Computing devices can utilize communication networks to exchange data. Companies and organizations operate computer networks that interconnect a number of computing devices to support operations or provide services to third parties. The computing systems can be located in a single geographic location or located in multiple, distinct geographic locations (e.g., interconnected via private or public communication networks). Specifically, hosted computing environments or data processing centers, generally referred to herein as “data centers,” may include a number of interconnected computing systems to provide computing resources to users of the data center. The data centers may be private data centers operated on behalf of an organization, or public data centers operated on behalf, or for the benefit of, the general public.
To facilitate increased utilization of data center resources, virtualization technologies allow a single physical computing device to host one or more instances of virtual machines that appear and operate as independent computing devices to users of a data center. With virtualization, the single physical computing device can create, maintain, delete, or otherwise manage virtual machines in a dynamic manner. In turn, users can request computing resources from a data center, such as single computing devices or a configuration of networked computing devices, and be provided with varying numbers of virtual machine resources.
In some scenarios, a user can request that a data center provide computing resources to execute a particular task. The task may correspond to a set of computer-executable instructions, which the data center may then execute on behalf of the user. The data center may thus further facilitate increased utilization of data center resources.
Throughout the drawings, reference numbers may be re-used to indicate correspondence between referenced elements. The drawings are provided to illustrate example embodiments described herein and are not intended to limit the scope of the disclosure.
Generally described, aspects of the present disclosure relate to an on-demand code execution system. The on-demand code execution system enables rapid execution of code, which may be supplied by users of the on-demand code execution system. More specifically, embodiments of the present disclosure relate to improving the performance of an on-demand code execution system that is implemented using various computing resources. As described in detail herein, the on-demand code execution system may provide a network-accessible service enabling users to submit or designate computer-executable code to be executed by virtual machine instances on the on-demand code execution system. Each set of code on the on-demand code execution system may define a “task,” and implement specific functionality corresponding to that task when executed on a virtual machine instance of the on-demand code execution system. Individual implementations of the task on the on-demand code execution system may be referred to as an “execution” of the task (or a “task execution”). The on-demand code execution system can further enable users to trigger execution of a task based on a variety of potential events, such as detecting new data at a network-based storage system, transmission of an application programming interface (“API”) call to the on-demand code execution system, or transmission of a specially formatted hypertext transport protocol (“HTTP”) packet to the on-demand code execution system. Thus, users may utilize the on-demand code execution system to execute any specified executable code “on-demand,” without requiring configuration or maintenance of the underlying hardware or infrastructure on which the code is executed. Further, the on-demand code execution system may be configured to execute tasks in a rapid manner (e.g., in under 100 milliseconds [ms]), thus enabling execution of tasks in “real-time” (e.g., with little or no perceptible delay to an end user).
The on-demand code-execution system may thus allow users to execute code in a serverless environment (e.g., one in which the underlying server is not under user control). The term “serverless environment,” as used herein, is intended to refer to an environment in which responsibility for managing generation, configuration, and state of an underlying execution environment is abstracted away from a user, such that the user need not, for example, create the execution environment, install an operating system within the execution environment, or manage a state of the environment in order to execute desired code in the environment. Similarly, the term “server-based environment” is intended to refer to an environment in which a user is at least partly responsible for managing generation, configuration, or state of an underlying execution environment in addition to executing desired code in the environment. One skilled in the art will thus appreciate that “serverless” and “server-based” may indicate the degree of user control over execution environments in which code is executed, rather than the actual absence or presence of a server.
To further facilitate rapid execution of code, the on-demand code execution system may implement a transaction execution system as described herein. The transaction execution system may enable virtualization of transactions that have a possibility of succeeding or failing due to conditions that are external to the executing code, such as network congestion, contention for shared resources, intermittent hardware or software failure, maintenance activities, or other conditions that may cause a transaction to succeed at some times and fail at other times. The transaction execution system may illustratively handle code that performs such transactions by taking a “snapshot” of an execution environment prior to executing the transaction, executing the transaction and obtaining a result, and then restoring the snapshot and re-executing the code if the transaction is unsuccessful. The user-submitted code may thus be simplified by removing any error handling routines or retry mechanisms that manually implement recovering from a failed transaction attempt: Instead, the retries are automatically performed by the on-demand code execution system. It thus appears from the perspective of the user-submitted code that every transaction succeeds on the first try, since any transactions that fail are effectively “rewound” to a point in time before the failure and re-attempted. As a result, the user may not have to worry about implementing transaction tracking paradigms into the user-submitted code.
As will be appreciated by one of skill in the art in light of the present disclosure, the embodiments disclosed herein improve the ability of computing systems, such as on-demand code execution systems, to execute code in an efficient manner. Moreover, the presently disclosed embodiments address technical problems inherent within computing systems; specifically, the occurrence of intermittent failures in computing systems, and the difficulty of programmatically handling such failures when they occur. These technical problems are addressed by the various technical solutions described herein, including the provisioning of a transaction execution system within an on-demand code execution system that utilizes state-saving techniques (such as snapshots) to retry transactions externally to code that attempts the transaction, potentially providing to the code an appearance that transactions always succeed. Thus, the present disclosure represents an improvement on existing data processing systems and computing systems in general.
As described in more detail below, the on-demand code execution system may include a worker manager configured to receive user code (threads, programs, etc., composed in any of a variety of programming languages) and execute the code in a highly scalable, low latency manner, without requiring user configuration of a virtual machine instance. Specifically, the worker manager can, prior to receiving the user code and prior to receiving any information from a user regarding any particular virtual machine instance configuration, create and configure virtual machine instances according to a predetermined set of configurations, each corresponding to any one or more of a variety of run-time environments. Thereafter, the worker manager receives user-initiated requests to execute code, and identifies a pre-configured virtual machine instance on which to execute the code based on configuration information associated with the request. The worker manager can further allocate the identified virtual machine instance to execute the user's code at least partly by creating and configuring containers inside the allocated virtual machine instance, and provisioning the containers with code of the task as well as any dependency code objects. Various embodiments for implementing a worker manager and executing user code on virtual machine instances is described in more detail in U.S. Pat. No. 9,323,556, entitled “PROGRAMMATIC EVENT DETECTION AND MESSAGE GENERATION FOR REQUESTS TO EXECUTE PROGRAM CODE,” and filed Sep. 30, 2014 (the “'556 patent”), the entirety of which is hereby incorporated by reference.
As used herein, the term “virtual machine instance” is intended to refer to an execution of software or other executable code that emulates hardware to provide an environment or platform on which software may execute (an “execution environment”). Virtual machine instances are generally executed by hardware devices, which may differ from the physical hardware emulated by the virtual machine instance. For example, a virtual machine may emulate a first type of processor and memory while being executed on a second type of processor and memory. Thus, virtual machines can be utilized to execute software intended for a first execution environment (e.g., a first operating system) on a physical device that is executing a second execution environment (e.g., a second operating system). In some instances, hardware emulated by a virtual machine instance may be the same or similar to hardware of an underlying device. For example, a device with a first type of processor may implement a plurality of virtual machine instances, each emulating an instance of that first type of processor. Thus, virtual machine instances can be used to divide a device into a number of logical sub-devices (each referred to as a “virtual machine instance”). While virtual machine instances can generally provide a level of abstraction away from the hardware of an underlying physical device, this abstraction is not required. For example, assume a device implements a plurality of virtual machine instances, each of which emulate hardware identical to that provided by the device. Under such a scenario, each virtual machine instance may allow a software application to execute code on the underlying hardware without translation, while maintaining a logical separation between software applications running on other virtual machine instances. This process, which is generally referred to as “native execution,” may be utilized to increase the speed or performance of virtual machine instances. Other techniques that allow direct utilization of underlying hardware, such as hardware pass-through techniques, may be used as well.
While a virtual machine executing an operating system is described herein as one example of an execution environment, other execution environments are also possible. For example, tasks or other processes may be executed within a software “container,” which provides a runtime environment without itself providing virtualization of hardware. Containers may be implemented within virtual machines to provide additional security, or may be run outside of a virtual machine instance.
Embodiments of the disclosure will now be described with reference to the accompanying figures, wherein like numerals refer to like elements throughout. The terminology used in the description presented herein is not intended to be interpreted in any limited or restrictive manner, simply because it is being utilized in conjunction with a detailed description of certain specific embodiments of the disclosure. Furthermore, embodiments of the disclosure may include several novel features, no single one of which is solely responsible for its desirable attributes or which is essential to practicing the disclosure herein described.
The illustrative environment 100 further includes one or more network-based data storage services 108, which are configured to enable the on-demand code execution system 110 to store and retrieve data from one or more persistent or substantially persistent data sources. Illustratively, the network-based data storage services 108 may enable the on-demand code execution system 110 to store information corresponding to a task, such as code or metadata, to store additional code objects representing dependencies of tasks, to retrieve data to be processed during execution of a task, and to store information (e.g., results) regarding that execution. The network-based data storage services 108 may represent, for example, a relational or non-relational database. In another example, the network-based data storage services 108 may represent a network-attached storage (NAS), configured to provide access to data arranged as a file system. The network-based data storage services 108 may further enable the on-demand code execution system 110 to query for and retrieve information regarding data stored within the on-demand code execution system 110, such as by querying for a number of relevant files or records, sizes of those files or records, file or record names, file or record creation times, etc. In some instances, the network-based data storage services 108 may provide additional functionality, such as the ability to separate data into logical groups (e.g., groups associated with individual accounts, etc.). While shown as distinct from the auxiliary services 106, the network-based data storage services 108 may in some instances also represent a type of auxiliary service 106.
The user computing devices 102, auxiliary services 106, and network-based data storage services 108 may communicate with the on-demand code execution system 110 via a network 104, which may include any wired network, wireless network, or combination thereof. For example, the network 104 may be a personal area network, local area network, wide area network, over-the-air broadcast network (e.g., for radio or television), cable network, satellite network, cellular telephone network, or combination thereof. As a further example, the network 104 may be a publicly accessible network of linked networks, possibly operated by various distinct parties, such as the Internet. In some embodiments, the network 104 may be a private or semi-private network, such as a corporate or university intranet. The network 104 may include one or more wireless networks, such as a Global System for Mobile Communications (GSM) network, a Code Division Multiple Access (CDMA) network, a Long Term Evolution (LTE) network, or any other type of wireless network. The network 104 can use protocols and components for communicating via the Internet or any of the other aforementioned types of networks. For example, the protocols used by the network 104 may include Hypertext Transfer Protocol (HTTP), HTTP Secure (HTTPS), Message Queue Telemetry Transport (MQTT), Constrained Application Protocol (CoAP), and the like. Protocols and components for communicating via the Internet or any of the other aforementioned types of communication networks are well known to those skilled in the art and, thus, are not described in more detail herein.
The on-demand code execution system 110 is depicted in
Further, the on-demand code execution system 110 may be implemented directly in hardware or software executed by hardware devices and may, for instance, include one or more physical or virtual servers implemented on physical computer hardware configured to execute computer executable instructions for performing various features that will be described herein. The one or more servers may be geographically dispersed or geographically co-located, for instance, in one or more data centers. In some instances, the one or more servers may operate as part of a system of rapidly provisioned and released computing resources, often referred to as a “cloud computing environment.”
In the example of
In
To enable interaction with the on-demand code execution system 110, the system 110 includes one or more frontends 120, which enable interaction with the on-demand code execution system 110. In an illustrative embodiment, the frontends 120 serve as a “front door” to the other services provided by the on-demand code execution system 110, enabling users (via user computing devices 102) to provide, request execution of, and view results of computer executable code. The frontends 120 include a variety of components to enable interaction between the on-demand code execution system 110 and other computing devices. For example, each frontend 120 may include a request interface providing user computing devices 102 with the ability to upload or otherwise communication user-specified code to the on-demand code execution system 110 and to thereafter request execution of that code. In one embodiment, the request interface communicates with external computing devices (e.g., user computing devices 102, auxiliary services 106, etc.) via a graphical user interface (GUI), CLI, or API. The frontends 120 process the requests and makes sure that the requests are properly authorized. For example, the frontends 120 may determine whether the user associated with the request is authorized to access the user code specified in the request.
References to user code as used herein may refer to any program code (e.g., a program, routine, subroutine, thread, etc.) written in a specific program language. In the present disclosure, the terms “code,” “user code,” and “program code,” may be used interchangeably. Such user code may be executed to achieve a specific function, for example, in connection with a particular web application or mobile application developed by the user. As noted above, individual collections of user code (e.g., to achieve a specific function) are referred to herein as “tasks,” while specific executions of that code (including, e.g., compiling code, interpreting code, or otherwise making the code executable) are referred to as “task executions” or simply “executions.” Tasks may be written, by way of non-limiting example, in JavaScript (e.g., node.js), Java, Python, and/or Ruby (and/or another programming language). Tasks may be “triggered” for execution on the on-demand code execution system 110 in a variety of manners. In one embodiment, a user or other computing device may transmit a request to execute a task may, which can generally be referred to as “call” to execute of the task. Such calls may include the user code (or the location thereof) to be executed and one or more arguments to be used for executing the user code. For example, a call may provide the user code of a task along with the request to execute the task. In another example, a call may identify a previously uploaded task by its name or an identifier. In yet another example, code corresponding to a task may be included in a call for the task, as well as being uploaded in a separate location (e.g., storage of an auxiliary service 106 or a storage system internal to the on-demand code execution system 110) prior to the request being received by the on-demand code execution system 110. As noted above, the code for a task may reference additional code objects maintained at the on-demand code execution system 110 by use of identifiers of those code objects, such that the code objects are combined with the code of a task in an execution environment prior to execution of the task. The on-demand code execution system 110 may vary its execution strategy for a task based on where the code of the task is available at the time a call for the task is processed. A request interface of the frontend 120 may receive calls to execute tasks as Hypertext Transfer Protocol Secure (HTTPS) requests from a user. Also, any information (e.g., headers and parameters) included in the HTTPS request may also be processed and utilized when executing a task. As discussed above, any other protocols, including, for example, HTTP, MQTT, and CoAP, may be used to transfer the message containing a task call to the request interface.
A call to execute a task may specify one or more third-party libraries (including native libraries) to be used along with the user code corresponding to the task. In one embodiment, the call may provide to the on-demand code execution system 110 a file containing the user code and any libraries (and/or identifications of storage locations thereof) corresponding to the task requested for execution. In some embodiments, the call includes metadata that indicates the program code of the task to be executed, the language in which the program code is written, the user associated with the call, and/or the computing resources (e.g., memory, etc.) to be reserved for executing the program code. For example, the program code of a task may be provided with the call, previously uploaded by the user, provided by the on-demand code execution system 110 (e.g., standard routines), and/or provided by third parties. Illustratively, code not included within a call or previously uploaded by the user may be referenced within metadata of the task by use of a URI associated with the code. In some embodiments, such resource-level constraints (e.g., how much memory is to be allocated for executing a particular user code) are specified for the particular task, and may not vary over each execution of the task. In such cases, the on-demand code execution system 110 may have access to such resource-level constraints before each individual call is received, and the individual call may not specify such resource-level constraints. In some embodiments, the call may specify other constraints such as permission data that indicates what kind of permissions or authorities that the call invokes to execute the task. Such permission data may be used by the on-demand code execution system 110 to access private resources (e.g., on a private network). In some embodiments, individual code objects may also be associated with permissions or authorizations. For example, a third party may submit a code object and designate the object as readable by only a subset of users. The on-demand code execution system 110 may include functionality to enforce these permissions or authorizations with respect to code objects.
In some embodiments, a call may specify the behavior that should be adopted for handling the call. In such embodiments, the call may include an indicator for enabling one or more execution modes in which to execute the task referenced in the call. For example, the call may include a flag or a header for indicating whether the task should be executed in a debug mode in which the debugging and/or logging output that may be generated in connection with the execution of the task is provided back to the user (e.g., via a console user interface). In such an example, the on-demand code execution system 110 may inspect the call and look for the flag or the header, and if it is present, the on-demand code execution system 110 may modify the behavior (e.g., logging facilities) of the container in which the task is executed, and cause the output data to be provided back to the user. In some embodiments, the behavior/mode indicators are added to the call by the user interface provided to the user by the on-demand code execution system 110. Other features such as source code profiling, remote debugging, etc. may also be enabled or disabled based on the indication provided in a call.
To manage requests for code execution, the frontend 120 can include an execution queue (not shown in
As noted above, tasks may be triggered for execution at the on-demand code execution system 110 based on explicit calls from user computing devices 102 (e.g., as received at the request interface). Alternatively or additionally, tasks may be triggered for execution at the on-demand code execution system 110 based on data retrieved from one or more auxiliary services 106 or network-based data storage services 108. To facilitate interaction with auxiliary services 106, the frontend 120 can include a polling interface (not shown in
In addition to tasks executed based on explicit user calls and data from auxiliary services 106, the on-demand code execution system 110 may in some instances operate to trigger execution of tasks independently. For example, the on-demand code execution system 110 may operate (based on instructions from a user) to trigger execution of a task at each of a number of specified time intervals (e.g., every 10 minutes).
The frontend 120 can further include an output interface (not shown in
In some embodiments, the on-demand code execution system 110 may include multiple frontends 120. In such embodiments, a load balancer (not shown in
To execute tasks, the on-demand code execution system 110 includes one or more worker managers 140 that manage the instances used for servicing incoming calls to execute tasks. In the example illustrated in
The containers 156A-F, virtual machine instances 154A-C, and host computing devices 150A-B may further include language runtimes, code libraries, or other supporting functions (not depicted in
Although the virtual machine instances 154A-C are described here as being assigned to a particular user, in some embodiments, an instance 154A-C may be assigned to a group of users, such that the instance is tied to the group of users and any member of the group can utilize resources on the instance. For example, the users in the same group may belong to the same security group (e.g., based on their security credentials) such that executing one member's task in a container on a particular instance after another member's task has been executed in another container on the same instance does not pose security risks. Similarly, the worker managers 140 may assign the instances and the containers according to one or more policies that dictate which requests can be executed in which containers and which instances can be assigned to which users. An example policy may specify that instances are assigned to collections of users who share the same account (e.g., account for accessing the services provided by the on-demand code execution system 110). In some embodiments, the requests associated with the same user group may share the same containers (e.g., if the user codes associated therewith are identical). In some embodiments, a task does not differentiate between the different users of the group and simply indicates the group to which the users associated with the task belong.
Once a triggering event to execute a task has been successfully processed by a frontend 120, the frontend 120 passes a request to a worker manager 140 to execute the task. In one embodiment, each frontend 120 may be associated with a corresponding worker manager 140 (e.g., a worker manager 140 co-located or geographically nearby to the frontend 120) and thus the frontend 120 may pass most or all requests to that worker manager 140. In another embodiment, a frontend 120 may include a location selector configured to determine a worker manager 140 to which to pass the execution request. In one embodiment, the location selector may determine the worker manager 140 to receive a call based on hashing the call, and distributing the call to a worker manager 140 selected based on the hashed value (e.g., via a hash ring). Various other mechanisms for distributing calls between worker managers 140 will be apparent to one of skill in the art.
The on-demand code execution system 110 further includes a transaction execution system 170, which implements aspects of the present disclosure including, for example, determining whether a task successfully completed a transaction. In some embodiments, the transaction execution system 170 includes a transaction analyzer 172, which may be invoked when the user submits code via the frontend 120 that includes a transaction. In some embodiments, as described in more detail below, the transaction analyzer 172 may analyze the user-submitted code to identify a transaction and determine criteria for evaluating whether the transaction was executed successfully. In other embodiments, the user may provide metadata or other information that identifies a transaction in their submitted code and provides one or more success criteria. The transaction analyzer 172 may, in some embodiments, obtain an output or other result associated with executing the task, and may apply the success criteria to the output to determine whether the transaction succeeded.
The transaction execution system 170 may further include a snapshot manager 174, which may capture state information regarding the particular host computing device 150A-B, virtual machine instance 154A-C, container 158A-F, and/or other computing resources that are used to execute the task. As described in more detail below, the snapshot manager 174 may capture the state information, store it (e.g., in the snapshot data store 176), and then use this information to restore a container 158A-F, virtual machine instance 154A-C, host computing device 150A-B, and/or other computing resource to a previous state, such as the state that existed just prior to attempting the transaction. The snapshot data store 176 may generally be any non-transient computer-readable storage medium, including but not limited to hard drives, tape drives, optical media, magnetic media, solid state devices, RAM, ROM, and the like.
In various embodiments, the transaction execution system 170 may be implemented as a component or components of a host computing device 150A or 150B, or the functionality of these devices and systems may be combined. For example, each of the host computing devices 150A-B may implement its own transaction execution system 170 as a local process that provides the recited functionality with regard to the virtual machine instances 154A-C and containers 158A-F executing on the respective host computing device 150A or 150B. Such implementations may reduce the number of inter-device interactions required to implement the described embodiments, and may thus reduce latency and overall use of computing resources. For ease of illustration, however, the transaction execution system 170 is depicted in
As shown in
While some functionalities are generally described herein with reference to an individual component of the on-demand code execution system 110, other components or a combination of components may additionally or alternatively implement such functionalities. For example, a worker manager 140 may operate to provide functionality associated with execution of user-submitted code as described herein with reference to the transaction execution system 170.
The memory 220 may contain computer program instructions (grouped as modules in some embodiments) that the processor 202 executes in order to implement one or more aspects of the present disclosure. The memory 220 generally includes random access memory (RAM), read only memory (ROM) and/or other persistent, auxiliary or non-transitory computer readable media. The memory 220 may store an operating system 222 that provides computer program instructions for use by the processor 202 in the general administration and operation of the transaction execution system 170. The memory 220 may further include computer program instructions and other information for implementing aspects of the present disclosure. For example, in one embodiment, the memory 220 includes an interface module 224 that generates interfaces (and/or instructions therefor) for interacting with the transaction execution system 170, e.g., via an API, CLI, and/or Web interface. In addition, the memory 220 may include and/or communicate with one or more data repositories (not shown), for example, to access user program codes and/or libraries.
In addition to and/or in combination with the interface module 224, the memory 220 may include a transaction analyzer 172 and an snapshot manager 174 that may be executed by the processor 202. In one embodiment, the transaction analyzer 172 and an snapshot manager 174 individually or collectively implement various aspects of the present disclosure, e.g., analyzing code or code execution to determine transaction results, restore previous execution states, and retry code execution, as described further below.
While the transaction analyzer 172 and an snapshot manager 174 are shown in
The memory 220 may further include success criteria 226, which may be loaded into memory in conjunction with a user-submitted request to execute a task on the on-demand code execution system 110. The transaction analyzer 172 may illustratively apply the success criteria 226 to an output or result of executing the code to determine whether to restore a snapshot and retry code execution, as described in more detail below. The memory 220 may further include snapshots 228, which may be generated by the snapshot manager 174 and may be used to restore a previous state of a container, virtual machine instance, or other computing resource.
In some embodiments, the transaction execution system 170 may further include components other than those illustrated in
At (2) the frontend 120 requests that the transaction analyzer 172 analyze the code to determine whether it includes a transaction. Generally described, a “transaction” may refer to code that attempts to access or change data and that has a possibility of success or failure depending on factors that are external to the code. At (3), the transaction analyzer 172 may illustratively identify a transaction based on metadata provided with the request, historical executions of the code, information included in the code, or other data. For example, the code may include particular statements or API calls (e.g., an instruction to access an external data store or shared resource) that the transaction analyzer 172 identifies as a transaction. As a further example, the transaction analyzer 172 may analyze previous executions of the code to determine a typical output pattern, such as a “success” status code or an expected response to a particular API call. In some embodiments, the on-demand code execution system may include code libraries or APIs in which particular calls are designated as transactional, and the transaction analyzer 172 may identify a transaction by determining that the code contains a function or API call that is known to invoke a transaction. In other embodiments, the user may designate sections of their code as being transactional in nature by inserting markers or statements (e.g., a beginTransaction or endTransaction statement) that allow the transaction analyzer 172 to identify these sections, or may provide metadata (e.g., information indicating that a transaction begins on line 72 of the code and ends on line 96) that facilitates identifying a transaction.
The transaction analyzer 172 may further determine success criteria associated with the identified transaction. In some embodiments, the success criteria may be defined or provided by the user (e.g., as metadata submitted in conjunction with the task). In other embodiments, the success criteria may be associated with obtaining a particular result that is pre-defined at the on-demand code execution system as being associated with a successful transaction or a failed transaction. For example, an API call that updates a record in a database may return a status code that indicates whether the update was successfully applied. As a further example, a command may attempt to read content from a shared data store, and may return the content if successful or silently fail if not. The transaction analyzer 172 may thus determine criteria for assessing whether the transaction succeeded based on known responses to identified transactions.
At (4), the transaction analyzer 172 reports to the frontend 120 that the code does contain a transaction, and provides any information that the frontend 120 may need to facilitate capturing a pre-transaction snapshot of the computing resources that execute the code and capturing a post-transaction result that can be analyzed to determine whether the transaction succeeded or failed. For example, the transaction analyzer 172 may identify a particular section of the code as corresponding to the transaction, and may indicate to the frontend 120 that a snapshot should be taken just prior to executing this section of the code. As a further example, the transaction analyzer 172 may identify the scope of computing resources to be included in the snapshot (e.g., that specific memory pages, register values, or other state information should be preserved).
In some embodiments, the interactions at (2), (3), and (4) may be carried out prior to receiving a request to execute the code. For example, the user may have previously submitted the code to on-demand code execution system, and the interactions at (2), (3), and (4) may be carried out at the time the code is submitted rather than waiting for a request to execute the code. In other embodiments, the interactions at (2), (3), and (4) may be carried out in conjunction with the user's initial request to execute the code, and subsequent requests to execute the code may obtain the results of these interactions rather than carrying them out again. One skilled in the art will appreciate that carrying out the interactions at (2), (3), and (4) prior to receiving a request to execute user-submitted code may reduce the time required to fulfill the request when it is received.
At (5), the frontend 120 sends a request to execute the code to the worker manager 140, and may provide all or part of the information supplied by the transaction analyzer 172. In some embodiments, the interaction at (5) may precede the interaction at (2), and the worker manager 140 may ask the transaction analyzer 172 to analyze code after receiving a request from the frontend to execute the code. In other embodiments, code may be submitted to the on-demand code execution system prior to making a request to execute the code, and the interactions at (2), (3) and (4) may be carried out at the time the code is submitted.
At (6), the worker manager 140 determines the resources that will be allocated to execute the requested code. Illustratively, the worker manager 140 may identify a host computing device (e.g., host computing device 150A), a virtual machine instance that is executing on the host computing device 150A (e.g., the virtual machine instance 154A depicted in
At (7), the frontend 120 instructs the host computing device 150A to allocate the resources that were determined at (6) to execute the code containing the transaction. In various embodiments, the frontend 120 may instruct the host computing device 150A to execute the code in a new or existing virtual machine instance, a new or existing container, or to use other computing resources to execute the code.
At (8), the host computing device 150A interacts with the snapshot manager 174 to request a pre-transaction snapshot of the resources that will be allocated to the code execution request. In some embodiments, the interaction at (8) may take place while the code is being executed (e.g., during the interaction at (12)). For example, if the transaction analyzer 172 determines that a particular section of the code is associated with a transaction, then the interaction at (8) may occur when the host computing device 150A begins to execute that section. In other embodiments, the entire user-submitted code may be associated with the transaction, and the request to take a pre-transaction snapshot of resources may precede any code execution. In some embodiments, the request to take a pre-transaction snapshot may be carried out by the frontend 120 when determining or assigning the resources that will execute the code.
At (9), the snapshot manager 174 interacts with the host computing device 150A that will execute the user-submitted code to request state information. The state information may illustratively include information regarding the state of the host computing device 150A, the state of a virtual machine instance hosted on the host computing device 150A, the state of a container that is executing within a virtual machine instance (or directly on the host computing device 150A), or the state of another computing resource that is a component of or available to the host computing device 150A. At (10), the host computing device 150A provides the requested state information, which at (11) the snapshot manager 174 then stores in the snapshot data store 176. In some embodiments, the snapshot manager 174 may be a component of the host computing device 150A, and the interactions at (8), (9), (10), and (11) may be combined into fewer interactions (e.g., collecting and then storing state information).
In various embodiments, the snapshot manager 174 may preserve different types of state information relating to the computing environment in which the code will be executed. For example, the snapshot manager 174 may preserve the contents of virtual memory, the registers of a virtual processor, a local data store (e.g., a “scratch” partition or temporary folder), or other state information. In some embodiments, the snapshot manager 174 may begin logging changes to state information rather than preserving the state information. For example, on a virtual machine instance with a relatively large amount of memory, the snapshot manager 174 may implement a copy-on-write scheme and preserve only the portions of memory that are overwritten during execution of the transaction. In further embodiments, the snapshot manager 174 may determine that a virtual machine instance is in a known baseline state prior to execution of the user-submitted code, and may store information that identifies this state and facilitates returning to the baseline rather than storing particular memory contents or register values.
At (12), the host computing device 150A executes the code (or, in some embodiments, executes at least the portion of the code that corresponds to the transaction). In some embodiments, the transaction analyzer 172 may identify and warn the user regarding any code that causes “side effects” or would otherwise not be idempotent (e.g., code that increments a value or would otherwise cause a different result if run more than once). In other embodiments, the user who submits code to the on-demand code execution system must ensure that any code marked as being part of a transaction does not cause undesired side effects if executed repeatedly.
Turning now to
At (14), in some embodiments, the transaction analyzer 172 may determine, based on the results output by the host computing device 150A and the criteria determined or obtained at (3), that the transaction did not succeed. For example, the transaction analyzer 172 may compare the result to the criteria to determine that the result contains an error code defined by the criteria (or that the result does not contain a success code defined by the criteria) and thus represents a failed transaction. The transaction analyzer 172 may thus, at (15), request that the snapshot manager 174 use the information captured during the interactions at (8), (9), and (10) to restore the host computing device 150A to its pre-transaction state. At (16), the snapshot manager 174 requests this information from the snapshot data store 176, and at (17) the snapshot data store 176 provides the information that was stored during the interaction at (10).
At (18), the snapshot manager 174 provides the snapshot information and instructs the host computing device 150A to restore the pre-transaction state of the resources that were used to execute the code. Thereafter, at (19), the host computing device 150A reverts to the pre-transaction state and re-executes the code. Illustratively, the host computing device 150A may use the information stored in the snapshot to restore memory contents, page tables, register values, and other computing resources to the state they had just prior to executing the transaction. The host computing device 150A may then repeat the interaction at (13) to resume execution of the code from the point at which the transaction began, and may again report the results of executing the code. The interactions at (14)-(19) may then be further repeated if the transaction has failed again. In some embodiments, the interactions at (13)-(19) may be repeated until a particular condition has been met, such as a maximum number of retries, a maximum time elapsed, a threshold amount of consumption of a computing resource, a “hard failure” (e.g., an indication that the transaction will never succeed), or other condition that prevents the interactions at (13)-(19) from being repeated indefinitely. For example, the host computing device 150A may keep track of the elapsed time since its first attempt to execute the transaction, and may stop further attempts to execute the transaction after a specified time period has elapsed. As a further example, the transaction analyzer 172 may apply criteria to determine that a particular error code found in the results of a failed transaction attempt (e.g., “403 Forbidden”) indicates that the failure is not intermittent and cannot be overcome by repeating the same attempt.
Turning now to
It will be understood that
At block 404, the start of a transaction may be detected. As described above, the start of a transaction may correspond to reaching a particular section of the code during execution, such as an API call that is known to invoke a transaction or a “beginTransaction” statement in the code. In some embodiments, the start of a transaction may correspond to the start of code execution, and a snapshot may thus be taken before any code is executed. In other embodiments, the start of a transaction may be determined based on activities performed by the code rather than an analysis of the code itself. For example, a transaction may be detected when the code attempts to obtain exclusive access to a shared resource, or when the code attempts to write a record to a database.
At block 406, a snapshot of the execution environment may be taken. In some embodiments, as described above, a change log may be created and maintained such that the pre-transaction execution environment can be recreated based on the change log. For example, the “snapshot” may be implemented as a copy-on-write scheme that retains information being overwritten from that point forward. In other embodiments, contents of memory pages, values of registers, network configurations, or other state information may be captured and stored. For example, where a task is executing in a virtual machine instance execution environment, a snapshot may be created by utilizing a “snapshot” functionality of a host operating system (e.g., a hypervisor), which functionality is known in the art. The execution environment may illustratively include any configuration of physical and/or virtual computing devices, including virtual machine instances, containers, host computing devices, data stores, and the like.
At block 408, the code obtained at block 402 may be executed in the execution environment. In some embodiments, a portion of the code may be executed prior to taking a snapshot at block 406 or may be executed prior to carrying out the routine 400. In further embodiments, only a portion of the code may be executed at block 408. For example, a transaction may be associated with a particular subroutine, statement, API call, block, function, or other portion of the code. At block 410, a result of executing the code may be obtained. In various embodiments, the result may include a status code (e.g., “200,” “503,” etc.) an object, a message, a register value, a pointer, or in some embodiments may be null (which may indicate success or failure). In some embodiments, a result may be obtained by inspecting the execution environment. For example, the contents of a virtual machine instance's memory, CPU registers, etc. may be analyzed to determine the outcome of executing the code. In further embodiments, the result may be obtained by monitoring communications between the execution environment and an external resource (e.g., a database, a storage service, etc.), or by monitoring the external resource directly.
At block 412, the execution results may be evaluated against the criteria obtained or determined at block 402. Illustratively, the results may be analyzed to determine whether they have a particular format, size, status code, error message, content, or otherwise compared to the success criteria. At decision block 414, a determination may be made as to whether the results satisfy the success criteria. If so, then at block 416 the code execution may be continued (or, in embodiments where the entire code corresponds to a transaction, completed) and the routine 400 ends. If not, then at decision block 418 a determination may be made as to whether the transaction should be retried. Illustratively, the determination may be as to whether a threshold number of retries has been exceeded, a threshold amount of time has elapsed, that the result indicates a “permanent” failure (e.g., a “403 Forbidden” error code), or that some other condition has been met. In some embodiments, a user-specified condition may be obtained and the determination at decision block 414 may be as to whether this condition has been met.
If the determination at decision block 418 is that the transaction should not be retried, then at block 420 the transaction's failure to execute may be reported. Illustratively, a notification may be provided to a user requesting that the code be executed, or to the computing device from which a request was obtained. In some embodiments, other code may be obtained and executed in response to a transaction failure. If the determination at decision block 418 is that the transaction should be retried, then the routine 400 branches to block 422, where in some embodiments a retry count may be incremented, and then to block 424, where the pre-transaction execution environment may be restored. The routine 400 then returns to block 408, and re-executes the code iteratively until either an attempt meets the success criteria or a determination is made that no further retries should be attempted.
In various embodiments, the transaction execution routine 400 may include more, fewer, different, or different combinations of blocks than those depicted in
It is to be understood that not necessarily all objects or advantages may be achieved in accordance with any particular embodiment described herein. Thus, for example, those skilled in the art will recognize that certain embodiments may be configured to operate in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other objects or advantages as may be taught or suggested herein.
All of the processes described herein may be embodied in, and fully automated via, software code modules, including one or more specific computer-executable instructions, that are executed by a computing system. The computing system may include one or more computers or processors. The code modules may be stored in any type of non-transitory computer-readable medium or other computer storage device. Some or all the methods may be embodied in specialized computer hardware.
Many other variations than those described herein will be apparent from this disclosure. For example, depending on the embodiment, certain acts, events, or functions of any of the algorithms described herein can be performed in a different sequence, can be added, merged, or left out altogether (e.g., not all described acts or events are necessary for the practice of the algorithms). Moreover, in certain embodiments, acts or events can be performed concurrently, e.g., through multi-threaded processing, interrupt processing, or multiple processors or processor cores or on other parallel architectures, rather than sequentially. In addition, different tasks or processes can be performed by different machines and/or computing systems that can function together.
The various illustrative logical blocks and modules described in connection with the embodiments disclosed herein can be implemented or performed by a machine, such as a processing unit or processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A processor can be a microprocessor, but in the alternative, the processor can be a controller, microcontroller, or state machine, combinations of the same, or the like. A processor can include electrical circuitry configured to process computer-executable instructions. In another embodiment, a processor includes an FPGA or other programmable device that performs logic operations without processing computer-executable instructions. A processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. Although described herein primarily with respect to digital technology, a processor may also include primarily analog components. A computing environment can include any type of computer system, including, but not limited to, a computer system based on a microprocessor, a mainframe computer, a digital signal processor, a portable computing device, a device controller, or a computational engine within an appliance, to name a few.
Conditional language such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, are otherwise understood within the context as used in general to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment.
Disjunctive language such as the phrase “at least one of X, Y, or Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to present that an item, term, etc., may be either X, Y, or Z, or any combination thereof (e.g., X, Y, and/or Z). Thus, such disjunctive language is not generally intended to, and should not, imply that certain embodiments require at least one of X, at least one of Y, or at least one of Z to each be present.
Any process descriptions, elements or blocks in the flow diagrams described herein and/or depicted in the attached figures should be understood as potentially representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or elements in the process. Alternate implementations are included within the scope of the embodiments described herein in which elements or functions may be deleted, executed out of order from that shown, or discussed, including substantially concurrently or in reverse order, depending on the functionality involved as would be understood by those skilled in the art.
Unless otherwise explicitly stated, articles such as “a” or “an” should generally be interpreted to include one or more described items. Accordingly, phrases such as “a device configured to” are intended to include one or more recited devices. Such one or more recited devices can also be collectively configured to carry out the stated recitations. For example, “a processor configured to carry out recitations A, B, and C” can include a first processor configured to carry out recitation A working in conjunction with a second processor configured to carry out recitations B and C.
Number | Name | Date | Kind |
---|---|---|---|
4949254 | Shorter | Aug 1990 | A |
5283888 | Dao et al. | Feb 1994 | A |
5835764 | Platt et al. | Nov 1998 | A |
5970488 | Crowe et al. | Oct 1999 | A |
5983197 | Enta | Nov 1999 | A |
6237005 | Griffin | May 2001 | B1 |
6260058 | Hoenninger et al. | Jul 2001 | B1 |
6385636 | Suzuki | May 2002 | B1 |
6463509 | Teoman et al. | Oct 2002 | B1 |
6501736 | Smolik et al. | Dec 2002 | B1 |
6523035 | Fleming et al. | Feb 2003 | B1 |
6549936 | Hirabayashi | Apr 2003 | B1 |
6708276 | Yarsa et al. | Mar 2004 | B1 |
7036121 | Casabona et al. | Apr 2006 | B1 |
7308463 | Taulbee et al. | Dec 2007 | B2 |
7340522 | Basu et al. | Mar 2008 | B1 |
7558719 | Donlin | Jul 2009 | B1 |
7577722 | Khandekar et al. | Aug 2009 | B1 |
7590806 | Harris et al. | Sep 2009 | B2 |
7665090 | Tormasov et al. | Feb 2010 | B1 |
7707579 | Rodriguez | Apr 2010 | B2 |
7730464 | Trowbridge | Jun 2010 | B2 |
7774191 | Berkowitz et al. | Aug 2010 | B2 |
7823186 | Pouliot | Oct 2010 | B2 |
7831464 | Nichols et al. | Nov 2010 | B1 |
7870153 | Croft et al. | Jan 2011 | B2 |
7886021 | Scheifler et al. | Feb 2011 | B2 |
7949677 | Croft et al. | May 2011 | B2 |
7954150 | Croft et al. | May 2011 | B2 |
8010679 | Low et al. | Aug 2011 | B2 |
8010990 | Ferguson et al. | Aug 2011 | B2 |
8024564 | Bassani et al. | Sep 2011 | B2 |
8046765 | Cherkasova et al. | Oct 2011 | B2 |
8051180 | Mazzaferri et al. | Nov 2011 | B2 |
8051266 | DeVal et al. | Nov 2011 | B2 |
8065676 | Sahai et al. | Nov 2011 | B1 |
8065682 | Baryshnikov et al. | Nov 2011 | B2 |
8095931 | Chen et al. | Jan 2012 | B1 |
8127284 | Meijer et al. | Feb 2012 | B2 |
8146073 | Sinha | Mar 2012 | B2 |
8166304 | Murase et al. | Apr 2012 | B2 |
8171473 | Lavin | May 2012 | B2 |
8201026 | Bornstein et al. | Jun 2012 | B1 |
8209695 | Pruyne et al. | Jun 2012 | B1 |
8219987 | Vlaovic et al. | Jul 2012 | B1 |
8296267 | Cahill et al. | Oct 2012 | B2 |
8321554 | Dickinson | Nov 2012 | B2 |
8321558 | Sirota et al. | Nov 2012 | B1 |
8336079 | Budko et al. | Dec 2012 | B2 |
8352608 | Keagy et al. | Jan 2013 | B1 |
8387075 | McCann et al. | Feb 2013 | B1 |
8392558 | Ahuja et al. | Mar 2013 | B1 |
8417723 | Lissack et al. | Apr 2013 | B1 |
8429282 | Ahuja | Apr 2013 | B1 |
8448165 | Conover | May 2013 | B1 |
8479195 | Adams et al. | Jul 2013 | B2 |
8490088 | Tang | Jul 2013 | B2 |
8555281 | Van Dijk et al. | Oct 2013 | B1 |
8560699 | Theimer et al. | Oct 2013 | B1 |
8566835 | Wang et al. | Oct 2013 | B2 |
8601323 | Tsantilis | Dec 2013 | B2 |
8613070 | Borzycki et al. | Dec 2013 | B1 |
8615589 | Adogla et al. | Dec 2013 | B1 |
8631130 | Jackson | Jan 2014 | B2 |
8667471 | Wintergerst et al. | Mar 2014 | B2 |
8677359 | Cavage et al. | Mar 2014 | B1 |
8694996 | Cawlfield et al. | Apr 2014 | B2 |
8700768 | Benari | Apr 2014 | B2 |
8719415 | Sirota et al. | May 2014 | B1 |
8725702 | Raman et al. | May 2014 | B1 |
8756322 | Lynch | Jun 2014 | B1 |
8756696 | Miller | Jun 2014 | B1 |
8769519 | Leitman et al. | Jul 2014 | B2 |
8793676 | Quinn et al. | Jul 2014 | B2 |
8799236 | Azari et al. | Aug 2014 | B1 |
8799879 | Wright et al. | Aug 2014 | B2 |
8806468 | Meijer et al. | Aug 2014 | B2 |
8806644 | McCorkendale et al. | Aug 2014 | B1 |
8819679 | Agarwal et al. | Aug 2014 | B2 |
8825863 | Hansson et al. | Sep 2014 | B2 |
8825964 | Sopka et al. | Sep 2014 | B1 |
8839035 | Dimitrovich et al. | Sep 2014 | B1 |
8850432 | McGrath et al. | Sep 2014 | B2 |
8869300 | Singh et al. | Oct 2014 | B2 |
8874952 | Tameshige et al. | Oct 2014 | B2 |
8904008 | Calder et al. | Dec 2014 | B2 |
8966495 | Kulkarni | Feb 2015 | B2 |
8972980 | Banga et al. | Mar 2015 | B2 |
8997093 | Dimitrov | Mar 2015 | B2 |
9027087 | Ishaya et al. | May 2015 | B2 |
9038068 | Engle et al. | May 2015 | B2 |
9052935 | Rajaa | Jun 2015 | B1 |
9086897 | Oh et al. | Jul 2015 | B2 |
9086924 | Barsness et al. | Jul 2015 | B2 |
9092837 | Bala et al. | Jul 2015 | B2 |
9098528 | Wang | Aug 2015 | B2 |
9110732 | Forschmiedt et al. | Aug 2015 | B1 |
9110770 | Raju et al. | Aug 2015 | B1 |
9111037 | Nalis et al. | Aug 2015 | B1 |
9112813 | Jackson | Aug 2015 | B2 |
9116733 | Banga et al. | Aug 2015 | B2 |
9141410 | Leafe et al. | Sep 2015 | B2 |
9146764 | Wagner | Sep 2015 | B1 |
9152406 | De et al. | Oct 2015 | B2 |
9164754 | Pohlack | Oct 2015 | B1 |
9183019 | Kruglick | Nov 2015 | B2 |
9208007 | Harper et al. | Dec 2015 | B2 |
9218190 | Anand et al. | Dec 2015 | B2 |
9223561 | Orveillon et al. | Dec 2015 | B2 |
9223966 | Satish et al. | Dec 2015 | B1 |
9250893 | Blahaerath et al. | Feb 2016 | B2 |
9268586 | Voccio et al. | Feb 2016 | B2 |
9298633 | Zhao et al. | Mar 2016 | B1 |
9317689 | Aissi | Apr 2016 | B2 |
9323556 | Wagner | Apr 2016 | B2 |
9361145 | Wilson et al. | Jun 2016 | B1 |
9413626 | Reque et al. | Aug 2016 | B2 |
9417918 | Chin et al. | Aug 2016 | B2 |
9436555 | Dornemann et al. | Sep 2016 | B2 |
9461996 | Hayton et al. | Oct 2016 | B2 |
9471775 | Wagner et al. | Oct 2016 | B1 |
9471776 | Gu et al. | Oct 2016 | B2 |
9483335 | Wagner et al. | Nov 2016 | B1 |
9489227 | Oh et al. | Nov 2016 | B2 |
9497136 | Ramarao et al. | Nov 2016 | B1 |
9501345 | Lietz et al. | Nov 2016 | B1 |
9514037 | Dow et al. | Dec 2016 | B1 |
9537788 | Reque et al. | Jan 2017 | B2 |
9563613 | Dinkel et al. | Feb 2017 | B1 |
9575798 | Terayama et al. | Feb 2017 | B2 |
9588790 | Wagner et al. | Mar 2017 | B1 |
9594590 | Hsu | Mar 2017 | B2 |
9596350 | Dymshyts et al. | Mar 2017 | B1 |
9600312 | Wagner et al. | Mar 2017 | B2 |
9613127 | Rus et al. | Apr 2017 | B1 |
9626204 | Banga et al. | Apr 2017 | B1 |
9628332 | Bruno, Jr. et al. | Apr 2017 | B2 |
9635132 | Lin et al. | Apr 2017 | B1 |
9652306 | Wagner et al. | May 2017 | B1 |
9652617 | Evans et al. | May 2017 | B1 |
9654508 | Barton et al. | May 2017 | B2 |
9661011 | Van Horenbeeck et al. | May 2017 | B1 |
9678773 | Wagner et al. | Jun 2017 | B1 |
9678778 | Youseff | Jun 2017 | B1 |
9703681 | Taylor et al. | Jul 2017 | B2 |
9715402 | Wagner et al. | Jul 2017 | B2 |
9720661 | Gschwind et al. | Aug 2017 | B2 |
9720662 | Gschwind et al. | Aug 2017 | B2 |
9727725 | Wagner et al. | Aug 2017 | B2 |
9733967 | Wagner et al. | Aug 2017 | B2 |
9760387 | Wagner et al. | Sep 2017 | B2 |
9760443 | Tarasuk-Levin et al. | Sep 2017 | B2 |
9767271 | Ghose | Sep 2017 | B2 |
9785476 | Wagner et al. | Oct 2017 | B2 |
9787779 | Frank et al. | Oct 2017 | B2 |
9811363 | Wagner | Nov 2017 | B1 |
9811434 | Wagner | Nov 2017 | B1 |
9817695 | Clark | Nov 2017 | B2 |
9830175 | Wagner | Nov 2017 | B1 |
9830193 | Wagner et al. | Nov 2017 | B1 |
9830449 | Wagner | Nov 2017 | B1 |
9864636 | Patel et al. | Jan 2018 | B1 |
9898393 | Moorthi et al. | Feb 2018 | B2 |
9910713 | Wisniewski et al. | Mar 2018 | B2 |
9921864 | Singaravelu et al. | Mar 2018 | B2 |
9928108 | Wagner | Mar 2018 | B1 |
9929916 | Subramanian et al. | Mar 2018 | B1 |
9930103 | Thompson | Mar 2018 | B2 |
9930133 | Susarla et al. | Mar 2018 | B2 |
9952896 | Wagner et al. | Apr 2018 | B2 |
9977691 | Marriner et al. | May 2018 | B2 |
9979817 | Huang et al. | May 2018 | B2 |
9983982 | Kumar et al. | May 2018 | B1 |
10002026 | Wagner | Jun 2018 | B1 |
10013267 | Wagner et al. | Jul 2018 | B1 |
10042660 | Wagner et al. | Aug 2018 | B2 |
10048974 | Wagner et al. | Aug 2018 | B1 |
10061613 | Brooker et al. | Aug 2018 | B1 |
10067801 | Wagner | Sep 2018 | B1 |
10102040 | Marriner et al. | Oct 2018 | B2 |
10108443 | Wagner et al. | Oct 2018 | B2 |
10139876 | Lu et al. | Nov 2018 | B2 |
10140137 | Wagner | Nov 2018 | B2 |
10146635 | Chai et al. | Dec 2018 | B1 |
10162655 | Tuch et al. | Dec 2018 | B2 |
10162672 | Wagner et al. | Dec 2018 | B2 |
10162688 | Wagner | Dec 2018 | B2 |
10203990 | Wagner et al. | Feb 2019 | B2 |
10248467 | Wisniewski et al. | Apr 2019 | B2 |
10255090 | Tuch et al. | Apr 2019 | B2 |
10277708 | Wagner et al. | Apr 2019 | B2 |
10303492 | Wagner et al. | May 2019 | B1 |
10331462 | Varda et al. | Jun 2019 | B1 |
10346625 | Anderson et al. | Jul 2019 | B2 |
10353678 | Wagner | Jul 2019 | B1 |
10353746 | Reque et al. | Jul 2019 | B2 |
10360025 | Foskett et al. | Jul 2019 | B2 |
10360067 | Wagner | Jul 2019 | B1 |
10365985 | Wagner | Jul 2019 | B2 |
10387177 | Wagner et al. | Aug 2019 | B2 |
10402231 | Marriner et al. | Sep 2019 | B2 |
10423158 | Hadlich | Sep 2019 | B1 |
10437629 | Wagner et al. | Oct 2019 | B2 |
10445140 | Sagar et al. | Oct 2019 | B1 |
10459822 | Gondi | Oct 2019 | B1 |
10503626 | Idicula et al. | Dec 2019 | B2 |
10528390 | Brooker et al. | Jan 2020 | B2 |
10531226 | Wang et al. | Jan 2020 | B1 |
10552193 | Wagner et al. | Feb 2020 | B2 |
10564946 | Wagner et al. | Feb 2020 | B1 |
10572375 | Wagner | Feb 2020 | B1 |
10592269 | Wagner et al. | Mar 2020 | B2 |
10623476 | Thompson | Apr 2020 | B2 |
10649749 | Brooker et al. | May 2020 | B1 |
10649792 | Kulchytskyy et al. | May 2020 | B1 |
10650156 | Anderson et al. | May 2020 | B2 |
10691498 | Wagner | Jun 2020 | B2 |
10713080 | Brooker et al. | Jul 2020 | B1 |
10719367 | Kim et al. | Jul 2020 | B1 |
10725752 | Wagner et al. | Jul 2020 | B1 |
10725826 | Sagar et al. | Jul 2020 | B1 |
10733085 | Wagner | Aug 2020 | B1 |
10754701 | Wagner | Aug 2020 | B1 |
10776091 | Wagner et al. | Sep 2020 | B1 |
10776171 | Wagner et al. | Sep 2020 | B2 |
10817331 | Mullen et al. | Oct 2020 | B2 |
10824484 | Wagner et al. | Nov 2020 | B2 |
10831898 | Wagner | Nov 2020 | B1 |
10853112 | Wagner et al. | Dec 2020 | B2 |
10853115 | Mullen et al. | Dec 2020 | B2 |
10884722 | Brooker et al. | Jan 2021 | B2 |
10884787 | Wagner et al. | Jan 2021 | B1 |
10884802 | Wagner et al. | Jan 2021 | B2 |
10884812 | Brooker et al. | Jan 2021 | B2 |
10891145 | Wagner et al. | Jan 2021 | B2 |
10915371 | Wagner et al. | Feb 2021 | B2 |
10942795 | Yanacek et al. | Mar 2021 | B1 |
20010044817 | Asano et al. | Nov 2001 | A1 |
20020120685 | Srivastava et al. | Aug 2002 | A1 |
20020172273 | Baker et al. | Nov 2002 | A1 |
20030071842 | King et al. | Apr 2003 | A1 |
20030084434 | Ren | May 2003 | A1 |
20030149801 | Kushnirskiy | Aug 2003 | A1 |
20030191795 | Bernardin et al. | Oct 2003 | A1 |
20030229794 | James, II et al. | Dec 2003 | A1 |
20040003087 | Chambliss et al. | Jan 2004 | A1 |
20040019886 | Berent et al. | Jan 2004 | A1 |
20040044721 | Song et al. | Mar 2004 | A1 |
20040049768 | Matsuyama et al. | Mar 2004 | A1 |
20040098154 | McCarthy | May 2004 | A1 |
20040158551 | Santosuosso | Aug 2004 | A1 |
20040205493 | Simpson et al. | Oct 2004 | A1 |
20040249947 | Novaes et al. | Dec 2004 | A1 |
20040268358 | Darling et al. | Dec 2004 | A1 |
20050027611 | Wharton | Feb 2005 | A1 |
20050044301 | Vasilevsky et al. | Feb 2005 | A1 |
20050120160 | Plouffe et al. | Jun 2005 | A1 |
20050132167 | Longobardi | Jun 2005 | A1 |
20050132368 | Sexton et al. | Jun 2005 | A1 |
20050149535 | Frey et al. | Jul 2005 | A1 |
20050193113 | Kokusho et al. | Sep 2005 | A1 |
20050193283 | Reinhardt et al. | Sep 2005 | A1 |
20050237948 | Wan et al. | Oct 2005 | A1 |
20050257051 | Richard | Nov 2005 | A1 |
20050262183 | Colrain et al. | Nov 2005 | A1 |
20060010440 | Anderson et al. | Jan 2006 | A1 |
20060015740 | Kramer | Jan 2006 | A1 |
20060080678 | Bailey et al. | Apr 2006 | A1 |
20060123066 | Jacobs et al. | Jun 2006 | A1 |
20060129684 | Datta | Jun 2006 | A1 |
20060155800 | Matsumoto | Jul 2006 | A1 |
20060168174 | Gebhart et al. | Jul 2006 | A1 |
20060184669 | Vaidyanathan et al. | Aug 2006 | A1 |
20060200668 | Hybre et al. | Sep 2006 | A1 |
20060212332 | Jackson | Sep 2006 | A1 |
20060218601 | Michel | Sep 2006 | A1 |
20060242647 | Kimbrel et al. | Oct 2006 | A1 |
20060248195 | Toumura et al. | Nov 2006 | A1 |
20060288120 | Hoshino et al. | Dec 2006 | A1 |
20070033085 | Johnson | Feb 2007 | A1 |
20070050779 | Hayashi | Mar 2007 | A1 |
20070094396 | Takano et al. | Apr 2007 | A1 |
20070101325 | Bystricky et al. | May 2007 | A1 |
20070112864 | Ben-Natan | May 2007 | A1 |
20070130341 | Ma | Jun 2007 | A1 |
20070174419 | O'Connell et al. | Jul 2007 | A1 |
20070180449 | Croft et al. | Aug 2007 | A1 |
20070180450 | Croft et al. | Aug 2007 | A1 |
20070180493 | Croft et al. | Aug 2007 | A1 |
20070186212 | Mazzaferri et al. | Aug 2007 | A1 |
20070192082 | Gaos et al. | Aug 2007 | A1 |
20070192329 | Croft et al. | Aug 2007 | A1 |
20070198656 | Mazzaferri et al. | Aug 2007 | A1 |
20070199000 | Shekhel et al. | Aug 2007 | A1 |
20070220009 | Morris et al. | Sep 2007 | A1 |
20070226700 | Gal et al. | Sep 2007 | A1 |
20070240160 | Paterson-Jones | Oct 2007 | A1 |
20070255604 | Seelig | Nov 2007 | A1 |
20080028409 | Cherkasova et al. | Jan 2008 | A1 |
20080052401 | Bugenhagen et al. | Feb 2008 | A1 |
20080052725 | Stoodley et al. | Feb 2008 | A1 |
20080082977 | Araujo et al. | Apr 2008 | A1 |
20080104247 | Venkatakrishnan et al. | May 2008 | A1 |
20080104608 | Hyser et al. | May 2008 | A1 |
20080115143 | Shimizu et al. | May 2008 | A1 |
20080126110 | Haeberle et al. | May 2008 | A1 |
20080126486 | Heist | May 2008 | A1 |
20080127125 | Anckaert et al. | May 2008 | A1 |
20080147893 | Marripudi et al. | Jun 2008 | A1 |
20080189468 | Schmidt et al. | Aug 2008 | A1 |
20080195369 | Duyanovich et al. | Aug 2008 | A1 |
20080201568 | Quinn et al. | Aug 2008 | A1 |
20080201711 | Amir Husain | Aug 2008 | A1 |
20080209423 | Hirai | Aug 2008 | A1 |
20080244547 | Wintergerst et al. | Oct 2008 | A1 |
20080288940 | Adams et al. | Nov 2008 | A1 |
20090006897 | Sarsfield | Jan 2009 | A1 |
20090013153 | Hilton | Jan 2009 | A1 |
20090025009 | Brunswig et al. | Jan 2009 | A1 |
20090034537 | Colrain et al. | Feb 2009 | A1 |
20090055810 | Kondur | Feb 2009 | A1 |
20090055829 | Gibson | Feb 2009 | A1 |
20090070355 | Cadarette et al. | Mar 2009 | A1 |
20090077569 | Appleton et al. | Mar 2009 | A1 |
20090125902 | Ghosh et al. | May 2009 | A1 |
20090158275 | Wang et al. | Jun 2009 | A1 |
20090158407 | Nicodemus et al. | Jun 2009 | A1 |
20090177860 | Zhu et al. | Jul 2009 | A1 |
20090183162 | Kindel et al. | Jul 2009 | A1 |
20090193410 | Arthursson et al. | Jul 2009 | A1 |
20090198769 | Keller et al. | Aug 2009 | A1 |
20090204960 | Ben-Yehuda et al. | Aug 2009 | A1 |
20090204964 | Foley et al. | Aug 2009 | A1 |
20090222922 | Sidiroglou et al. | Sep 2009 | A1 |
20090271472 | Scheifler et al. | Oct 2009 | A1 |
20090288084 | Astete et al. | Nov 2009 | A1 |
20090300151 | Friedman et al. | Dec 2009 | A1 |
20090300599 | Piotrowski | Dec 2009 | A1 |
20100023940 | Iwamatsu et al. | Jan 2010 | A1 |
20100031274 | Sim-Tang | Feb 2010 | A1 |
20100031325 | Maigne et al. | Feb 2010 | A1 |
20100036925 | Haffner | Feb 2010 | A1 |
20100037031 | DeSantis et al. | Feb 2010 | A1 |
20100058342 | Machida | Mar 2010 | A1 |
20100058351 | Yahagi | Mar 2010 | A1 |
20100064299 | Kacin et al. | Mar 2010 | A1 |
20100070678 | Zhang et al. | Mar 2010 | A1 |
20100070725 | Prahlad et al. | Mar 2010 | A1 |
20100083048 | Calinoiu et al. | Apr 2010 | A1 |
20100083248 | Wood et al. | Apr 2010 | A1 |
20100094816 | Groves, Jr. et al. | Apr 2010 | A1 |
20100106926 | Kandasamy et al. | Apr 2010 | A1 |
20100114825 | Siddegowda | May 2010 | A1 |
20100115098 | De Baer et al. | May 2010 | A1 |
20100122343 | Ghosh | May 2010 | A1 |
20100131936 | Cheriton | May 2010 | A1 |
20100131959 | Spiers et al. | May 2010 | A1 |
20100186011 | Magenheimer | Jul 2010 | A1 |
20100198972 | Umbehocker | Aug 2010 | A1 |
20100199285 | Medovich | Aug 2010 | A1 |
20100257116 | Mehta et al. | Oct 2010 | A1 |
20100257269 | Clark | Oct 2010 | A1 |
20100269109 | Cartales | Oct 2010 | A1 |
20100299541 | Ishikawa et al. | Nov 2010 | A1 |
20100312871 | Desantis et al. | Dec 2010 | A1 |
20100325727 | Neystadt et al. | Dec 2010 | A1 |
20100329149 | Singh et al. | Dec 2010 | A1 |
20100329643 | Kuang | Dec 2010 | A1 |
20110010690 | Howard et al. | Jan 2011 | A1 |
20110010722 | Matsuyama | Jan 2011 | A1 |
20110023026 | Oza | Jan 2011 | A1 |
20110029970 | Arasaratnam | Feb 2011 | A1 |
20110029984 | Norman et al. | Feb 2011 | A1 |
20110040812 | Phillips | Feb 2011 | A1 |
20110055378 | Ferris et al. | Mar 2011 | A1 |
20110055396 | DeHaan | Mar 2011 | A1 |
20110055683 | Jiang | Mar 2011 | A1 |
20110078679 | Bozek et al. | Mar 2011 | A1 |
20110099204 | Thaler | Apr 2011 | A1 |
20110099551 | Fahrig et al. | Apr 2011 | A1 |
20110131572 | Elyashev et al. | Jun 2011 | A1 |
20110134761 | Smith | Jun 2011 | A1 |
20110141124 | Halls et al. | Jun 2011 | A1 |
20110153541 | Koch et al. | Jun 2011 | A1 |
20110153727 | Li | Jun 2011 | A1 |
20110153838 | Belkine et al. | Jun 2011 | A1 |
20110154353 | Theroux et al. | Jun 2011 | A1 |
20110173637 | Brandwine et al. | Jul 2011 | A1 |
20110179162 | Mayo et al. | Jul 2011 | A1 |
20110184993 | Chawla et al. | Jul 2011 | A1 |
20110225277 | Freimuth et al. | Sep 2011 | A1 |
20110231680 | Padmanabhan et al. | Sep 2011 | A1 |
20110247005 | Benedetti et al. | Oct 2011 | A1 |
20110258603 | Wisnovsky et al. | Oct 2011 | A1 |
20110265067 | Schulte et al. | Oct 2011 | A1 |
20110265164 | Lucovsky | Oct 2011 | A1 |
20110271276 | Ashok et al. | Nov 2011 | A1 |
20110276945 | Chasman et al. | Nov 2011 | A1 |
20110276963 | Wu et al. | Nov 2011 | A1 |
20110296412 | Banga et al. | Dec 2011 | A1 |
20110314465 | Smith et al. | Dec 2011 | A1 |
20110321033 | Kelkar et al. | Dec 2011 | A1 |
20110321051 | Rastogi | Dec 2011 | A1 |
20120011496 | Shimamura | Jan 2012 | A1 |
20120011511 | Horvitz et al. | Jan 2012 | A1 |
20120016721 | Weinman | Jan 2012 | A1 |
20120041970 | Ghosh et al. | Feb 2012 | A1 |
20120054744 | Singh et al. | Mar 2012 | A1 |
20120072762 | Atchison et al. | Mar 2012 | A1 |
20120072914 | Ota | Mar 2012 | A1 |
20120072920 | Kawamura | Mar 2012 | A1 |
20120079004 | Herman | Mar 2012 | A1 |
20120096271 | Ramarathinam et al. | Apr 2012 | A1 |
20120096468 | Chakravorty et al. | Apr 2012 | A1 |
20120102307 | Wong | Apr 2012 | A1 |
20120102333 | Wong | Apr 2012 | A1 |
20120102481 | Mani et al. | Apr 2012 | A1 |
20120102493 | Allen et al. | Apr 2012 | A1 |
20120110155 | Adlung et al. | May 2012 | A1 |
20120110164 | Frey et al. | May 2012 | A1 |
20120110570 | Jacobson et al. | May 2012 | A1 |
20120110588 | Bieswanger et al. | May 2012 | A1 |
20120131379 | Tameshige et al. | May 2012 | A1 |
20120144290 | Goldman et al. | Jun 2012 | A1 |
20120166624 | Suit et al. | Jun 2012 | A1 |
20120192184 | Burckart et al. | Jul 2012 | A1 |
20120197795 | Campbell et al. | Aug 2012 | A1 |
20120197958 | Nightingale et al. | Aug 2012 | A1 |
20120198442 | Kashyap et al. | Aug 2012 | A1 |
20120198514 | McCune et al. | Aug 2012 | A1 |
20120204164 | Castanos et al. | Aug 2012 | A1 |
20120209947 | Glaser et al. | Aug 2012 | A1 |
20120222038 | Katragadda et al. | Aug 2012 | A1 |
20120233464 | Miller et al. | Sep 2012 | A1 |
20120324236 | Srivastava et al. | Dec 2012 | A1 |
20120331113 | Jain et al. | Dec 2012 | A1 |
20130014101 | Ballani et al. | Jan 2013 | A1 |
20130042234 | Deluca et al. | Feb 2013 | A1 |
20130054804 | Jana et al. | Feb 2013 | A1 |
20130054927 | Raj et al. | Feb 2013 | A1 |
20130055262 | Lubsey et al. | Feb 2013 | A1 |
20130061208 | Tsao et al. | Mar 2013 | A1 |
20130061212 | Krause et al. | Mar 2013 | A1 |
20130061220 | Gnanasambandam et al. | Mar 2013 | A1 |
20130067484 | Sonoda et al. | Mar 2013 | A1 |
20130067494 | Srour et al. | Mar 2013 | A1 |
20130080641 | Lui et al. | Mar 2013 | A1 |
20130091387 | Bohnet et al. | Apr 2013 | A1 |
20130097601 | Podvratnik et al. | Apr 2013 | A1 |
20130111032 | Alapati et al. | May 2013 | A1 |
20130111469 | B et al. | May 2013 | A1 |
20130124807 | Nielsen et al. | May 2013 | A1 |
20130132942 | Wang | May 2013 | A1 |
20130132953 | Chuang et al. | May 2013 | A1 |
20130139152 | Chang et al. | May 2013 | A1 |
20130139166 | Zhang et al. | May 2013 | A1 |
20130151587 | Takeshima et al. | Jun 2013 | A1 |
20130151648 | Luna | Jun 2013 | A1 |
20130151684 | Forsman et al. | Jun 2013 | A1 |
20130152047 | Moorthi et al. | Jun 2013 | A1 |
20130167147 | Corrie et al. | Jun 2013 | A1 |
20130179574 | Calder et al. | Jul 2013 | A1 |
20130179881 | Calder et al. | Jul 2013 | A1 |
20130179894 | Calder et al. | Jul 2013 | A1 |
20130179895 | Calder et al. | Jul 2013 | A1 |
20130185719 | Kar et al. | Jul 2013 | A1 |
20130185729 | Vasic et al. | Jul 2013 | A1 |
20130191924 | Tedesco | Jul 2013 | A1 |
20130198319 | Shen et al. | Aug 2013 | A1 |
20130198743 | Kruglick | Aug 2013 | A1 |
20130198748 | Sharp et al. | Aug 2013 | A1 |
20130198763 | Kunze et al. | Aug 2013 | A1 |
20130205092 | Roy et al. | Aug 2013 | A1 |
20130219390 | Lee et al. | Aug 2013 | A1 |
20130227097 | Yasuda et al. | Aug 2013 | A1 |
20130227534 | Ike et al. | Aug 2013 | A1 |
20130227563 | McGrath | Aug 2013 | A1 |
20130227641 | White et al. | Aug 2013 | A1 |
20130227710 | Barak et al. | Aug 2013 | A1 |
20130232190 | Miller et al. | Sep 2013 | A1 |
20130232480 | Winterfeldt et al. | Sep 2013 | A1 |
20130239125 | Iorio | Sep 2013 | A1 |
20130246944 | Pandiyan et al. | Sep 2013 | A1 |
20130262556 | Xu et al. | Oct 2013 | A1 |
20130263117 | Konik et al. | Oct 2013 | A1 |
20130274006 | Hudlow et al. | Oct 2013 | A1 |
20130275376 | Hudlow et al. | Oct 2013 | A1 |
20130275958 | Ivanov et al. | Oct 2013 | A1 |
20130275969 | Dimitrov | Oct 2013 | A1 |
20130275975 | Masuda et al. | Oct 2013 | A1 |
20130283141 | Stevenson et al. | Oct 2013 | A1 |
20130283176 | Hoole et al. | Oct 2013 | A1 |
20130290538 | Gmach et al. | Oct 2013 | A1 |
20130291087 | Kailash et al. | Oct 2013 | A1 |
20130297964 | Hegdal et al. | Nov 2013 | A1 |
20130298183 | McGrath et al. | Nov 2013 | A1 |
20130311650 | Brandwine et al. | Nov 2013 | A1 |
20130326506 | McGrath et al. | Dec 2013 | A1 |
20130326507 | McGrath et al. | Dec 2013 | A1 |
20130339950 | Ramarathinam et al. | Dec 2013 | A1 |
20130346470 | Obstfeld et al. | Dec 2013 | A1 |
20130346946 | Pinnix | Dec 2013 | A1 |
20130346952 | Huang et al. | Dec 2013 | A1 |
20130346964 | Nobuoka et al. | Dec 2013 | A1 |
20130346987 | Raney et al. | Dec 2013 | A1 |
20130346994 | Chen et al. | Dec 2013 | A1 |
20130347095 | Barjatiya et al. | Dec 2013 | A1 |
20140007097 | Chin et al. | Jan 2014 | A1 |
20140019523 | Heymann et al. | Jan 2014 | A1 |
20140019735 | Menon et al. | Jan 2014 | A1 |
20140019965 | Neuse et al. | Jan 2014 | A1 |
20140019966 | Neuse et al. | Jan 2014 | A1 |
20140040343 | Nickolov et al. | Feb 2014 | A1 |
20140040857 | Trinchini et al. | Feb 2014 | A1 |
20140040880 | Brownlow et al. | Feb 2014 | A1 |
20140058871 | Marr et al. | Feb 2014 | A1 |
20140059209 | Alnoor | Feb 2014 | A1 |
20140059226 | Messerli et al. | Feb 2014 | A1 |
20140059552 | Cunningham et al. | Feb 2014 | A1 |
20140068568 | Wisnovsky | Mar 2014 | A1 |
20140068608 | Kulkarni | Mar 2014 | A1 |
20140068611 | McGrath et al. | Mar 2014 | A1 |
20140073300 | Leeder et al. | Mar 2014 | A1 |
20140081984 | Sitsky et al. | Mar 2014 | A1 |
20140082165 | Marr et al. | Mar 2014 | A1 |
20140082201 | Shankari et al. | Mar 2014 | A1 |
20140101643 | Inoue | Apr 2014 | A1 |
20140101649 | Kamble et al. | Apr 2014 | A1 |
20140108722 | Lipchuk et al. | Apr 2014 | A1 |
20140109087 | Jujare et al. | Apr 2014 | A1 |
20140109088 | Dournov et al. | Apr 2014 | A1 |
20140129667 | Ozawa | May 2014 | A1 |
20140130040 | Lemanski | May 2014 | A1 |
20140137110 | Engle et al. | May 2014 | A1 |
20140173614 | Konik et al. | Jun 2014 | A1 |
20140173616 | Bird et al. | Jun 2014 | A1 |
20140180862 | Certain et al. | Jun 2014 | A1 |
20140189677 | Curzi et al. | Jul 2014 | A1 |
20140189704 | Narvaez et al. | Jul 2014 | A1 |
20140201735 | Kannan et al. | Jul 2014 | A1 |
20140207912 | Thibeault | Jul 2014 | A1 |
20140214752 | Rash et al. | Jul 2014 | A1 |
20140215073 | Dow et al. | Jul 2014 | A1 |
20140229221 | Shih et al. | Aug 2014 | A1 |
20140245297 | Hackett | Aug 2014 | A1 |
20140279581 | Devereaux | Sep 2014 | A1 |
20140280325 | Krishnamurthy et al. | Sep 2014 | A1 |
20140282418 | Wood et al. | Sep 2014 | A1 |
20140282559 | Verduzco et al. | Sep 2014 | A1 |
20140282615 | Cavage et al. | Sep 2014 | A1 |
20140282629 | Gupta et al. | Sep 2014 | A1 |
20140283045 | Brandwine et al. | Sep 2014 | A1 |
20140289286 | Gusak | Sep 2014 | A1 |
20140298295 | Overbeck | Oct 2014 | A1 |
20140304246 | Helmich et al. | Oct 2014 | A1 |
20140304698 | Chigurapati et al. | Oct 2014 | A1 |
20140304815 | Maeda | Oct 2014 | A1 |
20140317617 | O'Donnell | Oct 2014 | A1 |
20140337953 | Banatwala et al. | Nov 2014 | A1 |
20140344457 | Bruno, Jr. et al. | Nov 2014 | A1 |
20140344736 | Ryman et al. | Nov 2014 | A1 |
20140359093 | Raju et al. | Dec 2014 | A1 |
20140372489 | Jaiswal et al. | Dec 2014 | A1 |
20140372533 | Fu et al. | Dec 2014 | A1 |
20140380085 | Rash et al. | Dec 2014 | A1 |
20150033241 | Jackson et al. | Jan 2015 | A1 |
20150039891 | Ignatchenko et al. | Feb 2015 | A1 |
20150040229 | Chan et al. | Feb 2015 | A1 |
20150046926 | Kenchammana-Hosekote et al. | Feb 2015 | A1 |
20150052258 | Johnson et al. | Feb 2015 | A1 |
20150058914 | Yadav | Feb 2015 | A1 |
20150067019 | Balko | Mar 2015 | A1 |
20150067830 | Johansson et al. | Mar 2015 | A1 |
20150074659 | Madsen et al. | Mar 2015 | A1 |
20150074661 | Kothari et al. | Mar 2015 | A1 |
20150074662 | Saladi et al. | Mar 2015 | A1 |
20150081885 | Thomas et al. | Mar 2015 | A1 |
20150095822 | Feis et al. | Apr 2015 | A1 |
20150106805 | Melander et al. | Apr 2015 | A1 |
20150120928 | Gummaraju et al. | Apr 2015 | A1 |
20150121391 | Wang | Apr 2015 | A1 |
20150134626 | Theimer et al. | May 2015 | A1 |
20150135287 | Medeiros et al. | May 2015 | A1 |
20150142747 | Zou | May 2015 | A1 |
20150142952 | Bragstad et al. | May 2015 | A1 |
20150143374 | Banga et al. | May 2015 | A1 |
20150143381 | Chin et al. | May 2015 | A1 |
20150154046 | Farkas et al. | Jun 2015 | A1 |
20150161384 | Gu et al. | Jun 2015 | A1 |
20150163231 | Sobko et al. | Jun 2015 | A1 |
20150178110 | Li et al. | Jun 2015 | A1 |
20150186129 | Apte et al. | Jul 2015 | A1 |
20150188775 | Van Der Walt et al. | Jul 2015 | A1 |
20150199218 | Wilson et al. | Jul 2015 | A1 |
20150205596 | Hiltegen et al. | Jul 2015 | A1 |
20150227598 | Hahn et al. | Aug 2015 | A1 |
20150229645 | Keith et al. | Aug 2015 | A1 |
20150235144 | Gusev et al. | Aug 2015 | A1 |
20150242225 | Muller et al. | Aug 2015 | A1 |
20150254248 | Burns et al. | Sep 2015 | A1 |
20150256621 | Noda et al. | Sep 2015 | A1 |
20150261578 | Greden et al. | Sep 2015 | A1 |
20150264014 | Budhani et al. | Sep 2015 | A1 |
20150269494 | Kardes et al. | Sep 2015 | A1 |
20150289220 | Kim et al. | Oct 2015 | A1 |
20150309923 | Iwata et al. | Oct 2015 | A1 |
20150319160 | Ferguson et al. | Nov 2015 | A1 |
20150324174 | Bromley et al. | Nov 2015 | A1 |
20150324182 | Barros et al. | Nov 2015 | A1 |
20150324229 | Valine | Nov 2015 | A1 |
20150332048 | Mooring et al. | Nov 2015 | A1 |
20150332195 | Jue | Nov 2015 | A1 |
20150334173 | Coulmeau et al. | Nov 2015 | A1 |
20150350701 | Lemus et al. | Dec 2015 | A1 |
20150356294 | Tan et al. | Dec 2015 | A1 |
20150363181 | Alberti et al. | Dec 2015 | A1 |
20150363304 | Nagamalla et al. | Dec 2015 | A1 |
20150370560 | Tan et al. | Dec 2015 | A1 |
20150370591 | Tuch et al. | Dec 2015 | A1 |
20150370592 | Tuch et al. | Dec 2015 | A1 |
20150371244 | Neuse et al. | Dec 2015 | A1 |
20150378762 | Saladi et al. | Dec 2015 | A1 |
20150378764 | Sivasubramanian et al. | Dec 2015 | A1 |
20150378765 | Singh et al. | Dec 2015 | A1 |
20150379167 | Griffith et al. | Dec 2015 | A1 |
20160011901 | Hurwitz et al. | Jan 2016 | A1 |
20160012099 | Tuatini et al. | Jan 2016 | A1 |
20160019081 | Chandrasekaran et al. | Jan 2016 | A1 |
20160019082 | Chandrasekaran et al. | Jan 2016 | A1 |
20160019536 | Ortiz et al. | Jan 2016 | A1 |
20160026486 | Abdallah | Jan 2016 | A1 |
20160048606 | Rubinstein et al. | Feb 2016 | A1 |
20160070714 | D'Sa et al. | Mar 2016 | A1 |
20160072727 | Leafe et al. | Mar 2016 | A1 |
20160077901 | Roth et al. | Mar 2016 | A1 |
20160092320 | Baca | Mar 2016 | A1 |
20160092493 | Ko et al. | Mar 2016 | A1 |
20160098285 | Davis et al. | Apr 2016 | A1 |
20160100036 | Lo et al. | Apr 2016 | A1 |
20160103739 | Huang et al. | Apr 2016 | A1 |
20160110188 | Verde et al. | Apr 2016 | A1 |
20160117163 | Fukui et al. | Apr 2016 | A1 |
20160117254 | Susarla et al. | Apr 2016 | A1 |
20160124665 | Jain et al. | May 2016 | A1 |
20160124978 | Nithrakashyap et al. | May 2016 | A1 |
20160140180 | Park et al. | May 2016 | A1 |
20160150053 | Janczuk et al. | May 2016 | A1 |
20160191420 | Nagarajan et al. | Jun 2016 | A1 |
20160203219 | Hoch et al. | Jul 2016 | A1 |
20160212007 | Alatorre et al. | Jul 2016 | A1 |
20160226955 | Moorthi et al. | Aug 2016 | A1 |
20160282930 | Ramachandran et al. | Sep 2016 | A1 |
20160285906 | Fine et al. | Sep 2016 | A1 |
20160292016 | Bussard et al. | Oct 2016 | A1 |
20160294614 | Searle et al. | Oct 2016 | A1 |
20160306613 | Busi et al. | Oct 2016 | A1 |
20160315910 | Kaufman | Oct 2016 | A1 |
20160350099 | Suparna et al. | Dec 2016 | A1 |
20160357536 | Firlik et al. | Dec 2016 | A1 |
20160364265 | Cao et al. | Dec 2016 | A1 |
20160364316 | Bhat et al. | Dec 2016 | A1 |
20160371127 | Antony et al. | Dec 2016 | A1 |
20160371156 | Merriman | Dec 2016 | A1 |
20160378449 | Khazanchi et al. | Dec 2016 | A1 |
20160378547 | Brouwer et al. | Dec 2016 | A1 |
20160378554 | Gummaraju et al. | Dec 2016 | A1 |
20170004169 | Merrill et al. | Jan 2017 | A1 |
20170041144 | Krapf et al. | Feb 2017 | A1 |
20170041309 | Ekambaram et al. | Feb 2017 | A1 |
20170060615 | Thakkar et al. | Mar 2017 | A1 |
20170060621 | Whipple et al. | Mar 2017 | A1 |
20170068574 | Cherkasova et al. | Mar 2017 | A1 |
20170075749 | Ambichl et al. | Mar 2017 | A1 |
20170083381 | Cong et al. | Mar 2017 | A1 |
20170085447 | Chen et al. | Mar 2017 | A1 |
20170085502 | Biruduraju | Mar 2017 | A1 |
20170085591 | Ganda et al. | Mar 2017 | A1 |
20170093684 | Jayaraman et al. | Mar 2017 | A1 |
20170093920 | Ducatel et al. | Mar 2017 | A1 |
20170134519 | Chen et al. | May 2017 | A1 |
20170147656 | Choudhary et al. | May 2017 | A1 |
20170149740 | Mansour et al. | May 2017 | A1 |
20170161059 | Wood et al. | Jun 2017 | A1 |
20170177854 | Gligor et al. | Jun 2017 | A1 |
20170188213 | Nirantar et al. | Jun 2017 | A1 |
20170230262 | Sreeramoju et al. | Aug 2017 | A1 |
20170230499 | Mumick et al. | Aug 2017 | A1 |
20170249130 | Smiljamic et al. | Aug 2017 | A1 |
20170264681 | Apte et al. | Sep 2017 | A1 |
20170272462 | Kraemer et al. | Sep 2017 | A1 |
20170286143 | Wagner et al. | Oct 2017 | A1 |
20170286187 | Chen et al. | Oct 2017 | A1 |
20170308520 | Beahan, Jr. et al. | Oct 2017 | A1 |
20170315163 | Wang et al. | Nov 2017 | A1 |
20170329578 | Iscen | Nov 2017 | A1 |
20170346808 | Anzai et al. | Nov 2017 | A1 |
20170353851 | Gonzalez et al. | Dec 2017 | A1 |
20170364345 | Fontoura et al. | Dec 2017 | A1 |
20170371706 | Wagner | Dec 2017 | A1 |
20170371720 | Basu et al. | Dec 2017 | A1 |
20170371724 | Wagner et al. | Dec 2017 | A1 |
20170372142 | Bilobrov | Dec 2017 | A1 |
20180004555 | Ramanathan et al. | Jan 2018 | A1 |
20180004556 | Marriner et al. | Jan 2018 | A1 |
20180004575 | Marriner et al. | Jan 2018 | A1 |
20180046453 | Nair et al. | Feb 2018 | A1 |
20180046482 | Karve et al. | Feb 2018 | A1 |
20180060132 | Maru et al. | Mar 2018 | A1 |
20180060221 | Yim et al. | Mar 2018 | A1 |
20180060318 | Yang et al. | Mar 2018 | A1 |
20180067841 | Mahimkar | Mar 2018 | A1 |
20180081717 | Li | Mar 2018 | A1 |
20180089232 | Spektor et al. | Mar 2018 | A1 |
20180095738 | Dorkop et al. | Apr 2018 | A1 |
20180121245 | Wagner et al. | May 2018 | A1 |
20180121665 | Anderson et al. | May 2018 | A1 |
20180129684 | Wilson et al. | May 2018 | A1 |
20180143865 | Wagner et al. | May 2018 | A1 |
20180150339 | Pan et al. | May 2018 | A1 |
20180192101 | Bilobrov | Jul 2018 | A1 |
20180225096 | Mishra et al. | Aug 2018 | A1 |
20180239636 | Arora et al. | Aug 2018 | A1 |
20180253333 | Gupta | Sep 2018 | A1 |
20180268130 | Ghosh et al. | Sep 2018 | A1 |
20180275987 | Vandeputte | Sep 2018 | A1 |
20180285101 | Yahav et al. | Oct 2018 | A1 |
20180300111 | Bhat et al. | Oct 2018 | A1 |
20180314845 | Anderson et al. | Nov 2018 | A1 |
20180341504 | Kissell | Nov 2018 | A1 |
20190004866 | Du et al. | Jan 2019 | A1 |
20190028552 | Johnson, II et al. | Jan 2019 | A1 |
20190043231 | Uzgin et al. | Feb 2019 | A1 |
20190072529 | Andrawes et al. | Mar 2019 | A1 |
20190079751 | Foskett et al. | Mar 2019 | A1 |
20190102231 | Wagner | Apr 2019 | A1 |
20190108058 | Wagner et al. | Apr 2019 | A1 |
20190140831 | De Lima Junior et al. | May 2019 | A1 |
20190147085 | Pal et al. | May 2019 | A1 |
20190155629 | Wagner et al. | May 2019 | A1 |
20190171423 | Mishra et al. | Jun 2019 | A1 |
20190171470 | Wagner | Jun 2019 | A1 |
20190179725 | Mital et al. | Jun 2019 | A1 |
20190180036 | Shukla | Jun 2019 | A1 |
20190188288 | Holm et al. | Jun 2019 | A1 |
20190196884 | Wagner | Jun 2019 | A1 |
20190227849 | Wisniewski et al. | Jul 2019 | A1 |
20190235848 | Swiecki et al. | Aug 2019 | A1 |
20190238590 | Talukdar et al. | Aug 2019 | A1 |
20190250937 | Thomas et al. | Aug 2019 | A1 |
20190286475 | Mani | Sep 2019 | A1 |
20190303117 | Kocberber et al. | Oct 2019 | A1 |
20190318312 | Foskett et al. | Oct 2019 | A1 |
20190361802 | Li et al. | Nov 2019 | A1 |
20190363885 | Schiavoni et al. | Nov 2019 | A1 |
20190384647 | Reque et al. | Dec 2019 | A1 |
20190391834 | Mullen et al. | Dec 2019 | A1 |
20190391841 | Mullen et al. | Dec 2019 | A1 |
20200007456 | Greenstein et al. | Jan 2020 | A1 |
20200026527 | Xu et al. | Jan 2020 | A1 |
20200028936 | Gupta et al. | Jan 2020 | A1 |
20200057680 | Marriner et al. | Feb 2020 | A1 |
20200065079 | Kocberber et al. | Feb 2020 | A1 |
20200073770 | Mortimore, Jr. et al. | Mar 2020 | A1 |
20200073987 | Perumala et al. | Mar 2020 | A1 |
20200081745 | Cybulski et al. | Mar 2020 | A1 |
20200104198 | Hussels et al. | Apr 2020 | A1 |
20200104378 | Wagner et al. | Apr 2020 | A1 |
20200110691 | Bryant et al. | Apr 2020 | A1 |
20200120120 | Cybulski | Apr 2020 | A1 |
20200167208 | Floes et al. | May 2020 | A1 |
20200213151 | Srivatsan et al. | Jul 2020 | A1 |
20200341799 | Wagner et al. | Oct 2020 | A1 |
20200366587 | White et al. | Nov 2020 | A1 |
20200412707 | Siefker et al. | Dec 2020 | A1 |
20200412720 | Siefker et al. | Dec 2020 | A1 |
20200412825 | Siefker et al. | Dec 2020 | A1 |
Number | Date | Country |
---|---|---|
2975522 | Aug 2016 | CA |
1341238 | Mar 2002 | CN |
101002170 | Jul 2007 | CN |
101345757 | Jan 2009 | CN |
101496005 | Jul 2009 | CN |
2663052 | Nov 2013 | EP |
3201762 | Aug 2017 | EP |
3254434 | Dec 2017 | EP |
3201768 | Dec 2019 | EP |
2002287974 | Oct 2002 | JP |
2006-107599 | Apr 2006 | JP |
2007-538323 | Dec 2007 | JP |
2010-026562 | Feb 2010 | JP |
2011-065243 | Mar 2011 | JP |
2011-233146 | Nov 2011 | JP |
2011257847 | Dec 2011 | JP |
2013-156996 | Aug 2013 | JP |
2014-525624 | Sep 2014 | JP |
2017-534107 | Nov 2017 | JP |
2017-534967 | Nov 2017 | JP |
2018-503896 | Feb 2018 | JP |
2018-512087 | May 2018 | JP |
2018-536213 | Dec 2018 | JP |
WO 2008114454 | Sep 2008 | WO |
WO 2009137567 | Nov 2009 | WO |
WO 2012039834 | Mar 2012 | WO |
WO 2012050772 | Apr 2012 | WO |
WO 2013106257 | Jul 2013 | WO |
WO 2015078394 | Jun 2015 | WO |
WO 2015108539 | Jul 2015 | WO |
WO 2016053950 | Apr 2016 | WO |
WO 2016053968 | Apr 2016 | WO |
WO 2016053973 | Apr 2016 | WO |
WO 2016090292 | Jun 2016 | WO |
WO 2016126731 | Aug 2016 | WO |
WO 2016164633 | Oct 2016 | WO |
WO 2016164638 | Oct 2016 | WO |
WO 2017059248 | Apr 2017 | WO |
WO 2017112526 | Jun 2017 | WO |
WO 2017172440 | Oct 2017 | WO |
WO 2018005829 | Jan 2018 | WO |
WO 2018098445 | May 2018 | WO |
WO 2020005764 | Jan 2020 | WO |
WO 2020069104 | Apr 2020 | WO |
Entry |
---|
Anonymous: “Docker run reference”, Dec. 7, 2015, XP055350246, Retrieved from the Internet: URL:https://web.archive.org/web/20151207111702/https:/docs.docker.com/engine/reference/run/ [retrieved on Feb. 28, 2017]. |
Adapter Pattern, Wikipedia, https://en.wikipedia.org/w/index.php?title-Adapter_pattern&oldid=654971255, [retrieved May 26, 2016], 6 pages. |
Amazon, “AWS Lambda: Developer Guide”, Retrieved from the Internet, Jun. 26, 2016, URL : http://docs.aws.amazon.com/lambda/ latest/dg/lambda-dg.pdf, 346 pages. |
Amazon, “AWS Lambda: Developer Guide”, Retrieved from the Internet, 2019, URL : http://docs.aws.amazon.com/lambda/ latest/dg/lambda-dg.pdf, 521 pages. |
Balazinska et al., Moirae: History-Enhanced Monitoring, Published: 2007, 12 pages. |
Ben-Yehuda et al., “Deconstructing Amazon EC2 Spot Instance Pricing”, ACM Transactions on Economics and Computation 1.3, 2013, 15 pages. |
Bhadani et al., Performance evaluation of web servers using central load balancing policy over virtual machines on cloud, Jan. 2010, 4 pages. |
CodeChef Admin discussion web page, retrieved from https://discuss.codechef.com/t/what-are-the-memory-limit-and-stack-size-on-codechef/14159, 2019. |
CodeChef IDE web page, Code, Compile & Run, retrieved from https://www.codechef.com/ide, 2019. |
Czajkowski, G., and L. Daynes, Multitasking Without Compromise: A Virtual Machine Evolution 47(4a):60-73, ACM SIGPLAN Notices—Supplemental Issue, Apr. 2012. |
Das et al., Adaptive Stream Processing using Dynamic Batch Sizing, 2014, 13 pages. |
Deis, Container, 2014, 1 page. |
Dombrowski, M., et al., Dynamic Monitor Allocation in the Java Virtual Machine, JTRES '13, Oct. 9-11, 2013, pp. 30-37. |
Dynamic HTML, Wikipedia page from date Mar. 27, 2015, retrieved using the WayBackMachine, from https://web.archive.org/web/20150327215418/https://en.wikipedia.org/wiki/Dynamic_HTML, 2015, 6 pages. |
Espadas, J., et al., A Tenant-Based Resource Allocation Model for Scaling Software-as-a-Service Applications Over Cloud Computing Infrastructures, Future Generation Computer Systems, vol. 29, pp. 273-286, 2013. |
Han et al., Lightweight Resource Scaling for Cloud Applications, 2012, 8 pages. |
Hoffman, Auto scaling your website with Amazon Web Services (AWS)—Part 2, Cardinalpath, Sep. 2015, 15 pages. |
http://discuss.codechef.com discussion web page from date Nov. 11, 2012, retrieved using the WayBackMachine, from https://web.archive.org/web/20121111040051/http://discuss.codechef.com/questions/2881 /why-are-simple-java-programs-using-up-so-much-space, 2012. |
https://www.codechef.com code error help page from Jan. 2014, retrieved from https://www.codechef.com/JAN14/status/ERROR,va123, 2014. |
http://www.codechef.com/ide web page from date Apr. 5, 2015, retrieved using the WayBackMachine, from https://web.archive.org/web/20150405045518/http://www.codechef.com/ide, 2015. |
Kamga et al., Extended scheduler for efficient frequency scaling in virtualized systems, Jul. 2012, 8 pages. |
Kato, et al. “Web Service Conversion Architecture of the Web Application and Evaluation”; Research Report from Information Processing Society, Apr. 3, 2006 with Machine Translation. |
Kazempour et al., AASH: an asymmetry-aware scheduler for hypervisors, Jul. 2010, 12 pages. |
Kraft et al., 10 performance prediction in consolidated virtualized environments, Mar. 2011, 12 pages. |
Krsul et al., “VMPlants: Providing and Managing Virtual Machine Execution Environments for Grid Computing”, Supercomputing, 2004. Proceedings of the ACM/IEEESC 2004 Conference Pittsburgh, PA, XP010780332, Nov. 6-12, 2004, 12 pages. |
Meng et al., Efficient resource provisioning in compute clouds via VM multiplexing, Jun. 2010, 10 pages. |
Merkel, “Docker: Lightweight Linux Containers for Consistent Development and Deployment”, Linux Journal, vol. 2014 Issue 239, Mar. 2014, XP055171140, 16 pages. |
Monteil, Coupling profile and historical methods to predict execution time of parallel applications. Parallel and Cloud Computing, 2013, <hal-01228236, pp. 81-89. |
Nakajima, J., et al., Optimizing Virtual Machines Using Hybrid Virtualization, SAC '11, Mar. 21-25, 2011, TaiChung, Taiwan, pp. 573-578. |
Qian, H., and D. Medhi, et al., Estimating Optimal Cost of Allocating Virtualized Resources With Dynamic Demand, ITC 2011, Sep. 2011, pp. 320-321. |
Sakamoto, et al. “Platform for Web Services using Proxy Server”; Research Report from Information Processing Society, Mar. 22, 2002, vol. 2002, No. 31. |
Shim (computing), Wikipedia, https://en.wikipedia.org/w/index.php?title+Shim_(computing)&oldid+654971528, [retrieved on May 26, 2016], 2 pages. |
Stack Overflow, Creating a database connection pool, 2009, 4 pages. |
Tan et al., Provisioning for large scale cloud computing services, Jun. 2012, 2 pages. |
Tange, “GNU Parallel: The Command-Line Power Tool”, vol. 36, No. 1, Jan. 1, 1942, pp. 42-47. |
Vaghani, S.B., Virtual Machine File System, ACM SIGOPS Operating Systems Review 44(4):57-70, Dec. 2010. |
Vaquero, L., et al., Dynamically Scaling Applications in the cloud, ACM SIGCOMM Computer Communication Review 41(1):45-52, Jan. 2011. |
Wang et al., “Improving utilization through dynamic Vm resource allocation in hybrid cloud environment”, Parallel and Distributed V Systems (ICPADS), IEEE, 2014. Retrieved on Feb. 14, 2019, Retrieved from the internet: URL<https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7097814, 8 pages. |
Wikipedia “API” pp. from date Apr. 7, 2015, retrieved using the WayBackMachine from https://web.archive.org/web/20150407191158/https://en .wikipedia.org/wiki/Application_programming_interface. |
Wikipedia List_of_HTTP status_codes web page, retrieved from https://en.wikipedia.org/wiki/List_of_HTTP status_codes, 2019. |
Wikipedia Recursion web page from date Mar. 26, 2015, retrieved using the WayBackMachine, from https://web.archive.org/web/20150326230100/https://en .wikipedia.org/wiki/Recursion_(computer_science), 2015. |
Wikipedia subroutine web page, retrieved from https://en.wikipedia.org/wiki/Subroutine, 2019. |
Wu et al., HC-Midware: A Middleware to Enable High Performance Communication System Simulation in Heterogeneous Cloud, Association for Computing Machinery, Oct. 20-22, 2017, 10 pages. |
Yamasaki et al. “Model-based resource selection for efficient virtual cluster deployment”, Virtualization Technology in Distributed Computing, ACM, Nov. 2007, pp. 1-7. |
Yue et al., AC 2012-4107: Using Amazon EC2 in Computer and Network Security Lab Exercises: Design, Results, and Analysis, 2012, American Society for Engineering Education 2012. |
Zheng, C., and D. Thain, Integrating Containers into Workflows: A Case Study Using Makeflow, Work Queue, and Docker, VTDC '15, Jun. 15, 2015, Portland, Oregon, pp. 31-38. |
International Search Report and Written Opinion in PCT/US2015/052810 dated Dec. 17, 2015. |
International Preliminary Report on Patentability in PCT/US2015/052810 dated Apr. 4, 2017. |
Extended Search Report in European Application No. 15846932.0 dated May 3, 2018. |
International Search Report and Written Opinion in PCT/US2015/052838 dated Dec. 18, 2015. |
International Preliminary Report on Patentability in PCT/US2015/052838 dated Apr. 4, 2017. |
Extended Search Report in European Application No. 15847202.7 dated Sep. 9, 2018. |
Extended Search Report in European Application No. 19199402.9 dated Mar. 6, 2020. |
International Search Report and Written Opinion in PCT/US2015/052833 dated Jan. 13, 2016. |
International Preliminary Report on Patentability in PCT/US2015/052833 dated Apr. 4, 2017. |
Extended Search Report in European Application No. 15846542.7 dated Aug. 27, 2018. |
International Search Report and Written Opinion in PCT/US2015/064071dated Mar. 16, 2016. |
International Preliminary Report on Patentability in PCT/US2015/064071 dated Jun. 6, 2017. |
International Search Report and Written Opinion in PCT/US2016/016211 dated Apr. 13, 2016. |
International Preliminary Report on Patentability in PCT/US2016/016211 dated Aug. 17, 2017. |
International Search Report and Written Opinion in PCT/US2016/026514 dated Jun. 8, 2016. |
International Preliminary Report on Patentability in PCT/US2016/026514 dated Oct. 10, 2017. |
International Search Report and Written Opinion in PCT/US2016/026520 dated Jul. 5, 2016. |
International Preliminary Report on Patentability in PCT/US2016/026520 dated Oct. 10, 2017. |
International Search Report and Written Opinion in PCT/US2016/054774 dated Dec. 16, 2016. |
International Preliminary Report on Patentability in PCT/US2016/054774 dated Apr. 3, 2018. |
International Search Report and Written Opinion in PCT/US2016/066997 dated Mar. 20, 2017. |
International Preliminary Report on Patentability in PCT/US2016/066997 dated Jun. 26, 2018. |
International Search Report and Written Opinion in PCT/US/2017/023564 dated Jun. 6, 2017. |
International Preliminary Report on Patentability in PCT/US/2017/023564 dated Oct. 2, 2018. |
International Search Report and Written Opinion in PCT/US2017/040054 dated Sep. 21, 2017. |
International Preliminary Report on Patentability in PCT/US2017/040054 dated Jan. 1, 2019. |
International Search Report and Written Opinion in PCT/US2017/039514 dated Oct. 10, 2017. |
International Preliminary Report on Patentability in PCT/US2017/039514 dated Jan. 1, 2019. |
Extended European Search Report in application No. 17776325.7 dated Oct. 23, 2019. |
Office Action in European Application No. 17743108.7 dated Jan. 14, 2020. |
Bebenita et al., “Trace-Based Compilation in Execution Environments without Interpreters,” ACM, Copyright 2010, 10 pages. |
Bryan Liston, “Ad Hoc Big Data Processing Made Simple with Serverless Map Reduce”, Nov. 4, 2016, Amazon Web Services <https :/laws. amazon .com/bl ogs/compute/ad-hoc-big-data-processi ng-made-si mple-with-serverless-mapred uce >. |
Fan et al., Online Optimization of VM Deployment in IaaS Cloud, 2012, 6 pages. |
Ha et al., A Concurrent Trace-based Just-In-Time Compiler for Single-threaded JavaScript, utexas.edu (Year: 2009). |
Huang, Zhe, Danny HK Tsang, and James She. “A virtual machine consolidation framework for mapreduce enabled computing clouds.” 2012 24th International Teletraffic Congress (ITC 24). IEEE, 2012. (Year: 2012). |
Lagar-Cavilla, H. Andres, et al. “Snowflock: Virtual machine cloning as a first-class cloud primitive.” ACM Transactions on Computer Systems (TOCS) 29.1 (2011): 1-45. (Year: 2011). |
Search Query Report from IP.com, performed Dec. 2, 2020. |
Wood, Timothy, et al. “Cloud Net: dynamic pooling of cloud resources by live WAN migration of virtual machines.” ACM Sigplan Notices 46.7 (2011): 121-132. (Year: 2011). |
Zhang et al., VMThunder: Fast Provisioning of Large-Scale Virtual Machine Clusters, IEEE Transactions on Parallel and Distributed Systems, vol. 25, No. 12, Dec. 2014, pp. 3328-3338. |
Office Action in Canadian Application No. 2,962,633 dated May 21, 2020. |
Office Action in Japanese Application No. 2017-516160 dated Jan. 15, 2018. |
Notice of Allowance in Japanese Application No. 2017-516160 dated May 8, 2018. |
Office Action in Canadian Application No. 2,962,631 dated May 19, 2020. |
Office Action in Indian Application No. 201717013356 dated Jan. 22, 2021. |
Office Action in Japanese Application No. 2017-516168 dated Mar. 26, 2018. |
Office Action in Indian Application No. 201717019903 dated May 18, 2020. |
Office Action in Australian Application No. 2016215438 dated Feb. 26, 2018. |
Notice of Allowance in Australian Application No. 2016215438 dated Nov. 19, 2018. |
Office Action in Canadian Application No. 2,975,522 dated Jun. 5, 2018. |
Notice of Allowance in Canadian Application No. 2,975,522 dated Mar. 13, 2020. |
Office Action in Indian Application No. 201717027369 dated May 21, 2020. |
First Examination Report for Indian Application No. 201717034806 dated Jun. 25, 2020. |
Office Action in European Application No. 16781265.0 dated Jul. 13, 2020. |
Office Action in European Application No. 201817013748 dated Nov. 20, 2020. |
Office Action in European Application No. 17743108.7 dated Dec. 22, 2020. |
International Search Report and Written Opinion dated Oct. 15, 2019 for International Application No. PCT/US2019/039246 in 16 pages. |
International Preliminary Report on Patentability dated Dec. 29, 2020 for International Application No. PCT/US2019/039246 in 8 pages. |
International Search Report for Application No. PCT/US2019/038520 dated Aug. 14, 2019. |
International Preliminary Report on Patentability for Application No. PCT/US2019/038520 dated Dec. 29, 2020. |
International Search Report and Written Opinion in PCT/US2019/053123 dated Jan. 7, 2020. |
International Search Report for Application No. PCT/US2019/065365 dated Mar. 19, 2020. |
International Search Report for Application No. PCT/US2020/039996 dated Oct. 8, 2020. |