kim et al. | Apr 2015 | A1 |
20150116892 | Zuk et al. | Apr 2015 | A1 |
20150139259 | Robinson | May 2015 | A1 |
20150158489 | Oh et al. | Jun 2015 | A1 |
20150338270 | Williams et al. | Nov 2015 | A1 |
20150355327 | Goodwin et al. | Dec 2015 | A1 |
20160003946 | Gilliland et al. | Jan 2016 | A1 |
20160033644 | Moore | Feb 2016 | A1 |
20160047896 | Dussan | Feb 2016 | A1 |
20160047900 | Dussan | Feb 2016 | A1 |
20160061655 | Nozawa | Mar 2016 | A1 |
20160061935 | Mccloskey et al. | Mar 2016 | A1 |
20160100521 | Halloran et al. | Apr 2016 | A1 |
20160117048 | Frame et al. | Apr 2016 | A1 |
20160172819 | Ogaki | Jun 2016 | A1 |
20160178736 | Chung | Jun 2016 | A1 |
20160226210 | Zayhowski et al. | Aug 2016 | A1 |
20160245902 | Natnik | Aug 2016 | A1 |
20160291134 | Droz et al. | Oct 2016 | A1 |
20160313445 | Bailey et al. | Oct 2016 | A1 |
20160327646 | Scheim et al. | Nov 2016 | A1 |
20170003116 | Yee et al. | Jan 2017 | A1 |
20170061219 | Shin et al. | Mar 2017 | A1 |
20170153319 | Villeneuve et al. | Jun 2017 | A1 |
20170242104 | Dussan | Aug 2017 | A1 |
20170299721 | Eichenholz et al. | Oct 2017 | A1 |
20170307738 | Schwarz et al. | Oct 2017 | A1 |
20170365105 | Rao et al. | Dec 2017 | A1 |
20180040171 | Kundu et al. | Feb 2018 | A1 |
20180050704 | Tascione et al. | Feb 2018 | A1 |
20180059248 | O'Keeffe | Mar 2018 | A1 |
20180069367 | Villeneuve et al. | Mar 2018 | A1 |
20180088214 | O'Keeffe | Mar 2018 | A1 |
20180131449 | Kare | May 2018 | A1 |
20180152891 | Pacala et al. | May 2018 | A1 |
20180158471 | Vaughn et al. | Jun 2018 | A1 |
20180164439 | Droz et al. | Jun 2018 | A1 |
20180156896 | O'Keeffe | Jul 2018 | A1 |
20180188355 | Bao et al. | Jul 2018 | A1 |
20180188357 | Li et al. | Jul 2018 | A1 |
20180188358 | Li et al. | Jul 2018 | A1 |
20180188371 | Bao et al. | Jul 2018 | A1 |
20180210084 | Zwölfer et al. | Jul 2018 | A1 |
20180231653 | Pradeep et al. | Aug 2018 | A1 |
20180259623 | Donovan | Sep 2018 | A1 |
20180275274 | Bao et al. | Sep 2018 | A1 |
20180284241 | Campbell et al. | Oct 2018 | A1 |
20180284242 | Campbell | Oct 2018 | A1 |
20180284286 | Eichenholz et al. | Oct 2018 | A1 |
20180329080 | Pacala et al. | Nov 2018 | A1 |
20180359460 | Pacala et al. | Dec 2018 | A1 |
20190025428 | Li et al. | Jan 2019 | A1 |
20190047580 | Kwasnick | Feb 2019 | A1 |
20190107607 | Danziger | Apr 2019 | A1 |
20190107823 | Campbell et al. | Apr 2019 | A1 |
20190120942 | Zhang et al. | Apr 2019 | A1 |
20190120962 | Gimpel et al. | Apr 2019 | A1 |
20190146071 | Donovan | May 2019 | A1 |
20190154804 | Eichenholz | May 2019 | A1 |
20190154807 | Steinkogler et al. | May 2019 | A1 |
20190212416 | Li et al. | Jul 2019 | A1 |
20190250254 | Campbell et al. | Aug 2019 | A1 |
20190257924 | Li et al. | Aug 2019 | A1 |
20190265334 | Zhang et al. | Aug 2019 | A1 |
20190265336 | Zhang et al. | Aug 2019 | A1 |
20190265337 | Zhang et al. | Aug 2019 | A1 |
20190265339 | Zhang et al. | Aug 2019 | A1 |
20190277952 | Beuschel et al. | Sep 2019 | A1 |
20190277962 | Ingram | Sep 2019 | A1 |
20190310388 | LaChapelle | Oct 2019 | A1 |
20190369215 | Wang et al. | Dec 2019 | A1 |
20190369258 | Hall et al. | Dec 2019 | A1 |
20190383915 | Li et al. | Dec 2019 | A1 |
20200142070 | Hall et al. | May 2020 | A1 |
20200256964 | Campbell et al. | Aug 2020 | A1 |
20200284906 | Eichenholz et al. | Sep 2020 | A1 |
20200319310 | Hall et al. | Oct 2020 | A1 |
20200400798 | Rezk et al. | Dec 2020 | A1 |
20210088630 | Zhang | Mar 2021 | A9 |
Number | Date | Country |
---|---|---|
1677050 | Oct 2005 | CN |
204758260 | Nov 2015 | CN |
204885804 | Dec 2015 | CN |
108132472 | Jun 2018 | CN |
207457508 | Jun 2018 | CN |
207557465 | Jun 2018 | CN |
208314210 | Jan 2019 | CN |
208421228 | Jan 2019 | CN |
208705506 | Apr 2019 | CN |
106597471 | May 2019 | CN |
209280923 | Aug 2019 | CN |
108445468 | Nov 2019 | CN |
110031823 | Mar 2020 | CN |
108089201 | Apr 2020 | CN |
109116331 | Apr 2020 | CN |
109917408 | Apr 2020 | CN |
109116367 | May 2020 | CN |
109116368 | May 2020 | CN |
110031822 | May 2020 | CN |
211655309 | Oct 2020 | CN |
109188397 | Nov 2020 | CN |
109814086 | Nov 2020 | CN |
109917348 | Nov 2020 | CN |
110492858 | Nov 2020 | CN |
110736975 | Nov 2020 | CN |
109725320 | Dec 2020 | CN |
110780284 | Dec 2020 | CN |
110780283 | Jan 2021 | CN |
110784220 | Feb 2021 | CN |
212623082 | Feb 2021 | CN |
110492349 | Mar 2021 | CN |
109950784 | May 2021 | CN |
213182011 | May 2021 | CN |
213750313 | Jul 2021 | CN |
214151038 | Sep 2021 | CN |
109814082 | Oct 2021 | CN |
113491043 | Oct 2021 | CN |
214785200 | Nov 2021 | CN |
214795206 | Nov 2021 | CN |
214895784 | Nov 2021 | CN |
214895810 | Nov 2021 | CN |
215641806 | Jan 2022 | CN |
112839527 | Feb 2022 | CN |
215932142 | Mar 2022 | CN |
112578396 | Apr 2022 | CN |
0 757 257 | Feb 1997 | EP |
1 237 305 | Sep 2002 | EP |
1 923 721 | May 2008 | EP |
2 157 445 | Feb 2010 | EP |
2 395 368 | Dec 2011 | EP |
2 889 642 | Jul 2015 | EP |
1 427 164 | Mar 1976 | GB |
2000411 | Jan 1979 | GB |
2007144687 | Jun 2007 | JP |
2010035385 | Feb 2010 | JP |
2017-003347 | Jan 2017 | JP |
2017-138301 | Aug 2017 | JP |
20100098931 | Sep 2010 | KR |
10-2012-0013515 | Feb 2012 | KR |
10-2013-0068224 | Jun 2013 | KR |
10-2018-0107673 | Oct 2018 | KR |
02101408 | Dec 2002 | WO |
2017110417 | Jun 2017 | WO |
2018125725 | Jul 2018 | WO |
2018129410 | Jul 2018 | WO |
2018126248 | Jul 2018 | WO |
2018129408 | Jul 2018 | WO |
2018129409 | Jul 2018 | WO |
2018129410 | Jul 2018 | WO |
2018175990 | Sep 2018 | WO |
2018182812 | Oct 2018 | WO |
2019079642 | Apr 2019 | WO |
2019165095 | Aug 2019 | WO |
2019165289 | Aug 2019 | WO |
2019165294 | Aug 2019 | WO |
2020013890 | Jan 2020 | WO |
Entry |
---|
“Mirrors”, Physics LibreTexts, https://phys.libretexts.org/Bookshelves/Optics/Supplemental_Modules_(Components)/Mirrors, (2021), 2 pages. |
“Why Wavelengths Matter in Fiber Optics”, FirstLight, https://www.firstlight.net/why-wavelengths-matter-in-fiber-optics/, (2021), 5 pages. |
Chen, X, et al. (Feb. 2010). “Polarization Coupling of Light and Optoelectronics Devices Based on Periodically Poled Lithium Niobate,” Shanghai Jiao Tong University, China, Frontiers in Guided Wave Optics and Optoelectronics, 24 pages. |
Goldstein, R. (Apr. 1986) “Electro-Optic Devices in Review, The Linear Electro-Optic (Pockels) Effect Forms the Basis for a Family of Active Devices,” Laser & Applications, FastPulse Technology, Inc., 6 pages. |
International Preliminary Report on Patentability, dated Jul. 9, 2019, for International Application No. PCT/US2018/012703, 10 pages. |
International Preliminary Report on Patentability, dated Jul. 9, 2019, for International Application No. PCT/US2018/012704, 7 pages. |
International Preliminary Report on Patentability, dated Jul. 9, 2019, for International Application No. PCT/US2018/012705, 7 pages. |
International Search Report and Written Opinion, dated Jan. 17, 2020, for International Application No. PCT/US2019/019276, 14 pages. |
International Search Report and Written Opinion, dated Jul. 9, 2019, for International Application No. PCT/US2019/018987, 17 pages. |
International Search Report and Written Opinion, dated Sep. 18, 2018, for International Application No. PCT/US2018/012116, 12 pages. |
International Search Report and Written Opinion, dated May 3, 2019, for International Application No. PCT/US2019/019272, 16 pages. |
International Search Report and Written Opinion, dated May 6, 2019, for International Application No. PCT/US2019/019264, 15 pages. |
International Search Report and Written Opinion, dated Jan. 3, 2019, for International Application No. PCT/US2018/056577, 15 pages. |
International Search Report and Written Opinion, dated Mar. 23, 2018, for International Application No. PCT/US2018/012704, 12 pages. |
International Search Report and Written Opinion, dated Jun. 7, 2018, for International Application No. PCT/US2018/024185, 9 pages. |
International Preliminary Report on Patentability, dated Apr. 30, 2020, for International Application No. PCT/US2018/056577, 8 pages. |
European Search Report, dated Jul. 17, 2020, for EP Application No. 18776977.3, 12 pages. |
Extended European Search Report, dated Jul. 10, 2020, for EP Application No. 18736738.8, 9 pages. |
Gunzung, Kim, et al. (Mar. 2, 2016). “A hybrid 3D LIDAR imager based on pixel-by-pixel scanning and DS-OCDMA,” pages Proceedings of SPIE [Proceedings of SPIE ISSN 0277-786X vol. 10524], SPIE, US, vol. 9751, pp. 975119-975119-8. |
Extended European Search Report, dated Jul. 22, 2020, for EP Application No. 18736685.1, 10 pages. |
Gluckman, J. (May 13, 2016). “Design of the processing chain for a high-altitude, airborne, single-photon lidar mapping instrument,” Proceedings of SPIE; [Proceedings of SPIE ISSN 0277-786X vol. 10524], SPIE, US, vol. 9832, 9 pages. |
Office Action Issued in Japanese Patent Application No. 2019-536019 dated Nov. 30, 2021, 6 pages. |
European Search Report, dated Jun. 17, 2021, for EP Application No. 18868896.4, 7 pages. |
“Fiber laser,” Wikipedia, https://en.wikipedia.org/wiki/Fiber_laser, 6 pages. |
International Search Report and Written Opinion, dated Mar. 19, 2018, for International Application No. PCT/US2018/012705, 12 pages. |
International Search Report and Written Opinion, dated Mar. 20, 2018, for International Application No. PCT/US2018/012703, 13 pages. |
Number | Date | Country | |
---|---|---|---|
20230168353 A1 | Jun 2023 | US |
Number | Date | Country | |
---|---|---|---|
62722480 | Aug 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16546702 | Aug 2019 | US |
Child | 18101083 | US |