VIRUS VACCINE

Information

  • Patent Application
  • 20220088169
  • Publication Number
    20220088169
  • Date Filed
    October 15, 2019
    5 years ago
  • Date Published
    March 24, 2022
    2 years ago
Abstract
This invention relates to a vaccine comprising live attenuated Zika virus comprising a partly codon deoptimized viral genome, a Zika virus comprising a partly codon deoptimized viral genome, as well as their use in methods of treatment and prevention of viral infection. is deoptimized along the nonstructural ZIKV coding region. In some embodiments, the non-structural region of the viral genome is codon deoptimized, and preferably one or more of the genes NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5 are codon deoptimized.
Description
TECHNICAL FIELD

This invention generally relates to a codon deoptimized Zika virus genome. In particular, embodiments of the invention concern a vaccine comprising live attenuated Zika virus comprising a partly codon deoptimized viral genome, a Zika virus comprising a partly codon deoptimized viral genome, as well as their use in methods of treatment and prevention of viral infection.


BACKGROUND ART

Zika virus (ZIKV) has very recently emerged as a major human pathogen (Baud D, Gubler D J, Schaub B, Lanteri M C, Musso D. An update on Zika virus infection. Lancet. 2017 Nov. 4; 390(10107):2099-2109). It is a mosquito-transmitted member of the Flavivirus genus first isolated in 1947 in Uganda from a rhesus monkey. The first human infection was recorded in 1954, but since then human infections have been reported only rarely. Since 2007 there have been a number of outbreaks in the Pacific of varying severity affecting at least 10 island nations. A particularly explosive outbreak occurred in French Polynesia in 2013 with more than 30,000 cases (Cao-Lormeau V M, Roche C, Teissier A, Robin E, Berry A L, Mallet H P, Sall A A, Musso D. Zika virus, French Polynesia, South pacific, 2013. Emerg Infect Dis. 2014 June; 20(6):1085-6; Musso D, Nilles E J, Cao-Lormeau V M. Rapid spread of emerging Zika virus in the Pacific area. Clin Microbiol Infect. 2014 October; 20(10):O595-6. doi: 10.1111/1469-0691.12707. Epub 2014 Aug. 4). ZIKV subsequently emerged and spread rapidly and extensively in the Americas, starting from 2015 (Zanluca C, Melo V C, Mosimann A L, Santos G I, Santos C N, Luz K. First report of autochthonous transmission of Zika virus in Brazil. Mem Inst Oswaldo Cruz. 2015 June; 110(4):569-72). ZIKV infections are most commonly asymptomatic. Symptomatic ZIKV infections are generally mild, with fever and rash being the dominant signs (Baud D, Gubler D J, Schaub B, Lanteri M C, Musso D. An update on Zika virus infection. Lancet. 2017 Nov. 4; 390(10107):2099-2109).


ZIKV has emerged as an important human pathogen due to its neurotropism, resulting in an increased incidence of neurological malformation, in particular, microcephaly of the developing foetus and its association with post-infectious Guillain-Barré syndrome (Kleber de Oliveira W, Cortez-Escalante J, De Oliveira W T, do Carmo G M, Henriques C M, Coelho G E, Araújo de França G V. Increase in Reported Prevalence of Microcephaly in Infants Born to Women Living in Areas with Confirmed Zika Virus Transmission During the First Trimester of Pregnancy—Brazil, 2015. MMWR Morb Mortal Wkly Rep. 2016 Mar. 11; 65(9):242-7. doi: 10.15585/mmwr.mm6509e2; Cao-Lormeau V M, Blake A, Mons S, Lastere S, Roche C, Vanhomwegen J, Dub T, Baudouin L, Teissier A, Larre P, Vial A L, Decam C, Choumet V, Halstead S K, Willison H J, Musset L, Manuguerra J C, Despres P, Foumier E, Mallet H P, Musso D, Fontanet A, Neil J, Ghawché F. Guillain; Barré Syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet. 2016 Apr. 9; 387(10027):1531-1539. doi: 10.1016/S0140-6736(16)00562-6. Epub 2016 Mar. 2). The evidence for a causal link between ZIKV and these neurological manifestations is now very strong.


There are no licensed vaccines or antivirals available for ZIKV infection.


Codon usage bias refers to the redundancy of the genetic code, where amino acids are determined by synonymous codons that occur in different organisms at different frequencies. The process of codon optimization, where each amino acid is encoded by the most abundant codon, is frequently exploited to improve gene expression in heterologous systems, a strategy that is used to increase immune responses to antigens. Instead, codon deoptimization (CD), where each or selected number of amino acid residues is encoded by the less abundant codon, is used to decrease gene expression leading to reduced viral protein production while the composition of viral antigens remains the same. The approach can also result in additional virus attenuation by removing/altering of RNA secondary structures of functional importance (Song Y, Gorbatsevych O, Liu Y, Mugavero J, Shen S H, Ward C B, Asare E, Jiang P, Paul A V, Mueller S, Wimmer E. Limits of variation, specific infectivity, and genome packaging of massively recoded poliovirus genomes. Proc Natl Acad Sci USA. 2017 Oct. 10; 114(41): E8731-E8740. doi:10.1073/pnas.1714385114. Epub 2017 Sep. 25). This strategy is successfully used to attenuate replication of human and livestock infecting viruses (Mueller S, Papamichail D, Coleman J R, Skiena S, Wimmer E. Reduction of the rate of poliovirus protein synthesis through large-scale codon deoptimization causes attenuation of viral virulence by lowering specific infectivity. J Virol. 2006 October; 80(19):9687-96; Stobart C C, Rostad C A, Ke Z, Dillard R S, Hampton C M, Strauss J D, Yi H, Hotard A L, Meng J, Pickles R J, Sakamoto K, Lee S, Currier M G, Moin S M, Graham B S, Boukhvalova M S, Gilbert B E, Blanco J C, Piedra P A, Wright E R, Moore M L. A live RSV vaccine with engineered thermostability is immunogenic in cotton rats despite high attenuation. Nat Commun. 2016 Dec. 21; 7:13916. doi: 10.1038/ncomms13916; Diaz-San Segundo F, Medina G N, Ramirez-Medina E, Velazquez-Salinas L, Koster M, Grubman M J, de los Santos T. Synonymous Deoptimization of Foot-and-Mouth Disease Virus Causes Attenuation In Vivo while Inducing a Strong Neutralizing Antibody Response. J Virol. 2015 Nov. 18; 90(3):1298-310. doi: 10.1128/JVI.02167-15. Print 2016 Feb. 1; Baker S F, Nogales A, Martínez-Sobrido L. Downregulating viral gene expression: codon usage bias manipulation for the generation of novel influenza A virus vaccines. Future Virol. 2015 June; 10(6):715-730.; Meng J, Lee S, Hotard A L, Moore M L. Refining the balance of attenuation and immunogenicity of respiratory syncytial virus by targeted codon deoptimization of virulence genes. MBio. 2014 Sep. 23; 5(5):e01704-14. doi: 10.1128/mBio.01704-14). However, its application for arboviruses, infecting both vertebrate and mosquito host and thus adapted to replication in hosts with different codon usage is less trivial; only few examples are known (Nougairede A, De Fabritus L, Aubry F, Gould E A, Holmes E C, de Lamballerie X. Random codon re-encoding induces stable reduction of replicative fitness of Chikungunya virus in primate and mosquito cells. PLoS Pathog. 2013 February; 9(2):e1003172. doi: 10.1371/journal.ppat.1003172. Epub 2013 Feb. 21; de Fabritus L, Nougairède A, Aubry F, Gould E A, de Lamballerie X. Attenuation of tick-borne encephalitis virus using large-scale random codon re-encoding. PloS Pathog. 2015 Mar. 3; 11(3):e1004738. doi: 10.1371/journal.ppat.1004738. eCollection 2015 March; de Fabritus L, Nougairède A, Aubry F, Gould E A, de Lamballerie X. Utilisation of ISA Reverse Genetics and Large-Scale Random Codon Re-Encoding to Produce Attenuated Strains of Tick-Borne Encephalitis Virus within Days. PLoS One. 2016 Aug. 22; 11(8):e0159564. doi: 10.1371/journal.pone.0159564. eCollection 2016).


The CD method is one of several massive synonymous mutagenesis methods. Related but non-identical methods utilising different underlying principles for attenuation are codon pair bias deoptimization (Coleman J R, Papamichail D, Skiena S, Futcher B, Wimmer E, Mueller S. Virus attenuation by genome-scale changes in codon pair bias. Science. 2008 Jun. 27; 320(5884):1784-7. doi: 10.1126/science.1155761; Le Noudn C, Brock L G, Luongo C, McCarty T, Yang L, Mehedi M, Wimmer E, Mueller S, Collins P L, Buchholz U J, DiNapoli J M. Attenuation of human respiratory syncytial virus by genome-scale codon-pair deoptimization. Proc Natl Acad Sci USA. 2014 Sep. 9; 111(36):13169-74. doi: 10.1073/pnas.1411290111. Epub 2014 Aug. 25; Mueller S, Coleman J R, Papamichail D, Ward C B, Nimnual A, Futcher B, Skiena S, Wimmer E. Live attenuated influenza virus vaccines by computer-aided rational design. Nat Biotechnol. 2010 July; 28(7):723-6. doi: 10.1038/nbt.1636. Epub 2010 Jun. 13) and dinucleotide frequency modification (Atkinson N J, Witteveldt J, Evans D J, Simmonds P. The influence of CpG and UpA dinucleotide frequencies on RNA virus replication and characterization of the innate cellular pathways underlying virus attenuation and enhanced replication. Nucleic Acids Res. 2014 April; 42(7):4527-45. doi: 10.1093/nar/gku075. Epub 2014 Jan. 26). Usually these two methods are considered different from each other, though the achieved attenuation may or may not actually be the same (Futcher B, Gorbatsevych O, Shen S H, Stauft C B, Song Y, Wang B, Leatherwood J, Gardin J, Yurovsky A, Mueller S, Wimmer E. Reply to Simmonds et al. Codon pair and dinucleotide bias have not been functionally distinguished. Proc Natl Acad Sci USA. 2015 Jul. 14; 112(28):E3635-6. doi: 10.1073/pnas.1507710112. Epub 2015 Jun. 12; Tulloch F, Atkinson N J, Evans D J, Ryan M D, Simmonds P. RNA virus attenuation by codon pair deoptimisation is an artefact of increases in CpG/UpA dinucleotide frequencies. Elife. 2014 Dec. 9; 3:e04531. doi: 10.7554/eLife.04531; Simmonds P, Tulloch F, Evans D J, Ryan M D. Attenuation of dengue (and other RNA viruses) with codon pair recoding can be explained by increased CpG/UpA dinucleotide frequencies. Proc Natl Acad Sci USA. 2015 Jul. 14; 112(28):E3633-4). Clearly, however, these methods are very different from CD.


SUMMARY OF THE INVENTION

According to a first embodiment of the present invention, there is provided live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid comprising a partly codon deoptimized Zika viral genome.


According to a second embodiment of the present invention, there is provided a recombinant, isolated or substantially purified nucleic acid comprising a partly codon deoptimized Zika viral genome or partly codon deoptimized region thereof.


According to a third embodiment of the present invention, there is provided a vector containing the nucleic acid of the second embodiment.


According to a fourth embodiment of the present invention, there is provided a cell or isolate containing the live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid of the first embodiment, the nucleic acid of the second embodiment, or the vector of the third embodiment.


According to a fifth embodiment of the present invention, there is provided a vaccine comprising the live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid of the first embodiment, the recombinant, isolated or substantially purified nucleic acid of the second embodiment, the vector of the third embodiment, or the cell or isolate of the fourth embodiment.


According to a sixth embodiment of the present invention, there is provided a pharmaceutical preparation comprising the live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid of the first embodiment, the recombinant, isolated or substantially purified nucleic acid of the second embodiment, the vector of the third embodiment, or the cell or isolate of the fourth embodiment.


According to a seventh embodiment of the present invention, there is provided an immunogenic composition comprising the live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid of the first embodiment, the recombinant, isolated or substantially purified nucleic acid of the second embodiment, the vector of the third embodiment, or the cell or isolate of the fourth embodiment.


According to an eighth embodiment of the present invention, there is provided a method of (1) treating a subject having a natural Zika viral infection, (2) reducing the severity of a natural Zika viral infection in a subject, or (3) preventing a subject from contracting a Zika viral infection naturally, said method comprising the step of administering to the subject: the live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid of the first embodiment; the recombinant, isolated or substantially purified nucleic acid of the second embodiment; the vector of the third embodiment; the cell or isolate of the fourth embodiment; the vaccine of the fifth embodiment; the pharmaceutical preparation of the sixth embodiment; or the immunogenic composition of the seventh embodiment.


According to a ninth embodiment of the present invention, there is provided use of: the live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid of the first embodiment; the recombinant, isolated or substantially purified nucleic acid of the second embodiment; the vector of the third embodiment; the cell or isolate of the fourth embodiment; the vaccine of the fifth embodiment; the pharmaceutical preparation of the sixth embodiment; or the immunogenic composition of the seventh embodiment, in the preparation of a medicament for (1) treating a subject having a natural Zika viral infection, (2) reducing the severity of a natural Zika viral infection in a subject, or (3) preventing a subject from contracting a Zika viral infection naturally.


According to a tenth embodiment of the present invention, there is provided: a live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid of the first embodiment; a recombinant, isolated or substantially purified nucleic acid of the second embodiment; a vector of the third embodiment; a cell or isolate of the fourth embodiment; a vaccine of the fifth embodiment; a pharmaceutical preparation of the sixth embodiment; or an immunogenic composition of the seventh embodiment, for use in (1) treating a subject having a natural Zika viral infection, (2) reducing the severity of a natural Zika viral infection in a subject, or (3) preventing a subject from contracting a Zika viral infection naturally.


According to an eleventh embodiment of the present invention, there is provided a method of generating a live attenuated Zika virus vaccine, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid, or recombinant, isolated or substantially purified nucleic acid comprising a partly codon deoptimized Zika viral genome or partly codon deoptimized region thereof, comprising the step of partly codon deoptimizing a Zika viral genome.


According to a twelfth embodiment of the present invention, there is provided a method of preparing a vaccine comprising live attenuated recombinant Zika virus, said method comprising the steps of: (1) codon deoptimizing a Zika viral genome to produce a partly codon deoptimized live attenuated Zika virus; and (2) enabling the partly codon deoptimized live attenuated Zika virus to replicate.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1a. Schematic representation of codon deoptimized ZIKV genomes. ZIKV-DO—amino acid codons in NS1-NS2A-NS2B-NS3 regions are maximally deoptimized; ZIKV-DO-NS3—amino acid codons in NS3 region are maximally deoptimized; ZIKV-DO-scattered—amino acid codons are deoptimized with 3-4 codon gaps through all the nonstructural ZIKV genome region. In ZIKV-scatter genome every 3rd-4th amino acid codon has been deoptimized in favour of rarely used codons. Grey area—ZIKV structural region encompassing C, prM and E (unchanged); white area/s—unchanged; nonstructural region, pink area labelled ‘CD modified’—codon deoptimized region.



FIG. 1b. An example of computational codon deoptimization of the nonstructural ZIKV region [SEQ ID NO:1], with changes indicated by way of underlining and insertion arrows.



FIG. 2. Graph showing the percentage survival of mice infected intracranially with Zika wt virus (MR 766) or Zika vaccine based on clone ZIKV-DO-NS3 over 15 days post infection. The graph shows that the vaccine comprising live-attenuated codon deoptimized Zika virus (based on ZIKV-DO-NS3) did not result in lethal infection in mice as compared to Zika wt virus.



FIG. 3. A. Graph showing the clinical score of mice infected intracranially with Zika wt virus (MR 766) or Zika vaccine based on clone ZIKV-DO-NS3 over 15 days post infection. B. Graph showing the body weight of mice infected intracranially with Zika wt virus (MR 766) or Zika vaccine based on clone ZIKV-DO-NS3 over 15 days post infection. The graphs show that the vaccine comprising live-attenuated codon deoptimized Zika virus based on ZIKV-DO-NS3 did not show signs of disease nor weight loss.



FIG. 4. Graph showing the percentage survival of mice either vaccinated with a Zika vaccine based on clone ZIKV-DO-NS3 or not, and challenged with Zika wt virus (MR 766), over 15 days post infection. The graph shows that vaccinated mice were fully protected from lethal infection with no mortality.



FIG. 5. Graph showing the body weight loss of mice either vaccinated with Zika vaccine based on clone ZIKV-DO-NS3 or not, and challenged with Zika wt virus (MR 766), over 7 days post infection. The graph shows that vaccinated mice were fully protected from lethal infection with no weight loss.



FIG. 6. A. Clinical score criteria used for the graph shown in B. B. Graph showing the clinical score of mice either vaccinated with Zika vaccine based on clone ZIKV-DO-NS3 or not, and challenged with Zika wt virus (MR 766), over 6 days post infection. The graph shows that vaccinated mice were fully protected from lethal infection with no disease signs.



FIG. 7. Graph showing the level (PFU/IFU) of Zika virus in brain tissue of mice either vaccinated with Zika vaccine based on clone ZIKV-DO-NS3 or not, and challenged with Zika wt virus. The graph shows that there was no detectable virus in the brains of vaccinated mice at day 6 after Zika challenge.



FIG. 8. Graph showing that a vaccine based on ZIKV-DO-NS3 that is given subcutaneously to mice can induce a cellular response in the lymph nodes, as compared with a naïve non-vaccinated mouse group.



FIG. 9. Graph showing that a vaccine based on ZIKV-DO-NS3 that is given to mice induced a strong ZIKV antibody response, as compared with a naïve non-vaccinated mouse group.



FIG. 10. Graph showing a vaccine based on ZIKV-DO-NS3 induced a strong ZIKV neutralising antibody response in mice as compared with a naïve non-vaccinated mouse group.



FIG. 11. Graphs showing that a vaccine based on ZIKV-DO-NS3 that is given subcutaneously to mice can induce an immune response (B and T cell response) in the draining lymph nodes compared with a naïve non-vaccinated mouse group.





DESCRIPTION OF SEQUENCES

SEQ ID NO:1. See FIG. 1b. Computational codon deoptimization of a nonstructural ZIKV region, with changes indicated by way of underlining and insertion arrows. SEQ ID NO:1, below, with changed nucleotides marked in bold and underline. The sequence derives from the ZIKV-DO-scattered vaccine candidate, in particular the ZIKV-DO-scattered NS3 region.










CAAAGAAGTAAAAAAAGGGGAGACCACGGATGGAGTATACAGAGTAATGACGCGTAGAC






TGCTAGGTTCGACACAAGTTGGTGTAGGAGTTATGCAAGAAGGGGTCTTTCATACTATGTGGCATGTC





ACAAAAGGTTCCGCGCTGCGTAGCGGTGAAGGTAGACTTGATCCGTACTGGGGAGATGTAAAGCAGGA





TCTAGTATCATACTGTGGTCCGTGGAAGCTAGATGCGGCCTGGGACGGTCACAGCGAGGTACAGCTCT





TGGCGGTACCCCCCGGAGAAAGAGCGAGGAATATCCAGACTCTACCCGGAATATTTAAAACAAAGGAT





GGTGACATTGGAGCGGTAGCGCTGGATTATCCAGCAGGAACGTCAGGATCTCCGATCCTAGACAAATG





TGGGAGAGTAATAGGACTTTATGGTAATGGGGTCGTAATCAAAAATGGTAGTTATGTTAGTGCGATCA





CCCAAGGTAGGAGGGAAGAAGAAACTCCTGTTGAATGCTTCGAGCCGTCGATGCTGAAAAAGAAGCAG





CTAACGGTCTTAGACTTACATCCTGGAGCGGGGAAAACCCGAAGAGTTCTTCCGGAAATAGTCCGTGA





AGCGATAAAAACACGTCTCCGTACTGTAATCTTAGCTCCGACCAGGGTTGTAGCTGCTGAAATGGAAG





AGGCCCTTCGTGGGCTTCCAGTACGTTATATGACGACAGCAGTCAATGTAACCCACTCTGGTACAGAA





ATCGTTGACTTAATGTGTCATGCCACCTTTACTTCACGTCTACTACAACCAATCAGAGTTCCCAACTA





TAATCTATATATTATGGATGAAGCCCACTTCACGGATCCCTCAAGTATAGCGGCAAGAGGATATATTT





CAACAAGGGTTGAAATGGGCGAGGCGGCGGCCATCTTCATGACGGCCACGCCACCGGGAACCCGTGAT





GCATTTCCGGATTCCAACTCACCGATTATGGACACGGAAGTGGAAGTTCCAGAGAGAGCGTGGAGCTC





AGGTTTTGATTGGGTAACGGATCATTCGGGAAAAACAGT






SEQ ID NO:2. ZIKV-wild type nonstructural region nucleotide sequence, with locations of nonstructural regions NS1 to NS5 indicated.










(NS1)GATGTGGGGTGCTCGGTGGACTTCTCAAAGAAGGAGACGAGATGCGGTACAGGG






GTGTTCGTCTATAACGACGTTGAAGCCTGGAGGGACAGGTACAAGTACCATCCTGACTCCCCCCGTAG





ATTGGCAGCAGCAGTCAAGCAAGCCTGGGAAGATGGTATCTGCGGGATCTCCTCTGTTTCAAGAATGG





AAAACATCATGTGGAGATCAGTAGAAGGGGAGCTCAACGCAATCCTGGAAGAGAATGGAGTTCAACTG





ACGGTCGTTGTGGGATCTGTAAAAAACCCCATGTGGAGAGGTCCACAGAGATTGCCCGTGCCTGTGAA





CGAGCTGCCCCACGGCTGGAAGGCTTGGGGGAAATCGTACTTCGTCAGAGCAGCAAAGACAAATAACA





GCTTTGTCGTGGATGGTGACACACTGAAGGAATGCCCACTCAAACATAGAGCATGGAACAGCTTTCTT





GTGGAGGATCATGGGTTCGGGGTATTTCACACTAGTGTCTGGCTCAAGGTTAGAGAAGATTATTCATT





AGAGTGTGATCCAGCCGTTATTGGAACAGCTGTTAAGGGAAAGGAGGCTGTACACAGTGATCTAGGCT





ACTGGATTGAGAGTGAGAAGAATGACACATGGAGGCTGAAGAGGGCCCATCTGATCGAGATGAAAACA





TGTGAATGGCCAAAGTCCCACACATTGTGGACAGATGGAATAGAAGAGAGTGATCTGATCATACCCAA





GTCTTTAGCTGGGCCACTCAGCCATCACAATACCAGAGAGGGCTACAGGACCCAAATGAAAGGGCCAT





GGCACAGTGAAGAGCTTGAAATTCGGTTTGAGGAATGCCCAGGCACTAAGGTCCACGTGGAGGAAACA





TGTGGAACAAGAGGACCATCTCTGAGATCAACCACTGCAAGCGGAAGGGTGATCGAGGAATGGTGCTG





CAGGGAGTGCACAATGCCCCCACTGTCGTTCCGGGCTAAAGATGGCTGTTGGTATGGAATGGAGATAA





GGCCCAGGAAAGAACCAGAAAGCAACTTAGTAAGGTCAATGGTGACTGCA(NS2A)GGATCAACTGAT





CACATGGACCACTTCTCCCTTGGAGTGCTTGTGATCCTGCTCATGGTGCAGGAAGGGCTGAAGAAGAG





AATGACCACAAAGATCATCATAAGCACATCAATGGCAGTGCTGGTAGCTATGATCCTGGGAGGATTTT





CAATGAGTGACCTGGCTAAGCTTGCAATTTTGATGGGTGCCACCTTCGCGGAAATGAACACTGGAGGA





GATGTAGCTCATCTGGCGCTGATAGCGGCATTCAAAGTCAGACCAGCGTTGCTGGTATCTTTCATCTT





CAGAGCTAATTGGACACCCCGTGAAAGCATGCTGCTGGCCTTGGCCTCGTGTCTTTTGCAAACTGCGA





TCTCCGCCTTGGAAGGCGACCTGATGGTTCTCATCAATGGTTTTGCTTTGGCCTGGTTGGCAATACGA





GCGATGGTTGTTCCACGCACTGATAACATCACCTTGGCAATCCTGGCTGCTCTGACACCACTGGCCCG





GGGCACACTGCTTGTGGCGTGGAGAGCAGGCCTTGCTACTTGCGGGGGGTTTATGCTCCTCTCTCTGA





AGGGAAAAGGCAGTGTGAAGAAGAACTTACCATTTGTCATGGCCCTGGGACTAACCGCTGTGAGGCTG





GTCGACCCCATCAACGTGGTGGGACTGCTGTTACTCACAAGGAGTGGGAAGCGG(NS2B)AGCTGGCC





CCCTAGCGAAGTACTCACAGCTGTTGGCCTGATATGCGCATTGGCTGGAGGGTTCGCCAAGGCAGATA





TAGAGATGGCTGGGCCCATGGCCGCGGTCGGTCTGCTAATTGTCAGTTACGTGGTCTCAGGAAAGAGT





GTGGACATGTACATTGAAAGAGCAGGTGACATCACATGGGAAAAAGATGCGGAAGTCACTGGAAACAG





TCCCCGGCTCGATGTGGCGCTAGATGAGAGTGGTGATTTCTCCCTGGTGGAGGATGACGGTCCCCCCA





TGAGAGAGATCATACTCAAGGTGGTCCTGATGACCATCTGTGGCATGAATCCAATAGCCATACCCTTT





GCAGCTGGAGCGTGGTACGTATACGTGAAGACTGGAAAAAGG(NS3)AGTGGTGCTCTATGGGATGTG





CCTGCTCCCAAGGAAGTAAAAAAGGGGGAGACCACAGATGGAGTGTACAGAGTAATGACTCGTAGACT





GCTAGGTTCAACACAAGTTGGAGTGGGAGTTATGCAAGAGGGGGTCTTTCACACTATGTGGCACGTCA





CAAAAGGATCCGCGCTGAGAAGCGGTGAAGGGAGACTTGATCCATACTGGGGAGATGTCAAGCAGGAT





CTGGTGTCATACTGTGGTCCATGGAAGCTAGATGCCGCCTGGGACGGGCACAGCGAGGTGCAGCTCTT





GGCCGTGCCCCCCGGAGAGAGAGCGAGGAACATCCAGACTCTGCCCGGAATATTTAAGACAAAGGATG





GGGACATTGGAGCGGTTGCGCTGGATTACCCAGCAGGAACTTCAGGATCTCCAATCCTAGACAAGTGT





GGGAGAGTGATAGGACTTTATGGCAATGGGGTCGTGATCAAAAATGGGAGTTATGTTAGTGCCATCAC





CCAAGGGAGGAGGGAAGAAGAGACTCCTGTTGAGTGCTTCGAGCCCTCGATGCTGAAGAAGAAGCAGC





TAACTGTCTTAGACTTGCATCCTGGAGCTGGGAAAACCAGGAGAGTTCTTCCTGAAATAGTCCGTGAA





GCCATAAAAACAAGACTCCGTACTGTGATCTTAGCTCCAACCAGGGTTGTCGCTGCTGAAATGGAGGA





GGCCCTTAGAGGGCTTCCAGTGCGTTATATGACAACAGCAGTCAATGTCACCCACTCTGGAACAGAAA





TCGTCGACTTAATGTGCCATGCCACCTTCACTTCACGTCTACTACAGCCAATCAGAGTCCCCAACTAT





AATCTGTATATTATGGATGAGGCCCACTTCACAGATCCCTCAAGTATAGCAGCAAGAGGATACATTTC





AACAAGGGTTGAGATGGGCGAGGCGGCTGCCATCTTCATGACCGCCACGCCACCAGGAACCCGTGACG





CATTTCCGGACTCCAACTCACCAATTATGGACACCGAAGTGGAAGTCCCAGAGAGAGCCTGGAGCTCA





GGCTTTGATTGGGTGACGGATCATTCTGGAAAAACAGTTTGGTTTGTTCCAAGCGTGAGGAACGGCAA





TGAGATCGCAGCTTGTCTGACAAAGGCTGGAAAACGGGTCATACAGCTCAGCAGAAAGACTTTTGAGA





CAGAGTTCCAGAAAACAAAACATCAAGAGTGGGACTTTGTCGTGACAACTGACATTTCAGAGATGGGC





GCCAACTTTAAAGCTGACCGTGTCATAGATTCCAGGAGATGCCTAAAGCCGGTCATACTTGATGGCGA





GAGAGTCATTCTGGCTGGACCCATGCCTGTCACACATGCCAGCGCTGCCCAGAGGAGGGGGCGCATAG





GCAGGAATCCCAACAAACCTGGAGATGAGTATCTGTATGGAGGTGGGTGCGCAGAGACTGACGAAGAC





CATGCACACTGGCTTGAAGCAAGAATGCTCCTTGACAATATTTACCTCCAAGATGGCCTCATAGCCTC





GCTCTATCGACCTGAGGCCGACAAAGTAGCAGCCATTGAGGGAGAGTTCAAGCTTAGGACGGAGCAAA





GGAAGACCTTTGTGGAACTCATGAAAAGAGGAGATCTTCCTGTTTGGCTGGCCTATCAGGTTGCATCT





GCCGGAATAACCTACACAGATAGAAGATGGTGCTTTGATGGCACGACCAACAACACCATAATGGAAGA





TAGTGTGCCGGCAGAGGTGTGGACCAGACACGGAGAGAAAAGAGTGCTCAAACCGAGGTGGATGGACG





CCAGAGTTTGTTCAGATCATGCGGCCCTGAAGTCATTCAAGGAGTTTGCCGCTGGGAAAAGA(NS4A)





GGAGCGGCTTTTGGAGTGATGGAAGCCCTGGGAACACTGCCAGGACACATGACAGAGAGATTCCAGGA





AGCCATTGACAACCTCGCTGTGCTCATGCGGGCAGAGACTGGAAGCAGGCCTTACAAAGCCGCGGCGG





CCCAATTGCCGGAGACCCTAGAGACCATAATGCTTTTGGGGTTGCTGGGAACAGTCTCGCTGGGAATC





TTCTTCGTCTTGATGAGGAACAAGGGCATAGGGAAGATGGGCTTTGGAATGGTGACTCTTGGGGCCAG





CGCATGGCTCATGTGGCTCTCGGAAATTGAGCCAGCCAGAATTGCATGTGTCCTCATTGTTGTGTTCC





TATTGCTGGTGGTGCTCATACCTGAGCCAGAAAAGCAAAGATCTCCCCAGGACAACCAAATGGCAATC





ATCATCATGGTAGCAGTAGGTCTTCTGGGCTTGATTACCGCC(NS4B)AATGAACTCGGATGGTTGGA





GAGAACAAAGAGTGACCTAAGCCATCTAATGGGAAGGAGAGAGGAGGGGGCAACCATAGGATTCTCAA





TGGACATTGACCTGCGGCCAGCCTCAGCTTGGGCCATCTATGCTGCCTTGACAACTTTCATTACCCCA





GCCGTCCAACATGCAGTGACCACCTCATACAACAACTACTCCTTAATGGCGATGGCCACGCAAGCTGG





AGTGTTGTTTGGTATGGGCAAAGGGATGCCATTCTACGCATGGGACTTTGGAGTCCCGCTGCTAATGA





TAGGTTGCTACTCACAATTAACACCCCTGACCCTAATAGTGGCCATCATTTTGCTCGTGGCGCACTAC





ATGTACTTGATCCCAGGGCTGCAGGCAGCAGCTGCGCGTGCTGCCCAGAAGAGAACGGCAGCTGGCAT





CATGAAGAACCCTGTTGTGGATGGAATAGTGGTGACTGACATTGACACAATGACAATTGACCCCCAAG





TGGAGAAAAAGATGGGACAGGTGCTACTCATAGCAGTAGCCGTCTCCAGCGCCATACTGTCGCGGACC





GCCTGGGGGTGGGGGGAGGCTGGGGCCCTGATCACAGCCGCAACTTCCACTTTGTGGGAAGGCTCTCC





GAACAAGTACTGGAACTCCTCTACAGCCACTTCACTGTGTAACATTTTTAGGGGAAGTTACTTGGCTG





GAGCTTCTCTAATCTACACAGTAACAAGAAACGCTGGCTTGGTCAAGAGACGT(NS5)GGGGGTGGAA





CAGGAGAGACCCTGGGAGAGAAATGGAAGGCCCGCTTGAACCAGATGTCGGCCCTGGAGTTCTACTCC





TACAAAAAGTCAGGCATCACCGAGGTGTGCAGAGAAGAGGCCCGCCGCGCCCTCAAGGACGGTGTGGC





AACGGGAGGCCATGCTGTGTCCCGAGGAAGTGCAAAGCTGAGATGGTTGGTGGAGCGGGGATACCTGC





AGCCCTATGGAAAGGTCATTGATCTTGGATGTGGCAGAGGGGGCTGGAGTTACTACGCCGCCACCATC





CGCAAAGTTCAAGAAGTGAAAGGATACACAAAAGGAGGCCCTGGTCATGAAGAACCCGTGTTGGTGCA





AAGCTATGGGTGGAACATAGTCCGTCTTAAGAGTGGGGTGGACGTCTTTCATATGGCGGCTGAGCCGT





GTGACACGCTGCTGTGTGACATAGGTGAGTCATCATCTAGTCCTGAAGTGGAAGAAGCACGGACGCTC





AGAGTCCTCTCCATGGTGGGGGATTGGCTTGAAAAAAGACCAGGAGCCTTTTGTATAAAAGTGTTGTG





CCCATACACCAGCACTATGATGGAAACCCTGGAGCGACTGCAGCGTAGGTATGGGGGAGGACTGGTCA





GAGTGCCACTCTCCCGCAACTCTACACATGAGATGTACTGGGTCTCTGGAGCGAAAAGCAACACCATA





AAAAGTGTGTCCACCACGAGCCAGCTCCTCTTGGGGCGCATGGACGGGCCTAGAAGGCCAGTGAAATA





TGAGGAGGATGTGAATCTCGGCTCTGGCACGCGGGCTGTGGTAAGCTGCGCTGAAGCTCCCAACATGA





AGATCATTGGTAACCGCATTGAAAGGATCCGCAGTGAGCACGCGGAAACGTGGTTCTTTGACGAGAAC





CACCCATATAGGACATGGGCTTACCATGGAAGCTATGAGGCCCCCACACAAGGGTCAGCGTCCTCTCT





AATAAACGGGGTTGTCAGGCTCCTGTCAAAACCCTGGGATGTGGTGACTGGAGTCACAGGAATAGCCA





TGACCGACACCACACCGTATGGTCAGCAAAGAGTTTTCAAGGAAAAAGTGGACACTAGGGTGCCAGAC





CCCCAAGAAGGCACTCGTCAGGTTATGAGCATGGTCTCTTCCTGGTTGTGGAAAGAGCTAGGCAAACA





CAAACGGCCACGAGTCTGTACCAAAGAAGAGTTCATCAACAAGGTTCGTAGCAATGCAGCATTAGGGG





CAATATTTGAAGAGGAAAAAGAGTGGAAGACTGCAGTGGAAGCTGTGAACGATCCAAGGTTCTGGGCT





CTAGTGGACAAGGAAAGAGAGCACCACCTGAGAGGAGAGTGCCAGAGTTGTGTGTATAACATGATGGG





AAAAAGAGAAAAGAAACAAGGGGAATTTGGAAAGGCCAAGGGCAGCCGCGCCATCTGGTATATGTGGC





TAGGGGCTAGATTTCTAGAGTTCGAAGCCCTTGGATTCTTGAACGAGGATCACTGGATGGGGAGAGAG





AACTCAGGAGGTGGTGTTGAAGGGCTGGGATTACAAAGACTCGGATATGTCCTAGAAGAGATGAGTCG





TATACCAGGAGGAAGGATGTATGCAGATGACACTGCTGGCTGGGACACCCGCATTAGCAGGTTTGATC





TGGAGAATGAAGCTCTAATCACCAACCAAATGGAGAAAGGGCACAGGGCCTTGGCATTGGCCATAATC





AAGTACACATACCAAAACAAAGTGGTAAAGGTCCTTAGACCAGCTGAAAAAGGGAAAACAGTTATGGA





CATTATTTCGAGACAAGACCAAAGGGGGAGCGGACAAGTTGTCACTTACGCTCTTAACACATTTACCA





ACCTAGTGGTGCAACTCATTCGGAATATGGAGGCTGAGGAAGTTCTAGAGATGCAAGACTTGTGGCTG





CTGCGGAGGTCAGAGAAAGTGACCAACTGGTTGCAGAGCAACGGATGGGATAGGCTCAAACGAATGGC





AGTCAGTGGAGATGATTGCGTTGTGAAGCCAATTGATGATAGGTTTGCACATGCCCTCAGGTTCTTGA





ATGATATGGGAAAAGTTAGAAAGGACACACAAGAGTGGAAACCCTCAACTGGATGGGACAACTGGGAA





GAAGTTCCGTTTTGCTCCCACCACTTCAACAAGCTCCATCTCAAGGACGGGAGGTCCATTGTGGTTCC





CTGCCGCCACCAAGATGAACTGATTGGCCGGGCCCGCGTCTCTCCAGGGGCGGGATGGAGCATCCGGG





AGACTGCTTGCCTAGCAAAATCATATGCGCAGATGTGGCAGCTCCTTTATTTCCACAGAAGGGACCTC





CGACTGATGGCCAATGCCATTTGTTCATCTGTGCCAGTTGACTGGGTTCCAACTGGGAGAACTACCTG





GTCAATCCATGGAAAGGGAGAATGGATGACCACTGAAGACATGCTTGTGGTGTGGAACAGAGTGTGGA





TTGAGGAGAACGACCACATGGAAGACAAGACCCCAGTTACGAAATGGACAGACATTCCCTATTTGGGA





AAAAGGGAAGACTTGTGGTGTGGATCTCTCATAGGGCACAGACCGCGCACCACCTGGGCTGAGAACAT





TAAAAACACAGTCAACATGGTGCGCAGGATCATAGGTGATGAAGAAAAGTACATGGACTACCTATCCA





CCCAAGTTCGCTACTTGGGTGAAGAAGGGTCTACACCTGGAGTGCTGTAA(NS5 end)






SEQ ID NO:3. Vaccine candidate ZIKV-DO-NS3 nonstructural region nucleotide sequence, showing the codon deoptimized NS3 region. The NS3 region of vaccine candidate ZIKV-DO-NS3 has the same nucleotide changes as the NS3 region of vaccine candidate ZIKV-DO. In the deoptimized region changed nucleotides are marked in bold and underline.










(NS3)AGTGGTGCGCTCTGGGATGTCCCCGCGCCCAAGGAAGTAAAAAAGGGTGAGACCACGGATGGC






GTCTACCGAGTAATGACCCGTCGACTACTCGGTTCGACGCAAGTAGGCGTCGGCGTAATGCAAGAGGG







T
GTATTCCACACCATGTGGCATGTAACGAAAGGCTCGGCGCTACGATCCGGTGAAGGTCGATTGGATC






CGTACTGGGGCGATGTAAAGCAAGATCTAGTCTCGTACTGTGGTCCGTGGAAGCTCGATGCCGCCTGG





GACGGTCACTCCGAGGTCCAGTTATTGGCCGTCCCCCCGGGCGAGCGAGCGCGCAATATACAAACTCT







A
CCCGGCATATTCAAGACGAAGGATGGTGACATTGGCGCGGTAGCGCTAGATTACCCGGCGGGCACTT






CGGGCTCGCCGATACTCGACAAGTGTGGTCGAGTCATAGGCTTGTATGGTAATGGTGTAGTCATAAAA





AATGGTAGTTATGTAAGTGCCATAACCCAAGGTCGCCGCGAAGAAGAGACCCCCGTAGAGTGCTTCGA





GCCCTCGATGCTAAAGAAGAAGCAACTCACTGTATTAGACTTGCATCCCGGCGCGGGTAAAACCCGCC





GAGTATTGCCCGAAATAGTACGTGAAGCCATAAAAACGCGATTACGTACCGTCATATTAGCGCCGACC







C
GCGTAGTAGCGGCGGAAATGGAGGAGGCCTTGCGAGGTTTGCCGGTCCGTTATATGACGACGGCGGT








A
AATGTAACCCATTCGGGCACGGAAATAGTAGACTTAATGTGCCATGCCACCTTCACCTCGCGTCTCC






TCCAGCCGATACGAGTACCCAATTATAATCTATATATTATGGATGAGGCCCATTTCACGGATCCCTCG





AGTATAGCGGCGCGAGGCTACATTTCGACGCGCGTAGAGATGGGTGAGGCGGCGGCCATATTCATGAC





CGCCACGCCGCCGGGCACCCGTGACGCGTTCCCGGACTCGAATTCGCCGATTATGGACACCGAAGTCG





AAGTACCGGAGCGAGCCTGGTCCTCGGGTTTTGATTGGGTCACGGATCATTCGGGCAAAACGGTATGG





TTCGTACCGTCCGTCCGCAATGGTAATGAGATAGCGGCGTGTCTAACGAAGGCGGGCAAACGGGTAAT





ACAGTTATCCCGAAAGACCTTCGAGACGGAGTTCCAAAAAACGAAACATCAAGAGTGGGACTTCGTAG





TCACGACCGACATTTCGGAGATGGGTGCCAATTTCAAAGCGGACCGTGTAATAGATTCGCGCCGATGC





CTCAAGCCGGTAATATTGGATGGTGAGCGAGTAATTCTAGCGGGCCCCATGCCCGTAACGCATGCCTC





CGCGGCCCAACGCCGCGGTCGCATAGGTCGCAATCCCAATAAACCCGGCGATGAGTATCTATATGGCG





GTGGTTGCGCGGAGACCGACGAAGACCATGCGCATTGGTTGGAAGCGCGAATGTTATTGGACAATATT





TACTTACAAGATGGTTTAATAGCCTCGTTATATCGACCCGAGGCCGACAAAGTAGCGGCCATTGAGGG







C
GAGTTCAAGTTGCGCACGGAGCAACGCAAGACCTTCGTCGAATTAATGAAACGAGGCGATTTGCCCG






TATGGCTAGCCTATCAAGTAGCGTCGGCCGGCATAACCTACACGGATCGACGATGGTGCTTCGATGGT





ACGACCAATAATACCATAATGGAAGATAGTGTGCCGGCAGAGGTGTGGACCAGACACGGAGAGAAAAG





AGTGCTCAAACCGAGGTGGATGGACGCCAGAGTTTGTTCAGATCATGCGGCCCTGAAGTCATTCAAGG





AGTTTGCCGCTGGGAAAAGA (NS3 end)






SEQ ID NO:4. Vaccine candidate ZIKV-DO-NS3 nonstructural region nucleotide sequence, showing the entire codon deoptimized NS3 region, with deoptimized region shown in underline.










(NS3)AGTGGTGCGCTCTGGGATGTCCCCGCGCCCAAGGAAGTAAAAAAGGGTGAGACC







ACGGATGGCGTCTACCGAGTAATGACCCGTCGACTACTCGGTTCGACGCAAGTAGGCGTCGGCGTAAT







GCAAGAGGGTGTATTCCACACCATGTGGCATGTAACGAAAGGCTCGGCGCTACGATCCGGTGAAGGTC







GATTGGATCCGTACTGGGGCGATGTAAAGCAAGATCTAGTCTCGTACTGTGGTCCGTGGAAGCTCGAT







GCCGCCTGGGACGGTCACTCCGAGGTCCAGTTATTGGCCGTCCCGCCGGGCGAGCGAGCGCGCAATAT







ACAAACTCTACCCGGCATATTCAAGACGAAGGATGGTGACATTGGCGCGGTAGCGCTAGATTACCCGG







CGGGCACTTCGGGCTCGCCGATACTCGACAAGTGTGGTCGAGTCATAGGCTTGTATGGTAATGGTGTA







GTCATAAAAAATGGTAGTTATGTAAGTGCCATAACCCAAGGTCGCCGCGAAGAAGAGACCCCCGTAGA







GTGCTTCGAGCCCTCGATGCTAAAGAAGAAGCAACTCACTGTATTAGACTTGCATCCCGGCGCGGGTA







AAACCCGCCGAGTATTGCCCGAAATAGTACGTGAAGCCATAAAAACGCGATTACGTACCGTCATATTA







GCGCCGACCCGCGTAGTAGCGGCGGAAATGGAGGAGGCCTTGCGAGGTTTGCCAGTCCGTTATATGAC







GACGGCGGTAAATGTAACCCATTCGGGCACGGAAATAGTAGACTTAATGTGCCATGCCACCTTCACCT







CGCGTCTCCTCCAGCCGATACGAGTACCCAATTATAATCTATATATTATGGATGAGGCCCATTTCACG







GATCCCTCGAGTATAGCGGCGCGAGGCTACATTTCGACGCGCGTAGAGATGGGTGAGGCGGCGGCCAT







ATTCATGACCGCCACGCCGCCGGGCACCCGTGACGCGTTCCCGGACTCGAATTCGCCGATTATGGACA







CCGAAGTCGAAGTACCGGAGCGAGCCTGGTCCTCGGGTTTTGATTGGGTCACGGATCATTCGGGCAAA







ACGGTATGGTTCGTACCGTCCGTCCGCAATGGTAATGAGATAGCGGCGTGTCTAACGAAGGCGGGCAA







ACGGGTAATACAGTTATCCCGAAAGACCTTCGAGACGGAGTTCCAAAAAACGAAACATCAAGAGTGGG







ACTTCGTAGTCACGACCGACATTTCGGAGATGGGTGCCAATTTCAAAGCAGACCGTGTAATAGATTCG







CGCCGATGCCTCAAGCCGGTAATATTGGATGGTGAGCGAGTAATTCTAGCGGGCCCCATGCCCGTAAC







GCATGCCTCCGCGGCCCAACGCCGCGGTCGCATAGGTCGCAATCCCAATAAACCCGGCGATGAGTATC







TATATGGCGGTGGTTGCGCGGAGACCGACGAAGACCATGCGCATTGGTTGGAAGCGCGAATGTTATTG







GACAATATTTACTTACAAGATGGTTTAATAGCCTCGTTATATCGACCCGAGGCCGACAAAGTAGCGGC







CATTGAGGGCGAGTTCAAGTTGCGCACGGAGCAACGCAAGACCTTCGTCGAATTAATGAAACGAGGCG







ATTTGCCCGTATGGCTAGCCTATCAAGTAGCGTCGGCAGGTATAACCTACACGGATCGACGATGGTGC







TTCGATGGTACGACCAATAATACCATAATGGAAGATAGTGTGCCGGCAGAGGTGTGGACCAGACACGG






AGAGAAAAGAGTGCTCAAACCGAGGTGGATGGACGCCAGAGTTTGTTCAGATCATGCGGCCCTGAAGT





CATTCAAGGAGTTTGCCGCTGGGAAAAGA






SEQ ID NO:5. Vaccine candidate ZIKV-DO-NS3, with deoptimized region shown in underline, with locations of nonstructural regions indicated. The entire NS3 region of vaccine candidate ZIKV-DO-NS3 is shown together with all flanking nonstructural regions (NS1 to NS5).










(NS1)GATGTGGGGTGCTCGGTGGACTTCTCAAAGAAGGAGACGAGATGCGGTACAGGG






GTGTTCGTCTATAACGACGTTGAAGCCTGGAGGGACAGGTACAAGTACCATCCTGACTCCCCCCGTAG





ATTGGCAGCAGCAGTCAAGCAAGCCTGGGAAGATGGTATCTGCGGGATCTCCTCTGTTTCAAGAATGG





AAAACATCATGTGGAGATCAGTAGAAGGGGAGCTCAACGCAATCCTGGAAGAGAATGGAGTTCAACTG





ACGGTCGTTGTGGGATCTGTAAAAAACCCCATGTGGAGAGGTCCACAGAGATTGCCCGTGCCTGTGAA





CGAGCTGCCCCACGGCTGGAAGGCTTGGGGGAAATCGTACTTCGTCAGAGCAGCAAAGACAAATAACA





GCTTTGTCGTGGATGGTGACACACTGAAGGAATGCCCACTCAAACATAGAGCATGGAACAGCTTTCTT





GTGGAGGATCATGGGTTCGGGGTATTTCACACTAGTGTCTGGCTCAAGGTTAGAGAAGATTATTCATT





AGAGTGTGATCCAGCCGTTATTGGAACAGCTGTTAAGGGAAAGGAGGCTGTACACAGTGATCTAGGCT





ACTGGATTGAGAGTGAGAAGAATGACACATGGAGGCTGAAGAGGGCCCATCTGATCGAGATGAAAACA





TGTGAATGGCCAAAGTCCCACACATTGTGGACAGATGGAATAGAAGAGAGTGATCTGATCATACCCAA





GTCTTTAGCTGGGCCACTCAGCCATCACAATACCAGAGAGGGCTACAGGACCCAAATGAAAGGGCCAT





GGCACAGTGAAGAGCTTGAAATTCGGTTTGAGGAATGCCCAGGCACTAAGGTCCACGTGGAGGAAACA





TGTGGAACAAGAGGACCATCTCTGAGATCAACCACTGCAAGCGGAAGGGTGATCGAGGAATGGTGCTG





CAGGGAGTGCACAATGCCCCCACTGTCGTTCCGGGCTAAAGATGGCTGTTGGTATGGAATGGAGATAA





GGCCCAGGAAAGAACCAGAAAGCAACTTAGTAAGGTCAATGGTGACTGCA(NS2A)GGATCAACTGAT





CACATGGACCACTTCTCCCTTGGAGTGCTTGTGATCCTGCTCATGGTGCAGGAAGGGCTGAAGAAGAG





AATGACCACAAAGATCATCATAAGCACATCAATGGCAGTGCTGGTAGCTATGATCCTGGGAGGATTTT





CAATGAGTGACCTGGCTAAGCTTGCAATTTTGATGGGTGCCACCTTCGCGGAAATGAACACTGGAGGA





GATGTAGCTCATCTGGCGCTGATAGCGGCATTCAAAGTCAGACCAGCGTTGCTGGTATCTTTCATCTT





CAGAGCTAATTGGACACCCCGTGAAAGCATGCTGCTGGCCTTGGCCTCGTGTCTTTTGCAAACTGCGA





TCTCCGCCTTGGAAGGCGACCTGATGGTTCTCATCAATGGTTTTGCTTTGGCCTGGTTGGCAATACGA





GCGATGGTTGTTCCACGCACTGATAACATCACCTTGGCAATCCTGGCTGCTCTGACACCACTGGCCCG





GGGCACACTGCTTGTGGCGTGGAGAGCAGGCCTTGCTACTTGCGGGGGGTTTATGCTCCTCTCTCTGA





AGGGAAAAGGCAGTGTGAAGAAGAACTTACCATTTGTCATGGCCCTGGGACTAACCGCTGTGAGGCTG





GTCGACCCCATCAACGTGGTGGGACTGCTGTTACTCACAAGGAGTGGGAAGCGG(NS2B)AGCTGGCC





CCCTAGCGAAGTACTCACAGCTGTTGGCCTGATATGCGCATTGGCTGGAGGGTTCGCCAAGGCAGATA





TAGAGATGGCTGGGCCCATGGCCGCGGTCGGTCTGCTAATTGTCAGTTACGTGGTCTCAGGAAAGAGT





GTGGACATGTACATTGAAAGAGCAGGTGACATCACATGGGAAAAAGATGCGGAAGTCACTGGAAACAG





TCCCCGGCTCGATGTGGCGCTAGATGAGAGTGGTGATTTCTCCCTGGTGGAGGATGACGGTCCCCCCA





TGAGAGAGATCATACTCAAGGTGGTCCTGATGACCATCTGTGGCATGAATCCAATAGCCATACCCTTT





GCAGCTGGAGCGTGGTACGTATACGTGAAGACTGGAAAAAGG(NS3)AGTGGTGCGCTCTGGGATGTC






CCCGCGCCCAAGGAAGTAAAAAAGGGTGAGACCACGGATGGCGTCTACCGAGTAATGACCCGTCGACT







ACTCGGTTCGACGCAAGTAGGCGTCGGCGTAATGCAAGAGGGTGTATTCCACACCATGTGGCATGTAA







CGAAAGGCTCGGCGCTACGATCCGGTGAAGGTCGATTGGATCCGTACTGGGGCGATGTAAAGCAAGAT







CTAGTCTCGTACTGTGGTCCGTGGAAGCTCGATGCCGCCTGGGACGGTCACTCCGAGGTCCAGTTATT







GGCCGTCCCGCCGGGCGAGCGAGCGCGCAATATACAAACTCTACCCGGCATATTCAAGACGAAGGATG







GTGACATTGGCGCGGTAGCGCTAGATTACCCGGCGGGCACTTCGGGCTCGCCGATACTCGACAAGTGT







GGTCGAGTCATAGGCTTGTATGGTAATGGTGTAGTCATAAAAAATGGTAGTTATGTAAGTGCCATAAC







CCAAGGTCGCCGCGAAGAAGAGACCCCCGTAGAGTGCTTCGAGCCCTCGATGCTAAAGAAGAAGCAAC







TCACTGTATTAGACTTGCATCCCGGCGCGGGTAAAACCCGCCGAGTATTGCCCGAAATAGTACGTGAA







GCCATAAAAACGCGATTACGTACCGTCATATTAGCGCCGACCCGCGTAGTAGCGGCGGAAATGGAGGA







GGCCTTGCGAGGTTTGCCAGTCCGTTATATGACGACGGCGGTAAATGTAACCCATTCGGGCACGGAAA







TAGTAGACTTAATGTGCCATGCCACCTTCACCTCGCGTCTCCTCCAGCCGATACGAGTACCCAATTAT







AATCTATATATTATGGATGAGGCCCATTTCACGGATCCCTCGAGTATAGCGGCGCGAGGCTACATTTC







GACGCGCGTAGAGATGGGTGAGGCGGCGGCCATATTCATGACCGCCACGCCGCCGGGCACCCGTGACG







CGTTCCCGGACTCGAATTCGCCGATTATGGACACCGAAGTCGAAGTACCGGAGCGAGCCTGGTCCTCG







GGTTTTGATTGGGTCACGGATCATTCGGGCAAAACGGTATGGTTCGTACCGTCCGTCCGCAATGGTAA







TGAGATAGCGGCGTGTCTAACGAAGGCGGGCAAACGGGTAATACAGTTATCCCGAAAGACCTTCGAGA







CGGAGTTCCAAAAAACGAAACATCAAGAGTGGGACTTCGTAGTCACGACCGACATTTCGGAGATGGGT







GCCAATTTCAAAGCAGACCGTGTAATAGATTCGCGCCGATGCCTCAAGCCGGTAATATTGGATGGTGA







GCGAGTAATTCTAGCGGGCCCCATGCCCGTAACGCATGCCTCCGCGGCCCAACGCCGCGGTCGCATAG







GTCGCAATCCCAATAAACCCGGCGATGAGTATCTATATGGCGGTGGTTGCGCGGAGACCGACGAAGAC







CATGCGCATTGGTTGGAAGCGCGAATGTTATTGGACAATATTTACTTACAAGATGGTTTAATAGCCTC







GTTATATCGACCCGAGGCCGACAAAGTAGCGGCCATTGAGGGCGAGTTCAAGTTGCGCACGGAGCAAC







GCAAGACCTTCGTCGAATTAATGAAACGAGGCGATTTGCCCGTATGGCTAGCCTATCAAGTAGCGTCG







GCAGGTATAACCTACACGGATCGACGATGGTGCTTCGATGGTACGACCAATAATACCATAATGGAAGA







TAGTGTGCCGGCAGAGGTGTGGACCAGACACGGAGAGAAAAGAGTGCTCAAACCGAGGTGGATGGACG






CCAGAGTTTGTTCAGATCATGCGGCCCTGAAGTCATTCAAGGAGTTTGCCGCTGGGAAAAGA(NS4A)





GGAGCGGCTTTTGGAGTGATGGAAGCCCTGGGAACACTGCCAGGACACATGACAGAGAGATTCCAGGA





AGCCATTGACAACCTCGCTGTGCTCATGCGGGCAGAGACTGGAAGCAGGCCTTACAAAGCCGCGGCGG





CCCAATTGCCGGAGACCCTAGAGACCATAATGCTTTTGGGGTTGCTGGGAACAGTCTCGCTGGGAATC





TTCTTCGTCTTGATGAGGAACAAGGGCATAGGGAAGATGGGCTTTGGAATGGTGACTCTTGGGGCCAG





CGCATGGCTCATGTGGCTCTCGGAAATTGAGCCAGCCAGAATTGCATGTGTCCTCATTGTTGTGTTCC





TATTGCTGGTGGTGCTCATACCTGAGCCAGAAAAGCAAAGATCTCCCCAGGACAACCAAATGGCAATC





ATCATCATGGTAGCAGTAGGTCTTCTGGGCTTGATTACCGCC(NS4B)AATGAACTCGGATGGTTGGA





GAGAACAAAGAGTGACCTAAGCCATCTAATGGGAAGGAGAGAGGAGGGGGCAACCATAGGATTCTCAA





TGGACATTGACCTGCGGCCAGCCTCAGCTTGGGCCATCTATGCTGCCTTGACAACTTTCATTACCCCA





GCCGTCCAACATGCAGTGACCACCTCATACAACAACTACTCCTTAATGGCGATGGCCACGCAAGCTGG





AGTGTTGTTTGGTATGGGCAAAGGGATGCCATTCTACGCATGGGACTTTGGAGTCCCGCTGCTAATGA





TAGGTTGCTACTCACAATTAACACCCCTGACCCTAATAGTGGCCATCATTTTGCTCGTGGCGCACTAC





ATGTACTTGATCCCAGGGCTGCAGGCAGCAGCTGCGCGTGCTGCCCAGAAGAGAACGGCAGCTGGCAT





CATGAAGAACCCTGTTGTGGATGGAATAGTGGTGACTGACATTGACACAATGACAATTGACCCCCAAG





TGGAGAAAAAGATGGGACAGGTGCTACTCATAGCAGTAGCCGTCTCCAGCGCCATACTGTCGCGGACC





GCCTGGGGGTGGGGGGAGGCTGGGGCCCTGATCACAGCCGCAACTTCCACTTTGTGGGAAGGCTCTCC





GAACAAGTACTGGAACTCCTCTACAGCCACTTCACTGTGTAACATTTTTAGGGGAAGTTACTTGGCTG





GAGCTTCTCTAATCTACACAGTAACAAGAAACGCTGGCTTGGTCAAGAGACGT(NS5)GGGGGTGGAA





CAGGAGAGACCCTGGGAGAGAAATGGAAGGCCCGCTTGAACCAGATGTCGGCCCTGGAGTTCTACTCC





TACAAAAAGTCAGGCATCACCGAGGTGTGCAGAGAAGAGGCCCGCCGCGCCCTCAAGGACGGTGTGGC





AACGGGAGGCCATGCTGTGTCCCGAGGAAGTGCAAAGCTGAGATGGTTGGTGGAGCGGGGATACCTGC





AGCCCTATGGAAAGGTCATTGATCTTGGATGTGGCAGAGGGGGCTGGAGTTACTACGCCGCCACCATC





CGCAAAGTTCAAGAAGTGAAAGGATACACAAAAGGAGGCCCTGGTCATGAAGAACCCGTGTTGGTGCA





AAGCTATGGGTGGAACATAGTCCGTCTTAAGAGTGGGGTGGACGTCTTTCATATGGCGGCTGAGCCGT





GTGACACGCTGCTGTGTGACATAGGTGAGTCATCATCTAGTCCTGAAGTGGAAGAAGCACGGACGCTC





AGAGTCCTCTCCATGGTGGGGGATTGGCTTGAAAAAAGACCAGGAGCCTTTTGTATAAAAGTGTTGTG





CCCATACACCAGCACTATGATGGAAACCCTGGAGCGACTGCAGCGTAGGTATGGGGGAGGACTGGTCA





GAGTGCCACTCTCCCGCAACTCTACACATGAGATGTACTGGGTCTCTGGAGCGAAAAGCAACACCATA





AAAAGTGTGTCCACCACGAGCCAGCTCCTCTTGGGGCGCATGGACGGGCCTAGAAGGCCAGTGAAATA





TGAGGAGGATGTGAATCTCGGCTCTGGCACGCGGGCTGTGGTAAGCTGCGCTGAAGCTCCCAACATGA





AGATCATTGGTAACCGCATTGAAAGGATCCGCAGTGAGCACGCGGAAACGTGGTTCTTTGACGAGAAC





CACCCATATAGGACATGGGCTTACCATGGAAGCTATGAGGCCCCCACACAAGGGTCAGCGTCCTCTCT





AATAAACGGGGTTGTCAGGCTCCTGTCAAAACCCTGGGATGTGGTGACTGGAGTCACAGGAATAGCCA





TGACCGACACCACACCGTATGGTCAGCAAAGAGTTTTCAAGGAAAAAGTGGACACTAGGGTGCCAGAC





CCCCAAGAAGGCACTCGTCAGGTTATGAGCATGGTCTCTTCCTGGTTGTGGAAAGAGCTAGGCAAACA





CAAACGGCCACGAGTCTGTACCAAAGAAGAGTTCATCAACAAGGTTCGTAGCAATGCAGCATTAGGGG





CAATATTTGAAGAGGAAAAAGAGTGGAAGACTGCAGTGGAAGCTGTGAACGATCCAAGGTTCTGGGCT





CTAGTGGACAAGGAAAGAGAGCACCACCTGAGAGGAGAGTGCCAGAGTTGTGTGTATAACATGATGGG





AAAAAGAGAAAAGAAACAAGGGGAATTTGGAAAGGCCAAGGGCAGCCGCGCCATCTGGTATATGTGGC





TAGGGGCTAGATTTCTAGAGTTCGAAGCCCTTGGATTCTTGAACGAGGATCACTGGATGGGGAGAGAG





AACTCAGGAGGTGGTGTTGAAGGGCTGGGATTACAAAGACTCGGATATGTCCTAGAAGAGATGAGTCG





TATACCAGGAGGAAGGATGTATGCAGATGACACTGCTGGCTGGGACACCCGCATTAGCAGGTTTGATC





TGGAGAATGAAGCTCTAATCACCAACCAAATGGAGAAAGGGCACAGGGCCTTGGCATTGGCCATAATC





AAGTACACATACCAAAACAAAGTGGTAAAGGTCCTTAGACCAGCTGAAAAAGGGAAAACAGTTATGGA





CATTATTTCGAGACAAGACCAAAGGGGGAGCGGACAAGTTGTCACTTACGCTCTTAACACATTTACCA





ACCTAGTGGTGCAACTCATTCGGAATATGGAGGCTGAGGAAGTTCTAGAGATGCAAGACTTGTGGCTG





CTGCGGAGGTCAGAGAAAGTGACCAACTGGTTGCAGAGCAACGGATGGGATAGGCTCAAACGAATGGC





AGTCAGTGGAGATGATTGCGTTGTGAAGCCAATTGATGATAGGTTTGCACATGCCCTCAGGTTCTTGA





ATGATATGGGAAAAGTTAGAAAGGACACACAAGAGTGGAAACCCTCAACTGGATGGGACAACTGGGAA





GAAGTTCCGTTTTGCTCCCACCACTTCAACAAGCTCCATCTCAAGGACGGGAGGTCCATTGTGGTTCC





CTGCCGCCACCAAGATGAACTGATTGGCCGGGCCCGCGTCTCTCCAGGGGCGGGATGGAGCATCCGGG





AGACTGCTTGCCTAGCAAAATCATATGCGCAGATGTGGCAGCTCCTTTATTTCCACAGAAGGGACCTC





CGACTGATGGCCAATGCCATTTGTTCATCTGTGCCAGTTGACTGGGTTCCAACTGGGAGAACTACCTG





GTCAATCCATGGAAAGGGAGAATGGATGACCACTGAAGACATGCTTGTGGTGTGGAACAGAGTGTGGA





TTGAGGAGAACGACCACATGGAAGACAAGACCCCAGTTACGAAATGGACAGACATTCCCTATTTGGGA





AAAAGGGAAGACTTGTGGTGTGGATCTCTCATAGGGCACAGACCGCGCACCACCTGGGCTGAGAACAT





TAAAAACACAGTCAACATGGTGCGCAGGATCATAGGTGATGAAGAAAAGTACATGGACTACCTATCCA





CCCAAGTTCGCTACTTGGGTGAAGAAGGGTCTACACCTGGAGTGCTGTAA(NS5 end)






SEQ ID NO:6. Vaccine candidate ZIKV-DO-scattered entire nonstructural region nucleotide sequence, with locations of nonstructural regions indicated. In the deoptimized region changed nucleotides are marked in bold and underline.










(NS1)GATGTAGGGTGCTCGGTAGACTTCTCAAAGAAGGAAACGAGATGCGGTACGGGG






GTATTCGTCTATAACGATGTTGAAGCCTGGCGTGACAGGTACAAATACCATCCTGATTCCCCCCGTCG







A
TTGGCAGCAGCGGTCAAGCAAGCGTGGGAAGATGGTATATGCGGGATCTCGTCTGTTTCACGTATGG






AAAACATAATGTGGAGATCGGTAGAAGGGGAGCTAAACGCAATCCTAGAAGAGAATGGTGTTCAACTG





ACGGTAGTTGTAGGATCTGTAAAAAACCCGATGTGGAGAGGTCCGCAGAGATTGCCGGTACCTGTAAA





CGAGCTGCCCCACGGTTGGAAGGCTTGGGGTAAATCGTACTTCGTAAGAGCAGCAAAAACAAATAACT







CG
TTTGTCGTGGATGGTGATACACTGAAGGAATGTCCACTCAAACATCGTGCATGGAACTCGTTTCTT






GTAGAGGATCATGGTTTCGGGGTATTTCATACTAGTGTCTGGCTAAAGGTTAGAGAAGATTATTCGTT





AGAGTGTGATCCGGCCGTTATTGGTACAGCTGTTAAAGGAAAGGAGGCGGTACACAGTGATCTAGGTT





ACTGGATTGAAAGTGAGAAGAATGATACATGGAGGCTAAAGAGGGCCCATCTAATCGAGATGAAAACG





TGTGAATGGCCGAAGTCCCACACGTTGTGGACAGATGGTATAGAAGAGTCGGATCTGATCATACCGAA





GTCTTTAGCGGGGCCACTCAGTCATCACAATACGAGAGAGGGCTATAGGACCCAAATGAAAGGTCCAT





GGCACTCGGAAGAGCTTGAAATACGGTTTGAGGAATGTCCAGGCACTAAAGTCCACGTGGAAGAAACA





TGTGGTACAAGAGGACCGTCTCTGAGATCGACCACTGCAAGTGGAAGGGTAATCGAGGAATGGTGTTG





CAGGGAGTGCACGATGCCCCCACTATCGTTCCGGGCGAAAGATGGCTGTTGGTATGGTATGGAGATAC







GT
CCCAGGAAAGAACCGGAAAGCAACTTAGTACGTTCAATGGTAACTGCA(NS2A)GGATCGACTGAT






CACATGGATCACTTCTCCCTTGGAGTACTTGTAATCCTGCTCATGGTACAGGAAGGGCTAAAGAAGAG





AATGACGACAAAGATCATAATAAGCACATCGATGGCAGTACTGGTAGCTATGATACTGGGAGGATTTT





CGATGAGTGACCTAGCTAAGCTTGCGATTTTGATGGGTGCGACCTTCGCGGAAATGAATACTGGAGGA





GATGTAGCGCATCTGGCGCTAATAGCGGCATTTAAAGTCAGACCGGCGTTGCTGGTATCGTTCATCTT





CCGUGCTAATTGGACGCCCCGTGAATCGATGCTGCTGGCGTTGGCCTCGTGTCTATTGCAAACTGCGA





TATCCGCCTTGGAAGGTGACCTGATGGTACTCATCAATGGTTTTGCGTTGGCCTGGTTAGCAATACGA





GCGATGGTAGTTCCACGCACGGATAACATCACGTTGGCAATCCTAGCTGCTCTGACGCCACTGGCCCG







T
GGCACACTGCTTGTAGCGTGGAGAGCGGGCCTTGCTACGTGCGGGGGGTTTATGCTACTCTCTCTGA






AAGGAAAAGGCAGTGTAAAGAAGAACTTACCGTTTGTCATGGCGCTGGGACTAACGGCTGTAAGGCTG





GTCGATCCCATCAACGTAGTAGGACTGCTGTTACTAACAAGGAGTGGGAAACGG(NS2B)AGCTGGCC







G
CCTAGCGAAGTACTAACAGCTGTTGGTCTGATATGCGCATTGGCGGGAGGGTTCGCGAAGGCAGATA






TAGAAATGGCTGGGCCGATGGCCGCGGTAGGTCTGCTAATAGTCAGTTACGTAGTCTCAGGAAAAAGT





GTGGACATGTATATTGAAAGAGCGGGTGACATCACATGGGAAAAAGATGCGGAAGTAACTGGAAACAG





TCCGCGGCTCGATGTAGCGCTAGATGAAAGTGGTGATTTTTCCCTGGTAGAGGATGACGGTCCCCCCA





TGAGAGAAATCATACTCAAAGTAGTCCTGATGACGATCTGTGGCATGAATCCGATAGCCATACCGTTT





GCAGCTGGTGCGTGGTACGTATACGTAAAGACTGGAAAACGT(NS3)AGTGGTGCTCTATGGGATGTA





CCTGCTCCCAAAGAAGTAAAAAAAGGGGAGACCACGGATGGAGTATACAGAGTAATGACGCGTAGACT





GCTAGGTTCGACACAAGTTGGTGTAGGAGTTATGCAAGAAGGGGTCTTTCATACTATGTGGCATGTCA





CAAAAGGTTCCGCGCTGCGTAGCGGTGAAGGTAGACTTGATCCGTACTGGGGAGATGTAAAGCAGGAT





CTAGTATCATACTGTGGTCCGTGGAAGCTAGATGCGGCCTGGGACGGTCACAGCGAGGTACAGCTCTT





GGCGGTACCCCCCGGAGAAAGAGCGAGGAATATCCAGACTCTACCCGGAATATTTAAAACAAAGGATG





GTGACATTGGAGCGGTAGCGCTGGATTATCCAGCAGGAACGTCAGGATCTCCGATCCTAGACAAATGT





GGGAGAGTAATAGGACTTTATGGTAATGGGGTCGTAATCAAAAATGGTAGTTATGTTAGTGCGATCAC





CCAAGGTAGGAGGGAAGAAGAAACTCCTGTTGAATGCTTCGAGCCGTCGATGCTGAAAAAGAAGCAGC





TAACGGTCTTAGACTTACATCCTGGAGCGGGGAAAACCCGAAGAGTTCTTCCGGAAATAGTCCGTGAA





GCGATAAAAACACGTCTCCGTACTGTAATCTTAGCTCCGACCAGGGTTGTAGCTGCTGAAATGGAAGA





GGCCCTTCGTGGGCTTCCAGTACGTTATATGACGACAGCAGTCAATGTAACCCACTCTGGTACAGAAA





TCGTTGACTTAATGTGTCATGCCACCTTTACTTCACGTCTACTACAACCAATCAGAGTTCCCAACTAT





AATCTATATATTATGGATGAAGCCCACTTCACGGATCCCTCAAGTATAGCGGCAAGAGGATATATTTC





AACAAGGGTTGAAATGGGCGAGGCGGCGGCCATCTTCATGACGGCCACGCCACCGGGAACCCGTGATG





CATTTCCGGATTCCAACTCACCGATTATGGACACGGAAGTGGAAGTTCCAGAGAGAGCGTGGAGCTCA





GGTTTTGATTGGGTAACGGATCATTCGGGAAAAACAGTTTGGTTTGTTCCGAGCGTGAGGAATGGCAA





TGAGATAGCAGCTTGTCTAACAAAGGCTGGTAAACGGGTCATACAACTCAGCAGAAAAACTTTTGAAA





CAGAGTTCCAAAAAACAAAACATCAAGAATGGGACTTTGTTGTTACAACTGACATATCAGAGATGGGT





GCCAACTTTAAAGCTGACCGTGTCATAGATTCGAGGAGATGCCTAAAGCCGGTCATACTAGATGGCGA





GCGAGTCATTCTGGCGGGACCCATGCCGGTCACACATGCGAGCGCTGCCCAAAGGAGGGGGCGTATAG





GCAGGAATCCGAACAAACCTGGTGATGAGTATCTATATGGAGGTGGTTGCGCAGAGACGGACGAAGAC





CATGCGCACTGGCTTGAAGCGAGAATGCTCCTAGACAATATTTATCTCCAAGATGGTCTCATAGCCTC





GCTATATCGACCTGAAGCCGACAAAGTAGCGGCCATTGAGGGTGAGTTCAAGCTAAGGACGGAGCAAC







GT
AAGACCTTTGTAGAACTCATGAAAAGAGGTGATCTTCCTGTATGGCTGGCCTATCAAGTTGCATCT






GCGGGAATAACCTATACAGATAGAAGATGGTGTTTTGATGGCACGACGAACAACACCATAATGGAAGA





TTCGGTGCCGGCAGAAGTGTGGACCAGACATGGAGAGAAACGTGTGCTCAAACCGAGGTGGATGGATG





CCAGAGTTTGTTCAGATCATGCGGCGCTGAAGTCATTTAAGGAGTTTGCGGCTGGGAAAAGA(NS4A)





GGTGCGGCTTTTGGTGTAATGGAAGCCCTGGGAACACTGCCGGGACACATGACGGAGAGATTCCAAGA





AGCCATTGATAACCTCGCTGTACTCATGCGGGCGGAGACTGGAAGTAGGCCTTACAAAGCCGCGGCGG





CGCAATTGCCGGAAACCCTAGAGACGATAATGCTTTTAGGGTTGCTGGGTACAGTCTCGCTAGGAATC





TTCTTTGTCTTGATGCGTAACAAGGGCATAGGTAAGATGGGCTTTGGTATGGTGACTCTAGGGGCCAG





CGCGTGGCTCATGTGGCTATCGGAAATTGAACCAGCCAGAATAGCATGTGTCCTAATTGTTGTATTCC





TATTGCTGGTAGTACTCATACCTGAACCAGAAAAGCAACGTTCTCCCCAGGATAACCAAATGGCAATA





ATCATCATGGTAGCGGTAGGTCTTCTAGGCTTGATTACGGCCU(NS4B)AATGAACTAGGATGGTTGG





AAAGAACAAAGTCGGACCTAAGCCATCTAATGGGTAGGAGAGAGGAAGGGGCAACCATAGGTTTCTCA





ATGGATATTGACCTGCGTCCAGCCTCAGCGTGGGCCATCTATGCGGCCTTGACAACGTTCATTACCCC







G
GCCGTCCAACATGCGGTGACCACCTCGTACAACAACTATTCCTTAATGGCGATGGCGACGCAAGCTG






GTGTGTTGTTTGGTATGGGTAAAGGGATGCCGTTCTACGCATGGGATTTTGGAGTCCCGCTACTAATG





ATAGGTTGTTACTCACAATTAACGCCCCTGACCCTAATAGTAGCCATCATTTTACTCGTGGCGCATTA





CATGTACTTAATCCCAGGGCTACAGGCAGCAGCGGCGCGTGCTGCGCAGAAGAGAACGGCGGCTGGCA





TCATGAAAAACCCTGTTGTAGATGGAATAGTAGTGACTGACATAGACACAATGACGATTGACCCCCAA





GTAGAGAAAAAGATGGGTCAGGTGCTACTAATAGCAGTAGCGGTCTCCAGCGCGATACTGTCGCGGAC





CGCCTGGGGTTGGGGGGAGGCGGGGGCCCTGATAACAGCCGCAACGTCCACTTTGTGGGAAGGTTCTC





CGAACAAATACTGGAACTCGTCTACAGCCACGTCACTGTGTAATATTTTTAGGGGTAGTTACTTGGCG





GGAGCTTCTCTAATATACACAGTAACGAGAAACGCTGGTTTGGTCAAGCGTCGT(NS5)GGGGGTGGT





ACAGGAGAGACGCTGGGAGAGAAATGGAAAGCCCGCTTGAATCAGATGTCGGCGCTGGAGTTCTATTC





CTACAAAAAATCAGGCATCACGGAGGTGTGCCGTGAAGAGGCCCGTCGCGCCCTCAAAGACGGTGTGG





CGACGGGAGGCCATGCGGTGTCCCGAGGTAGTGCAAAGCTAAGATGGTTGGTAGAGCGGGGATATCTG





CAGCCCTATGGTAAGGTCATTGATCTAGGATGTGGCCGTGGGGGCTGGTCGTACTACGCCGCGACCAT





CCGCAAAGTACAAGAAGTGAAAGGTTACACAAAAGGTGGCCCTGGTCATGAAGAACCCGTGTTGGTGC





AAAGTTATGGGTGGAATATAGTCCGTCTAAAGAGTGGGGTAGACGTCTTTCATATGGCGGCGGAGCCG





TGTGATACGCTGCTGTGTGATATAGGTGAGTCGTCATCTAGTCCGGAAGTGGAAGAAGCGCGGACGCT





CCGTGTCCTCTCCATGGTAGGGGATTGGCTAGAAAAAAGACCGGGAGCCTTTTGTATAAAAGTATTGT





GCCCATATACCAGCACTATGATGGAAACGCTGGAGCGACTACAGCGTAGGTATGGTGGAGGACTGGTA





AGAGTGCCACTATCCCGCAACTCGACACATGAGATGTATTGGGTCTCTGGTGCGAAAAGCAATACCAT





AAAAAGTGTATCCACCACGTCGCAGCTCCTCTTAGGGCGCATGGATGGGCCTAGACGTCCAGTGAAAT





ATGAAGAGGATGTGAATCTAGGCTCTGGCACGCGTGCTGTGGTAAGTTGCGCTGAAGCGCCCAACATG





AAAATCATTGGTAATCGCATTGAAAGGATACGCAGTGAGCATGCGGAAACGTGGTTTTTTGACGAGAA







T
CACCCATATAGGACGTGGGCTTACCATGGTAGCTATGAGGCGCCCACACAAGGTTCAGCGTCCTCGC






TAATAAACGGTGTTGTCAGGCTACTGTCAAAACCGTGGGATGTGGTAACTGGAGTCACGGGAATAGCC





ATGACGGACACCACACCGTATGGTCAACAAAGAGTTTTTAAGGAAAAAGTAGACACTAGGGTACCAGA





CCCCCAAGAAGGTACTCGTCAGGTAATGAGCATGGTATCTTCCTGGTTATGGAAAGAGCTAGGTAAAC





ACAAACGTCCACGAGTCTGTACGAAAGAAGAGTTTATCAACAAGGTACGTAGCAATGCGGCATTAGGG





GCGATATTTGAAGAAGAAAAAGAGTGGAAAACTGCAGTGGAAGCGGTGAACGATCCGAGGTTCTGGGC







G
CTAGTGGACAAAGAAAGAGAGCATCACCTGAGAGGTGAGTGCCAGTCGTGTGTGTATAATATGATGG






GAAAACGTGAAAAGAAACAAGGTGAATTTGGAAAAGCCAAGGGCAGCCGTGCCATCTGGTATATGTGG





CTAGGTGCTAGATTTCTAGAATTCGAAGCCCTTGGATTCTTGAATGAGGATCACTGGATGGGTAGAGA





GAACTCGGGAGGTGGTGTAGAAGGGCTGGGTTTACAAAGACTAGGATATGTCCTAGAAGAAATGAGTC





GTATACCGGGAGGAAGGATGTATGCGGATGACACTGCGGGCTGGGACACGCGCATTAGCCGTTTTGAT





CTGGAAAATGAAGCTCTAATAACCAACCAAATGGAAAAAGGGCACAGGGCGTTGGCATTGGCGATAAT





CAAGTATACATACCAAAATAAAGTGGTAAAAGTCCTTAGACCGGCTGAAAAAGGTAAAACAGTTATGG





ATATTATTTCGCGTCAAGACCAAAGGGGTAGCGGACAAGTAGTCACTTACGCGCTTAACACATTTACG





AACCTAGTGGTACAACTCATTCGTAATATGGAGGCGGAGGAAGTTCTAGAAATGCAAGACTTATGGCT





GCTGCGTAGGTCAGAGAAAGTAACCAACTGGTTACAGAGCAACGGTTGGGATAGGCTAAAACGAATGG





CGGTCAGTGGAGATGATTGTGTTGTGAAGCCGATTGATGATCGTTTTGCACATGCGCTCAGGTTCTTA





AATGATATGGGTAAAGTTAGAAAAGACACACAAGAATGGAAACCCTCGACTGGATGGGATAACTGGGA





AGAAGTACCGTTTTGCTCGCACCACTTCAATAAGCTCCATCTAAAGGACGGGCGTTCCATTGTGGTAC





CCTGCCGCCATCAAGATGAACTAATTGGCCGGGCGCGCGTCTCTCCGGGGGCGGGATGGTCGATCCGG





GAGACGGCTTGCCTAGCGAAATCATATGCGCAAATGTGGCAGCTACTTTATTTCCATAGAAGGGACCT







A
CGACTGATGGCGAATGCCATTTGTTCGTCTGTGCCAGTAGACTGGGTTCCGACTGGGAGAACGACCT






GGTCAATACATGGAAAGGGTGAATGGATGACGACTGAAGACATGCTAGTGGTGTGGAATAGAGTGTGG





ATAGAGGAGAACGATCACATGGAAGATAAGACCCCAGTAACGAAATGGACGGACATTCCCTATTTAGG





AAAAAGGGAAGATTTGTGGTGTGGTTCTCTCATAGGTCACAGACCGCGTACCACCTGGGCGGAGAACA





TTAAAAATACAGTCAACATGGTACGCAGGATCATAGGTGATGAAGAAAAATATATGGACTACCTATCG





ACCCAAGTTCGTTACTTGGGTGAAGAAGGTTCTACACCTGGTGTGCTGTAA






SEQ ID NO:7. Vaccine candidate ZIKV-DO-scattered sequence with deoptimized region shown in underline, with locations of nonstructural regions indicated.










(NS1)GATGTAGGGTGCTCGGTAGACTTCTCAAAGAAGGAAACGAGATGCGGTACGGGG







GTATTCGTCTATAACGATGTTGAAGCCTGGCGTGACAGGTACAAATACCATCCTGATTCCCCCCGTCG







ATTGGCAGCAGCGGTCAAGCAAGCGTGGGAAGATGGTATATGCGGGATCTCGTCTGTTTCACGTATGG







AAAACATAATGTGGAGATCGGTAGAAGGGGAGCTAAACGCAATCCTAGAAGAGAATGGTGTTCAACTG







ACGGTAGTTGTAGGATCTGTAAAAAACCCGATGTGGAGAGGTCCGCAGAGATTGCCGGTACCTGTAAA







CGAGCTGCCCCACGGTTGGAAGGCTTGGGGTAAATCGTACTTCGTAAGAGCAGCAAAAACAAATAACT







CGTTTGTCGTGGATGGTGATACACTGAAGGAATGTCCACTCAAACATCGTGCATGGAACTCGTTTCTT







GTAGAGGATCATGGTTTCGGGGTATTTCATACTAGTGTCTGGCTAAAGGTTAGAGAAGATTATTCGTT







AGAGTGTGATCCGGCCGTTATTGGTACAGCTGTTAAAGGAAAGGAGGCGGTACACAGTGATCTAGGTT







ACTGGATTGAAAGTGAGAAGAATGATACATGGAGGCTAAAGAGGGCCCATCTAATCGAGATGAAAACG







TGTGAATGGCCGAAGTCCCACACGTTGTGGACAGATGGTATAGAAGAGTCGGATCTGATCATACCGAA







GTCTTTAGCGGGGCCACTCAGTCATCACAATACGAGAGAGGGCTATAGGACCCAAATGAAAGGTCCAT







GGCACTCGGAAGAGCTTGAAATACGGTTTGAGGAATGTCCAGGCACTAAAGTCCACGTGGAAGAAACA







TGTGGTACAAGAGGACCGTCTCTGAGATCGACCACTGCAAGTGGAAGGGTAATCGAGGAATGGTGTTG







CAGGGAGTGCACGATGCCCCCACTATCGTTCCGGGCGAAAGATGGCTGTTGGTATGGTATGGAGATAC







GTCCCAGGAAAGAACCGGAAAGCAACTTAGTACGTTCAATGGTAACTGCA(NS2A)GGATCGACTGAT







CACATGGATCACTTCTCCCTTGGAGTACTTGTAATCCTGCTCATGGTACAGGAAGGGCTAAAGAAGAG







AATGACGACAAAGATCATAATAAGCACATCGATGGCAGTACTGGTAGCTATGATACTGGGAGGATTTT







CGATGAGTGACCTAGCTAAGCTTGCGATTTTGATGGGTGCGACCTTCGCGGAAATGAATACTGGAGGA







GATGTAGCGCATCTGGCGCTAATAGCGGCATTTAAAGTCAGACCGGCGTTGCTGGTATCGTTCATCTT







CCGTGCTAATTGGACGCCCCGTGAATCGATGCTGCTGGCGTTGGCCTCGTGTCTATTGCAAACTGCGA







TATCCGCCTTGGAAGGTGACCTGATGGTACTCATCAATGGTTTTGCGTTGGCCTGGTTAGCAATACGA







GCGATGGTAGTTCCACGCACGGATAACATCACGTTGGCAATCCTAGCTGCTCTGACGCCACTGGCCCG







TGGCACACTGCTTGTAGCGTGGAGAGCGGGCCTTGCTACGTGCGGGGGGTTTATGCTACTCTCTCTGA







AAGGAAAAGGCAGTGTAAAGAAGAACTTACCGTTTGTCATGGCGCTGGGACTAACGGCTGTAAGGCTG







GTCGATCCCATCAACGTAGTAGGACTGCTGTTACTAACAAGGAGTGGGAAACGG(NS2B)AGCTGGCC







GCCTAGCGAAGTACTAACAGCTGTTGGTCTGATATGCGCATTGGCGGGAGGGTTCGCGAAGGCAGATA







TAGAAATGGCTGGGCCGATGGCCGCGGTAGGTCTGCTAATAGTCAGTTACGTAGTCTCAGGAAAAAGT







GTGGACATGTATATTGAAAGAGCGGGTGACATCACATGGGAAAAAGATGCGGAAGTAACTGGAAACAG







TCCGCGGCTCGATGTAGCGCTAGATGAAAGTGGTGATTTTTCCCTGGTAGAGGATGACGGTCCCCCCA







TGAGAGAAATCATACTCAAAGTAGTCCTGATGACGATCTGTGGCATGAATCCGATAGCCATACCGTTT







GCAGCTGGTGCGTGGTACGTATACGTAAAGACTGGAAAACGT(NS3)AGTGGTGCTCTATGGGATGTA







CCTGCTCCCAAAGAAGTAAAAAAAGGGGAGACCACGGATGGAGTATACAGAGTAATGACGCGTAGACT







GCTAGGTTCGACACAAGTTGGTGTAGGAGTTATGCAAGAAGGGGTCTTTCATACTATGTGGCATGTCA







CAAAAGGTTCCGCGCTGCGTAGCGGTGAAGGTAGACTTGATCCGTACTGGGGAGATGTAAAGCAGGAT







CTAGTATCATACTGTGGTCCGTGGAAGCTAGATGCGGCCTGGGACGGTCACAGCGAGGTACAGCTCTT







GGCGGTACCCCCCGGAGAAAGAGCGAGGAATATCCAGACTCTACCCGGAATATTTAAAACAAAGGATG







GTGACATTGGAGCGGTAGCGCTGGATTATCCAGCAGGAACGTCAGGATCTCCGATCCTAGACAAATGT







GGGAGAGTAATAGGACTTTATGGTAATGGGGTCGTAATCAAAAATGGTAGTTATGTTAGTGCGATCAC







CCAAGGTAGGAGGGAAGAAGAAACTCCTGTTGAATGCTTCGAGCCGTCGATGCTGAAAAAGAAGCAGC







TAACGGTCTTAGACTTACATCCTGGAGCGGGGAAAACCCGAAGAGTTCTTCCGGAAATAGTCCGTGAA







GCGATAAAAACACGTCTCCGTACTGTAATCTTAGCTCCGACCAGGGTTGTAGCTGCTGAAATGGAAGA







GGCCCTTCGTGGGCTTCCAGTACGTTATATGACGACAGCAGTCAATGTAACCCACTCTGGTACAGAAA







TCGTTGACTTAATGTGTCATGCCACCTTTACTTCACGTCTACTACAACCAATCAGAGTTCCCAACTAT







AATCTATATATTATGGATGAAGCCCACTTCACGGATCCCTCAAGTATAGCGGCAAGAGGATATATTTC







AACAAGGGTTGAAATGGGCGAGGCGGCGGCCATCTTCATGACGGCCACGCCACCGGGAACCCGTGATG







CATTTCCGGATTCCAACTCACCGATTATGGACACGGAAGTGGAAGTTCCAGAGAGAGCGTGGAGCTCA







GGTTTTGATTGGGTAACGGATCATTCGGGAAAAACAGTTTGGTTTGTTCCGAGCGTGAGGAATGGCAA







TGAGATAGCAGCTTGTCTAACAAAGGCTGGTAAACGGGTCATACAACTCAGCAGAAAAACTTTTGAAA







CAGAGTTCCAAAAAACAAAACATCAAGAATGGGACTTTGTTGTTACAACTGACATATCAGAGATGGGT







GCCAACTTTAAAGCTGACCGTGTCATAGATTCGAGGAGATGCCTAAAGCCGGTCATACTAGATGGCGA







GCGAGTCATTCTGGCGGGACCCATGCCGGTCACACATGCGAGCGCTGCCCAAAGGAGGGGGCGTATAG







GCAGGAATCCGAACAAACCTGGTGATGAGTATCTATATGGAGGTGGTTGCGCAGAGACGGACGAAGAC







CATGCGCACTGGCTTGAAGCGAGAATGCTCCTAGACAATATTTATCTCCAAGATGGTCTCATAGCCTC







GCTATATCGACCTGAAGCCGACAAAGTAGCGGCCATTGAGGGTGAGTTCAAGCTAAGGACGGAGCAAC







GTAAGACCTTTGTAGAACTCATGAAAAGAGGTGATCTTCCTGTATGGCTGGCCTATCAAGTTGCATCT







GCGGGAATAACCTATACAGATAGAAGATGGTGTTTTGATGGCACGACGAACAACACCATAATGGAAGA







TTCGGTGCCGGCAGAAGTGTGGACCAGACATGGAGAGAAACGTGTGCTCAAACCGAGGTGGATGGATG







CCAGAGTTTGTTCAGATCATGCGGCGCTGAAGTCATTTAAGGAGTTTGCGGCTGGGAAAAGA(NS4A)







GGTGCGGCTTTTGGTGTAATGGAAGCCCTGGGAACACTGCCGGGACACATGACGGAGAGATTCCAAGA







AGCCATTGATAACCTCGCTGTACTCATGCGGGCGGAGACTGGAAGTAGGCCTTACAAAGCCGCGGCGG







CGCAATTGCCGGAAACCCTAGAGACGATAATGCTTTTAGGGTTGCTGGGTACAGTCTCGCTAGGAATC







TTCTTTGTCTTGATGCGTAACAAGGGCATAGGTAAGATGGGCTTTGGTATGGTGACTCTAGGGGCCAG







CGCGTGGCTCATGTGGCTATCGGAAATTGAACCAGCCAGAATAGCATGTGTCCTAATTGTTGTATTCC







TATTGCTGGTAGTACTCATACCTGAACCAGAAAAGCAACGTTCTCCCCAGGATAACCAAATGGCAATA







ATCATCATGGTAGCGGTAGGTCTTCTAGGCTTGATTACGGCC(NS4B)AATGAACTAGGATGGTTGGA







AAGAACAAAGTCGGACCTAAGCCATCTAATGGGTAGGAGAGAGGAAGGGGCAACCATAGGTTTCTCAA







TGGATATTGACCTGCGTCCAGCCTCAGCGTGGGCCATCTATGCGGCCTTGACAACGTTCATTACCCCG







GCCGTCCAACATGCGGTGACCACCTCGTACAACAACTATTCCTTAATGGCGATGGCGACGCAAGCTGG







TGTGTTGTTTGGTATGGGTAAAGGGATGCCGTTCTACGCATGGGATTTTGGAGTCCCGCTACTAATGA







TAGGTTGTTACTCACAATTAACGCCCCTGACCCTAATAGTAGCCATCATTTTACTCGTGGCGCATTAC







ATGTACTTAATCCCAGGGCTACAGGCAGCAGCGGCGCGTGCTGCGCAGAAGAGAACGGCGGCTGGCAT







CATGAAAAACCCTGTTGTAGATGGAATAGTAGTGACTGACATAGACACAATGACGATTGACCCCCAAG







TAGAGAAAAAGATGGGTCAGGTGCTACTAATAGCAGTAGCGGTCTCCAGCGCGATACTGTCGCGGACC







GCCTGGGGTTGGGGGGAGGCGGGGGCCCTGATAACAGCCGCAACGTCCACTTTGTGGGAAGGTTCTCC







GAACAAATACTGGAACTCGTCTACAGCCACGTCACTGTGTAATATTTTTAGGGGTAGTTACTTGGCGG







GAGCTTCTCTAATATACACAGTAACGAGAAACGCTGGTTTGGTCAAGCGTCGT(NS5)GGGGGTGGTA







CAGGAGAGACGCTGGGAGAGAAATGGAAAGCCCGCTTGAATCAGATGTCGGCGCTGGAGTTCTATTCC







TACAAAAAATCAGGCATCACGGAGGTGTGCCGTGAAGAGGCCCGTCGCGCCCTCAAAGACGGTGTGGC







GACGGGAGGCCATGCGGTGTCCCGAGGTAGTGCAAAGCTAAGATGGTTGGTAGAGCGGGGATATCTGC







AGCCCTATGGTAAGGTCATTGATCTAGGATGTGGCCGTGGGGGCTGGTCGTACTACGCCGCGACCATC







CGCAAAGTACAAGAAGTGAAAGGTTACACAAAAGGTGGCCCTGGTCATGAAGAACCCGTGTTGGTGCA







AAGTTATGGGTGGAATATAGTCCGTCTAAAGAGTGGGGTAGACGTCTTTCATATGGCGGCGGAGCCGT







GTGATACGCTGCTGTGTGATATAGGTGAGTCGTCATCTAGTCCGGAAGTGGAAGAAGCGCGGACGCTC







CGTGTCCTCTCCATGGTAGGGGATTGGCTAGAAAAAAGACCGGGAGCCTTTTGTATAAAAGTATTGTG







CCCATATACCAGCACTATGATGGAAACGCTGGAGCGACTACAGCGTAGGTATGGTGGAGGACTGGTAA







GAGTGCCACTATCCCGCAACTCGACACATGAGATGTATTGGGTCTCTGGTGCGAAAAGCAATACCATA







AAAAGTGTATCCACCACGTCGCAGCTCCTCTTAGGGCGCATGGATGGGCCTAGACGTCCAGTGAAATA







TGAAGAGGATGTGAATCTAGGCTCTGGCACGCGTGCTGTGGTAAGTTGCGCTGAAGCGCCCAACATGA







AAATCATTGGTAATCGCATTGAAAGGATACGCAGTGAGCATGCGGAAACGTGGTTTTTTGACGAGAAT







CACCCATATAGGACGTGGGCTTACCATGGTAGCTATGAGGCGCCCACACAAGGTTCAGCGTCCTCGCT







AATAAACGGTGTTGTCAGGCTACTGTCAAAACCGTGGGATGTGGTAACTGGAGTCACGGGAATAGCCA







TGACGGACACCACACCGTATGGTCAACAAAGAGTTTTTAAGGAAAAAGTAGACACTAGGGTACCAGAC







CCCCAAGAAGGTACTCGTCAGGTAATGAGCATGGTATCTTCCTGGTTATGGAAAGAGCTAGGTAAACA







CAAACGTCCACGAGTCTGTACGAAAGAAGAGTTTATCAACAAGGTACGTAGCAATGCGGCATTAGGGG







CGATATTTGAAGAAGAAAAAGAGTGGAAAACTGCAGTGGAAGCGGTGAACGATCCGAGGTTCTGGGCG







CTAGTGGACAAAGAAAGAGAGCATCACCTGAGAGGTGAGTGCCAGTCGTGTGTGTATAATATGATGGG







AAAACGTGAAAAGAAACAAGGTGAATTTGGAAAAGCCAAGGGCAGCCGTGCCATCTGGTATATGTGGC







TAGGTGCTAGATTTCTAGAATTCGAAGCCCTTGGATTCTTGAATGAGGATCACTGGATGGGTAGAGAG







AACTCGGGAGGTGGTGTAGAAGGGCTGGGTTTACAAAGACTAGGATATGTCCTAGAAGAAATGAGTCG







TATACCGGGAGGAAGGATGTATGCGGATGACACTGCGGGCTGGGACACGCGCATTAGCCGTTTTGATC







TGGAAAATGAAGCTCTAATAACCAACCAAATGGAAAAAGGGCACAGGGCGTTGGCATTGGCGATAATC







AAGTATACATACCAAAATAAAGTGGTAAAAGTCCTTAGACCGGCTGAAAAAGGTAAAACAGTTATGGA







TATTATTTCGCGTCAAGACCAAAGGGGTAGCGGACAAGTAGTCACTTACGCGCTTAACACATTTACGA







ACCTAGTGGTACAACTCATTCGTAATATGGAGGCGGAGGAAGTTCTAGAAATGCAAGACTTATGGCTG







CTGCGTAGGTCAGAGAAAGTAACCAACTGGTTACAGAGCAACGGTTGGGATAGGCTAAAACGAATGGC







GGTCAGTGGAGATGATTGTGTTGTGAAGCCGATTGATGATCGTTTTGCACATGCGCTCAGGTTCTTAA







ATGATATGGGTAAAGTTAGAAAAGACACACAAGAATGGAAACCCTCGACTGGATGGGATAACTGGGAA







GAAGTACCGTTTTGCTCGCACCACTTCAATAAGCTCCATCTAAAGGACGGGCGTTCCATTGTGGTACC







CTGCCGCCATCAAGATGAACTAATTGGCCGGGCGCGCGTCTCTCCGGGGGCGGGATGGTCGATCCGGG







AGACGGCTTGCCTAGCGAAATCATATGCGCAAATGTGGCAGCTACTTTATTTCCATAGAAGGGACCTA







CGACTGATGGCGAATGCCATTTGTTCGTCTGTGCCAGTAGACTGGGTTCCGACTGGGAGAACGACCTG







GTCAATACATGGAAAGGGTGAATGGATGACGACTGAAGACATGCTAGTGGTGTGGAATAGAGTGTGGA







TAGAGGAGAACGATCACATGGAAGATAAGACCCCAGTAACGAAATGGACGGACATTCCCTATTTAGGA







AAAAGGGAAGATTTGTGGTGTGGTTCTCTCATAGGTCACAGACCGCGTACCACCTGGGCGGAGAACAT







TAAAAATACAGTCAACATGGTACGCAGGATCATAGGTGATGAAGAAAAATATATGGACTACCTATCGA







CCCAAGTTCGTTACTTGGGTGAAGAAGGTTCTACACCTGGTGTGCTGTAA(NS5 end)







SEQ ID NO:8. Vaccine candidate ZIKV-DO nonstructural region nucleotide sequence, with locations of nonstructural regions indicated. Only regions NS1 to NS3 are shown. In the deoptimized region changed nucleotides are marked in bold and underline.










(NS1)GTCGGTTGTTCGGTAGATTTTTCGAAAAAAGAAACGCGATGTGGTACGGGTGTA






TTTGTATATAATGACGTAGAAGCGTGGCGAGACCGATACAAGTATCATCCGGACTCGCCGCGACGATT







A
GCGGCGGCGGTAAAACAAGCGTGGGAAGACGGTATATGCGGTATATCGTCGGTATCGCGAATGGAAA






ATATAATGTGGCGATCGGTAGAAGGTGAGTTAAATGCGATACTAGAAGAGAATGGCGTACAACTAACG





GTAGTAGTCGGCTCGGTAAAAAATCCCATGTGGCGAGGTCCGCAGCGATTGCCCGTCCCCGTCAATGA





GCTACCCCATGGTTGGAAGGCGTGGGGTAAATCGTACTTCGTACGAGCGGCGAAGACGAATAATTCCT





TTGTAGTCGATGGTGACACGCTAAAGGAATGCCCGTTAAAACATCGAGCGTGGAATTCCTTTTTGGTC





GAGGATCATGGTTTCGGTGTATTCCATACCAGTGTATGGTTAAAGGTACGAGAAGATTATTCGTTAGA





GTGTGATCCGGCCGTAATTGGCACGGCGGTAAAGGGCAAGGAGGCGGTACATAGTGATCTCGGTTACT





GGATTGAGAGTGAGAAGAATGACACGTGGCGCCTAAAGCGCGCCCATCTAATAGAGATGAAAACGTGT





GAATGGCCGAAGTCGCACACGTTGTGGACGGATGGCATAGAAGAGAGTGATCTAATAATACCCAAGTC







G
TTAGCGGGTCCGTTATCCCATCATAATACCCGAGAGGGTTACCGCACCCAAATGAAAGGTCCGTGGC






ATAGTGAAGAGTTGGAAATTCGGTTCGAGGAATGCCCGGGTACCAAGGTACACGTCGAGGAAACGTGT





GGCACGCGAGGCCCGTCGCTACGATCGACCACCGCGTCCGGCCGCGTCATAGAGGAATGGTGCTGCCG







C
GAGTGCACGATGCCCCCGCTATCGTTCCGGGCGAAAGATGGTTGTTGGTATGGAATGGAGATACGCC






CCCGCAAAGAACCGGAATCCAATTTAGTACGCTCGATGGTCACCGCGGGCTCGACCGATCATATGGAC





CATTTCTCGTTG(NS2A)GGCGTCTTGGTCATACTATTAATGGTCCAAGAAGGTCTAAAGAAGCGAAT





GACCACGAAGATAATAATATCCACGTCGATGGCGGTCCTAGTAGCGATGATACTAGGCGGCTTTTCGA





TGAGTGACCTAGCGAAGTTGGCGATTTTGATGGGTGCCACCTTCGCGGAAATGAATACCGGCGGCGAT





GTAGCGCATCTAGCGCTAATAGCGGCGTTCAAAGTACGACCGGCGTTGCTAGTATCGTTCATATTCCG





AGCGAATTGGACGCCCCGTGAATCCATGCTACTAGCCTTGGCCTCGTGTTTGTTGCAAACCGCGATAT





CGGCCTTGGAAGGTGACCTAATGGTATTAATAAATGGTTTCGCGTTGGCCTGGTTGGCGATACGAGCG





ATGGTAGTACCGCGCACCGATAATATAACCTTGGCGATACTAGCGGCGCTAACGCCGCTAGCCCGGGG







T
ACGCTATTGGTCGCGTGGCGAGCGGGTTTGGCGACCTGCGGTGGTTTTATGTTATTATCGCTAAAGG






GCAAAGGTAGTGTCAAGAAGAATTTACCGTTTGTAATGGCCCTAGGCCTCACCGCGGTCCGCCTAGTA





GACCCCATAAATGTCGTCGGCCTACTATTATTAACGCGCAGTGGTAAGCGGTCCTGGCCC(NS2B)CC







CTC
CGAAGTATTAACGGCGGTAGGTCTAATATGCGCGTTGGCGGGCGGTTTCGCCAAGGCGGATATAG






AGATGGCGGGTCCCATGGCCGCGGTAGGTCTACTCATTGTAAGTTACGTCGTATCGGGCAAGAGTGTC





GACATGTACATTGAACGAGCGGGTGACATAACGTGGGAAAAAGATGCGGAAGTAACCGGCAATAGTCC





CCGGTTAGATGTCGCGCTCGATGAGAGTGGTGATTTCTCGCTAGTCGAGGATGACGGTCCCCCGATGC





GAGAGATAATATTAAAGGTCGTACTAATGACCATATGTGGTATGAATCCGATAGCCATACCCTTCGCG





GCGGGCGCGTGGTACGTATACGTCAAGACCGGCAAACGC(NS3)AGTGGTGCGCTCTGGGATGTCCCC





GCGCCCAAGGAAGTAAAAAAGGGTGAGACCACGGATGGCGTCTACCGAGTAATGACCCGTCGACTACT







C
GGTTCGACGCAAGTAGGCGTCGGCGTAATGCAAGAGGGTGTATTCCACACCATGTGGCATGTAACGA






AAGGCTCGGCGCTACGATCCGGTGAAGGTCGATTGGATCCGTACTGGGGCGATGTAAAGCAAGATCTA





GTCTCGTACTGTGGTCCGTGGAAGCTCGATGCCGCCTGGGACGGTCACTCCGAGGTCCAGTTATTGGC





CGTCCCCCCGGGCGAGCGAGCGCGCAATATACAAACTCTACCCGGCATATTCAAGACGAAGGATGGTG





ACATTGGCGCGGTAGCGCTAGATTACCCGGCGGGCACTTCGGGCTCGCCGATACTCGACAAGTGTGGT







C
GAGTCATAGGCTTGTATGGTAATGGTGTAGTCATAAAAAATGGTAGTTATGTAAGTGCCATAACCCA






AGGTCGCCGCGAAGAAGAGACCCCCGTAGAGTGCTTCGAGCCCTCGATGCTAAAGAAGAAGCAACTCA





CTGTATTAGACTTGCATCCCGGCGCGGGTAAAACCCGCCGAGTATTGCCCGAAATAGTACGTGAAGCC





ATAAAAACGCGATTACGTACCGTCATATTAGCGCCGACCCGCGTAGTAGCGGCGGAAATGGAGGAGGC





CTTGCGAGGTTTGCCGGTCCGTTATATGACGACGGCGGTAAATGTAACCCATTCGGGCACGGAAATAG





TAGACTTAATGTGCCATGCCACCTTCACCTCGCGTCTCCTCCAGCCGATACGAGTACCCAATTATAAT





CTATATATTATGGATGAGGCCCATTTCACGGATCCCTCGAGTATAGCGGCGCGAGGCTACATTTCGAC







GC
GCGTAGAGATGGGTGAGGCGGCGGCCATATTCATGACCGCCACGCCGCCGGGCACCCGTGACGCGT






TCCCGGACTCGAATTCGCCGATTATGGACACCGAAGTCGAAGTACCGGAGCGAGCCTGGTCCTCGGGT





TTTGATTGGGTCACGGATCATTCGGGCAAAACGGTATGGTTCGTACCGTCCGTCCGCAATGGTAATGA





GATAGCGGCGTGTCTAACGAAGGCGGGCAAACGGGTAATACAGTTATCCCGAAAGACCTTCGAGACGG





AGTTCCAAAAAACGAAACATCAAGAGTGGGACTTCGTAGTCACGACCGACATTTCGGAGATGGGTGCC





AATTTCAAAGCGGACCGTGTAATAGATTCGCGCCGATGCCTCAAGCCGGTAATATTGGATGGTGAGCG





AGTAATTCTAGCGGGCCCCATGCCCGTAACGCATGCCTCCGCGGCCCAACGCCGCGGTCGCATAGGTC





GCAATCCCAATAAACCCGGCGATGAGTATCTATATGGCGGTGGTTGCGCGGAGACCGACGAAGACCAT





GCGCATTGGTTGGAAGCGCGAATGTTATTGGACAATATTTACTTACAAGATGGTTTAATAGCCTCGTT







A
TATCGACCCGAGGCCGACAAAGTAGCGGCCATTGAGGGCGAGTTCAAGTTGCGCACGGAGCAACGCA






AGACCTTCGTCGAATTAATGAAACGAGGCGATTTGCCCGTATGGCTAGCCTATCAAGTAGCGTCGGCC





GGCATAACCTACACGGATCGACGATGGTGCTTCGATGGTACGACCAATAATACCATAATGGAAGATAG





TGTGCCGGC






SEQ ID NO:9. Vaccine candidate ZIKV-DO sequence, with the deoptimized region shown in underline, with locations of nonstructural regions NS1 to NS5 indicated and shown in full.










(NS1)GTCGGTTGTTCGGTAGATTTTTCGAAAAAAGAAACGCGATGTGGTACGGGTGTA







TTTGTATATAATGACGTAGAAGCGTGGCGAGACCGATACAAGTATCATCCGGACTCGCCGCGACGATT







AGCGGCGGCGGTAAAACAAGCGTGGGAAGACGGTATATGCGGTATATCGTCGGTATCGCGAATGGAAA







ATATAATGTGGCGATCGGTAGAAGGTGAGTTAAATGCGATACTAGAAGAGAATGGCGTACAACTAACG







GTAGTAGTCGGCTCGGTAAAAAATCCCATGTGGCGAGGTCCGCAGCGATTGCCCGTCCCCGTCAATGA







GCTACCCCATGGTTGGAAGGCGTGGGGTAAATCGTACTTCGTACGAGCGGCGAAGACGAATAATTCCT







TTGTAGTCGATGGTGACACGCTAAAGGAATGCCCGTTAAAACATCGAGCGTGGAATTCCTTTTTGGTC







GAGGATCATGGTTTCGGTGTATTCCATACCAGTGTATGGTTAAAGGTACGAGAAGATTATTCGTTAGA







GTGTGATCCGGCCGTAATTGGCACGGCGGTAAAGGGCAAGGAGGCGGTACATAGTGATCTCGGTTACT







GGATTGAGAGTGAGAAGAATGACACGTGGCGCCTAAAGCGCGCCCATCTAATAGAGATGAAAACGTGT







GAATGGCCGAAGTCGCACACGTTGTGGACGGATGGCATAGAAGAGAGTGATCTAATAATACCCAAGTC







GTTAGCGGGTCCGTTATCCCATCATAATACCCGAGAGGGTTACCGCACCCAAATGAAAGGTCCGTGGC







ATAGTGAAGAGTTGGAAATTCGGTTCGAGGAATGTCCGGGTACCAAGGTACACGTCGAGGAAACGTGT







GGCACGCGAGGCCCGTCGCTACGATCGACCACCGCGTCCGGCCGCGTCATAGAGGAATGGTGCTGCCG







CGAGTGCACGATGCCCCCGCTATCGTTCCGGGCGAAAGATGGTTGTTGGTATGGAATGGAGATACGCC







CCCGCAAAGAACCGGAATCCAATTTAGTACGCTCGATGGTCACCGCGGGCTCGACCGATCATATGGAC







CATTTCTCGTTG(NS2A)GGCGTCTTGGTCATACTATTAATGGTCCAAGAAGGTCTAAAGAAGCGAAT







GACCACGAAGATAATAATATCCACGTCGATGGCGGTCCTAGTAGCGATGATACTAGGCGGCTTTTCGA







TGAGTGACCTAGCGAAGTTGGCGATTTTGATGGGTGCCACCTTCGCGGAAATGAATACCGGCGGCGAT







GTAGCGCATCTAGCGCTAATAGCGGCGTTCAAAGTACGACCGGCGTTGCTAGTATCGTTCATATTCCG







AGCGAATTGGACGCCCCGTGAATCCATGCTACTAGCCTTGGCCTCGTGTTTGTTGCAAACCGCGATAT







CGGCCTTGGAAGGTGACCTAATGGTATTAATAAATGGTTTCGCGTTGGCCTGGTTGGCGATACGAGCG







ATGGTAGTACCGCGCACCGATAATATAACCTTGGCGATACTAGCGGCGCTAACGCCGCTAGCCCGGGG







TACGCTATTGGTCGCGTGGCGAGCGGGTTTGGCGACCTGCGGTGGTTTTATGTTATTATCGCTAAAGG







GCAAAGGTAGTGTCAAGAAGAATTTACCGTTTGTAATGGCCCTAGGCCTCACCGCGGTCCGCCTAGTA







GACCCCATAAATGTCGTCGGCCTACTATTATTAACGCGCAGTGGTAAGCGGTCCTGGCCC(NS2B)CC







CTCCGAAGTATTAACGGCGGTAGGTCTAATATGCGCGTTGGCGGGCGGTTTCGCCAAGGCGGATATAG







AGATGGCGGGTCCCATGGCCGCGGTAGGTCTACTCATTGTAAGTTACGTCGTATCGGGCAAGAGTGTC







GACATGTACATTGAACGAGCGGGTGACATAACGTGGGAAAAAGATGCGGAAGTAACCGGCAATAGTCC







CCGGTTAGATGTCGCGCTCGATGAGAGTGGTGATTTCTCGCTAGTCGAGGATGACGGTCCCCCGATGC







GAGAGATAATATTAAAGGTCGTACTAATGACCATATGTGGTATGAATCCGATAGCCATACCCTTCGCG







GCGGGCGCGTGGTACGTATACGTCAAGACCGGCAAACGC(NS3)AGTGGTGCGCTCTGGGATGTCCCC







GCGCCCAAGGAAGTAAAAAAGGGTGAGACCACGGATGGCGTCTACCGAGTAATGACCCGTCGACTACT







CGGTTCGACGCAAGTAGGCGTCGGCGTAATGCAAGAGGGTGTATTCCACACCATGTGGCATGTAACGA







AAGGCTCGGCGCTACGATCCGGTGAAGGTCGATTGGATCCGTACTGGGGCGATGTAAAGCAAGATCTA







GTCTCGTACTGTGGTCCGTGGAAGCTCGATGCCGCCTGGGACGGTCACTCCGAGGTCCAGTTATTGGC







CGTCCCGCCGGGCGAGCGAGCGCGCAATATACAAACTCTACCCGGCATATTCAAGACGAAGGATGGTG







ACATTGGCGCGGTAGCGCTAGATTACCCGGCGGGCACTTCGGGCTCGCCGATACTCGACAAGTGTGGT







CGAGTCATAGGCTTGTATGGTAATGGTGTAGTCATAAAAAATGGTAGTTATGTAAGTGCCATAACCCA







AGGTCGCCGCGAAGAAGAGACCCCCGTAGAGTGCTTCGAGCCCTCGATGCTAAAGAAGAAGCAACTCA







CTGTATTAGACTTGCATCCCGGCGCGGGTAAAACCCGCCGAGTATTGCCCGAAATAGTACGTGAAGCC







ATAAAAACGCGATTACGTACCGTCATATTAGCGCCGACCCGCGTAGTAGCGGCGGAAATGGAGGAGGC







CTTGCGAGGTTTGCCGGTCCGTTATATGACGACGGCGGTAAATGTAACCCATTCGGGCACGGAAATAG







TAGACTTAATGTGCCATGCCACCTTCACCTCGCGTCTCCTCCAGCCGATACGAGTACCCAATTATAAT







CTATATATTATGGATGAGGCCCATTTCACGGATCCCTCGAGTATAGCGGCGCGAGGCTACATTTCGAC







GCGCGTAGAGATGGGTGAGGCGGCGGCCATATTCATGACCGCCACGCCGCCGGGCACCCGTGACGCGT







TCCCGGACTCGAATTCGCCGATTATGGACACCGAAGTCGAAGTACCGGAGCGAGCCTGGTCCTCGGGT







TTTGATTGGGTCACGGATCATTCGGGCAAAACGGTATGGTTCGTACCGTCCGTCCGCAATGGTAATGA







GATAGCGGCGTGTCTAACGAAGGCGGGCAAACGGGTAATACAGTTATCCCGAAAGACCTTCGAGACGG







AGTTCCAAAAAACGAAACATCAAGAGTGGGACTTCGTAGTCACGACCGACATTTCGGAGATGGGTGCC







AATTTCAAAGCGGACCGTGTAATAGATTCGCGCCGATGCCTCAAGCCGGTAATATTGGATGGTGAGCG







AGTAATTCTAGCGGGCCCCATGCCCGTAACGCATGCCTCCGCGGCCCAACGCCGCGGTCGCATAGGTC







GCAATCCCAATAAACCCGGCGATGAGTATCTATATGGCGGTGGTTGCGCGGAGACCGACGAAGACCAT







GCGCATTGGTTGGAAGCGCGAATGTTATTGGACAATATTTACTTACAAGATGGTTTAATAGCCTCGTT







ATATCGACCCGAGGCCGACAAAGTAGCGGCCATTGAGGGCGAGTTCAAGTTGCGCACGGAGCAACGCA







AGACCTTCGTCGAATTAATGAAACGAGGCGATTTGCCCGTATGGCTAGCCTATCAAGTAGCGTCGGCA







GGTATAACCTACACGGATCGACGATGGTGCTTCGATGGTACGACCAATAATACCATAATGGAAGATAG







TGTGCCGGCAGAGGTGTGGACCAGACACGGAGAGAAAAGAGTGCTCAAACCGAGGTGGATGGACGCCA






GAGTTTGTTCAGATCATGCGGCCCTGAAGTCATTCAAGGAGTTTGCCGCTGGGAAAAGA(NS4A)GGA





GCGGCTTTTGGAGTGATGGAAGCCCTGGGAACACTGCCAGGACACATGACAGAGAGATTCCAGGAAGC





CATTGACAACCTCGCTGTGCTCATGCGGGCAGAGACTGGAAGCAGGCCTTACAAAGCCGCGGCGGCCC





AATTGCCGGAGACCCTAGAGACCATAATGCTTTTGGGGTTGCTGGGAACAGTCTCGCTGGGAATCTTC





TTCGTCTTGATGAGGAACAAGGGCATAGGGAAGATGGGCTTTGGAATGGTGACTCTTGGGGCCAGCGC





ATGGCTCATGTGGCTCTCGGAAATTGAGCCAGCCAGAATTGCATGTGTCCTCATTGTTGTGTTCCTAT





TGCTGGTGGTGCTCATACCTGAGCCAGAAAAGCAAAGATCTCCCCAGGACAACCAAATGGCAATCATC





ATCATGGTAGCAGTAGGTCTTCTGGGCTTGATTACCGCC(NS4B)AATGAACTCGGATGGTTGGAGAG





AACAAAGAGTGACCTAAGCCATCTAATGGGAAGGAGAGAGGAGGGGGCAACCATAGGATTdTCAATGG





ACATTGACCTGCGGCCAGCCTCAGCTTGGGCCATCTATGCTGCCTTGACAACTTTCATTACCCCAGCC





GTCCAACATGCAGTGACCACCTCATACAACAACTACTCCTTAATGGCGATGGCCACGCAAGCTGGAGT





GTTGTTTGGTATGGGCAAAGGGATGCCATTCTACGCATGGGACTTTGGAGTCCCGCTGCTAATGATAG





GTTGCTACTCACAATTAACACCCCTGACCCTAATAGTGGCCATCATTTTGCTCGTGGCGCACTACATG





TACTTGATCCCAGGGCTGCAGGCAGCAGCTGCGCGTGCTGCCCAGAAGAGAACGGCAGCTGGCATCAT





GAAGAACCCTGTTGTGGATGGAATAGTGGTGACTGACATTGACACAATGACAATTGACCCCCAAGTGG





AGAAAAAGATGGGACAGGTGCTACTCATAGCAGTAGCCGTCTCCAGCGCCATACTGTCGCGGACCGCC





TGGGGGTGGGGGGAGGCTGGGGCCCTGATCACAGCCGCAACTTCCACTTTGTGGGAAGGCTCTCCGAA





CAAGTACTGGAACTCCTCTACAGCCACTTCACTGTGTAACATTTTTAGGGGAAGTTACTTGGCTGGAG





CTTCTCTAATCTACACAGTAACAAGAAACGCTGGCTTGGTCAAGAGACGT(NS5)GGGGGTGGAACAG





GAGAGACCCTGGGAGAGAAATGGAAGGCCCGCTTGAACCAGATGTCGGCCCTGGAGTTCTACTCCTAC





AAAAAGTCAGGCATCACCGAGGTGTGCAGAGAAGAGGCCCGCCGCGCCCTCAAGGACGGTGTGGCAAC





GGGAGGCCATGCTGTGTCCCGAGGAAGTGCAAAGCTGAGATGGTTGGTGGAGCGGGGATACCTGCAGC





CCTATGGAAAGGTCATTGATCTTGGATGTGGCAGAGGGGGCTGGAGTTACTACGCCGCCACCATCCGC





AAAGTTCAAGAAGTGAAAGGATACACAAAAGGAGGCCCTGGTCATGAAGAACCCGTGTTGGTGCAAAG





CTATGGGTGGAACATAGTCCGTCTTAAGAGTGGGGTGGACGTCTTTCATATGGCGGCTGAGCCGTGTG





ACACGCTGCTGTGTGACATAGGTGAGTCATCATCTAGTCCTGAAGTGGAAGAAGCACGGACGCTCAGA





GTCCTCTCCATGGTGGGGGATTGGCTTGAAAAAAGACCAGGAGCCTTTTGTATAAAAGTGTTGTGCCC





ATACACCAGCACTATGATGGAAACCCTGGAGCGACTGCAGCGTAGGTATGGGGGAGGACTGGTCAGAG





TGCCACTCTCCCGCAACTCTACACATGAGATGTACTGGGTCTCTGGAGCGAAAAGCAACACCATAAAA





AGTGTGTCCACCACGAGCCAGCTCCTCTTGGGGCGCATGGACGGGCCTAGAAGGCCAGTGAAATATGA





GGAGGATGTGAATCTCGGCTCTGGCACGCGGGCTGTGGTAAGCTGCGCTGAAGCTCCCAACATGAAGA





TCATTGGTAACCGCATTGAAAGGATCCGCAGTGAGCACGCGGAAACGTGGTTCTTTGACGAGAACCAC





CCATATAGGACATGGGCTTACCATGGAAGCTATGAGGCCCCCACACAAGGGTCAGCGTCCTCTCTAAT





AAACGGGGTTGTCAGGCTCCTGTCAAAACCCTGGGATGTGGTGACTGGAGTCACAGGAATAGCCATGA





CCGACACCACACCGTATGGTCAGCAAAGAGTTTTCAAGGAAAAAGTGGACACTAGGGTGCCAGACCCC





CAAGAAGGCACTCGTCAGGTTATGAGCATGGTCTCTTCCTGGTTGTGGAAAGAGCTAGGCAAACACAA





ACGGCCACGAGTCTGTACCAAAGAAGAGTTCATCAACAAGGTTCGTAGCAATGCAGCATTAGGGGCAA





TATTTGAAGAGGAAAAAGAGTGGAAGACTGCAGTGGAAGCTGTGAACGATCCAAGGTTCTGGGCTCTA





GTGGACAAGGAAAGAGAGCACCACCTGAGAGGAGAGTGCCAGAGTTGTGTGTATAACATGATGGGAAA





AAGAGAAAAGAAACAAGGGGAATTTGGAAAGGCCAAGGGCAGCCGCGCCATCTGGTATATGTGGCTAG





GGGCTAGATTTCTAGAGTTCGAAGCCCTTGGATTCTTGAACGAGGATCACTGGATGGGGAGAGAGAAC





TCAGGAGGTGGTGTTGAAGGGCTGGGATTACAAAGACTCGGATATGTCCTAGAAGAGATGAGTCGTAT





ACCAGGAGGAAGGATGTATGCAGATGACACTGCTGGCTGGGACACCCGCATTAGCAGGTTTGATCTGG





AGAATGAAGCTCTAATCACCAACCAAATGGAGAAAGGGCACAGGGCCTTGGCATTGGCCATAATCAAG





TACACATACCAAAACAAAGTGGTAAAGGTCCTTAGACCAGCTGAAAAAGGGAAAACAGTTATGGACAT





TATTTCGAGACAAGACCAAAGGGGGAGCGGACAAGTTGTCACTTACGCTCTTAACACATTTACCAACC





TAGTGGTGCAACTCATTCGGAATATGGAGGCTGAGGAAGTTCTAGAGATGCAAGACTTGTGGCTGCTG





CGGAGGTCAGAGAAAGTGACCAACTGGTTGCAGAGCAACGGATGGGATAGGCTCAAACGAATGGCAGT





CAGTGGAGATGATTGCGTTGTGAAGCCAATTGATGATAGGTTTGCACATGCCCTCAGGTTCTTGAATG





ATATGGGAAAAGTTAGAAAGGACACACAAGAGTGGAAACCCTCAACTGGATGGGACAACTGGGAAGAA





GTTCCGTTTTGCTCCCACCACTTCAACAAGCTCCATCTCAAGGACGGGAGGTCCATTGTGGTTCCCTG





CCGCCACCAAGATGAACTGATTGGCCGGGCCCGCGTCTCTCCAGGGGCGGGATGGAGCATCCGGGAGA





CTGCTTGCCTAGCAAAATCATATGCGCAGATGTGGCAGCTCCTTTATTTCCACAGAAGGGACCTCCGA





CTGATGGCCAATGCCATTTGTTCATCTGTGCCAGTTGACTGGGTTCCAACTGGGAGAACTACCTGGTC





AATCCATGGAAAGGGAGAATGGATGACCACTGAAGACATGCTTGTGGTGTGGAACAGAGTGTGGATTG





AGGAGAACGACCACATGGAAGACAAGACCCCAGTTACGAAATGGACAGACATTCCCTATTTGGGAAAA





AGGGAAGACTTGTGGTGTGGATCTCTCATAGGGCACAGACCGCGCACCACCTGGGCTGAGAACATTAA





AAACACAGTCAACATGGTGCGCAGGATCATAGGTGATGAAGAAAAGTACATGGACTACCTATCCACCC





AAGTTCGCTACTTGGGTGAAGAAGGGTCTACACCTGGAGTGCTGTAA(NS5 end)






SEQ ID NO:10. Vaccine candidate ZIKV-DO-NS3, more extensive sequence of flanking regions, with the deoptimized region shown in underline, with positions of key regions indicated.










AGTTGTTGATCTGTGTGAATCAGACTGCGACAGTTCGAGTTTGAAGCGAAAGCTAGCAA






CAGTATCAACAGGTTTTATTTTGGATTTGGAAACGAGAGTTTCTGGTCATGAAAAACCCAAAAAAGAA





ATCCGGAGGATTCCGGATTGTCAATATGCTAAAACGCGGAGTAGCCCGTGTGAGCCCCTTTGGGGGCT





TGAAGAGGCTGCCAGCCGGACTTCTGCTGGGTCATGGGCCCATCAGGATGGTCTTGGCGATTCTAGCC





TTTTTGAGATTCACGGCAATCAAGCCATCACTGGGTCTCATCAATAGATGGGGTTCAGTTGGGAAAAA





AGAGGCTATGGAAATAATAAAGAAGTTCAAGAAAGATCTGGCTGCCATGCTGAGAATAATCAATGCTA





GGAAGGAGAAGAAGAGACGAGGCGCAGATACTAGTGTCGGAATTGTTGGCCTCCTGCTGACCACAGCT





ATGGCAGCGGAGGTCACTAGACGTGGGAGTGCATACTATATGTACTTGGACAGAAACGATGCTGGGGA





GGCCATATCTTTTCCAACCACATTGGGGATGAATAAGTGTTATATACAGATCATGGATCTTGGACACA





TGTGTGATGCCACCATGAGCTATGAATGCCCTATGCTGGATGAGGGGGTGGAACCAGATGACGTCGAT





TGTTGGTGCAACACGACGTCAACTTGGGTTGTGTACGGAACCTGCCATCACAAAAAAGGTGAAGCACG





GAGATCTAGAAGAGCTGTGACGCTCCCCTCCCATTCCACTAGGAAGCTGCAAACGCGGTCGCAAACCT





GGTTGGAATCAAGAGAATACACAAAGCACTTGATTAGAGTCGAAAATTGGATATTCAGGAACCCTGGC





TTCGCGTTAGCAGCAGCTGCCATCGCTTGGCTTTTGGGAAGCTCAACGAGCCAAAAAGTCATATACTT





GGTCATGATACTGCTGATTGCCCCGGCATACAGCATCAGGTGCATAGGAGTCAGCAATAGGGACTTTG





TGGAAGGTATGTCAGGTGGGACTTGGGTTGATGTTGTCTTGGAACATGGAGGTTGTGTCACCGTAATG





GCACAGGACAAACCGACTGTCGACATAGAGCTGGTTACAACAACAGTCAGCAACATGGCGGAGGTAAG





ATCCTACTGCTATGAGGCATCAATATCAGACATGGCTTCGGACAGCCGCTGCCCAACACAAGGTGAAG





CCTACCTTGACAAGCAATCAGACACTCAATATGTCTGCAAAAGAACGTTAGTGGACAGAGGCTGGGGA





AATGGATGTGGACTTTTTGGCAAAGGGAGCCTGGTGACATGCGCTAAGTTTGCATGCTCCAAGAAAAT





GACCGGGAAGAGCATCCAGCCAGAGAATCTGGAGTACCGGATAATGCTGTCAGTTCATGGCTCCCAGC





ACAGTGGGATGATCGTTAATGACACAGGACATGAAACTGATGAGAATAGAGCGAAAGTTGAGATAACG





CCCAATTCACCAAGAGCCGAAGCCACCCTGGGGGGTTTTGGAAGCCTAGGACTTGATTGTGAACCGAG





GACAGGCCTTGACTTTTCAGATTTGTATTACTTGACTATGAATAACAAGCACTGGTTGGTTCACAAGG





AGTGGTTCCACGACATTCCATTACCTTGGCACGCTGGGGCAGACACCGGAACTCCACACTGGAACAAC





AAAGAAGCACTGGTAGAGTTCAAGGACGCACATGCCAAAAGGCAAACTGTCGTGGTTCTAGGGAGTCA





AGAAGGAGCAGTTCACACGGCCCTTGCTGGAGCTCTGGAGGCTGAGATGGATGGTGCAAAGGGAAGGC





TGTCCTCTGGCCACTTGAAATGTCGCCTGAAAATGGATAAACTTAGATTGAAGGGCGTGTCATACTCC





TTGTGTACTGCAGCGTTCACATTCACCAAGATCCCGGCTGAAACACTGCACGGGACAGTCACAGTGGA





GGTACAGTACGCAGGGACAGATGGACCTTGCAAGGTTCCAGCTCAGATGGCGGTGGACATGCAAACTC





TGACCCCAGTTGGGAGGTTGATAACCGCTAACCCCGTAATCACTGAAAGCACTGAGAACTCTAAGATG





ATGCTGGAACTTGATCCACCATTTGGGGACTCTTACATTGTCATAGGAGTCGGGGAGAAGAAGATCAC





CCACCACTGGCACAGGAGTGGCAGCACCATTGGAAAAGCATTTGAAGCCACTGTGAGAGGTGCCAAGA





GAATGGCAGTCTTGGGAGACACAGCCTGGGACTTTGGATCAGTTGGAGGCGCTCTCAACTCATTGGGC





AAGGGCATCCATCAAATTTTTGGAGCAGCTTTCAAATCATTGTTTGGAGGAATGTCCTGGTTCTCACA





AATTCTCATTGGAACGTTGCTGATGTGGTTGGGTCTGAACACAAAGAATGGATCTATTTCCCTTATGT





GCTTGGCCTTAGGGGGGGTGTTGATCTTCTTATCCACAGCCGTCTCTGCT(NS1)GATGTGGGGTGCT





CGGTGGACTTCTCAAAGAAGGAGACGAGATGCGGTACAGGGGTGTTCGTCTATAACGACGTTGAAGCC





TGGAGGGACAGGTACAAGTACCATCCTGACTCCCCCCGTAGATTGGCAGCAGCAGTCAAGCAAGCCTG





GGAAGATGGTATCTGCGGGATCTCCTCTGTTTCAAGAATGGAAAACATCATGTGGAGATCAGTAGAAG





GGGAGCTCAACGCAATCCTGGAAGAGAATGGAGTTCAACTGACGGTCGTTGTGGGATCTGTAAAAAAC





CCCATGTGGAGAGGTCCACAGAGATTGCCCGTGCCTGTGAACGAGCTGCCCCACGGCTGGAAGGCTTG





GGGGAAATCGTACTTCGTCAGAGCAGCAAAGACAAATAACAGCTTTGTCGTGGATGGTGACACACTGA





AGGAATGCCCACTCAAACATAGAGCATGGAACAGCTTTCTTGTGGAGGATCATGGGTTCGGGGTATTT





CACACTAGTGTCTGGCTCAAGGTTAGAGAAGATTATTCATTAGAGTGTGATCCAGCCGTTATTGGAAC





AGCTGTTAAGGGAAAGGAGGCTGTACACAGTGATCTAGGCTACTGGATTGAGAGTGAGAAGAATGACA





CATGGAGGCTGAAGAGGGCCCATCTGATCGAGATGAAAACATGTGAATGGCCAAAGTCCCACACATTG





TGGACAGATGGAATAGAAGAGAGTGATCTGATCATACCCAAGTCTTTAGCTGGGCCACTCAGCCATCA





CAATACCAGAGAGGGCTACAGGACCCAAATGAAAGGGCCATGGCACAGTGAAGAGCTTGAAATTCGGT





TTGAGGAATGCCCAGGCACTAAGGTCCACGTGGAGGAAACATGTGGAACAAGAGGACCATCTCTGAGA





TCAACCACTGCAAGCGGAAGGGTGATCGAGGAATGGTGCTGCAGGGAGTGCACAATGCCCCCACTGTC





GTTCCGGGCTAAAGATGGCTGTTGGTATGGAATGGAGATAAGGCCCAGGAAAGAACCAGAAAGCAACT





TAGTAAGGTCAATGGTGACTGCA(NS2A)GGATCAACTGATCACATGGACCACTTCTCCCTTGGAGTG





CTTGTGATCCTGCTCATGGTGCAGGAAGGGCTGAAGAAGAGAATGACCACAAAGATCATCATAAGCAC





ATCAATGGCAGTGCTGGTAGCTATGATCCTGGGAGGATTTTCAATGAGTGACCTGGCTAAGCTTGCAA





TTTTGATGGGTGCCACCTTCGCGGAAATGAACACTGGAGGAGATGTAGCTCATCTGGCGCTGATAGCG





GCATTCAAAGTCAGACCAGCGTTGCTGGTATCTTTCATCTTCAGAGCTAATTGGACACCCCGTGAAAG





CATGCTGCTGGCCTTGGCCTCGTGTCTTTTGCAAACTGCGATCTCCGCCTTGGAAGGCGACCTGATGG





TTCTCATCAATGGTTTTGCTTTGGCCTGGTTGGCAATACGAGCGATGGTTGTTCCACGCACTGATAAC





ATCACCTTGGCAATCCTGGCTGCTCTGACACCACTGGCCCGGGGCACACTGCTTGTGGCGTGGAGAGC





AGGCCTTGCTACTTGCGGGGGGTTTATGCTCCTCTCTCTGAAGGGAAAAGGCAGTGTGAAGAAGAACT





TACCATTTGTCATGGCCCTGGGACTAACCGCTGTGAGGCTGGTCGACCCCATCAACGTGGTGGGACTG





CTGTTACTCACAAGGAGTGGGAAGCGG(NS2B)AGCTGGCCCCCTAGCGAAGTACTCACAGCTGTTGG





CCTGATATGCGCATTGGCTGGAGGGTTCGCCAAGGCAGATATAGAGATGGCTGGGCCCATGGCCGCGG





TCGGTCTGCTAATTGTCAGTTACGTGGTCTCAGGAAAGAGTGTGGACATGTACATTGAAAGAGCAGGT





GACATCACATGGGAAAAAGATGCGGAAGTCACTGGAAACAGTCCCCGGCTCGATGTGGCGCTAGATGA





GAGTGGTGATTTCTCCCTGGTGGAGGATGACGGTCCCCCCATGAGAGAGATCATACTCAAGGTGGTCC





TGATGACCATCTGTGGCATGAATCCAATAGCCATACCCTTTGCAGCTGGAGCGTGGTACGTATACGTG





AAGACTGGAAAAAGG(NS3)AGTGGTGCGCTCTGGGATGTCCCCGCGCCCAAGGAAGTAAAAAAGGGT






GAGACCACGGATGGCGTCTACCGAGTAATGACCCGTCGACTACTCGGTTCGACGCAAGTAGGCGTCGG







CGTAATGCAAGAGGGTGTATTCCACACCATGTGGCATGTAACGAAAGGCTCGGCGCTACGATCCGGTG







AAGGTCGATTGGATCCGTACTGGGGCGATGTAAAGCAAGATCTAGTCTCGTACTGTGGTCCGTGGAAG







CTCGATGCCGCCTGGGACGGTCACTCCGAGGTCCAGTTATTGGCCGTCCCGCCGGGCGAGCGAGCGCG







CAATATACAAACTCTACCCGGCATATTCAAGACGAAGGATGGTGACATTGGCGCGGTAGCGCTAGATT







ACCCGGCGGGCACTTCGGGCTCGCCGATACTCGACAAGTGTGGTCGAGTCATAGGCTTGTATGGTAAT







GGTGTAGTCATAAAAAATGGTAGTTATGTAAGTGCCATAACCCAAGGTCGCCGCGAAGAAGAGACCCC







CGTAGAGTGCTTCGAGCCCTCGATGCTAAAGAAGAAGCAACTCACTGTATTAGACTTGCATCCCGGCG







CGGGTAAAACCCGCCGAGTATTGCCCGAAATAGTACGTGAAGCCATAAAAACGCGATTACGTACCGTC







ATATTAGCGCCGACCCGCGTAGTAGCGGCGGAAATGGAGGAGGCCTTGCGAGGTTTGCCAGTCCGTTA







TATGACGACGGCGGTAAATGTAACCCATTCGGGCACGGAAATAGTAGACTTAATGTGCCATGCCACCT







TCACCTCGCGTCTCCTCCAGCCGATACGAGTACCCAATTATAATCTATATATTATGGATGAGGCCCAT







TTCACGGATCCCTCGAGTATAGCGGCGCGAGGCTACATTTCGACGCGCGTAGAGATGGGTGAGGCGGC







GGCCATATTCATGACCGCCACGCCGCCGGGCACCCGTGACGCGTTCCCGGACTCGAATTCGCCGATTA







TGGACACCGAAGTCGAAGTACCGGAGCGAGCCTGGTCCTCGGGTTTTGATTGGGTCACGGATCATTCG







GGCAAAACGGTATGGTTCGTACCGTCCGTCCGCAATGGTAATGAGATAGCGGCGTGTCTAACGAAGGC







GGGCAAACGGGTAATACAGTTATCCCGAAAGACCTTCGAGACGGAGTTCCAAAAAACGAAACATCAAG







AGTGGGACTTCGTAGTCACGACCGACATTTCGGAGATGGGTGCCAATTTCAAAGCAGACCGTGTAATA







GATTCGCGCCGATGCCTCAAGCCGGTAATATTGGATGGTGAGCGAGTAATTCTAGCGGGCCCCATGCC







CGTAACGCATGCCTCCGCGGCCCAACGCCGCGGTCGCATAGGTCGCAATCCCAATAAACCCGGCGATG







AGTATCTATATGGCGGTGGTTGCGCGGAGACCGACGAAGACCATGCGCATTGGTTGGAAGCGCGAATG







TTATTGGACAATATTTACTTACAAGATGGTTTAATAGCCTCGTTATATCGACCCGAGGCCGACAAAGT







AGCGGCCATTGAGGGCGAGTTCAAGTTGCGCACGGAGCAACGCAAGACCTTCGTCGAATTAATGAAAC







GAGGCGATTTGCCCGTATGGCTAGCCTATCAAGTAGCGTCGGCAGGTATAACCTACACGGATCGACGA







TGGTGCTTCGATGGTACGACCAATAATACCATAATGGAAGATAGTGTGCCGGCAGAGGTGTGGACCAG






ACACGGAGAGAAAAGAGTGCTCAAACCGAGGTGGATGGACGCCAGAGTTTGTTCAGATCATGCGGCCC





TGAAGTCATTCAAGGAGTTTGCCGCTGGGAAAAGA(NS4A)GGAGCGGCTTTTGGAGTGATGGAAGCC





CTGGGAACACTGCCAGGACACATGACAGAGAGATTCCAGGAAGCCATTGACAACCTCGCTGTGCTCAT





GCGGGCAGAGACTGGAAGCAGGCCTTACAAAGCCGCGGCGGCCCAATTGCCGGAGACCCTAGAGACCA





TAATGCTTTTGGGGTTGCTGGGAACAGTCTCGCTGGGAATCTTCTTCGTCTTGATGAGGAACAAGGGC





ATAGGGAAGATGGGCTTTGGAATGGTGACTCTTGGGGCCAGCGCATGGCTCATGTGGCTCTCGGAAAT





TGAGCCAGCCAGAATTGCATGTGTCCTCATTGTTGTGTTCCTATTGCTGGTGGTGCTCATACCTGAGC





CAGAAAAGCAAAGATCTCCCCAGGACAACCAAATGGCAATCATCATCATGGTAGCAGTAGGTCTTCTG





GGCTTGATTACCGCC(NS4B)AATGAACTCGGATGGTTGGAGAGAACAAAGAGTGACCTAAGCCATCT





AATGGGAAGGAGAGAGGAGGGGGCAACCATAGGATTCTCAATGGACATTGACCTGCGGCCAGCCTCAG





CTTGGGCCATCTATGCTGCCTTGACAACTTTCATTACCCCAGCCGTCCAACATGCAGTGACCACCTCA





TACAACAACTACTCCTTAATGGCGATGGCCACGCAAGCTGGAGTGTTGTTTGGTATGGGCAAAGGGAT





GCCATTCTACGCATGGGACTTTGGAGTCCCGCTGCTAATGATAGGTTGCTACTCACAATTAACACCCC





TGACCCTAATAGTGGCCATCATTTTGCTCGTGGCGCACTACATGTACTTGATCCCAGGGCTGCAGGCA





GCAGCTGCGCGTGCTGCCCAGAAGAGAACGGCAGCTGGCATCATGAAGAACCCTGTTGTGGATGGAAT





AGTGGTGACTGACATTGACACAATGACAATTGACCCCCAAGTGGAGAAAAAGATGGGACAGGTGCTAC





TCATAGCAGTAGCCGTCTCCAGCGCCATACTGTCGCGGACCGCCTGGGGGTGGGGGGAGGCTGGGGCC





CTGATCACAGCCGCAACTTCCACTTTGTGGGAAGGCTCTCCGAACAAGTACTGGAACTCCTCTACAGC





CACTTCACTGTGTAACATTTTTAGGGGAAGTTACTTGGCTGGAGCTTCTCTAATCTACACAGTAACAA





GAAACGCTGGCTTGGTCAAGAGACGT(NS5)GGGGGTGGAACAGGAGAGACCCTGGGAGAGAAATGGA





AGGCCCGCTTGAACCAGATGTCGGCCCTGGAGTTCTACTCCTACAAAAAGTCAGGCATCACCGAGGTG





TGCAGAGAAGAGGCCCGCCGCGCCCTCAAGGACGGTGTGGCAACGGGAGGCCATGCTGTGTCCCGAGG





AAGTGCAAAGCTGAGATGGTTGGTGGAGCGGGGATACCTGCAGCCCTATGGAAAGGTCATTGATCTTG





GATGTGGCAGAGGGGGCTGGAGTTACTACGCCGCCACCATCCGCAAAGTTCAAGAAGTGAAAGGATAC





ACAAAAGGAGGCCCTGGTCATGAAGAACCCGTGTTGGTGCAAAGCTATGGGTGGAACATAGTCCGTCT





TAAGAGTGGGGTGGACGTCTTTCATATGGCGGCTGAGCCGTGTGACACGCTGCTGTGTGACATAGGTG





AGTCATCATCTAGTCCTGAAGTGGAAGAAGCACGGACGCTCAGAGTCCTCTCCATGGTGGGGGATTGG





CTTGAAAAAAGACCAGGAGCCTTTTGTATAAAAGTGTTGTGCCCATACACCAGCACTATGATGGAAAC





CCTGGAGCGACTGCAGCGTAGGTATGGGGGAGGACTGGTCAGAGTGCCACTCTCCCGCAACTCTACAC





ATGAGATGTACTGGGTCTCTGGAGCGAAAAGCAACACCATAAAAAGTGTGTCCACCACGAGCCAGCTC





CTCTTGGGGCGCATGGACGGGCCTAGAAGGCCAGTGAAATATGAGGAGGATGTGAATCTCGGCTCTGG





CACGCGGGCTGTGGTAAGCTGCGCTGAAGCTCCCAACATGAAGATCATTGGTAACCGCATTGAAAGGA





TCCGCAGTGAGCACGCGGAAACGTGGTTCTTTGACGAGAACCACCCATATAGGACATGGGCTTACCAT





GGAAGCTATGAGGCCCCCACACAAGGGTCAGCGTCCTCTCTAATAAACGGGGTTGTCAGGCTCCTGTC





AAAACCCTGGGATGTGGTGACTGGAGTCACAGGAATAGCCATGACCGACACCACACCGTATGGTCAGC





AAAGAGTTTTCAAGGAAAAAGTGGACACTAGGGTGCCAGACCCCCAAGAAGGCACTCGTCAGGTTATG





AGCATGGTCTCTTCCTGGTTGTGGAAAGAGCTAGGCAAACACAAACGGCCACGAGTCTGTACCAAAGA





AGAGTTCATCAACAAGGTTCGTAGCAATGCAGCATTAGGGGCAATATTTGAAGAGGAAAAAGAGTGGA





AGACTGCAGTGGAAGCTGTGAACGATCCAAGGTTCTGGGCTCTAGTGGACAAGGAAAGAGAGCACCAC





CTGAGAGGAGAGTGCCAGAGTTGTGTGTATAACATGATGGGAAAAAGAGAAAAGAAACAAGGGGAATT





TGGAAAGGCCAAGGGCAGCCGCGCCATCTGGTATATGTGGCTAGGGGCTAGATTTCTAGAGTTCGAAG





CCCTTGGATTCTTGAACGAGGATCACTGGATGGGGAGAGAGAACTCAGGAGGTGGTGTTGAAGGGCTG





GGATTACAAAGACTCGGATATGTCCTAGAAGAGATGAGTCGTATACCAGGAGGAAGGATGTATGCAGA





TGACACTGCTGGCTGGGACACCCGCATTAGCAGGTTTGATCTGGAGAATGAAGCTCTAATCACCAACC





AAATGGAGAAAGGGCACAGGGCCTTGGCATTGGCCATAATCAAGTACACATACCAAAACAAAGTGGTA





AAGGTCCTTAGACCAGCTGAAAAAGGGAAAACAGTTATGGACATTATTTCGAGACAAGACCAAAGGGG





GAGCGGACAAGTTGTCACTTACGCTCTTAACACATTTACCAACCTAGTGGTGCAACTCATTCGGAATA





TGGAGGCTGAGGAAGTTCTAGAGATGCAAGACTTGTGGCTGCTGCGGAGGTCAGAGAAAGTGACCAAC





TGGTTGCAGAGCAACGGATGGGATAGGCTCAAACGAATGGCAGTCAGTGGAGATGATTGCGTTGTGAA





GCCAATTGATGATAGGTTTGCACATGCCCTCAGGTTCTTGAATGATATGGGAAAAGTTAGAAAGGACA





CACAAGAGTGGAAACCCTCAACTGGATGGGACAACTGGGAAGAAGTTCCGTTTTGCTCCCACCACTTC





AACAAGCTCCATCTCAAGGACGGGAGGTCCATTGTGGTTCCCTGCCGCCACCAAGATGAACTGATTGG





CCGGGCCCGCGTCTCTCCAGGGGCGGGATGGAGCATCCGGGAGACTGCTTGCCTAGCAAAATCATATG





CGCAGATGTGGCAGCTCCTTTATTTCCACAGAAGGGACCTCCGACTGATGGCCAATGCCATTTGTTCA





TCTGTGCCAGTTGACTGGGTTCCAACTGGGAGAACTACCTGGTCAATCCATGGAAAGGGAGAATGGAT





GACCACTGAAGACATGCTTGTGGTGTGGAACAGAGTGTGGATTGAGGAGAACGACCACATGGAAGACA





AGACCCCAGTTACGAAATGGACAGACATTCCCTATTTGGGAAAAAGGGAAGACTTGTGGTGTGGATCT





CTCATAGGGCACAGACCGCGCACCACCTGGGCTGAGAACATTAAAAACACAGTCAACATGGTGCGCAG





GATCATAGGTGATGAAGAAAAGTACATGGACTACCTATCCACCCAAGTTCGCTACTTGGGTGAAGAAG





GGTCTACACCTGGAGTGCTGTAA(NS5 end)





GCACCAATCTTAATGTTGTCAGGCCTGCTAGTCAGCCACAGCTTGGGGAAAGCTGTGCAGCCTGTGAC





CCCCCAGGAGAAGCTGGGAAACCAAGCCTATAGTCAGGCCGAGAACGCCATGGCACGGAAGAAGCCAT





GCTGCCTGTGAGCCCCTCAGAGGATACTGAGTCAAAAAACCCCACGCGCTTGGAGGCGCAGGATGGGA





AAAGAAGGTGGCGACCTTCCCCACCCTTCAATCTGGGGCCTGAACTGGAGATCAGCTGTGGATCCCCA





GAAGAGGGACTAGTGGTTAGAGGAGACCCCCCGGAAAACGCAAAACAGCATATTGACGCTGGGAAAGA





CCAGAGACTCCATGAGTTTCCACCACGCTGGCCGCCAGGCACAGATCGCCGAACTTCGGCGGCCGGTG





TGGGGAAATCCATGGTTTCT






SEQ ID NO:11. Vaccine candidate ZIKV-DO-scattered, more extensive sequence of flanking regions, with deoptimized region shown in underline, with locations of key regions indicated.










AGTTGTTGATCTGTGTGAATCAGACTGCGACAGTTCGAGTTTGAAGCGAAAGCTAGCAA






CAGTATCAACAGGTTTTATTTTGGATTTGGAAACGAGAGTTTCTGGTCATGAAAAACCCAAAAAAGAA





ATCCGGAGGATTCCGGATTGTCAATATGCTAAAACGCGGAGTAGCCCGTGTGAGCCCCTTTGGGGGCT





TGAAGAGGCTGCCAGCCGGACTTCTGCTGGGTCATGGGCCCATCAGGATGGTCTTGGCGATTCTAGCC





TTTTTGAGATTCACGGCAATCAAGCCATCACTGGGTCTCATCAATAGATGGGGTTCAGTTGGGAAAAA





AGAGGCTATGGAAATAATAAAGAAGTTCAAGAAAGATCTGGCTGCCATGCTGAGAATAATCAATGCTA





GGAAGGAGAAGAAGAGACGAGGCGCAGATACTAGTGTCGGAATTGTTGGCCTCCTGCTGACCACAGCT





ATGGCAGCGGAGGTCACTAGACGTGGGAGTGCATACTATATGTACTTGGACAGAAACGATGCTGGGGA





GGCCATATCTTTTCCAACCACATTGGGGATGAATAAGTGTTATATACAGATCATGGATCTTGGACACA





TGTGTGATGCCACCATGAGCTATGAATGCCCTATGCTGGATGAGGGGGTGGAACCAGATGACGTCGAT





TGTTGGTGCAACACGACGTCAACTTGGGTTGTGTACGGAACCTGCCATCACAAAAAAGGTGAAGCACG





GAGATCTAGAAGAGCTGTGACGCTCCCCTCCCATTCCACTAGGAAGCTGCAAACGCGGTCGCAAACCT





GGTTGGAATCAAGAGAATACACAAAGCACTTGATTAGAGTCGAAAATTGGATATTCAGGAACCCTGGC





TTCGCGTTAGCAGCAGCTGCCATCGCTTGGCTTTTGGGAAGCTCAACGAGCCAAAAAGTCATATACTT





GGTCATGATACTGCTGATTGCCCCGGCATACAGCATCAGGTGCATAGGAGTCAGCAATAGGGACTTTG





TGGAAGGTATGTCAGGTGGGACTTGGGTTGATGTTGTCTTGGAACATGGAGGTTGTGTCACCGTAATG





GCACAGGACAAACCGACTGTCGACATAGAGCTGGTTACAACAACAGTCAGCAACATGGCGGAGGTAAG





ATCCTACTGCTATGAGGCATCAATATCAGACATGGCTTCGGACAGCCGCTGCCCAACACAAGGTGAAG





CCTACCTTGACAAGCAATCAGACACTCAATATGTCTGCAAAAGAACGTTAGTGGACAGAGGCTGGGGA





AATGGATGTGGACTTTTTGGCAAAGGGAGCCTGGTGACATGCGCTAAGTTTGCATGCTCCAAGAAAAT





GACCGGGAAGAGCATCCAGCCAGAGAATCTGGAGTACCGGATAATGCTGTCAGTTCATGGCTCCCAGC





ACAGTGGGATGATCGTTAATGACACAGGACATGAAACTGATGAGAATAGAGCGAAAGTTGAGATAACG





CCCAATTCACCAAGAGCCGAAGCCACCCTGGGGGGTTTTGGAAGCCTAGGACTTGATTGTGAACCGAG





GACAGGCCTTGACTTTTCAGATTTGTATTACTTGACTATGAATAACAAGCACTGGTTGGTTCACAAGG





AGTGGTTCCACGACATTCCATTACCTTGGCACGCTGGGGCAGACACCGGAACTCCACACTGGAACAAC





AAAGAAGCACTGGTAGAGTTCAAGGACGCACATGCCAAAAGGCAAACTGTCGTGGTTCTAGGGAGTCA





AGAAGGAGCAGTTCACACGGCCCTTGCTGGAGCTCTGGAGGCTGAGATGGATGGTGCAAAGGGAAGGC





TGTCCTCTGGCCACTTGAAATGTCGCCTGAAAATGGATAAACTTAGATTGAAGGGCGTGTCATACTCC





TTGTGTACTGCAGCGTTCACATTCACCAAGATCCCGGCTGAAACACTGCACGGGACAGTCACAGTGGA





GGTACAGTACGCAGGGACAGATGGACCTTGCAAGGTTCCAGCTCAGATGGCGGTGGACATGCAAACTC





TGACCCCAGTTGGGAGGTTGATAACCGCTAACCCCGTAATCACTGAAAGCACTGAGAACTCTAAGATG





ATGCTGGAACTTGATCCACCATTTGGGGACTCTTACATTGTCATAGGAGTCGGGGAGAAGAAGATCAC





CCACCACTGGCACAGGAGTGGCAGCACCATTGGAAAAGCATTTGAAGCCACTGTGAGAGGTGCCAAGA





GAATGGCAGTCTTGGGAGACACAGCCTGGGACTTTGGATCAGTTGGAGGCGCTCTCAACTCATTGGGC





AAGGGCATCCATCAAATTTTTGGAGCAGCTTTCAAATCATTGTTTGGAGGAATGTCCTGGTTCTCACA





AATTCTCATTGGAACGTTGCTGATGTGGTTGGGTCTGAACACAAAGAATGGATCTATTTCCCTTATGT





GCTTGGCCTTAGGGGGGGTGTTGATCTTCTTATCCACAGCCGTCTCTGCT(NS1)GATGTAGGGTGCT






CGGTAGACTTCTCAAAGAAGGAAACGAGATGCGGTACGGGGGTATTCGTCTATAACGATGTTGAAGCC







TGGCGTGACAGGTACAAATACCATCCTGATTCCCCCCGTCGATTGGCAGCAGCGGTCAAGCAAGCGTG







GGAAGATGGTATATGCGGGATCTCGTCTGTTTCACGTATGGAAAACATAATGTGGAGATCGGTAGAAG







GGGAGCTAAACGCAATCCTAGAAGAGAATGGTGTTCAACTGACGGTAGTTGTAGGATCTGTAAAAAAC







CCGATGTGGAGAGGTCCGCAGAGATTGCCGGTACCTGTAAACGAGCTGCCCCACGGTTGGAAGGCTTG







GGGTAAATCGTACTTCGTAAGAGCAGCAAAAACAAATAACTCGTTTGTCGTGGATGGTGATACACTGA







AGGAATGTCCACTCAAACATCGTGCATGGAACTCGTTTCTTGTAGAGGATCATGGTTTCGGGGTATTT







CATACTAGTGTCTGGCTAAAGGTTAGAGAAGATTATTCGTTAGAGTGTGATCCGGCCGTTATTGGTAC







AGCTGTTAAAGGAAAGGAGGCGGTACACAGTGATCTAGGTTACTGGATTGAAAGTGAGAAGAATGATA







CATGGAGGCTAAAGAGGGCCCATCTAATCGAGATGAAAACGTGTGAATGGCCGAAGTCCCACACGTTG







TGGACAGATGGTATAGAAGAGTCGGATCTGATCATACCGAAGTCTTTAGCGGGGCCACTCAGTCATCA







CAATACGAGAGAGGGCTATAGGACCCAAATGAAAGGTCCATGGCACTCGGAAGAGCTTGAAATACGGT







TTGAGGAATGTCCAGGCACTAAAGTCCACGTGGAAGAAACATGTGGTACAAGAGGACCGTCTCTGAGA







TCGACCACTGCAAGTGGAAGGGTAATCGAGGAATGGTGTTGCAGGGAGTGCACGATGCCCCCACTATC







GTTCCGGGCGAAAGATGGCTGTTGGTATGGTATGGAGATACGTCCCAGGAAAGAACCGGAAAGCAACT







TAGTACGTTCAATGGTAACTGCA(NS2A)GGATCGACTGATCACATGGATCACTTCTCCCTTGGAGTA







CTTGTAATCCTGCTCATGGTACAGGAAGGGCTAAAGAAGAGAATGACGACAAAGATCATAATAAGCAC







ATCGATGGCAGTACTGGTAGCTATGATACTGGGAGGATTTTCGATGAGTGACCTAGCTAAGCTTGCGA







TTTTGATGGGTGCGACCTTCGCGGAAATGAATACTGGAGGAGATGTAGCGCATCTGGCGCTAATAGCG







GCATTTAAAGTCAGACCGGCGTTGCTGGTATCGTTCATCTTCCGTGCTAATTGGACGCCCCGTGAATC







GATGCTGCTGGCGTTGGCCTCGTGTCTATTGCAAACTGCGATATCCGCCTTGGAAGGTGACCTGATGG







TACTCATCAATGGTTTTGCGTTGGCCTGGTTAGCAATACGAGCGATGGTAGTTCCACGCACGGATAAC







ATCACGTTGGCAATCCTAGCTGCTCTGACGCCACTGGCCCGTGGCACACTGCTTGTAGCGTGGAGAGC







GGGCCTTGCTACGTGCGGGGGGTTTATGCTACTCTCTCTGAAAGGAAAAGGCAGTGTAAAGAAGAACT







TACCGTTTGTCATGGCGCTGGGACTAACGGCTGTAAGGCTGGTCGATCCCATCAACGTAGTAGGACTG







CTGTTACTAACAAGGAGTGGGAAACGG(NS2B)AGCTGGCCGCCTAGCGAAGTACTAACAGCTGTTGG







TCTGATATGCGCATTGGCGGGAGGGTTCGCGAAGGCAGATATAGAAATGGCTGGGCCGATGGCCGCGG







TAGGTCTGCTAATAGTCAGTTACGTAGTCTCAGGAAAAAGTGTGGACATGTATATTGAAAGAGCGGGT







GACATCACATGGGAAAAAGATGCGGAAGTAACTGGAAACAGTCCGCGGCTCGATGTAGCGCTAGATGA







AAGTGGTGATTTTTCCCTGGTAGAGGATGACGGTCCCCCCATGAGAGAAATCATACTCAAAGTAGTCC







TGATGACGATCTGTGGCATGAATCCGATAGCCATACCGTTTGCAGCTGGTGCGTGGTACGTATACGTA







AAGACTGGAAAACGT(NS3)AGTGGTGCTCTATGGGATGTACCTGCTCCCAAAGAAGTAAAAAAAGGG







GAGACCACGGATGGAGTATACAGAGTAATGACGCGTAGACTGCTAGGTTCGACACAAGTTGGTGTAGG







AGTTATGCAAGAAGGGGTCTTTCATACTATGTGGCATGTCACAAAAGGTTCCGCGCTGCGTAGCGGTG







AAGGTAGACTTGATCCGTACTGGGGAGATGTAAAGCAGGATCTAGTATCATACTGTGGTCCGTGGAAG







CTAGATGCGGCCTGGGACGGTCACAGCGAGGTACAGCTCTTGGCGGTACCCCCCGGAGAAAGAGCGAG







GAATATCCAGACTCTACCCGGAATATTTAAAACAAAGGATGGTGACATTGGAGCGGTAGCGCTGGATT







ATCCAGCAGGAACGTCAGGATCTCCGATCCTAGACAAATGTGGGAGAGTAATAGGACTTTATGGTAAT







GGGGTCGTAATCAAAAATGGTAGTTATGTTAGTGCGATCACCCAAGGTAGGAGGGAAGAAGAAACTCC







TGTTGAATGCTTCGAGCCGTCGATGCTGAAAAAGAAGCAGCTAACGGTCTTAGACTTACATCCTGGAG







CGGGGAAAACCCGAAGAGTTCTTCCGGAAATAGTCCGTGAAGCGATAAAAACACGTCTCCGTACTGTA







ATCTTAGCTCCGACCAGGGTTGTAGCTGCTGAAATGGAAGAGGCCCTTCGTGGGCTTCCAGTACGTTA







TATGACGACAGCAGTCAATGTAACCCACTCTGGTACAGAAATCGTTGACTTAATGTGTCATGCCACCT







TTACTTCACGTCTACTACAACCAATCAGAGTTCCCAACTATAATCTATATATTATGGATGAAGCCCAC







TTCACGGATCCCTCAAGTATAGCGGCAAGAGGATATATTTCAACAAGGGTTGAAATGGGCGAGGCGGC







GGCCATCTTCATGACGGCCACGCCACCGGGAACCCGTGATGCATTTCCGGATTCCAACTCACCGATTA







TGGACACGGAAGTGGAAGTTCCAGAGAGAGCGTGGAGCTCAGGTTTTGATTGGGTAACGGATCATTCG







GGAAAAACAGTTTGGTTTGTTCCGAGCGTGAGGAATGGCAATGAGATAGCAGCTTGTCTAACAAAGGC







TGGTAAACGGGTCATACAACTCAGCAGAAAAACTTTTGAAACAGAGTTCCAAAAAACAAAACATCAAG







AATGGGACTTTGTTGTTACAACTGACATATCAGAGATGGGTGCCAACTTTAAAGCTGACCGTGTCATA







GATTCGAGGAGATGCCTAAAGCCGGTCATACTAGATGGCGAGCGAGTCATTCTGGCGGGACCCATGCC







GGTCACACATGCGAGCGCTGCCCAAAGGAGGGGGCGTATAGGCAGGAATCCGAACAAACCTGGTGATG







AGTATCTATATGGAGGTGGTTGCGCAGAGACGGACGAAGACCATGCGCACTGGCTTGAAGCGAGAATG







CTCCTAGACAATATTTATCTCCAAGATGGTCTCATAGCCTCGCTATATCGACCTGAAGCCGACAAAGT







AGCGGCCATTGAGGGTGAGTTCAAGCTAAGGACGGAGCAACGTAAGACCTTTGTAGAACTCATGAAAA







GAGGTGATCTTCCTGTATGGCTGGCCTATCAAGTTGCATCTGCGGGAATAACCTATACAGATAGAAGA







TGGTGTTTTGATGGCACGACGAACAACACCATAATGGAAGATTCGGTGCCGGCAGAAGTGTGGACCAG







ACATGGAGAGAAACGTGTGCTCAAACCGAGGTGGATGGATGCCAGAGTTTGTTCAGATCATGCGGCGC







TGAAGTCATTTAAGGAGTTTGCGGCTGGGAAAAGA(NS4A)GGTGCGGCTTTTGGTGTAATGGAAGCC







CTGGGAACACTGCCGGGACACATGACGGAGAGATTCCAAGAAGCCATTGATAACCTCGCTGTACTCAT







GCGGGCGGAGACTGGAAGTAGGCCTTACAAAGCCGCGGCGGCGCAATTGCCGGAAACCCTAGAGACGA







TARTGCTTTTAGGGTTGCTGGGTACAGTCTCGCTAGGAATCTTCTTTGTCTTGATGCGTAACAAGGGC







ATAGGTAAGATGGGCTTTGGTATGGTGACTCTAGGGGCCAGCGCGTGGCTCATGTGGCTATCGGAAAT







TGAACCAGCCAGAATAGCATGTGTCCTAATTGTTGTATTCCTATTGCTGGTAGTACTCATACCTGAAC







CAGAAAAGCAACGTTCTCCCCAGGATAACCAAATGGCAATAATCATCATGGTAGCGGTAGGTCTTCTA







GGCTTGATTACGGCC(NS4B)AATGAACTAGGATGGTTGGAAAGAACAAAGTCGGACCTAAGCCATCT







AATGGGTAGGAGAGAGGAAGGGGCAACCATAGGTTTCTCAATGGATATTGACCTGCGTCCAGCCTCAG







CGTGGGCCATCTATGCGGCCTTGACAACGTTCATTACCCCGGCCGTCCAACATGCGGTGACCACCTCG







TACAACAACTATTCCTTAATGGCGATGGCGACGCAAGCTGGTGTGTTGTTTGGTATGGGTAAAGGGAT







GCCGTTCTACGCATGGGATTTTGGAGTCCCGCTACTAATGATAGGTTGTTACTCACAATTAACGCCCC







TGACCCTAATAGTAGCCATCATTTTACTCGTGGCGCATTACATGTACTTAATCCCAGGGCTACAGGCA







GCAGCGGCGCGTGCTGCGCAGAAGAGAACGGCGGCTGGCATCATGAAAAACCCTGTTGTAGATGGAAT







AGTAGTGACTGACATAGACACAATGACGATTGACCCCCAAGTAGAGAAAAAGATGGGTCAGGTGCTAC







TAATAGCAGTAGCGGTCTCCAGCGCGATACTGTCGCGGACCGCCTGGGGTTGGGGGGAGGCGGGGGCC







CTGATAACAGCCGCAACGTCCACTTTGTGGGAAGGTTCTCCGAACAAATACTGGAACTCGTCTACAGC







CACGTCACTGTGTAATATTTTTAGGGGTAGTTACTTGGCGGGAGCTTCTCTAATATACACAGTAACGA







GAAACGCTGGTTTGGTCAAGCGTCGT(NS5)GGGGGTGGTACAGGAGAGACGCTGGGAGAGAAATGGA







AAGCCCGCTTGAATCAGATGTCGGCGCTGGAGTTCTATTCCTACAAAAAATCAGGCATCACGGAGGTG







TGCCGTGAAGAGGCCCGTCGCGCCCTCAAAGACGGTGTGGCGACGGGAGGCCATGCGGTGTCCCGAGG







TAGTGCAAAGCTAAGATGGTTGGTAGAGCGGGGATATCTGCAGCCCTATGGTAAGGTCATTGATCTAG







GATGTGGCCGTGGGGGCTGGTCGTACTACGCCGCGACCATCCGCAAAGTACAAGAAGTGAAAGGTTAC







ACAAAAGGTGGCCCTGGTCATGAAGAACCCGTGTTGGTGCAAAGTTATGGGTGGAATATAGTCCGTCT







AAAGAGTGGGGTAGACGTCTTTCATATGGCGGCGGAGCCGTGTGATACGCTGCTGTGTGATATAGGTG







AGTCGTCATCTAGTCCGGAAGTGGAAGAAGCGCGGACGCTCCGTGTCCTCTCCATGGTAGGGGATTGG







CTAGAAAAAAGACCGGGAGCCTTTTGTATAAAAGTATTGTGCCCATATACCAGCACTATGATGGAAAC







GCTGGAGCGACTACAGCGTAGGTATGGTGGAGGACTGGTAAGAGTGCCACTATCCCGCAACTCGACAC







ATGAGATGTATTGGGTCTCTGGTGCGAAAAGCAATACCATAAAAAGTGTATCCACCACGTCGCAGCTC







CTCTTAGGGCGCATGGATGGGCCTAGACGTCCAGTGAAATATGAAGAGGATGTGAATCTAGGCTCTGG







CACGCGTGCTGTGGTAAGTTGCGCTGAAGCGCCCAACATGAAAATCATTGGTAATCGCATTGAAAGGA







TACGCAGTGAGCATGCGGAAACGTGGTTTTTTGACGAGAATCACCCATATAGGACGTGGGCTTACCAT







GGTAGCTATGAGGCGCCCACACAAGGTTCAGCGTCCTCGCTAATAAACGGTGTTGTCAGGCTACTGTC







AAAACCGTGGGATGTGGTAACTGGAGTCACGGGAATAGCCATGACGGACACCACACCGTATGGTCAAC







AAAGAGTTTTTAAGGAAAAAGTAGACACTAGGGTACCAGACCCCCAAGAAGGTACTCGTCAGGTAATG







AGCATGGTATCTTCCTGGTTATGGAAAGAGCTAGGTAAACACAAACGTCCACGAGTCTGTACGAAAGA







AGAGTTTATCAACAAGGTACGTAGCAATGCGGCATTAGGGGCGATATTTGAAGAAGAAAAAGAGTGGA







AAACTGCAGTGGAAGCGGTGAACGATCCGAGGTTCTGGGCGCTAGTGGACAAAGAAAGAGAGCATCAC







CTGAGAGGTGAGTGCCAGTCGTGTGTGTATAATATGATGGGAAAACGTGAAAAGAAACAAGGTGAATT







TGGAAAAGCCAAGGGCAGCCGTGCCATCTGGTATATGTGGCTAGGTGCTAGATTTCTAGAATTCGAAG







CCCTTGGATTCTTGAATGAGGATCACTGGATGGGTAGAGAGAACTCGGGAGGTGGTGTAGAAGGGCTG







GGTTTACAAAGACTAGGATATGTCCTAGAAGAAATGAGTCGTATACCGGGAGGAAGGATGTATGCGGA







TGACACTGCGGGCTGGGACACGCGCATTAGCCGTTTTGATCTGGAAAATGAAGCTCTAATAACCAACC







AAATGGAAAAAGGGCACAGGGCGTTGGCATTGGCGATAATCAAGTATACATACCAAAATAAAGTGGTA







AAAGTCCTTAGACCGGCTGAAAAAGGTAAAACAGTTATGGATATTATTTCGCGTCAAGACCAAAGGGG







TAGCGGACAAGTAGTCACTTACGCGCTTAACACATTTACGAACCTAGTGGTACAACTCATTCGTAATA







TGGAGGCGGAGGAAGTTCTAGAAATGCAAGACTTATGGCTGCTGCGTAGGTCAGAGAAAGTAACCAAC







TGGTTACAGAGCAACGGTTGGGATAGGCTAAAACGAATGGCGGTCAGTGGAGATGATTGTGTTGTGAA







GCCGATTGATGATCGTTTTGCACATGCGCTCAGGTTCTTAAATGATATGGGTAAAGTTAGAAAAGACA







CACAAGAATGGAAACCCTCGACTGGATGGGATAACTGGGAAGAAGTACCGTTTTGCTCGCACCACTTC







AATAAGCTCCATCTAAAGGACGGGCGTTCCATTGTGGTACCCTGCCGCCATCAAGATGAACTAATTGG







CCGGGCGCGCGTCTCTCCGGGGGCGGGATGGTCGATCCGGGAGACGGCTTGCCTAGCGAAATCATATG







CGCAAATGTGGCAGCTACTTTATTTCCATAGAAGGGACCTACGACTGATGGCGAATGCCATTTGTTCG







TCTGTGCCAGTAGACTGGGTTCCGACTGGGAGAACGACCTGGTCAATACATGGAAAGGGTGAATGGAT







GACGACTGAAGACATGCTAGTGGTGTGGAATAGAGTGTGGATAGAGGAGAACGATCACATGGAAGATA







AGACCCCAGTAACGAAATGGACGGACATTCCCTATTTAGGAAAAAGGGAAGATTTGTGGTGTGGTTCT







CTCATAGGTCACAGACCGCGTACCACCTGGGCGGAGAACATTAAAAATACAGTCAACATGGTACGCAG







GATCATAGGTGATGAAGAAAAATATATGGACTACCTATCGACCCAAGTTCGTTACTTGGGTGAAGAAG







GTTCTACACCTGGTGTGCTGTAA(NS5 end)






GCACCAATCTTAATGTTGTCAGGCCTGCTAGTCAGCCACAGCTTGGGGAAAGCTGTGCAGCCTGTGAC





CCCCCAGGAGAAGCTGGGAAACCAAGCCTATAGTCAGGCCGAGAACGCCATGGCACGGAAGAAGCCAT





GCTGCCTGTGAGCCCCTCAGAGGATACTGAGTCAAAAAACCCCACGCGCTTGGAGGCGCAGGATGGGA





AAAGAAGGTGGCGACCTTCCCCACCCTTCAATCTGGGGCCTGAACTGGAGATCAGCTGTGGATCCCCA





GAAGAGGGACTAGTGGTTAGAGGAGACCCCCCGGAAAACGCAAAACAGCATATTGACGCTGGGAAAGA





CCAGAGACTCCATGAGTTTCCACCACGCTGGCCGCCAGGCACAGATCGCCGAACTTCGGCGGCCGGTG





TGGGGAAATCCATGGTTTCT






SEQ ID NO:12. Vaccine candidate ZIKV-DO, more extensive sequence of flanking regions, with deoptimized region shown in underline, with locations of key regions indicated.










AGTTGTTGATCTGTGTGAATCAGACTGCGACAGTTCGAGTTTGAAGCGAAAGCTAGCAA






CAGTATCAACAGGTTTTATTTTGGATTTGGAAACGAGAGTTTCTGGTCATGAAAAACCCAAAAAAGAA





ATCCGGAGGATTCCGGATTGTCAATATGCTAAAACGCGGAGTAGCCCGTGTGAGCCCCTTTGGGGGCT





TGAAGAGGCTGCCAGCCGGACTTCTGCTGGGTCATGGGCCCATCAGGATGGTCTTGGCGATTCTAGCC





TTTTTGAGATTCACGGCAATCAAGCCATCACTGGGTCTCATCAATAGATGGGGTTCAGTTGGGAAAAA





AGAGGCTATGGAAATAATAAAGAAGTTCAAGAAAGATCTGGCTGCCATGCTGAGAATAATCAATGCTA





GGAAGGAGAAGAAGAGACGAGGCGCAGATACTAGTGTCGGAATTGTTGGCCTCCTGCTGACCACAGCT





ATGGCAGCGGAGGTCACTAGACGTGGGAGTGCATACTATATGTACTTGGACAGAAACGATGCTGGGGA





GGCCATATCTTTTCCAACCACATTGGGGATGAATAAGTGTTATATACAGATCATGGATCTTGGACACA





TGTGTGATGCCACCATGAGCTATGAATGCCCTATGCTGGATGAGGGGGTGGAACCAGATGACGTCGAT





TGTTGGTGCAACACGACGTCAACTTGGGTTGTGTACGGAACCTGCCATCACAAAAAAGGTGAAGCACG





GAGATCTAGAAGAGCTGTGACGCTCCCCTCCCATTCCACTAGGAAGCTGCAAACGCGGTCGCAAACCT





GGTTGGAATCAAGAGAATACACAAAGCACTTGATTAGAGTCGAAAATTGGATATTCAGGAACCCTGGC





TTCGCGTTAGCAGCAGCTGCCATCGCTTGGCTTTTGGGAAGCTCAACGAGCCAAAAAGTCATATACTT





GGTCATGATACTGCTGATTGCCCCGGCATACAGCATCAGGTGCATAGGAGTCAGCAATAGGGACTTTG





TGGAAGGTATGTCAGGTGGGACTTGGGTTGATGTTGTCTTGGAACATGGAGGTTGTGTCACCGTAATG





GCACAGGACAAACCGACTGTCGACATAGAGCTGGTTACAACAACAGTCAGCAACATGGCGGAGGTAAG





ATCCTACTGCTATGAGGCATCAATATCAGACATGGCTTCGGACAGCCGCTGCCCAACACAAGGTGAAG





CCTACCTTGACAAGCAATCAGACACTCAATATGTCTGCAAAAGAACGTTAGTGGACAGAGGCTGGGGA





AATGGATGTGGACTTTTTGGCAAAGGGAGCCTGGTGACATGCGCTAAGTTTGCATGCTCCAAGAAAAT





GACCGGGAAGAGCATCCAGCCAGAGAATCTGGAGTACCGGATAATGCTGTCAGTTCATGGCTCCCAGC





ACAGTGGGATGATCGTTAATGACACAGGACATGAAACTGATGAGAATAGAGCGAAAGTTGAGATAACG





CCCAATTCACCAAGAGCCGAAGCCACCCTGGGGGGTTTTGGAAGCCTAGGACTTGATTGTGAACCGAG





GACAGGCCTTGACTTTTCAGATTTGTATTACTTGACTATGAATAACAAGCACTGGTTGGTTCACAAGG





AGTGGTTCCACGACATTCCATTACCTTGGCACGCTGGGGCAGACACCGGAACTCCACACTGGAACAAC





AAAGAAGCACTGGTAGAGTTCAAGGACGCACATGCCAAAAGGCAAACTGTCGTGGTTCTAGGGAGTCA





AGAAGGAGCAGTTCACACGGCCCTTGCTGGAGCTCTGGAGGCTGAGATGGATGGTGCAAAGGGAAGGC





TGTCCTCTGGCCACTTGAAATGTCGCCTGAAAATGGATAAACTTAGATTGAAGGGCGTGTCATACTCC





TTGTGTACTGCAGCGTTCACATTCACCAAGATCCCGGCTGAAACACTGCACGGGACAGTCACAGTGGA





GGTACAGTACGCAGGGACAGATGGACCTTGCAAGGTTCCAGCTCAGATGGCGGTGGACATGCAAACTC





TGACCCCAGTTGGGAGGTTGATAACCGCTAACCCCGTAATCACTGAAAGCACTGAGAACTCTAAGATG





ATGCTGGAACTTGATCCACCATTTGGGGACTCTTACATTGTCATAGGAGTCGGGGAGAAGAAGATCAC





CCACCACTGGCACAGGAGTGGCAGCACCATTGGAAAAGCATTTGAAGCCACTGTGAGAGGTGCCAAGA





GAATGGCAGTCTTGGGAGACACAGCCTGGGACTTTGGATCAGTTGGAGGCGCTCTCAACTCATTGGGC





AAGGGCATCCATCAAATTTTTGGAGCAGCTTTCAAATCATTGTTTGGAGGAATGTCCTGGTTCTCACA





AATTCTCATTGGAACGTTGCTGATGTGGTTGGGTCTGAACACAAAGAATGGATCTATTTCCCTTATGT





GCTTGGCCTTAGGGGGGGTGTTGATCTTCTTATCCACAGCCGTCTCTGCTGAT(NS1)GTCGGTTGTT






CGGTAGATTTTTCGAAAAAAGAAACGCGATGTGGTACGGGTGTATTTGTATATAATGACGTAGAAGCG







TGGCGAGACCGATACAAGTATCATCCGGACTCGCCGCGACGATTAGCGGCGGCGGTAAAACAAGCGTG







GGAAGACGGTATATGCGGTATATCGTCGGTATCGCGAATGGAAAATATAATGTGGCGATCGGTAGAAG







GTGAGTTAAATGCGATACTAGAAGAGAATGGCGTACAACTAACGGTAGTAGTCGGCTCGGTAAAAAAT







CCCATGTGGCGAGGTCCGCAGCGATTGCCCGTCCCCGTCAATGAGCTACCCCATGGTTGGAAGGCGTG







GGGTAAATCGTACTTCGTACGAGCGGCGAAGACGAATAATTCCTTTGTAGTCGATGGTGACACGCTAA







AGGAATGCCCGTTAAAACATCGAGCGTGGAATTCCTTTTTGGTCGAGGATCATGGTTTCGGTGTATTC







CATACCAGTGTATGGTTAAAGGTACGAGAAGATTATTCGTTAGAGTGTGATCCGGCCGTAATTGGCAC







GGCGGTAAAGGGCAAGGAGGCGGTACATAGTGATCTCGGTTACTGGATTGAGAGTGAGAAGAATGACA







CGTGGCGCCTAAAGCGCGCCCATCTAATAGAGATGAAAACGTGTGAATGGCCGAAGTCGCACACGTTG







TGGACGGATGGCATAGAAGAGAGTGATCTAATAATACCCAAGTCGTTAGCGGGTCCGTTATCCCATCA







TAATACCCGAGAGGGTTACCGCACCCAAATGAAAGGTCCGTGGCATAGTGAAGAGTTGGAAATTCGGT







TCGAGGAATGTCCGGGTACCAAGGTACACGTCGAGGAAACGTGTGGCACGCGAGGCCCGTCGCTACGA







TCGACCACCGCGTCCGGCCGCGTCATAGAGGAATGGTGCTGCCGCGAGTGCACGATGCCCCCGCTATC







GTTCCGGGCGAAAGATGGTTGTTGGTATGGAATGGAGATACGCCCCCGCAAAGAACCGGAATCCAATT







TAGTACGCTCGATGGTCACCGCGGGCTCGACCGATCATATGGACCATTTCTCGTTG(NS2A)GGCGTC







TTGGTCATACTATTAATGGTCCAAGAAGGTCTAAAGAAGCGAATGACCACGAAGATAATAATATCCAC







GTCGATGGCGGTCCTAGTAGCGATGATACTAGGCGGCTTTTCGATGAGTGACCTAGCGAAGTTGGCGA







TTTTGATGGGTGCCACCTTCGCGGAAATGAATACCGGCGGCGATGTAGCGCATCTAGCGCTAATAGCG







GCGTTCAAAGTACGACCGGCGTTGCTAGTATCGTTCATATTCCGAGCGAATTGGACGCCCCGTGAATC







CATGCTACTAGCCTTGGCCTCGTGTTTGTTGCAAACCGCGATATCGGCCTTGGAAGGTGACCTAATGG







TATTAATAAATGGTTTCGCGTTGGCCTGGTTGGCGATACGAGCGATGGTAGTACCGCGCACCGATAAT







ATAACCTTGGCGATACTAGCGGCGCTAACGCCGCTAGCCCGGGGTACGCTATTGGTCGCGTGGCGAGC







GGGTTTGGCGACCTGCGGTGGTTTTATGTTATTATCGCTAAAGGGCAAAGGTAGTGTCAAGAAGAATT







TACCGTTTGTAATGGCCCTAGGCCTCACCGCGGTCCGCCTAGTAGACCCCATAAATGTCGTCGGCCTA







CTATTATTAACGCGCAGTGGTAAGCGGTCCTGGCCC(NS2B)CCCTCCGAAGTATTAACGGCGGTAGG







TCTAATATGCGCGTTGGCGGGCGGTTTCGCCAAGGCGGATATAGAGATGGCGGGTCCCATGGCCGCGG







TAGGTCTACTCATTGTAAGTTACGTCGTATCGGGCAAGAGTGTCGACATGTACATTGAACGAGCGGGT







GACATAACGTGGGAAAAAGATGCGGAAGTAACCGGCAATAGTCCCCGGTTAGATGTCGCGCTCGATGA







GAGTGGTGATTTCTCGCTAGTCGAGGATGACGGTCCCCCGATGCGAGAGATAATATTAAAGGTCGTAC







TAATGACCATATGTGGTATGAATCCGATAGCCATACCCTTCGCGGCGGGCGCGTGGTACGTATACGTC







AAGACCGGCAAACGC(NS3)AGTGGTGCGCTCTGGGATGTCCCCGCGCCCAAGGAAGTAAAAAAGGGT







GAGACCACGGATGGCGTCTACCGAGTAATGACCCGTCGACTACTCGGTTCGACGCAAGTAGGCGTCGG







CGTAATGCAAGAGGGTGTATTCCACACCATGTGGCATGTAACGAAAGGCTCGGCGCTACGATCCGGTG







AAGGTCGATTGGATCCGTACTGGGGCGATGTAAAGCAAGATCTAGTCTCGTACTGTGGTCCGTGGAAG







CTCGATGCCGCCTGGGACGGTCACTCCGAGGTCCAGTTATTGGCCGTCCCGCCGGGCGAGCGAGCGCG







CAATATACAAACTCTACCCGGCATATTCAAGACGAAGGATGGTGACATTGGCGCGGTAGCGCTAGATT







ACCCGGCGGGCACTTCGGGCTCGCCGATACTCGACAAGTGTGGTCGAGTCATAGGCTTGTATGGTAAT







GGTGTAGTCATAAAAAATGGTAGTTATGTAAGTGCCATAACCCAAGGTCGCCGCGAAGAAGAGACCCC







CGTAGAGTGCTTCGAGCCCTCGATGCTAAAGAAGAAGCAACTCACTGTATTAGACTTGCATCCCGGCG







CGGGTAAAACCCGCCGAGTATTGCCCGAAATAGTACGTGAAGCCATAAAAACGCGATTACGTACCGTC







ATATTAGCGCCGACCCGCGTAGTAGCGGCGGAAATGGAGGAGGCCTTGCGAGGTTTGCCGGTCCGTTA







TATGACGACGGCGGTAAATGTAACCCATTCGGGCACGGAAATAGTAGACTTAATGTGCCATGCCACCT







TCACCTCGCGTCTCCTCCAGCCGATACGAGTACCCAATTATAATCTATATATTATGGATGAGGCCCAT







TTCACGGATCCCTCGAGTATAGCGGCGCGAGGCTACATTTCGACGCGCGTAGAGATGGGTGAGGCGGC







GGCCATATTCATGACCGCCACGCCGCCGGGCACCCGTGACGCGTTCCCGGACTCGAATTCGCCGATTA







TGGACACCGAAGTCGAAGTACCGGAGCGAGCCTGGTCCTCGGGTTTTGATTGGGTCACGGATCATTCG







GGCAAAACGGTATGGTTCGTACCGTCCGTCCGCAATGGTAATGAGATAGCGGCGTGTCTAACGAAGGC







GGGCAAACGGGTAATACAGTTATCCCGAAAGACCTTCGAGACGGAGTTCCAAAAAACGAAACATCAAG







AGTGGGACTTCGTAGTCACGACCGACATTTCGGAGATGGGTGCCAATTTCAAAGCGGACCGTGTAATA







GATTCGCGCCGATGCCTCAAGCCGGTAATATTGGATGGTGAGCGAGTAATTCTAGCGGGCCCCATGCC







CGTAACGCATGCCTCCGCGGCCCAACGCCGCGGTCGCATAGGTCGCAATCCCAATAAACCCGGCGATG







AGTATCTATATGGCGGTGGTTGCGCGGAGACCGACGAAGACCATGCGCATTGGTTGGAAGCGCGAATG







TTATTGGACAATATTTACTTACAAGATGGTTTAATAGCCTCGTTATATCGACCCGAGGCCGACAAAGT







AGCGGCCATTGAGGGCGAGTTCAAGTTGCGCACGGAGCAACGCAAGACCTTCGTCGAATTAATGAAAC







GAGGCGATTTGCCCGTATGGCTAGCCTATCAAGTAGCGTCGGCAGGTATAACCTACACGGATCGACGA







TGGTGCTTCGATGGTACGACCAATAATACCATAATGGAAGATAGTGTGCCGGCAGAGGTGTGGACCAG






ACACGGAGAGAAAAGAGTGCTCAAACCGAGGTGGATGGACGCCAGAGTTTGTTCAGATCATGCGGCCC





TGAAGTCATTCAAGGAGTTTGCCGCTGGGAAAAGA(NS4A)GGAGCGGCTTTTGGAGTGATGGAAGCC





CTGGGAACACTGCCAGGACACATGACAGAGAGATTCCAGGAAGCCATTGACAACCTCGCTGTGCTCAT





GCGGGCAGAGACTGGAAGCAGGCCTTACAAAGCCGCGGCGGCCCAATTGCCGGAGACCCTAGAGACCA





TAATGCTTTTGGGGTTGCTGGGAACAGTCTCGCTGGGAATCTTCTTCGTCTTGATGAGGAACAAGGGC





ATAGGGAAGATGGGCTTTGGAATGGTGACTCTTGGGGCCAGCGCATGGCTCATGTGGCTCTCGGAAAT





TGAGCCAGCCAGAATTGCATGTGTCCTCATTGTTGTGTTCCTATTGCTGGTGGTGCTCATACCTGAGC





CAGAAAAGCAAAGATCTCCCCAGGACAACCAAATGGCAATCATCATCATGGTAGCAGTAGGTCTTCTG





GGCTTGATTACCGCC(NS4B)AATGAACTCGGATGGTTGGAGAGAACAAAGAGTGACCTAAGCCATCT





AATGGGAAGGAGAGAGGAGGGGGCAACCATAGGATTCTCAATGGACATTGACCTGCGGCCAGCCTCAG





CTTGGGCCATCTATGCTGCCTTGACAACTTTCATTACCCCAGCCGTCCAACATGCAGTGACCACCTCA





TACAACAACTACTCCTTAATGGCGATGGCCACGCAAGCTGGAGTGTTGTTTGGTATGGGCAAAGGGAT





GCCATTCTACGCATGGGACTTTGGAGTCCCGCTGCTAATGATAGGTTGCTACTCACAATTAACACCCC





TGACCCTAATAGTGGCCATCATTTTGCTCGTGGCGCACTACATGTACTTGATCCCAGGGCTGCAGGCA





GCAGCTGCGCGTGCTGCCCAGAAGAGAACGGCAGCTGGCATCATGAAGAACCCTGTTGTGGATGGAAT





AGTGGTGACTGACATTGACACAATGACAATTGACCCCCAAGTGGAGAAAAAGATGGGACAGGTGCTAC





TCATAGCAGTAGCCGTCTCCAGCGCCATACTGTCGCGGACCGCCTGGGGGTGGGGGGAGGCTGGGGCC





CTGATCACAGCCGCAACTTCCACTTTGTGGGAAGGCTCTCCGAACAAGTACTGGAACTCCTCTACAGC





CACTTCACTGTGTAACATTTTTAGGGGAAGTTACTTGGCTGGAGCTTCTCTAATCTACACAGTAACAA





GAAACGCTGGCTTGGTCAAGAGACGT(NS5)GGGGGTGGAACAGGAGAGACCCTGGGAGAGAAATGGA





AGGCCCGCTTGAACCAGATGTCGGCCCTGGAGTTCTACTCCTACAAAAAGTCAGGCATCACCGAGGTG





TGCAGAGAAGAGGCCCGCCGCGCCCTCAAGGACGGTGTGGCAACGGGAGGCCATGCTGTGTCCCGAGG





AAGTGCAAAGCTGAGATGGTTGGTGGAGCGGGGATACCTGCAGCCCTATGGAAAGGTCATTGATCTTG





GATGTGGCAGAGGGGGCTGGAGTTACTACGCCGCCACCATCCGCAAAGTTCAAGAAGTGAAAGGATAC





ACAAAAGGAGGCCCTGGTCATGAAGAACCCGTGTTGGTGCAAAGCTATGGGTGGAACATAGTCCGTCT





TAAGAGTGGGGTGGACGTCTTTCATATGGCGGCTGAGCCGTGTGACACGCTGCTGTGTGACATAGGTG





AGTCATCATCTAGTCCTGAAGTGGAAGAAGCACGGACGCTCAGAGTCCTCTCCATGGTGGGGGATTGG





CTTGAAAAAAGACCAGGAGCCTTTTGTATAAAAGTGTTGTGCCCATACACCAGCACTATGATGGAAAC





CCTGGAGCGACTGCAGCGTAGGTATGGGGGAGGACTGGTCAGAGTGCCACTCTCCCGCAACTCTACAC





ATGAGATGTACTGGGTCTCTGGAGCGAAAAGCAACACCATAAAAAGTGTGTCCACCACGAGCCAGCTC





CTCTTGGGGCGCATGGACGGGCCTAGAAGGCCAGTGAAATATGAGGAGGATGTGAATCTCGGCTCTGG





CACGCGGGCTGTGGTAAGCTGCGCTGAAGCTCCCAACATGAAGATCATTGGTAACCGCATTGAAAGGA





TCCGCAGTGAGCACGCGGAAACGTGGTTCTTTGACGAGAACCACCCATATAGGACATGGGCTTACCAT





GGAAGCTATGAGGCCCCCACACAAGGGTCAGCGTCCTCTCTAATAAACGGGGTTGTCAGGCTCCTGTC





AAAACCCTGGGATGTGGTGACTGGAGTCACAGGAATAGCCATGACCGACACCACACCGTATGGTCAGC





AAAGAGTTTTCAAGGAAAAAGTGGACACTAGGGTGCCAGACCCCCAAGAAGGCACTCGTCAGGTTATG





AGCATGGTCTCTTCCTGGTTGTGGAAAGAGCTAGGCAAACACAAACGGCCACGAGTCTGTACCAAAGA





AGAGTTCATCAACAAGGTTCGTAGCAATGCAGCATTAGGGGCAATATTTGAAGAGGAAAAAGAGTGGA





AGACTGCAGTGGAAGCTGTGAACGATCCAAGGTTCTGGGCTCTAGTGGACAAGGAAAGAGAGCACCAC





CTGAGAGGAGAGTGCCAGAGTTGTGTGTATAACATGATGGGAAAAAGAGAAAAGAAACAAGGGGAATT





TGGAAAGGCCAAGGGCAGCCGCGCCATCTGGTATATGTGGCTAGGGGCTAGATTTCTAGAGTTCGAAG





CCCTTGGATTCTTGAACGAGGATCACTGGATGGGGAGAGAGAACTCAGGAGGTGGTGTTGAAGGGCTG





GGATTACAAAGACTCGGATATGTCCTAGAAGAGATGAGTCGTATACCAGGAGGAAGGATGTATGCAGA





TGACACTGCTGGCTGGGACACCCGCATTAGCAGGTTTGATCTGGAGAATGAAGCTCTAATCACCAACC





AAATGGAGAAAGGGCACAGGGCCTTGGCATTGGCCATAATCAAGTACACATACCAAAACAAAGTGGTA





AAGGTCCTTAGACCAGCTGAAAAAGGGAAAACAGTTATGGACATTATTTCGAGACAAGACCAAAGGGG





GAGCGGACAAGTTGTCACTTACGCTCTTAACACATTTACCAACCTAGTGGTGCAACTCATTCGGAATA





TGGAGGCTGAGGAAGTTCTAGAGATGCAAGACTTGTGGCTGCTGCGGAGGTCAGAGAAAGTGACCAAC





TGGTTGCAGAGCAACGGATGGGATAGGCTCAAACGAATGGCAGTCAGTGGAGATGATTGCGTTGTGAA





GCCAATTGATGATAGGTTTGCACATGCCCTCAGGTTCTTGAATGATATGGGAAAAGTTAGAAAGGACA





CACAAGAGTGGAAACCCTCAACTGGATGGGACAACTGGGAAGAAGTTCCGTTTTGCTCCCACCACTTC





AACAAGCTCCATCTCAAGGACGGGAGGTCCATTGTGGTTCCCTGCCGCCACCAAGATGAACTGATTGG





CCGGGCCCGCGTCTCTCCAGGGGCGGGATGGAGCATCCGGGAGACTGCTTGCCTAGCAAAATCATATG





CGCAGATGTGGCAGCTCCTTTATTTCCACAGAAGGGACCTCCGACTGATGGCCAATGCCATTTGTTCA





TCTGTGCCAGTTGACTGGGTTCCAACTGGGAGAACTACCTGGTCAATCCATGGAAAGGGAGAATGGAT





GACCACTGAAGACATGCTTGTGGTGTGGAACAGAGTGTGGATTGAGGAGAACGACCACATGGAAGACA





AGACCCCAGTTACGAAATGGACAGACATTCCCTATTTGGGAAAAAGGGAAGACTTGTGGTGTGGATCT





CTCATAGGGCACAGACCGCGCACCACCTGGGCTGAGAACATTAAAAACACAGTCAACATGGTGCGCAG





GATCATAGGTGATGAAGAAAAGTACATGGACTACCTATCCACCCAAGTTCGCTACTTGGGTGAAGAAG





GGTCTACACCTGGAGTGCTGTAA(NS5 end)





GCACCAATCTTAATGTTGTCAGGCCTGCTAGTCAGCCACAGCTTGGGGAAAGCTGTGCAGCCTGTGAC





CCCCCAGGAGAAGCTGGGAAACCAAGCCTATAGTCAGGCCGAGAACGCCATGGCACGGAAGAAGCCAT





GCTGCCTGTGAGCCCCTCAGAGGATACTGAGTCAAAAAACCCCACGCGCTTGGAGGCGCAGGATGGGA





AAAGAAGGTGGCGACCTTCCCCACCCTTCAATCTGGGGCCTGAACTGGAGATCAGCTGTGGATCCCCA





GAAGAGGGACTAGTGGTTAGAGGAGACCCCCCGGAAAACGCAAAACAGCATATTGACGCTGGGAAAGA





CCAGAGACTCCATGAGTTTCCACCACGCTGGCCGCCAGGCACAGATCGCCGAACTTCGGCGGCCGGTG





TGGGGAAATCCATGGTTTCT






Preferred features, embodiments and variations of the invention may be discerned from the following Detailed Description of the invention.


DETAILED DESCRIPTION

The present inventors have primarily developed a vaccine comprising live-attenuated Zika virus comprising a (partly) codon deoptimized Zika viral genome. Using codon deoptimization (CD) technology, the inventors inserted a number of codon changes in the genome of the virus (wild-type Zika virus), with the objective of decreasing replication efficiency in mammalian cells and rendering the virus attenuated compared to wild-type ZIKV. Using this strategy, some resulting viruses were strongly attenuated but still produced viral proteins to a level comparable to wild-type virus. Thus, using codon deoptimization technology, the inventors were able to generate live attenuated ZIKV vaccine candidates.


By inserting a substantial number of changes into each vaccine candidate, the chance of reversion to wild-type is negligible, which is a crucial safety feature of the vaccines. This represents a substantial competitive advantage over vaccines with only a small number of mutations. To the best of the inventors' knowledge, no other ZIKV vaccines have been generated using codon deoptimization technology.


Codon deoptimization in case of Zika virus presumably results in slower polyprotein translation leading to slower replication and, as a result, in attenuation of the virus, compared with wild-type Zika virus. Such vaccine candidates have virtually no risk of deattenuation (the chance of reversion to wild-type is negligible) because of too many substitutions, all of which have, taken alone, minimal effect on virus, have been made in the coding sequence.


‘Codon deoptimization’ (CD), as used herein, involves replacing normal codons in the wild-type Zika virus genome with synonymous codons so that the resulting virus proteins are identical to wild-type virus proteins. Moreover, the resulting virus is highly attenuated, but protein function is not compromised.


By ‘live attenuated’ it is meant that the virus demonstrates substantially reduced or preferably no clinical signs of disease when administered to a subject, compared with wild-type Zika virus.


In some embodiments codon deoptimization results in no less than about 200 codon changes in the viral genome. In some embodiments codon deoptimization results in no more than about 800 codon changes in the viral genome (with the upper limit for substitution being where the virus does not usually grow at all). In some embodiments codon deoptimization results in between about 200 and about 800 codon changes in the viral genome. This 200 to 800 codon change range includes all integers between 200 and 800, including 201, 202 . . . 798 and 799 codon changes. In some embodiments codon deoptimization results in a minimum of about 286 codon changes in the viral genome. In some embodiments codon deoptimization results in a maximum of about 651 codon changes in the viral genome. In some embodiments codon deoptimization results in between about 286 and 651 codon changes in the viral genome. This range includes all integers between 286 and 651, including 287 . . . 650 codon changes. In some embodiments some or all of the codon changes can be situated immediately next to one another, in sequence. In some embodiments some or all of the codon changes can be spaced apart from each other such that they are not situated immediately next to one another, in sequence—E.g. 3 to 4 codon (triplet) spacings. In some embodiments some of the codon changes can be spaced apart from each other and some of the codon changes can be situated immediately next to one another.


In some embodiments codon deoptimization occurs in no less than about a 1700 nucleotide region of the genome. The region can be continuous/contiguous or not. In some embodiments codon deoptimization occurs no more than in about a 7900 nucleotide region of the genome. The region can be continuous/contiguous or not. In some embodiments codon deoptimization occurs in a continuous genome region with a length of about 1800 to about 3600 nucleotides. In some embodiments codon deoptimization results in no less than about an 1800 nucleotide region of the genome, with no less than about 250 codon changes within that nucleotide region. In some embodiments codon deoptimization results in no more than about a 7900 nucleotide region of the genome, with no more than about 800 codon changes within that nucleotide region. In some embodiments about 20-60% of the coding region of the genome is codon deoptimized, preferably 18-36% of the genome, compared to wild-type ZIKV.


In some embodiments the non-structural region of the viral genome is codon deoptimized. In some embodiments only the non-structural region of the viral genome is codon deoptimized. In some embodiments any one or more of the genes NS1, 2A, NS2B, NS3, NS4A, NS4B and NS5 are codon deoptimized. In some embodiments any contiguous genome region from the NS1 to NS5 region corresponding to at least 600 amino acid residues of viral polyprotein is codon deoptimized. In some embodiments the genes NS1, 2A, NS2B, NS3, NS4A, NS4B and NS5 are codon deoptimized. In some embodiments every 3rd or 4th codon is deoptimized along the entire nonstructural ZIKV coding region. In some embodiments the genes NS1, 2A, NS2B and NS3 are codon deoptimized. In some embodiments approximately 700 base changes are made. In some embodiments the gene NS3 is codon deoptimized. In some embodiments about 350 changes base changes are made. In some embodiments approximately 700 codon substitutions are made along the entire nonstructural ZIKV coding region.


In some embodiments the codon deoptimization results in slower polyprotein translation leading to slower replication and, as a result, in attenuation of the virus. In some embodiments every codon in the wild-type Zika virus genome or region thereof was analyzed in terms of its usage frequency in Homo sapiens, and if the codon was frequent then it was changed in the viral genome to a least frequently used synonymous codon. In some embodiments a codon for an amino acid with codon degeneracy was changed only if the synonymous codons for that amino acid occurred in significantly different frequencies of usage in the genome of Homo sapiens. In some embodiments Asp, and Asn codons of the viral genome are left unchanged. In some embodiments a codon for an amino acid with high codon degeneracy was changed to a synonymous codon that was used least frequently or rarely in the genome of Homo sapiens. In some embodiments a viral region most rich in codons that can be substituted for rare codon variants is codon deoptimized. In some embodiments Leu codons of the viral genome are changed. In some embodiments Leu codons of the viral genome are changed to the rare CUA codon. In some embodiments the viral genome prior to codon deoptimization has a very similar nucleotide sequence to a Zika strain associated with microcephaly. In some embodiments the wild-type Zika viral genome is that of Brazilian Zika virus (ZIKV) strain BeH819016. In some embodiments the chance of deattenuation to wild-type Zika is negligible.


Preferably the codon deoptimized Zika viral genome is generated using codon deoptimization technology.


In some embodiments the codon deoptimized genome has the deoptimized codons of vaccine candidate ZIKV-DO-NS3 as shown in the NS3 region of SEQ ID NO:3, 4, 5 or 10. In some embodiments the codon deoptimized genome can have about 200 or more of the codon changes of vaccine candidate ZIKV-DO-NS3 shown in SEQ ID NO:3, 4, 5 or 10, including all integers between about 200 and about 350, including 201, 202 . . . 348 and 349 codon changes.


In some embodiments the codon deoptimized genome has the deoptimized codons of vaccine candidate ZIKV-DO-scattered as shown in SEQ ID NO:6, 7 or 11. In some embodiments the codon deoptimized genome can have about 200 or more of the codon changes of vaccine candidate ZIKV-DO-scattered shown in SEQ ID NO: 6, 7 or 11, including all integers between about 200 and about 700, including 201, 202 . . . 698 and 699 codon changes.


In some embodiments the codon deoptimized genome has the deoptimized codons of vaccine candidate ZIKV-DO as shown in SEQ ID NO:8, 9 or 12. In some embodiments the codon deoptimized genome can have about 200 or more of the codon changes of vaccine candidate ZIKV-DO-scattered shown in SEQ ID NO: 8, 9 or 12, including all integers between about 200 and about 700, including 201, 202 . . . 698 and 699 codon changes.


In some embodiments the codon deoptimized genome has the deoptimized codons of the nonstructural region of SEQ ID NO:1 as shown in FIG. 1b. In some embodiments the codon deoptimized genome can have about 1 or more of the codon changes of SEQ ID NO:1, including all integers between about 1 and about 72, including 2, 3 . . . 70 and 71 codon changes.


The live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid comprising a partly codon deoptimized Zika viral genome can be of any suitable form and can be prepared in any suitable way. Likewise, the recombinant, isolated or substantially purified nucleic acid comprising a partly codon deoptimized Zika viral genome or partly codon deoptimized region thereof can be prepared in any suitable way. Such techniques are described elsewhere in this specification (eg. see below), the entire contents of which are incorporated herein by way of cross-reference.


Likewise, a vaccine, pharmaceutical preparation or immunogenic composition comprising the above can be of any suitable form and can be prepared in any suitable way. Such techniques are described elsewhere in this specification, the entire contents of which are incorporated herein by way of cross-reference.


In addition to a live attenuated recombinant Zika virus vaccine, pharmaceutical preparation or immunogenic composition, the present invention encompasses recombinant Zika virus particles, nucleic acid and genetic vaccines that comprise a partly codon deoptimized Zika viral genome in the form of a nucleic acid. The nucleic acid can be DNA or RNA that is self-replicating/self-amplifying once used for vaccination. The nucleic acid can relate to the Zika viral genome or Zika viral anti-genome. Such techniques are described in the following references, the entire contents of which are incorporated herein by way of cross-reference: Karl Ljungberg & Peter Liljeström (2015) Self-replicating alphavirus RNA vaccines, Expert Review of Vaccines, 14:2, 177-194, DOI: 10.1586/14760584.2015.965690; Rodriguez-Gascón A, del Pozo-Rodrlguez A, Solinis M A (2014) Development of nucleic acid vaccines: use of self-amplifying RNA in lipid nanoparticles. Int J Nanomedicine. 9: 1833-1843; US 2014/0112979 A1.


The vaccine, pharmaceutical preparation or immunogenic composition can comprise live virus or inactivated virus, provided that it is self-replicating/self-amplifying after vaccination. If inactivated, it can be inactivated in any suitable way (e.g. using high or low temperatures, or chemically).


The vaccine, pharmaceutical preparation or immunogenic composition can comprise a delivery system or carrier or aid, and these can be of any suitable form and can be prepared in any suitable way. Suitable examples include a plasmid or vector to assist with self-replication/self-amplification, an RNA nanocarrier for RNA delivery, and lipid-based formulations for delivery, including liposomes, nanoemulsions and solid lipid nanoparticles.


In some embodiments the vaccine can be prepared by way of passing recombinant ZIKV through a filter, such as a 0.22 μm hydrophilic PVDF membrane or hydrophilic Polyethersulfone membrane.


In some embodiments the vaccine can be stored long term and remain viable at a temperature of between about −20° C. and about −80° C. By “long-term” it is meant that the vaccine can remain viable for at least 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59 or 60 days. In some embodiments it is possible that the vaccine can remain viable for more than 60 days.


The live attenuated virus can be in the form of an isolate. The isolate may comprise cells, such as mammalian, insect (e.g. mosquito) or other types of cells.


The method of preventing the subject from contracting a viral infection, treating a subject having a viral infection, or reducing the severity of a viral infection, can be carried out in any suitable way.


The vaccine, live attenuated virus, pharmaceutical preparation and immunogenic composition (described hereafter as “the compositions”) can be administered independently, either systemically or locally, by any method standard in the art, for example, subcutaneously, intravenously, parenterally, intraperitoneally, intradermally, intramuscularly, topically, or nasally.


The compositions can comprise conventional non-toxic, physiologically or pharmaceutically acceptable ingredients or vehicles suitable for the method of administration and are well known to an individual having ordinary skill in this art. The compositions can, for example, comprise an adjuvant. The adjuvant can be, for example, an aluminium salt (e.g. aluminium hydroxide), monophosphoryl lipid A, or, emulsion of water and oil (e.g. MF59). The term “pharmaceutically acceptable carrier” as used herein is intended to include diluents such as saline and aqueous buffer solutions. The compositions can be in aqueous or lyophilized form.


A variety of devices are known in the art for delivery of the compositions including, but not limited to, syringe and needle injection, bifurcated needle administration, administration by intradermal patches or pumps, intradermal needle-free jet delivery (intradermal etc), intradermal particle delivery, or aerosol powder delivery.


The compositions can be administered independently one or more times to achieve, maintain or improve upon a desired effect/result. It is well within the skill of an artisan to determine dosage or whether a suitable dosage of the composition comprises a single administered dose or multiple administered doses. An appropriate dosage depends on the subject's health, the induction of immune response and/or prevention of infection caused by the alphavirus, the route of administration and the formulation used. For example, a therapeutically active amount of the compound may vary according to factors such as the disease state, age, sex, and weight of the subject, and the ability of the composition to elicit a desired response in the subject. Dosage regime may be adjusted to provide the optimum therapeutic response. For example, a subject may be administered a ‘booster’ vaccination one or two weeks following the initial administration.


The vector can also be prepared in any suitable way.


The cell (insect, mammalian or other) or isolate comprising the vector or virus can be prepared in any suitable way.


Suitable protocols for carrying out one or more of the above-mentioned techniques can be found in “Current Protocols in Molecular Biology”, July 2008, JOHN WILEY AND SONS; D. M. WEIR ANDCC BLACKWELL, “Handbook Of Experimental Immunology”, vol. I-IV, 1986; JOHN E. COLIGAN, ADA M. KRUISBEEK, DAVID H. MARGULIES, ETHAN M. SHEVACH, WARREN STROBER, “Current Protocols in Immunology”, 2001, JOHN WILEY & SONS; “Immunochemical Methods In Cell And Molecular Biology”, 1987, ACADEMIC PRESS; SAMBROOK ET AL., “Molecular Cloning: A Laboratory Manual, 3d ed.,”, 2001, COLD SPRING HARBOR LABORATORY PRESS; “Vaccine Design, Methods and Protocols”, Volume 2, Vaccines for Veterinary Diseases, Sunil Thomas in Methods in Molecular Biology (2016); and, “Vaccine Design, Methods and Protocols”, Volume 1: Vaccines for Human Diseases, Sunil Thomas in Methods in Molecular Biology (2016), the entire contents of which are incorporated herein by way of cross-reference.


Any suitable type of subject can be used. The subject can be any suitable mammal. Mammals include humans, primates, livestock and farm animals (e.g. horses, sheep and pigs), companion animals (e.g. dogs and cats), and laboratory test animals (e.g. rats, mice and rabbits). The subject is preferably human.


‘Nucleic acid’ as used herein includes ‘polynucleotide’, ‘oligonucleotide’, and ‘nucleic acid molecule’, and generally means a polymer of DNA or RNA, which can be single-stranded or double-stranded, synthesized or obtained (e.g., isolated and/or purified) from natural sources, which can contain natural, non-natural or altered nucleotides, and which can contain a natural, non-natural or altered internucleotide linkage, such as a phosphoroamidate linkage or a phosphorothioate linkage, instead of the phosphodiester found between the nucleotides of an unmodified oligonucleotide.


As used herein, the term ‘recombinant’ refers to (i) molecules that are constructed outside living cells by joining natural or synthetic nucleic acid segments to nucleic acid molecules that can replicate in a living cell, or (ii) molecules that result from the replication of those described in (i) above. For purposes herein, the replication can be in vitro replication or in vivo replication.


The terms ‘isolated’ or ‘purified’ as used herein mean essentially free of association with other biological components/contaminants, e.g., as a naturally occurring protein that has been separated from cellular and other contaminants by the use of antibodies or other methods or as a purification product of a recombinant host cell culture.


Preferred embodiments of the invention are defined in the following numbered paragraphs:


1. Live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid comprising a partly codon deoptimized Zika viral genome.


2. A recombinant, isolated or substantially purified nucleic acid comprising a partly codon deoptimized Zika viral genome or partly codon deoptimized region thereof.


3. A vector containing the nucleic acid of paragraph 2.


4. A cell or isolate containing the live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid of paragraph 1, the nucleic acid of the paragraph 2, or the vector of paragraph 3.


5. A vaccine comprising the live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid of paragraph 1, the recombinant, isolated or substantially purified nucleic acid of paragraph 2, the vector of paragraph 3, or the cell or isolate of paragraph 4.


6. A pharmaceutical preparation comprising the live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid of paragraph 1, the recombinant, isolated or substantially purified nucleic acid of paragraph 2, the vector of paragraph 3, or the cell or isolate of paragraph 4.


7. An immunogenic composition comprising the live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid of paragraph 1, the recombinant, isolated or substantially purified nucleic acid of paragraph 2, the vector of paragraph 3, or the cell or isolate of paragraph 4.


8. A method of (1) treating a subject having a natural Zika viral infection, (2) reducing the severity of a natural Zika viral infection in a subject, or (3) preventing a subject from contracting a Zika viral infection naturally, said method comprising the step of administering to the subject:


the live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid of paragraph 1; the recombinant, isolated or substantially purified nucleic acid of paragraph 2; the vector of paragraph 3; the cell or isolate of paragraph 4; the vaccine of paragraph 5; the pharmaceutical preparation of paragraph 6; or the immunogenic composition of paragraph 7.


9. Use of: the live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid of paragraph 1; the recombinant, isolated or substantially purified nucleic acid of paragraph 2; the vector of paragraph 3; the cell or isolate of paragraph 4; the vaccine of paragraph 5; the pharmaceutical preparation of paragraph 6; or the immunogenic composition of paragraph 7, in the preparation of a medicament for (1) treating a subject having a natural Zika viral infection, (2) reducing the severity of a natural Zika viral infection in a subject, or (3) preventing a subject from contracting a Zika viral infection naturally.


10. A method of generating a live attenuated Zika virus vaccine, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid, or recombinant, isolated or substantially purified nucleic acid comprising a partly codon deoptimized Zika viral genome or partly codon deoptimized region thereof, comprising the step of partly codon deoptimizing a Zika viral genome.


11. A method of preparing a vaccine comprising live attenuated recombinant Zika virus, said method comprising the steps of: (1) codon deoptimizing a Zika viral genome to produce a partly codon deoptimized live attenuated Zika virus; and (2) enabling the partly codon deoptimized live attenuated Zika virus to replicate.


12. The live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, the cell or isolate, the vaccine, the pharmaceutical preparation, the immunogenic composition, the method, the use, or the method of any one or more of the preceding paragraphs (context permitting), wherein the codon deoptimized Zika viral genome comprises at least about 200 codon changes compared with wild-type or virulent Zika virus.


13. The live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, the cell or isolate, the vaccine, the pharmaceutical preparation, the immunogenic composition, the method, the use, or the method of any one or more of the preceding paragraphs (context permitting), wherein the codon deoptimized Zika viral genome comprises no more than about 800 codon changes, compared with wild-type or virulent Zika virus.


14. The live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, the cell or isolate, the vaccine, the pharmaceutical preparation, the immunogenic composition, the method, the use, or the method of any one or more of the preceding paragraphs (context permitting), wherein the codon deoptimized Zika viral genome comprises between about 200 and about 800 codon changes, compared with wild-type or virulent Zika virus.


15. The live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, the cell or isolate, the vaccine, the pharmaceutical preparation, the immunogenic composition, the method, the use, or the method of any one or more of the preceding paragraphs (context permitting), wherein the codon deoptimized Zika viral genome comprises a minimum of about 286 codon changes, compared with wild-type or virulent Zika virus.


16. The live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, the cell or isolate, the vaccine, the pharmaceutical preparation, the immunogenic composition, the method, the use, or the method of any one or more of the preceding paragraphs (context permitting), wherein the codon deoptimized Zika viral genome comprises a maximum of about 651 codon changes, compared with wild-type or virulent Zika virus.


17. The live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, the cell or isolate, the vaccine, the pharmaceutical preparation, the immunogenic composition, the method, the use, or the method of any one or more of the preceding paragraphs (context permitting), wherein the codon deoptimized Zika viral genome comprises between about 286 and 651 codon changes in the viral genome, compared with wild-type or virulent Zika virus.


18. The live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, the cell or isolate, the vaccine, the pharmaceutical preparation, the immunogenic composition, the method, the use, or the method of any one or more of the preceding paragraphs (context permitting), wherein some or all codon changes of the codon deoptimized Zika viral genome compared with wild-type or virulent Zika virus are situated immediately next to one another, in sequence.


19. The live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, the cell or isolate, the vaccine, the pharmaceutical preparation, the immunogenic composition, the method, the use, or the method of any one or more of the preceding paragraphs (context permitting), wherein some or all codon changes of the codon deoptimized Zika viral genome compared with wild-type or virulent Zika virus are spaced apart from each other such that they are not situated immediately next to one another, in sequence.


20. The live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, the cell or isolate, the vaccine, the pharmaceutical preparation, the immunogenic composition, the method, the use, or the method of any one or more of the preceding paragraphs (context permitting), wherein some codon changes of the codon deoptimized Zika viral genome compared with wild-type or virulent Zika virus are spaced apart from each other and some of the codon changes are situated immediately next to one another.


21. The live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, the cell or isolate, the vaccine, the pharmaceutical preparation, the immunogenic composition, the method, the use, or the method of any one or more of the preceding paragraphs (context permitting), wherein codon deoptimization occurs in no less than about a 1700 nucleotide region of the codon deoptimized Zika viral genome compared with wild-type or virulent Zika virus, and optionally the 1700 nucleotide region is continuous/contiguous or the 1700 nucleotide region is not continuous/not contiguous.


22. The live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, the cell or isolate, the vaccine, the pharmaceutical preparation, the immunogenic composition, the method, the use, or the method of any one or more of the preceding paragraphs (context permitting), wherein codon deoptimization occurs in no more than in about a 7900 nucleotide region of the codon deoptimized Zika viral genome compared with wild-type or virulent Zika virus, and optionally the 7900 nucleotide region is continuous/contiguous or the 7900 nucleotide region is not continuous/not contiguous.


23. The live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, the cell or isolate, the vaccine, the pharmaceutical preparation, the immunogenic composition, the method, the use, or the method of any one or more of the preceding paragraphs (context permitting), wherein codon deoptimization occurs in a continuous region of the codon deoptimized Zika viral genome compared with wild-type or virulent Zika virus with a length of about 1800 to about 3600 nucleotides.


24. The live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, the cell or isolate, the vaccine, the pharmaceutical preparation, the immunogenic composition, the method, the use, or the method of any one or more of the preceding paragraphs (context permitting), wherein codon deoptimization results in no less than about an 1800 nucleotide region of the genome compared with wild-type or virulent Zika virus, with no less than about 250 codon changes within that nucleotide region.


25. The live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, the cell or isolate, the vaccine, the pharmaceutical preparation, the immunogenic composition, the method, the use, or the method of any one or more of the preceding paragraphs (context permitting), wherein codon deoptimization results in no more than about a 7900 nucleotide region of the genome compared with wild-type or virulent Zika virus, with no more than about 800 codon changes within that nucleotide region.


26. The live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, the cell or isolate, the vaccine, the pharmaceutical preparation, the immunogenic composition, the method, the use, or the method of any one or more of the preceding paragraphs (context permitting), wherein about 20-60% of the coding region of the genome is codon deoptimized compared with wild-type or virulent Zika virus, preferably 18-36% of the genome, compared with wild-type or virulent Zika virus.


27. The live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, the cell or isolate, the vaccine, the pharmaceutical preparation, the immunogenic composition, the method, the use, or the method of any one or more of the preceding paragraphs (context permitting), wherein the non-structural region of the viral genome is codon deoptimized.


28. The live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, the cell or isolate, the vaccine, the pharmaceutical preparation, the immunogenic composition, the method, the use, or the method of any one or more of the preceding paragraphs (context permitting), wherein only the non-structural region of the viral genome is codon deoptimized.


29. The live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, the cell or isolate, the vaccine, the pharmaceutical preparation, the immunogenic composition, the method, the use, or the method of any one or more of the preceding paragraphs (context permitting), wherein every 3rd or 4th codon is deoptimized along the nonstructural ZIKV coding region.


30. The live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, the cell or isolate, the vaccine, the pharmaceutical preparation, the immunogenic composition, the method, the use, or the method of any one or more of the preceding paragraphs (context permitting), wherein any one or more of the genes NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5 are codon deoptimized.


31. The live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, the cell or isolate, the vaccine, the pharmaceutical preparation, the immunogenic composition, the method, the use, or the method of any one or more of the preceding paragraphs (context permitting), wherein any contiguous genome region from the NS1 to NS5 region corresponding to at least 600 amino acid residues of viral polyprotein is codon deoptimized.


32. The live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, the cell or isolate, the vaccine, the pharmaceutical preparation, the immunogenic composition, the method, the use, or the method of any one or more of the preceding paragraphs (context permitting), wherein the genes NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5 are codon deoptimized.


33. The live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, the cell or isolate, the vaccine, the pharmaceutical preparation, the immunogenic composition, the method, the use, or the method of any one or more of the preceding paragraphs (context permitting), wherein the genes NS1, NS2A, NS2B and NS3 are codon deoptimized.


34. The live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, the cell or isolate, the vaccine, the pharmaceutical preparation, the immunogenic composition, the method, the use, or the method of any one or more of the preceding paragraphs (context permitting), wherein the gene NS3 is codon deoptimized.


35. The live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, the cell or isolate, the vaccine, the pharmaceutical preparation, the immunogenic composition, the method, the use, or the method of any one or more of the preceding paragraphs (context permitting), wherein approximately 700 codon substitutions are made along the entire nonstructural ZIKV coding region compared with wild-type or virulent Zika virus.


36. The live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, the cell or isolate, the vaccine, the pharmaceutical preparation, the immunogenic composition, the method, the use, or the method of any one or more of the preceding paragraphs (context permitting), wherein the codon deoptimization results in slower polyprotein translation leading to slower replication and, as a result, in attenuation of the virus, compared with wild-type or virulent Zika virus.


37. The live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, the cell or isolate, the vaccine, the pharmaceutical preparation, the immunogenic composition, the method, the use, or the method of any one or more of the preceding paragraphs (context permitting), wherein a codon for an amino acid with high codon degeneracy is changed to a synonymous codon that is used least frequently or rarely in the genome of Homo sapiens.


38. The live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, the cell or isolate, the vaccine, the pharmaceutical preparation, the immunogenic composition, the method, the use, or the method of any one or more of the preceding paragraphs (context permitting), wherein the genome region most rich in codons that can be substituted for rare codon variants is codon deoptimized.


39. The live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, the cell or isolate, the vaccine, the pharmaceutical preparation, the immunogenic composition, the method, the use, or the method of any one or more of the preceding paragraphs (context permitting), wherein the viral genome prior to codon deoptimization has a very similar nucleotide sequence to a Zika strain associated with microcephaly, preferably Brazilian Zika virus (ZIKV) strain BeH819016.


40. The live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, the cell or isolate, the vaccine, the pharmaceutical preparation, the immunogenic composition, the method, the use, or the method of any one or more of the preceding paragraphs (context permitting), wherein the codon deoptimized genome has the deoptimized codons of the NS3 region of vaccine candidate ZIKV-DO-NS3 as represented by SEQ ID NO:3, 4, 5 or 10.


41. The live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, the cell or isolate, the vaccine, the pharmaceutical preparation, the immunogenic composition, the method, the use, or the method of any one or more of the preceding paragraphs (context permitting), wherein the codon deoptimized genome has about 200 or more of the codon changes of the NS3 region of vaccine candidate ZIKV-DO-NS3 as represented by SEQ ID NO:3, 4, 5 or 10.


42. The live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, the cell or isolate, the vaccine, the pharmaceutical preparation, the immunogenic composition, the method, the use, or the method of any one or more of the preceding paragraphs (context permitting), wherein the codon deoptimized genome has the deoptimized codons of the NS1, NS2A, NS2B, NS3, NS4A, NS4B and/or NS5 regions of the vaccine candidate ZIKV-DO-scattered as represented by SEQ ID NO:6, 7 or 11.


43. The live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, the cell or isolate, the vaccine, the pharmaceutical preparation, the immunogenic composition, the method, the use, or the method of any one or more of the preceding paragraphs (context permitting), wherein the codon deoptimized genome has about 200 or more of the codon changes of the NS1, NS2A, NS2B, NS3, NS4A, NS4B and/or NS5 regions of the vaccine candidate ZIKV-DO-scattered as represented by SEQ ID NO: 6, 7 or 11.


44. The live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, the cell or isolate, the vaccine, the pharmaceutical preparation, the immunogenic composition, the method, the use, or the method of any one or more of the preceding paragraphs (context permitting), wherein the codon deoptimized genome has the deoptimized codons of the NS1, NS2A, NS2B and/or NS3 regions of the vaccine candidate ZIKV-DO as represented by SEQ ID NO:8, 9 or 12.


45. The live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, the cell or isolate, the vaccine, the pharmaceutical preparation, the immunogenic composition, the method, the use, or the method of any one or more of the preceding paragraphs (context permitting), wherein the codon deoptimized genome has about 200 or more of the codon changes of the NS1, NS2A, NS2B and/or NS3 regions of the vaccine candidate ZIKV-DO as represented by SEQ ID NO:8, 9 or 12.


46. The live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, the cell or isolate, the vaccine, the pharmaceutical preparation, the immunogenic composition, the method, the use, or the method of any one or more of the preceding paragraphs (context permitting), wherein the codon deoptimized genome has the deoptimized codons of the nonstructural region as represented by SEQ ID NO:1 or as shown in FIG. 1b.


47. The live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, the cell or isolate, the vaccine, the pharmaceutical preparation, the immunogenic composition, the method, the use, or the method of any one or more of the preceding paragraphs (context permitting), wherein the codon deoptimized genome has 1 or more of the codon changes of SEQ ID NO:1.


48. The live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, the cell or isolate, the vaccine, the pharmaceutical preparation, the immunogenic composition, the method, the use, or the method of any one or more of the preceding paragraphs (context permitting), wherein the codon deoptimized genome has at least 90 percent of the deoptimized codons of the NS3 region of vaccine candidate ZIKV-DO-NS3 as represented by SEQ ID NO:3, 4, 5 or 10. (For clarity, at least 90 percent includes 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 and 100 percent.)


49. The live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, the cell or isolate, the vaccine, the pharmaceutical preparation, the immunogenic composition, the method, the use, or the method of any one or more of the preceding paragraphs (context permitting), wherein the codon deoptimized genome has at least 90 percent of the deoptimized codons of the NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5 regions of the vaccine candidate ZIKV-DO-scattered as represented by SEQ ID NO:6, 7 or 11.


50. The live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, the cell or isolate, the vaccine, the pharmaceutical preparation, the immunogenic composition, the method, the use, or the method of any one or more of the preceding paragraphs (context permitting), wherein the codon deoptimized genome has at least 90 percent of the deoptimized codons of the NS1, NS2A, NS2B and NS3 regions of the vaccine candidate ZIKV-DO as represented by SEQ ID NO:8, 9 or 12.


51. The live attenuated recombinant Zika virus, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid, the recombinant, isolated or substantially purified nucleic acid, the vector, the cell or isolate, the vaccine, the pharmaceutical preparation, the immunogenic composition, the method, the use, or the method of any one or more of the preceding paragraphs (context permitting), wherein the vaccine, pharmaceutical preparation or immunogenic composition comprises a delivery system, carrier or aid.


Any of the features described herein can be combined in any combination with any one or more of the other features described herein within the scope of the invention.


EXAMPLES

Construction of ZIKV Vaccine Candidates Using Codon Deoptimization Technology


In order to generate a live attenuated Zika vaccine, we first constructed infectious clones of a Brazilian Zika virus (ZIKV) strain—BeH819016—which has a very similar sequence to those strains associated with microcephaly. Using the infectious clone and codon deoptimization (CD) technology, we inserted a number of changes in the non-structural (NS1, NS2A, NS2B, NS3) regions of the virus, with the objective of decreasing replication efficiency in mammalian cells and rendering the virus attenuated compared to wild-type ZIKV. Using this strategy, we generated a panel of clones for further testing. Clones that could be successfully ‘rescued’ were tested for their ability to replicate in mammalian and mosquito cells. The resulting viruses were strongly attenuated but still produced viral proteins to a level comparable to wild-type virus. Thus, using CD technology, we were able to generate a panel of live attenuated ZIKV vaccine candidates.


Synthetic sequence of BeH819016 strain from Brazil (very close to the strains shown to be associated with microcephaly) was used as the initial ZIKV genome. All the changes were made only in the nonstructural part of ZIKV genome to prevent possible adverse effect on structure of viral antigens which may result from altered dynamics of their translation. Three attenuated candidates were constructed:


1. ZIKV-DO with a codon deoptimized NS1-NS2A-NS2B-NS3 region (see FIG. 1a and SEQ ID:8 and 9). Approximately 3900 bases (36% of the genome) were de-optimized for human cells.


2. ZIKV-DO-NS3 with a codon deoptimized NS3 region (see FIG. 1a and SEQ ID NO: 3, 4 and 5).


3. ZIKV-DO-scattered where deoptimized codons are scattered over all the nonstructural genome part from the beginning of NS1 till the end of NS5 (see FIG. 1a and SEQ ID NO:6 and 7).


Methods

Process of Deoptimization


In contrast to an optimization process, which can be done using free software or online, there is no publicly available program for CD. Therefore, it was done manually. In case of ZIKV-DO and ZIKV-DO-NS3 every codon in the indicated sequence was analyzed in terms of its usage frequency in Homo sapiens. If the codon was frequent it was manually changed to a synonymous but the less used one. For instance, amino acid Leucine (Leu) can be encoded by six different codons with the following frequencies: UUA—15%, UUG—12%, CUU—12%, CUC—10%, CUA—5%, and CUG—46%. If the Leu codon in the original sequence was represented by highly abundant CUG (46%), it was changed to rare CUA (5%). Some codons were left unchanged: Methionine (Met) and Tryptophan (Trp) as both of them are encoded by only one codon; and, Asparagine (Asn) and Aspartic acid (Asn) as their codons are used at almost the same frequency. Altogether, ˜700 changes were made in the ZIKV-DO genome and ˜350 changes in ZIKV-DO-NS3 genome. In the case of ZIKV-DO-scattered, approximately every 3rd or 4th codon was deoptimized along the entire nonstructural ZIKV coding region. Again, Met, Trp, Asp, and Asn codons were left unchanged. Approximately 700 substitutions were inserted in the case of ZIKV-DO-scattered.


Rescue of Deoptimized ZIKVs


Deoptimized sequences were purchased as synthetic DNA fragments and were used to replace wildtype (wt) counterparts in the initial pCCI-ZIKV-wt clone using appropriate unique restriction sites. Obtained cDNA clones were verified by restriction analysis and sequencing of deoptimized regions. Plasmid DNAs were amplified using E. coli NEB Turbo strain and purified using Macherey-Nagel Xtra Midi preparation kit. Plasmids were linearized using AgeI (BshTI) restriction enzyme and spin-column purified. Capped transcripts, corresponding to viral genome RNAs, were synthesized in vitro with Ambion mMessage-mMachine kit using linearized plasmid DNAs as templates. The quality and integrity of synthesized RNAs was verified by gel-electrophoresis. Obtained in vitro transcription mixtures were used for transfection of Vero E6 cells (derived from African green monkey kidney) by lipofection using Lipofectamine 2000 (Invitrogen) reagent and manufacturer's protocol. Transfected cells were incubated for 14 days and the cells' supernatant was then used for infection of new Vero E6 or Ae. albopictus cells C6/36.


Titration of Codon Deoptimized ZIKVs


All codon deoptimized ZIKV vaccine candidates failed to form plaques in Vero E6 cells indicating that they were attenuated. Their titration was therefore performed using A549Npro cells deficient in intracellular immune response. Ordinary plaque forming assay was used for titration with incubation time of 7 days for plaque formation. Infected cells were stained with crystal violet solution and formed plaques counted to obtain viral titers.


Improved Propagation of Attenuated ZIKV-DO-NS3 Strain with Deoptimized NS3 Region


We used the Vero E6 clone for propagation of the virus. TPCK-treated (N-tosyl-L-phenylalanine chloromethyl ketone) trypsin (at 0.5 μg/ml concentration) increased the titer of ZIKV-DO-NS3. The FBS (fetal bovine serum) content in virus growth media could be reduced to 1% or replaced with 0.2% BSA (bovine serum albumin). ZIKV-DO-NS3 was titrated only on A549NPro cells. The best MOIs (multiplicities of infection) for infection were 0.01-0.1 pfu/cell.


Virus was propagated on Vero E6 cells. 100 mm plates, 37° C. 5% CO2. Cells were ˜50-80% confluent at the moment of infection. Low MOI was used (0.01-0.1 pfu/cell). Cells were washed with PBS (phosphate buffered saline) and infected in 2 ml of serum-free DMEM (Dulbecco's modified Eagle's medium) for 2 hours with rocking of the plate every 10-15 minutes; then 8 ml virus growth medium (VGA, DMEM+0.2% BSA+Pen-Strep+0.5 μg/ml TPCK) was added (inoculum was not removed). During incubation, plates were gently rocked back and forth 4-5 times every day for the first 5 days to facilitate spread of virus over the plate. Growth media were sampled (approximately 0.5 ml) at Days 7, 10, and 14. Virus titers were determined on A549NPro cells using immuno-plaque assay with anti-ZIKV NS3 rabbit antibody (in house) and IRDye 800CW goat anti-rabbit secondary antibody (LI-COR). Cells were incubated for 96 hours before fixation. Virus titers in samples: Day 7—2×10*7 pfu/ml; Day 10—1.5×10*7 pfu/ml; Day 14-5×10*7 pfu/ml. The samples were also titrated by classical plaque titration on A549NPro cells (incubation time—8 days) with the same or similar results.


Results


Codon Deoptimized ZIKV Genomes


Cloning of codon deoptimized ZIKV genomes resulted in three plasmids, ZIKV-DO, ZIKV-DO-NS3 and ZIKV-DO-scattered, whose coding regions are schematically depicted in FIG. 1a.


A representative computational codon deoptimization is depicted in FIG. 1b.


Rescue of Attenuated ZIKVs with Deoptimized Nonstructural Regions


The deoptimized ZIKV vaccine candidates were rescued in Vero E6 cells and passaged 3 times with no significant cytopathic effect for up to 14 days. No protein expression was detected by western blot in Vero E6 cells (except ZIKV-DO-scattered). Subsequently, ZIKV-DO and ZIKV-DO-NS3 were passaged in mosquito Ae. albopictus cells for 7 days. Protein expression (NS3 and Envelope proteins) for ZIKV-DO and ZIKV-DO-NS3 viruses was confirmed in insect cells by western blot analysis. Supernatants collected from both Vero E6 and C6/36 cells were plaque-titrated on A549NPro cells.


Testing of Vaccines In Vivo


To test the vaccines in vivo, we required a suitable immunocompetent mouse model. Most mouse models of ZIKV infection are based on mice with an impaired immune system, making them inappropriate for vaccine studies. We have been successful in generating an immunocompetent C57BL/6 adult mouse model of ZIKV infection, using ZIKV strain MR766. The model is based on intracranial (i.c) infection of adult wild-type mice with 4×105 PFU ZIKV. Mice show high susceptibility to infection in our model (FIG. 2), with all mice dying by d6 p.i. This high susceptibility to infection makes our mouse model particularly suitable for use in vaccine testing. One vaccine candidate, ZIKA-DO-NS3, was initially selected for further testing. In contrast to the 100% mortality seen in mice infected with ZIKV MR766, mice given 4×105 PFU of the live attenuated ZIKV vaccine based on ZIKA-DO-NS3 showed no mortality. Thus, the vaccine candidate ZIKA-DO-NS3 is extremely safe.


For the experiments with ZIKV-DO-NS3, there were 5 mice per group and each experiment was repeated 3 times.


In our mouse model of i.c. ZIKV infection, as seen in FIG. 3, mice show prominent signs of disease, which are measured by clinical score and loss of body weight. Clinical score is measured by assessing and scoring a number of clinical signs: every 5% weight loss scores one point; noticeable hesitation in activity scores one point, significant reduction in activity scores 2 points, move only when pushed scores 3 points (select just one of these three movement assessments); rough fur scores 1 point; hunching scores one point; trembling scores one point; standing on hind limbs scores one point. These scores are added together to give a total clinical score. Disease was assessed in mice infected with the vaccine candidate based on ZIKA-DO-NS3 used in FIG. 2. Mice infected with 4×105 PFU ZIKV MR766 showed a dramatic increase in clinical score and weight loss. In contrast, infection of C57BL/6 mice with 4×105 PFU of the live attenuated ZIKV based on ZIKA-DO-NS3 did not affect clinical score and there was no weight loss. Thus, the vaccine candidate based on ZIKA-DO-NS3 is extremely safe.


To test vaccine efficacy, as seen in FIG. 4, mice were immunised with 2×104 PFU of the live attenuated vaccine based on ZIKV-DO-NS3 subcutaneously (s.c). Control mice received PBS. We adopted a booster regimen, with s.c immunisation at days 0, 7 and 14. Fourteen days following vaccination, mice were given a lethal i.c challenge with 4×105 PFU ZIKV. The control (non-vaccinated) mice all died within 6 days of infection. In contrast, there was no mortality in the vaccinated mice. n=5 mice per group.


To test vaccine efficacy, as seen in FIG. 5, mice were immunised with the live attenuated vaccine ZIKV-DO-NS3 subcutaneously (s.c). Control mice received PBS. We adopted a booster regimen, with s.c immunisation at days 0, 7 and 14. Fourteen days following vaccination, mice were given a lethal i.c challenge with 4×105 PFU ZIKV. The control (non-vaccinated) mice showed substantial loss of body weight from day 3 until death on day 6. In contrast, there was no loss of body weight in the vaccinated mice. n=5 mice per group.


To test vaccine efficacy, as seen in FIG. 6, mice were immunised with the live attenuated vaccine ZIKV-DO-NS3 subcutaneously (s.c). Control mice received PBS. We adopted a booster regimen, with s.c immunisation at days 0, 7 and 14. Fourteen days following vaccination, mice were given a lethal i.c challenge with 4×105 PFU ZIKV. The control (non-vaccinated) mice showed a dramatic increase in clinical score from day 4 until death on day 6. In contrast, there was no increase in clinical score at any time point in the vaccinated mice. n=5 mice per group.


To test vaccine efficacy, as seen in FIG. 7, mice were immunised with the live attenuated vaccine ZIKV-DO-NS3 subcutaneously (s.c). Control mice received PBS. We adopted a booster regimen, with s.c immunisation at days 0, 7 and 14. Fourteen days following vaccination, mice were given a lethal i.c challenge with 4×105 PFU ZIKV. The control (non-vaccinated mice) showed very high levels of ZIKV virus in brain tissue at 6 days p.i. In contrast, there was no detectable virus in the brains of vaccinated mice at day 6. n=5 mice per group.


We conducted an initial assessment of immunological mechanisms of protection mediated by the vaccine, and the results are shown in FIG. 8. C57BL/6 mice were immunized s.c with 2×104 PFU of the live attenuated vaccine ZIKV-DO-NS3 on days 0, 7 and 14. The mice were killed one week later and the draining lymph nodes were collected for analysis. There was a significant increase in the cellularity of draining lymph nodes in vaccinated mice compared to non-vaccinated mice (n=5 mice per group).


We conducted an initial assessment of immunological mechanisms of protection mediated by the vaccine, and the results are shown in FIG. 9. C57BL/6 mice were immunized s.c with 2×104 PFU of the live attenuated vaccine ZIKV-DO-NS3 on days 0, 7 and 14. The mice were bled and the ZIKV-specific antibody response assessed. Vaccinated mice mounted a strong antibody response against ZIKV. No ZIKV-specific antibodies were detected in non-vaccinated mice (n=5 mice per group).


We conducted an initial assessment of immunological mechanisms of protection mediated by the vaccine, and the results are shown in FIG. 10. C57BL/6 mice were immunized s.c with 2×104 PFU of the live attenuated vaccine ZIKV-DO-NS3 on days 0, 7 and 14. The mice were bled and the ZIKV neutralising antibody response assessed. ZIKV-specific neutralising antibodies were induced by the vaccine, as measured using a plaque reduction neutralisation test (PRNT). No ZIKV-specific neutralising antibodies were detected in non-vaccinated mice (n=5 mice per group).


We conducted an assessment of immunological mechanisms of protection mediated by the vaccine, and the results are shown in FIG. 11. We found that s.c inoculation of ZIKV-DO-NS3 induces an immune response in the draining lymph nodes. C57BL/6 mice were immunized s.c with 2×104 PFU of the live attenuated vaccine ZIKV-DO-NS3 on days 0, 7 and 14. Control mice were given PBS. Vaccinated and control mice were euthanized 6 days after the last immunisation. Draining lymph nodes posterior axillary, bilateral regions were collected. Numbers of CD4+ T cells, CD8+ T cells and B cells were quantitated using flow cytometry. Mice immunized with ZIKV-DO-NS3 mounted a strong T and B cell responses. Weak T and B cell responses were detected in non-vaccinated mice (n=4 mice per group).


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present invention.


In the present specification and claims (if any), the word ‘comprising’ and its derivatives including ‘comprises’ and ‘comprise’ include each of the stated integers but does not exclude the inclusion of one or more further integers.


The reference to any prior art in this specification is not, and should not be taken as an acknowledgement or any form of suggestion that the prior art forms part of the common general knowledge.

Claims
  • 1. A composition of matter selected from the group consisting of: (a) a live attenuated recombinant Zika virus comprising a partly codon deoptimized Zika viral genome;(b) a recombinant Zika virus comprising a partly codon deoptimized Zika viral genome;(c) a recombinant Zika virus particle comprising a partly codon deoptimized Zika viral genome;(d) a recombinant Zika virus nucleic acid comprising a partly codon deoptimized Zika viral genome;(e) a vaccine containing any one of (a) to (d);(f) a cell containing any one of (a) to (d);(g) an isolate containing any one of (a) to (d);(h) a pharmaceutical preparation containing any one of (a) to (d); and(i) an immunogenic composition containing any one of (a) to (d).
  • 2-7. (canceled)
  • 8. A method selected from the group consisting of: (1) treating a subject having a natural Zika viral infection; (2) reducing the severity of a natural Zika viral infection in a subject; and (3) preventing a subject from contracting a Zika viral infection naturally, said method comprising the step of administering to the subject the composition of matter of claim 1.
  • 9. (canceled)
  • 10. A method of generating a live attenuated Zika virus vaccine, recombinant Zika virus, recombinant Zika virus particle or recombinant Zika virus nucleic acid, or recombinant, isolated or substantially purified nucleic acid comprising a partly codon deoptimized Zika viral genome or partly codon deoptimized region thereof, comprising the step of partly codon deoptimizing a Zika viral genome.
  • 11. (canceled)
  • 12. The composition of matter of claim 1, wherein the codon deoptimized Zika viral genome comprises codon changes selected from the group consisting of: at least about 200 codon changes compared with wild-type or virulent Zika virus; no more than about 800 codon changes, compared with wild-type or virulent Zika virus; between about 200 and about 800 codon changes, compared with wild-type or virulent Zika virus; a minimum of about 286 codon changes, compared with wild-type or virulent Zika virus; a maximum of about 651 codon changes, compared with wild-type or virulent Zika virus; between about 286 and 651 codon changes in the viral genome, compared with wild-type or virulent Zika virus; codon deoptimization occurs in no less than about a 1700 nucleotide region of the codon deoptimized Zika viral genome compared with wild-type or virulent Zika virus; codon deoptimization occurs in no more than in about a 7900 nucleotide region of the codon deoptimized Zika viral genome compared with wild-type or virulent Zika virus; codon deoptimization occurs in a continuous region of the codon deoptimized Zika viral genome compared with wild-type or virulent Zika virus with a length of about 1800 to about 3600 nucleotides; codon deoptimization results in no less than about an 1800 nucleotide region of the genome compared with wild-type or virulent Zika virus, with no less than about 250 codon changes within that nucleotide region; codon deoptimization results in no more than about a 7900 nucleotide region of the genome compared with wild-type or virulent Zika virus, with no more than about 800 codon changes within that nucleotide region; and, about 20-60% of the coding region of the genome is codon deoptimized compared with wild-type or virulent Zika virus.
  • 13-26. (canceled)
  • 27. The composition of matter of claim 1, wherein the codon deoptimized Zika viral genome comprises codon changes selected from the group consisting of: the non-structural region of the viral genome is codon deoptimized; only the non-structural region of the viral genome is codon deoptimized; every 3rd or 4th codon is deoptimized along the nonstructural ZIKV coding region; any one or more of the genes NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5 are codon deoptimized; any contiguous genome region from the NS1 to NS5 region corresponding to at least 600 amino acid residues of viral polyprotein is codon deoptimized; the genes NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5 are codon deoptimized; the genes NS1, NS2A, NS2B and NS3 are codon deoptimized; the gene NS3 is codon deoptimized; approximately 700 codon substitutions are made along the entire nonstructural ZIKV coding region compared with wild-type or virulent Zika virus.
  • 28-39. (canceled)
  • 40. The composition of matter of claim 1, wherein the codon deoptimized Zika viral genome comprises codon changes selected from the group consisting of: the codon deoptimized genome has the deoptimized codons of the NS3 region of vaccine candidate ZIKV-DO-NS3 represented by SEQ ID NO:3, 4, 5 or 10; the codon deoptimized genome has about 200 or more of the codon changes of the NS3 region of vaccine candidate ZIKV-DO-NS3 represented by SEQ ID NO:3, 4, 5 or 10; the codon deoptimized genome has the deoptimized codons of the NS1, NS2A, NS2B, NS3, NS4A, NS4B and/or NS5 regions of the vaccine candidate ZIKV-DO-scattered represented by SEQ ID NO:6, 7 or 11; the codon deoptimized genome has about 200 or more of the codon changes of the NS1, NS2A, NS2B, NS3, NS4A, NS4B and/or NS5 regions of the vaccine candidate ZIKV-DO-scattered represented by SEQ ID NO:6, 7 or 11; the codon deoptimized genome has the deoptimized codons of the NS1, NS2A, NS2B and/or NS3 regions of the vaccine candidate ZIKV-DO represented by SEQ ID NO:8, 9 or 12; the codon deoptimized genome has about 200 or more of the codon changes of the NS1, NS2A, NS2B and/or NS3 regions of the vaccine candidate ZIKV-DO represented by SEQ ID NO:8, 9 or 12; the codon deoptimized genome has the deoptimized codons of the nonstructural region represented by SEQ ID NO:1; the codon deoptimized genome has at least 90 percent of the deoptimized codons of the NS3 region of vaccine candidate ZIKV-DO-NS3 represented by SEQ ID NO:3, 4, 5 or 10; the codon deoptimized genome has at least 90 percent of the deoptimized codons of the NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5 regions of the vaccine candidate ZIKV-DO-scattered represented by SEQ ID NO:6 or 7; and, the codon deoptimized genome has at least 90 percent of the deoptimized codons of the NS1, NS2A, NS2B and NS3 regions of the vaccine candidate ZIKV-DO represented by SEQ ID NO:8 or 9.
  • 41-51. (canceled)
  • 52. The method of claim 8, wherein the codon deoptimized Zika viral genome comprises codon changes selected from the group consisting of: at least about 200 codon changes compared with wild-type or virulent Zika virus; no more than about 800 codon changes, compared with wild-type or virulent Zika virus; between about 200 and about 800 codon changes, compared with wild-type or virulent Zika virus; a minimum of about 286 codon changes, compared with wild-type or virulent Zika virus; a maximum of about 651 codon changes, compared with wild-type or virulent Zika virus; between about 286 and 651 codon changes in the viral genome, compared with wild-type or virulent Zika virus; codon deoptimization occurs in no less than about a 1700 nucleotide region of the codon deoptimized Zika viral genome compared with wild-type or virulent Zika virus; codon deoptimization occurs in no more than in about a 7900 nucleotide region of the codon deoptimized Zika viral genome compared with wild-type or virulent Zika virus; codon deoptimization occurs in a continuous region of the codon deoptimized Zika viral genome compared with wild-type or virulent Zika virus with a length of about 1800 to about 3600 nucleotides; codon deoptimization results in no less than about an 1800 nucleotide region of the genome compared with wild-type or virulent Zika virus, with no less than about 250 codon changes within that nucleotide region; codon deoptimization results in no more than about a 7900 nucleotide region of the genome compared with wild-type or virulent Zika virus, with no more than about 800 codon changes within that nucleotide region; and, about 20-60% of the coding region of the genome is codon deoptimized compared with wild-type or virulent Zika virus.
  • 53. The method of claim 8, wherein the codon deoptimized Zika viral genome comprises codon changes selected from the group consisting of: the non-structural region of the viral genome is codon deoptimized; only the non-structural region of the viral genome is codon deoptimized; every 3rd or 4th codon is deoptimized along the nonstructural ZIKV coding region; any one or more of the genes NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5 are codon deoptimized; any contiguous genome region from the NS1 to NS5 region corresponding to at least 600 amino acid residues of viral polyprotein is codon deoptimized; the genes NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5 are codon deoptimized; the genes NS1, NS2A, NS2B and NS3 are codon deoptimized; the gene NS3 is codon deoptimized; approximately 700 codon substitutions are made along the entire nonstructural ZIKV coding region compared with wild-type or virulent Zika virus.
  • 54. The method of claim 8, wherein the codon deoptimized Zika viral genome comprises codon changes selected from the group consisting of: the codon deoptimized genome has the deoptimized codons of the NS3 region of vaccine candidate ZIKV-DO-NS3 represented by SEQ ID NO:3, 4, 5 or 10, the codon deoptimized genome has about 200 or more of the codon changes of the NS3 region of vaccine candidate ZIKV-DO-NS3 represented by SEQ ID NO:3, 4, 5 or 10; the codon deoptimized genome has the deoptimized codons of the NS1, NS2A, NS2B, NS3, NS4A, NS4B and/or NS5 regions of the vaccine candidate ZIKV-DO-scattered represented by SEQ ID NO:6, 7 or 11; the codon deoptimized genome has about 200 or more of the codon changes of the NS1, NS2A, NS2B, NS3, NS4A, NS4B and/or NS5 regions of the vaccine candidate ZIKV-DO-scattered represented by SEQ ID NO:6, 7 or 11; the codon deoptimized genome has the deoptimized codons of the NS1, NS2A, NS2B and/or NS3 regions of the vaccine candidate ZIKV-DO represented by SEQ ID NO:8, 9 or 12; the codon deoptimized genome has about 200 or more of the codon changes of the NS1, NS2A, NS2B and/or NS3 regions of the vaccine candidate ZIKV-DO represented by SEQ ID NO:8, 9 or 12; the codon deoptimized genome has the deoptimized codons of the nonstructural region represented by SEQ ID NO:1; the codon deoptimized genome has at least 90 percent of the deoptimized codons of the NS3 region of vaccine candidate ZIKV-DO-NS3 represented by SEQ ID NO:3, 4, 5 or 10; the codon deoptimized genome has at least 90 percent of the deoptimized codons of the NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5 regions of the vaccine candidate ZIKV-DO-scattered represented by SEQ ID NO:6 or 7; and, the codon deoptimized genome has at least 90 percent of the deoptimized codons of the NS1, NS2A, NS2B and NS3 regions of the vaccine candidate ZIKV-DO represented by SEQ ID NO:8 or 9.
  • 55. The method of claim 10, wherein the codon deoptimized Zika viral genome comprises codon changes selected from the group consisting of: at least about 200 codon changes compared with wild-type or virulent Zika virus; no more than about 800 codon changes, compared with wild-type or virulent Zika virus; between about 200 and about 800 codon changes, compared with wild-type or virulent Zika virus; a minimum of about 286 codon changes, compared with wild-type or virulent Zika virus; a maximum of about 651 codon changes, compared with wild-type or virulent Zika virus; between about 286 and 651 codon changes in the viral genome, compared with wild-type or virulent Zika virus; codon deoptimization occurs in no less than about a 1700 nucleotide region of the codon deoptimized Zika viral genome compared with wild-type or virulent Zika virus; codon deoptimization occurs in no more than in about a 7900 nucleotide region of the codon deoptimized Zika viral genome compared with wild-type or virulent Zika virus; codon deoptimization occurs in a continuous region of the codon deoptimized Zika viral genome compared with wild-type or virulent Zika virus with a length of about 1800 to about 3600 nucleotides; codon deoptimization results in no less than about an 1800 nucleotide region of the genome compared with wild-type or virulent Zika virus, with no less than about 250 codon changes within that nucleotide region; codon deoptimization results in no more than about a 7900 nucleotide region of the genome compared with wild-type or virulent Zika virus, with no more than about 800 codon changes within that nucleotide region; and, about 20-60% of the coding region of the genome is codon deoptimized compared with wild-type or virulent Zika virus.
  • 56. The method of claim 10, wherein the codon deoptimized Zika viral genome comprises codon changes selected from the group consisting of: the non-structural region of the viral genome is codon deoptimized; only the non-structural region of the viral genome is codon deoptimized; every 3rd or 4th codon is deoptimized along the nonstructural ZIKV coding region; any one or more of the genes NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5 are codon deoptimized; any contiguous genome region from the NS1 to NS5 region corresponding to at least 600 amino acid residues of viral polyprotein is codon deoptimized; the genes NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5 are codon deoptimized; the genes NS1, NS2A, NS2B and NS3 are codon deoptimized; the gene NS3 is codon deoptimized; approximately 700 codon substitutions are made along the entire nonstructural ZIKV coding region compared with wild-type or virulent Zika virus.
  • 57. The method of claim 10, wherein the codon deoptimized Zika viral genome comprises codon changes selected from the group consisting of: the codon deoptimized genome has the deoptimized codons of the NS3 region of vaccine candidate ZIKV-DO-NS3 represented by SEQ ID NO:3, 4, 5 or 10; the codon deoptimized genome has about 200 or more of the codon changes of the NS3 region of vaccine candidate ZIKV-DO-NS3 represented by SEQ ID NO:3, 4, 5 or 10; the codon deoptimized genome has the deoptimized codons of the NS1, NS2A, NS2B, NS3, NS4A, NS4B and/or NS5 regions of the vaccine candidate ZIKV-DO-scattered represented by SEQ ID NO:6, 7 or 11; the codon deoptimized genome has about 200 or more of the codon changes of the NS1, NS2A, NS2B, NS3, NS4A, NS4B and/or NS5 regions of the vaccine candidate ZIKV-DO-scattered represented by SEQ ID NO:6, 7 or 11; the codon deoptimized genome has the deoptimized codons of the NS1, NS2A, NS2B and/or NS3 regions of the vaccine candidate ZIKV-DO represented by SEQ ID NO:8, 9 or 12; the codon deoptimized genome has about 200 or more of the codon changes of the NS1, NS2A, NS2B and/or NS3 regions of the vaccine candidate ZIKV-DO represented by SEQ ID NO:8, 9 or 12; the codon deoptimized genome has the deoptimized codons of the nonstructural region represented by SEQ ID NO: 1; the codon deoptimized genome has at least 90 percent of the deoptimized codons of the NS3 region of vaccine candidate ZIKV-DO-NS3 represented by SEQ ID NO:3, 4, 5 or 10; the codon deoptimized genome has at least 90 percent of the deoptimized codons of the NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5 regions of the vaccine candidate ZIKV-DO-scattered represented by SEQ ID NO:6 or 7; and, the codon deoptimized genome has at least 90 percent of the deoptimized codons of the NS1, NS2A, NS2B and NS3 regions of the vaccine candidate ZIKV-DO represented by SEQ ID NO:8 or 9.
  • 58. The composition of matter of claim 1, being the vaccine containing the live attenuated recombinant Zika virus comprising a partly codon deoptimized Zika viral genome, wherein the codon deoptimized Zika viral genome comprises codon changes selected from the group consisting of: the non-structural region of the viral genome is codon deoptimized; only the non-structural region of the viral genome is codon deoptimized; every 3rd or 4th codon is deoptimized along the nonstructural ZIKV coding region; any one or more of the genes NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5 are codon deoptimized; any contiguous genome region from the NS1 to NS5 region corresponding to at least 600 amino acid residues of viral polyprotein is codon deoptimized; the genes NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5 are codon deoptimized; the genes NS1, NS2A, NS2B and NS3 are codon deoptimized; the gene NS3 is codon deoptimized; approximately 700 codon substitutions are made along the entire nonstructural ZIKV coding region compared with wild-type or virulent Zika virus.
  • 59. The composition of matter of claim 1, wherein the codon deoptimized Zika viral genome comprises codon changes selected from the group consisting of: the codon deoptimized genome has the deoptimized codons of the NS3 region of vaccine candidate ZIKV-DO-NS3 represented by SEQ ID NO:3, 4, 5 or 10; the codon deoptimized genome has about 200 or more of the codon changes of the NS3 region of vaccine candidate ZIKV-DO-NS3 represented by SEQ ID NO:3, 4, 5 or 10; the codon deoptimized genome has the deoptimized codons of the NS1, NS2A, NS2B, NS3, NS4A, NS4B and/or NS5 regions of the vaccine candidate ZIKV-DO-scattered represented by SEQ ID NO:6, 7 or 11; the codon deoptimized genome has about 200 or more of the codon changes of the NS1, NS2A, NS2B, NS3, NS4A, NS4B and/or NS5 regions of the vaccine candidate ZIKV-DO-scattered represented by SEQ ID NO:6, 7 or 11; the codon deoptimized genome has the deoptimized codons of the NS1, NS2A, NS2B and/or NS3 regions of the vaccine candidate ZIKV-DO represented by SEQ ID NO:8, 9 or 12; the codon deoptimized genome has about 200 or more of the codon changes of the NS1, NS2A, NS2B and/or NS3 regions of the vaccine candidate ZIKV-DO represented by SEQ ID NO:8, 9 or 12; the codon deoptimized genome has the deoptimized codons of the nonstructural region represented by SEQ ID NO:1; the codon deoptimized genome has at least 90 percent of the deoptimized codons of the NS3 region of vaccine candidate ZIKV-DO-NS3 represented by SEQ ID NO:3, 4, 5 or 10; the codon deoptimized genome has at least 90 percent of the deoptimized codons of the NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5 regions of the vaccine candidate ZIKV-DO-scattered represented by SEQ ID NO:6 or 7; and, the codon deoptimized genome has at least 90 percent of the deoptimized codons of the NS1, NS2A, NS2B and NS3 regions of the vaccine candidate ZIKV-DO represented by SEQ ID NO:8 or 9.
  • 60. The composition of matter of claim 1, wherein the codon deoptimized Zika viral genome comprises codon changes selected from the group consisting of: the genes NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5 are codon deoptimized; the genes NS1, NS2A, NS2B and NS3 are codon deoptimized; and, the gene NS3 is codon deoptimized.
  • 61. The composition of matter of claim 60, wherein the codon deoptimized genome has the deoptimized codons of the nonstructural region represented by SEQ ID NO:3.
  • 62. The method of claim 8, wherein said method is for preventing a subject from contracting a Zika viral infection naturally, said method comprising the step of administering to the subject the composition of matter of claim 58.
  • 63. The method of claim 62, said method comprising the step of administering to the subject the composition of matter of claim 59.
  • 64. The method of claim 62, said method comprising the step of administering to the subject the composition of matter of claim 60.
  • 65. The method of claim 62, said method comprising the step of administering to the subject the composition of matter of claim 61.
Priority Claims (1)
Number Date Country Kind
2018903913 Oct 2018 AU national
PCT Information
Filing Document Filing Date Country Kind
PCT/AU2019/051115 10/15/2019 WO 00