The present disclosure relates to viscoelastic fluid drop formation, and more particularly to fluid drop formation in a manner that is precise and repeatable.
Viscoelastic fluids exhibit some viscous properties also associated with Newtonian fluids, such as water and oil, as well as elastic properties associated with elastic materials, such as rubber. When deformed, viscoelastic fluids resist shear and strain similar to Newtonian fluids. However, unlike Newtonian fluids, the manner in which shear and strain are resisted depends on the rate at which shear and/or strain is applied. That is, for viscoelastic fluids the relationship between stress and strain varies with a duration of time over which a stress or strain is applied, and the rate at which the stress or strain is applied. Examples of time dependent behavior that viscoelastic materials may exhibit, to varying degrees, include increases in strain in response to a stress applied over time (i.e., creep) and/or decreases in stress in response to continually applied strains (i.e., stress relaxation). Some viscoelastic fluids experience shear thinning, which is a decrease in viscosity that accompanies an increase in shear rate.
Viscoelastic fluids are present in a wide variety of applications, including cosmetics, 3D printing, ink jet printing, biological fluid handling (e.g., mucous, sputum), adhesives, and the like. Conventional approaches for forming drops from viscoelastic fluids include the use of tools normally employed for Newtonian fluids, such as agitation, emulsion formation, shear application by valves, and the like. These techniques, when applied to viscoelastic fluids, often result in the formation of long strands that, when pulled, stretch between the drop being formed and the reservoir of material. This phenomenon, often referred to as “beads on a string” phenomena, prevents repeatable formation of fluid drops having desired volumes.
Overview
Techniques described herein relate to forming a drop of a viscoelastic fluid. The drop may be produced with a desired volume in a repeatable manner. As used herein, viscoelastic fluid processed through embodiments of the present disclosure includes a “separation volume” and a “remnant volume.” Separation volume refers to a sub-portion of fluid separated from a reservoir of fluid. The portion of the fluid remaining in the reservoir from which a sub-portion is separated is termed the remnant volume. The separation volume ultimately forms a drop of viscoelastic fluid when processed according to embodiments described herein. Viscoelastic fluids, as referenced herein, are fluids that behave with a relationship between stress and strain that varies with time, particularly for shear rates and/or strain rates near zero. Viscoelastic fluids typically have a non-zero storage modulus (G′).
According to one example embodiment, a separation volume of viscoelastic fluid is moved from a feed pathway of a feed channel and into a flow pathway of a cross-channel of a “T” shaped channel. Movement of the viscoelastic fluid through the channels subjects the viscoelastic fluid to shear that may cause a reduction in viscosity. To allow viscosity to increase, movement of the viscoelastic fluid may be reduced or stopped (i.e., the rate at which shear is applied is reduced) to promote stress relaxation. After a period of time, a separation volume of viscoelastic fluid may be moved within the flow pathway of the cross-channel using pressure applied to a surface of the separation volume by a flow of an immiscible fluid through a portion of the cross-channel. Moving the separation volume in this manner causes the separation volume to separate from the remnant volume in the feed channel, thereby producing a drop when the separation volume is ultimately issued from the cross channel remnant. This also prevents further movement of the remnant volume in the feed channel beyond an intersection of the feed channel and the cross-channel. Urging the separation volume against an interface at an intersection between the feed channel and the cross channel may aid separation.
A direction of flow of the separation volume in the cross channel is then reversed. The reversed direction is, in some embodiments toward an outlet. The separation volume is then dispensed from the outlet of the flow pathway as a drop of viscoelastic fluid.
Illustration of Viscoelastic Behavior
Viscoelastic fluids, as referenced herein, are fluids that behave with a relationship between stress and strain that varies with time, particularly for shear rates and/or strain rates near zero. Viscoelastic fluids typically have a non-zero storage modulus (G′).
While
Example Device and Application
A force (not shown) is applied to the viscoelastic fluid 201 to facilitate urging of the viscoelastic fluid 201 into the flow pathway 206 of the cross channel 208, as shown in
As shown in
In one embodiment, a separation portion 204 of viscoelastic fluid may be urged against an interface 215 between a feed channel 203 and a cross channel 208 to promote separation of the separation portion from the remnant portion. In one example, the interface 215 is an edge formed by the feed channel 203 and the cross channel 208 intersecting at a junction. By way of example,
The remnant portion 212 of viscoelastic fluid may be prevented from moving farther into the flow pathway 206 or even immobilized as a separation portion 204 is urged along the flow pathway 206. According to some embodiments, this may be accomplished by holding the remnant portion 212 in the feed pathway 202 with pressure (e.g., from the immiscible fluid used to move the remnant portion 204) and/or, vacuum as the separation portion 204 is moved in the flow pathway 206. Additionally or alternately, pressure may be applied against a face of the remnant portion adjacent to the flow pathway 206 of the cross channel 208, as shown in
The separation portion 204 may be moved into a flow pathway 206 at least until the separation portion 204 occupies a full cross sectional area of the flow pathway 206. In this respect, movement of an immiscible fluid in the flow pathway 206 and/or a pressure differential at different sides of the flow pathway 206 may better urge the separation portion 204 in one direction or another. The immiscible fluid is prevented from passing by the separation portion 204 in the flow channel 208. As may be appreciated, the cross-sectional area of the flow pathway 206 in combination with the width of the feed pathway 202 may define a minimum drop size for a particular embodiment. Flow pathway 206 and/or feed pathway 202 cross sectional size and/or shapes may thus be set by designers to adjust or define a minimum drop size and/or drop shape for a particular application.
Then, as shown in
The flow pathway 206 may be filled with viscoelastic fluid beyond an amount that occupies a full cross section of the flow pathway 206, as shown for example in the embodiment of
The viscoelastic fluid may be moved through the feed pathway 202 and into the flow pathway 206 in various manners. According to some example embodiments, a syringe pump pushes the remnant portion 212 of the viscoelastic fluid through the feed pathway 202, either by acting directly on the viscoelastic fluid or through an immiscible intermediary fluid. Any immiscible fluid in the flow pathway 206 may be under minimal or no pressure and/or in a motionless state, such that the introduction of the separation portion 204 into the flow pathway 206 easily displaces the immiscible fluid, according to some example embodiments. Alternately, fluid in the flow pathway 206 may be actively controlled through a pump, vacuum, or other mechanism to urge the separation portion 204 in a particular direction as the separation portion 204 enters the flow pathway 206. According to some embodiments, immiscible fluid may urge a separation portion 204 of viscoelastic fluid in one direction or another, as the immiscible fluid is moved into the flow pathway 206.
The shear rate applied against the viscoelastic fluid may be reduced and/or eliminated once a desired volume of viscoelastic fluid is positioned in the flow pathway 206. Equivalently, strain applied against the viscoelastic fluid may be held substantially constant. In this respect, viscosity of the viscoelastic fluid may increase as stress relaxation occurs. Stress relaxation and/or an increase in viscosity is accompanied by an increase in resistance to deformation. Increased resistance to deformation may allow either or both of the separation portion 204 and remnant portion 212 to move independently of one another in a manner that prevents the beads on a string phenomenon.
The degree to which the shear rate is reduced and/or the amount of time during which relaxation occurs may depend on various factors, including the particular viscoelastic fluid, the concentration of the viscoelastic fluid, temperature, the shear rate applied to move the viscoelastic fluid into the flow pathway 206, geometry of the cross channel 208 and/or feed channel 203 and the like. According to some embodiments, viscoelastic fluid is immobilized to allow stress relaxation and/or an increase in viscosity, and maybe immobilized for up to 0.01 seconds or more, up to 0.1 seconds or more, up to 0.25 seconds or more, up to 0.5 seconds or more, up to 1.0 seconds or more, up to 2 seconds or more, up to 5 seconds or more, up to 10 seconds or more, up to 30 seconds or more, and up to 60 seconds or more, or greater amounts of time.
After viscosity of the viscoelastic fluid is allowed to increase, the separation portion 204 of viscoelastic material may be moved in the flow pathway 206 to initiate separation from the remnant portion 212. According to some embodiments, the separation portion 204 is initially moved away from the drop outlet 210 in the flow pathway 206, as described with respect to the embodiment of
A separation portion 204 of a viscoelastic fluid may be moved away from the drop outlet 210 in the flow pathway 206 (i.e., upstream in the flow pathway 206) different distances. The distance to which a separation portion 204 is moved may, for the sake of convenience, may be described by one or more dimensionless ratio. Shift length “λ” is the ratio of the length that the separation portion is moved upstream in the flow pathway 206 over the diameter or another average cross sectional dimension of the separation portion, taken in a direction that is perpendicular to the flow pathway 206. According to some embodiments, shift length λ is chosen to be approximately at a distance where the separation portion 204 of the viscoelastic fluid separates from the remnant portion. Other embodiments, however, may experience separation before the separation portion 204 reaches the shift length λ or after the separation portion 204 is returning toward the drop outlet 210 after having reached shift length λ. The applicant has found that shift lengths λ of up to 0.5 or greater, up to 0.75 or greater, up to 1.0 or greater, up to 1.5 or greater, up to 2.0 or greater and more may prove beneficial in producing drops repeatedly and/or of precise volumes.
According to an example embodiment, drop length “K” is used to characterize geometry of a separation portion in the flow pathway 206. Drop length K is defined by the ratio of the length of the separation portion 204, taken in a direction parallel to a longitudinal axis of the flow pathway 206, to the diameter or another average cross sectional dimension of the separation portion 204, as measured in a direction that is perpendicular to the longitudinal axis of the flow pathway 206. Various drop length K values may be used, according to different embodiments. The applicant has found, however, that drop lengths K of up to 1 or greater, up to 1.5 or greater, up to 2 or greater, up to 3 or greater and even higher values may prove beneficial to producing drops repeatedly and/or in precise volumes.
The separation portion 204 may be moved toward the drop outlet 210, after having been moved away from the drop outlet 210 to a desired shift length λ. Motion of the separation portion 204 may be stopped, with relaxation allowed to occur, or the separation portion 204 may be moved in the different direction without an appreciable pause of time in between changing direction. The separation portion 204 may move past the remnant portion 212 that is being held stationary in the feed pathway 202 as the separation portion 204 moves toward the drop outlet. Reattachment of the separation portion 204 to the remnant portion 212 may be avoided, due at least in part to the existing separation of the separation portion and the remnant portion. Existence of immiscible fluid that forms between the remnant 212 and separation portions 204 may also prevent the separation portion 204 from reattaching to the remnant portion, according to some embodiments. The separation portion 204 may then be produced from the drop outlet 210 as a drop of viscoelastic material.
According to some embodiments, a separation portion 204 of viscoelastic material undergoes additional processing ahead of being issued from the drop outlet 210. By way of non-limiting example, a coating or membrane may be applied to a separation portion 204. Additionally or alternately, a shape of the separation portion 204 may be modified, such as by a widened portion of a channel that allows the separation portion 204 to take on a spherical shape.
Various types of immiscible fluids may be used to move a separation portion 204 in a flow pathway 206. Immiscible fluids,” as used herein, refers to two fluids that form two distinct phases when they are brought into contact with each other. If agitated, immiscible fluids may be mixed together temporarily but will separate into the two distinct phases over time. After agitation a small portion of one immiscible fluid may remain dissolved in the other, but the two phases will be distinct. Selection of an immiscible fluid depends on the viscoelastic fluid being processes. In some embodiments, the selection of the immiscible fluid is determined based on one or more of a difference in polarity between the molecules of the viscoelastic fluid and the molecules of the immiscible fluid (e.g., polar hydrophilic fluids are immiscible with non-polar hydrophobic fluids) and a Flory interaction parameter (χ) between the viscoelastic fluid and the immiscible fluid. Examples of immiscible pairs of fluids include water/oil, water/hexane and aqueous polymer solutions/silicone oil. Many immiscible fluids are insoluble in each other and at 25° C. a first fluid may exhibit a solubility in a second immiscible fluid of less than 1%, less than 0.1% or less than 0.01% by weight. Different mechanisms may be used to move a viscoelastic fluid and/or immiscible fluid in accordance with the techniques described herein. Some non-limiting examples of mechanisms include positive displacement syringe, peristaltic pumps and the like.
Multiple drops may be formed in succession from a common flow pathway 206, according to some embodiments. Formation of a subsequent separation portions 204 and drops may occur after a drop has been dispensed from a drop outlet 210 of the flow pathway 206. Alternately, according to some embodiments, multiple separation portions may be formed in a flow pathway 206 prior to being dispensed as drops. Multiple feed pathways 202 may feed a common flow pathway 206, according to some embodiments, to facilitate the production of multiple drops. Drops may be formed from viscoelastic materials having zero shear viscosities of different values, including values up to 100,000 Poise and higher values, particularly where the fluid experiences adequate shear thinning.
The conduits used to produce the viscoelastic drops can be made from a variety of materials depending on the fluids that are being used. Appropriate materials may include, for example, glass, polymers and metals. Polymers may be synthetic or natural and may be flexible or rigid. They may include, for instance, silicone, polyolefins, polycarbonate, fluoropolymers, polyesters, polyvinylchloride and polyurethanes. The pathways can be formed from tubing or can be molded or machined in a substrate such as PDMS. The flow pathway 206 may be formed from the same or a different material than the feed pathway 202. The surfaces that contact the viscoelastic fluid and the immiscible fluid may also be treated to alter their properties. These contact surfaces can be selected or altered to improve, for example, wettability or hydrophobicity. Hydrophobicity can be increased by reducing the surface energy of the contact surface. This can be done chemically by using a material, or treating the surface with a material or process, that results in a high contact angle with water. For example, a surface or material is considered to be hydrophobic if it exhibits a water contact angle of greater than or equal to 90° when measured using the sessile drop method. Surface energy can also be altered physically, for example, by either smoothing the surface or adding microstructures to change the resultant contact angle. In some embodiments, wettability can be minimized to improve droplet formation. For instance, if the viscoelastic fluid is aqueous, the water droplet contact angle may be greater than 60°, greater than 90° or greater than 120°. In some embodiments, the substrate may have a lower surface energy than the viscoelastic fluid. In other embodiments, the substrate may have a surface energy greater than the immiscible fluid but less than or equal to the viscoelastic fluid. Depending on the fluid being used, the channel walls may alternatively be hydrophilic, according to some embodiments.
Different sizes of drops may be formed, according to different embodiments. A lower drop size limit for any given embodiment may be controlled by the channel width. Moreover, channel widths and cross section areas may have any range of sizes that may be constructed and in which viscoelastic fluids may be moved. The pressure drop used to move a viscoelastic fluid in a particular channel geometry may control the smallest channel size that can be used. Theoretically, drops may be formed up to any size that is desirable utilizing methods described herein.
Example Method
The remnant portion is optionally stabilized 232 (i.e., to prevent further movement or motion) so as to prevent further movement during subsequent steps of the process 220, particularly during the process in which the separation portion is separated from the remnant portion. This, in part, facilitates discrete drop formation without generating filaments connecting the separation portion and the remnant portion, described above as the “beads on a string” phenomenon.
The separation portion disposed within the flow pathway of the cross channel is then separated 236 from the separation portion within the feed pathway of the feed channel by moving the separation portion in a first direction. In some examples, the first direction is in a direction perpendicular to a longitudinal axis of the feed pathway. In other examples, the first direction is at an acute angle to the longitudinal axis of the feed pathway so that an interface between the feed channel and the cross channel acts as a blade to facilitate separation. In some examples the force is applied to the separation portion using an immiscible fluid. This has the added benefit of acting as a cap or seal to the viscoelastic fluid remaining in the feed pathway of the feed channel, thus preventing the generation of filaments that connect to the separation portion.
The separation portion, now separated from the remnant portion, is moved 240 in a second direction opposite the first direction. In some examples, the movement in the second direction moves the separation portion over the intersection with the feed pathway and out a drop outlet. As in the preceding step, the force used to move the separation portion can be applied using an immiscible fluid.
Experiments and Results
Experiments were performed with techniques for viscoelastic fluid drop production using polymer solution concentrations of 9.09 weight percent and 0.909 weight percent PAM aqueous solution over wide ranges of zero shear viscosities of 5×104 and 10 Pa s respectively. Successful drop formation was demonstrated using both of these fluid concentrations on a macro scale cross channel (i.e., cylindrical feed channels and cross channels having 2.1 mm diameters), both with silicone oil and air as an immiscible fluid the flow pathway 206. Micro scale drop formation has also been demonstrated using the 0.909 weight percent PAM solution with silicone oil as an immiscible fluid in the flow pathway 206 (i.e., feed channels and cross channels having rectangular cross-sectional shapes with dimensions of about 200 μm by 100 μm. The polyacrylamide used for experiments performed herein was obtained from Acros Organics and had a molecular weight of 6 million grams per mole. PAM solutions described herein were aqueous solution prepared with deionized water. The silicone oil described herein was obtained from Clearco Products. Various aspects of these experiments and results are described herein.
Experiment 1—Storage and Loss Moduli
Experiment 1 measured storage modulus (G′) and loss modulus (G″) for particular viscoelastic fluids. Storage modulus quantifies the elastic nature of a viscoelastic fluid and loss modulus quantifies viscous behavior of a viscoelastic fluid. Ratios of these two parameters may provide a measure of the viscoelastic nature of a fluid, providing insight into any challenges in handling the fluid and/or forming drops from the fluid.
Experiment 2—Separation
In experiment 2, the formation and separation of 9.09 weight percent PAM is shown. The procedure for the experiment follows the general acts described herein with respect to
Experiment 3—Shift Length, Drop Length, and Flow Rates
For experiment 3, a relationship between the shift length (λ) that a separation portion was shifted for a desired drop size and the flow rate used for separation portion movement in the flow pathway 206 was shown to have an effect on successful drop formation.
Experiment 4—Separation with Lower Concentration Viscoelastic Fluid
In experiment 4, the formation and break up of a drop of 0.909 weight percent PAM is shown. The procedure for the experiment follows the general acts described herein with respect to
Experiment 5—Gas as an Immiscible Fluid
Experiment 5 showed that drop production is also possible using a gas as an immiscible fluid in the flow pathway 206, as shown in
Experiment 6—Separation in Micro Scale Channels
To demonstrate that a range of drop sizes may be produced, a method similar to that described with respect to
While several embodiments have been described and illustrated herein, those of ordinary skill in the art will readily envision a variety of other means and/or structures for performing the functions and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or modifications is deemed to be within the scope of this disclosure. More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be exemplary and that the actual parameters, dimensions, materials, and/or configurations will depend upon the specific application or applications for which the teachings of this disclosure is/are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, along with other embodiments that may not be specifically described and claimed.
The following examples pertain to further embodiments, from which numerous permutations and configurations will be apparent.
Example 1 is a method of producing a drop of viscoelastic fluid. The method includes moving a viscoelastic fluid through an interface and into a flow pathway 206, a remnant portion of the viscoelastic fluid remaining outside of the flow pathway 206 and preventing motion of the remnant portion. The method also includes moving the separation portion a first direction in the flow pathway 206 and moving the separation portion a second direction in the flow pathway 206 to produce the drop of viscoelastic fluid from the separation portion, the second direction opposite to the first direction.
Example 2 includes the subject matter of any of the preceding examples, and further wherein moving the viscoelastic fluid through the interface and into the flow pathway 206 includes moving a volume of viscoelastic fluid into the flow pathway 206 that is equal to a volume of the drop
Example 3 includes the subject matter of any of the preceding examples, and further wherein moving the separation portion of viscoelastic fluid through the interface and into the flow pathway 206 includes filling a cross-sectional area of the flow pathway 206 with the separation portion of the viscoelastic material.
Example 4 includes the subject matter of example 3, and further wherein the flow pathway 206 is constructed and arranged such that a minimum drop volume is defined by a volume of the separation portion of viscoelastic fluid that fills the cross-sectional area of the flow pathway 206.
Example 5 includes the subject matter of any of the preceding examples 1, and further wherein moving the separation portion of viscoelastic fluid through the interface and into the flow pathway 206 includes extending viscoelastic fluid through the interface and into the flow pathway 206 from a feed pathway 202, with the remnant portion of the viscoelastic fluid remaining in the feed pathway 202.
Example 6 includes the subject matter of any of the preceding examples, and further wherein preventing motion of at least some of the viscoelastic fluid includes preventing motion of the remnant portion of the viscoelastic fluid within the feed pathway 202.
Example 7 includes the subject matter of any of the preceding examples, and further wherein preventing motion of at least some of the viscoelastic fluid includes preventing motion of the viscoelastic fluid at the interface to promote stress relaxation.
Example 8 includes the subject matter of any of the preceding examples, and further wherein preventing motion of at least some of the viscoelastic fluid includes preventing motion of the separation portion of the viscoelastic fluid within the flow pathway 206 to promote stress relaxation prior to moving the separation portion the first direction in the flow pathway 206.
Example 9 includes the subject matter of any of the preceding examples and further wherein moving the separation portion the first direction in the flow pathway 206 includes displacing the separation portion in the flow pathway 206 with an immiscible fluid.
Example 10 includes the subject matter of example 9, and further wherein the immiscible fluid is a gas.
Example 11 includes the subject matter of example 9, and further wherein the immiscible fluid is a liquid.
Example 12 includes the subject matter of any of the preceding examples, and further wherein moving the separation portion the first direction in the flow pathway 206 includes moving the separation portion in the first direction by a distance at least equal to one half of a cross-section dimension of the flow pathway 206.
Example 13 includes the subject matter of any of the preceding examples, and further wherein moving the separation portion the first direction in the flow pathway 206 includes moving the separation portion in the first direction by a distance at least equal to a cross-section dimension of the flow pathway 206.
Example 14 includes the subject matter of any of the preceding examples, and further wherein moving the separation portion the first direction in the flow pathway 206 includes moving the separation portion in the first direction by a distance at least equal to twice a cross-section dimension of the flow pathway 206.
Example 15 includes the subject matter of any of the preceding examples, and further wherein moving the separation portion the first direction in the flow pathway 206 includes moving the separation portion away from an outlet of the flow pathway 206.
Example 16 includes the subject matter of example 15, and further wherein moving the separation portion the second direction in the flow pathway 206 includes moving the separation portion toward the outlet of the flow pathway 206.
Example 17 includes the subject matter of any of the preceding examples, and further wherein moving the separation portion the second direction in the flow pathway 206 includes moving the separation portion in a manner that passes adjacent the remnant portion of the viscoelastic.
Example 18 includes the subject matter of any of the preceding examples, and further wherein moving the separation portion the second direction in the flow pathway 206 issues the drop of viscoelastic fluid from an outlet of the flow pathway 206. Example 19 includes the subject matter of any of the preceding examples, and further wherein the viscoelastic fluid is a shear thinning fluid having a viscosity that decreases as a shear rate applied to the viscoelastic shear thinning fluid increases from a zero value.
Example 20 includes the subject matter of any of examples 5-19, and further wherein the flow pathway 206 is arranged orthogonally to the feed pathway 202.
Example 21 includes the subject matter of example 20, and further wherein the flow pathway 206 lies in a cross channel having a cross sectional dimensions less than 1 millimeter.
Example 22 includes the subject matter of any of the preceding examples, and further wherein the flow pathway 206 is of a consistent cross sectional size.
Example 23 includes the subject matter of any of the preceding examples, and further wherein the flow pathway 206 is of a varying cross sectional size.
Example 24 includes the subject matter of any examples 1-22, and further wherein a channel surface facing the flow pathway 206 is exhibits a water droplet contact angle of greater than 90 degrees.
Example 25 includes the subject matter of any of the preceding examples, and further wherein the viscoelastic fluid is a liquid.
Example 26 includes the subject matter of any of examples 1-24, and further wherein the viscoelastic fluid includes a solution.
Example 27 includes the subject matter of example 26, and further wherein the viscoelastic fluid is an aqueous solution.
Example 28 includes the subject matter of example 27, and further wherein the viscoelastic fluid is an aqueous polymer solution.
All definitions, as defined herein either explicitly or implicitly through use should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms.
All definitions, as defined and used herein, should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms.
The indefinite articles “a” and “an,” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.”
The phrase “and/or,” as used herein in the specification and in the claims, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Other elements may optionally be present other than the elements specifically identified by the “and/or” clause, whether related or unrelated to those elements specifically identified, unless clearly indicated to the contrary.
All references, patents and patent applications and publications that are cited or referred to in this application are incorporated in their entirety herein by reference.
This application claims priority to U.S. Provisional Application No. 62/078,497, filed on Nov. 12, 2014, and entitled Viscoelastic Fluid Drop Production, which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4007792 | Meister | Feb 1977 | A |
H0001099 | Sayler | Sep 1992 | H |
6258859 | Dahayanake | Jul 2001 | B1 |
7001362 | Vincent | Feb 2006 | B2 |
7129091 | Ismagilov et al. | Oct 2006 | B2 |
7416370 | de Larios et al. | Aug 2008 | B2 |
7485670 | Ruberti et al. | Feb 2009 | B2 |
7536962 | Eastin et al. | May 2009 | B2 |
7704457 | Patton | Apr 2010 | B2 |
7827704 | Fox et al. | Nov 2010 | B2 |
8252385 | Ittel et al. | Aug 2012 | B2 |
8268633 | Ramsey | Sep 2012 | B2 |
8273573 | Ismagilov et al. | Sep 2012 | B2 |
8304193 | Ismagilov et al. | Nov 2012 | B2 |
8663561 | Patton | Mar 2014 | B2 |
8765485 | Link | Jul 2014 | B2 |
9789482 | Link | Oct 2017 | B2 |
20050161477 | Strecker et al. | Jul 2005 | A1 |
20070235546 | Strecker et al. | Oct 2007 | A1 |
20080124726 | Monforte | May 2008 | A1 |
20110285042 | Viovy et al. | Nov 2011 | A1 |
20120132288 | Weitz | May 2012 | A1 |
20120211084 | Weitz | Aug 2012 | A1 |
20120277129 | Li et al. | Nov 2012 | A1 |
20140024023 | Cauley, III | Jan 2014 | A1 |
20150034163 | Abate | Feb 2015 | A1 |
20150298157 | Weitz | Oct 2015 | A1 |
20170354937 | Weitz | Dec 2017 | A1 |
20170361318 | Weitz | Dec 2017 | A1 |
Number | Date | Country |
---|---|---|
0 974 320 | Jan 2000 | EP |
2 332 595 | Jun 2011 | EP |
2004038363 | May 2004 | WO |
Entry |
---|
Cross, M. Relation between viscoelasticity and shear-thinning behaviour in liquids; Rheol. Acta 18, 609-614 (1979). |
Zukas, Brian, “Encapsulation of Anti-Traction Material”, Thesis, University of New Hampshire, Nov. 2014, 104 pages. |
Number | Date | Country | |
---|---|---|---|
20160132060 A1 | May 2016 | US |
Number | Date | Country | |
---|---|---|---|
62078497 | Nov 2014 | US |