The present invention relates to the use of organic compounds for raising the viscosities and/or reducing the salt requirements of viscoelastic surfactant (VES) gels, and particularly organic compounds having one or more alcohol or amine groups and compositions derived therefrom.
In the recovery of hydrocarbons, such as oil and gas, from natural hydrocarbon reservoirs, extensive use is made of wellbore treatment fluids such as drilling fluids, completion fluids, work over fluids, packer fluids, fracturing fluids, diverting fluids, acidising fluids, conformance or permeability control fluids and the like.
In many cases significant components of wellbore fluids are thickening agents, usually based on polymers or viscoelastic surfactants, which serve to control the viscosity of the fluids. Typical viscoelastic surfactants are N-erucyl-N,N-bis(2-hydroxyethyl)-N-methyl ammonium chloride (known as EHAC) and potassium oleate, solutions of which form gels that are responsive to oil when mixed with aqueous brine.
The application of viscoelastic surfactants in both non-foamed and foamed fluids used for fracturing subterranean formations has been described in several patents, e.g. EP-A-0835983, U.S. Pat. No. 5,258,137, U.S. Pat. No. 5,551,516, U.S. Pat. No. 5,964,295 and U.S. Pat. No. 5,979,557.
The use of viscoelastic surfactants for water shut off treatments is discussed in GB-A-2332224 and for selective acidizing in U.S. Pat. No. 5,979,557 and Chang F. F., Love T., Affeld C. J., Blevins J. B., Thomas R. L. and Fu D. K., “Case study of a novel acid diversion technique in carbonate reservoirs”, Society of Petroleum Engineers, 56529, (1999).
The salt concentration required to form the VES gels is typically between 3 and 12 weight percent.
A general feature of VES gels is that the viscosity of the gel decreases with increasing temperature. In many cases the viscosity of the gel will show a decrease above a critical temperature. This effect can be clearly seen in
Better performance can sometimes be achieved by increasing the brine concentration. But the transportation and handling of large volumes of salts for oilfield applications results in increased operational costs and potential health and safety implications. Due to these operational considerations, VES gels with a salt concentration of over 6% are rarely prepared in the field.
It is known in the art that the addition of an organic salt (often termed a co-surfactant), as opposed to the more common inorganic salt (such as KCl), to a surfactant can produce a VES gel at a lower concentration of added salt. However, these organic-salt gel systems can have little or no tolerance of the introduction of any other type of salt. This often results in the formation of a precipitate or phase separation in use which limits the operational effectiveness of these systems. A review of organic-salt VES systems has been published by Hoffmann and Ebert [Angew. Chem. Int. Ed. Engl., 27, 902-912 (1988)].
The use of long-chain alcohols in conjunction with surfactants has been reported in the literature. A cubic phase of vesicles was formed when octanol and sodium oleate were mixed in water with a relative ratio of 2:1 (see Gradzielski, M., Bergmeier, M., Muller, M., and Hoffmann, H. “Novel gel phase: A cubic phase of densely packed monodisperse, unilamellar vesicles”, J. Phys. Chem., 101, 1719 (1997)). However, this is not of a worm-like micellar type gel and is not as responsive to hydrocarbons. The gel formed from cetyl pyridinium chloride and NaCl is weakened upon the addition of 4-propyl phenol and further addition of the alcohol results in phase separation (see Rehage, H. and Hoffmann, H., “Viscoelastic surfactant solutions:model systems for rheological research”, Mol. Phys., 74, 933 (1991).
Patist et al. have observed that long-chain alcohols have an effect upon the NMR relaxation time of spherical micelles (Patist, A., Axelberd, T., and Shah, D. O., “Effect of long chain alcohols on micellar relaxation time and foaming properties of sodium dodecyl sulfate”, J. Coll. Int. Sci., 208, 259(1998)). They postulate that the sodium dodecyl sulfate micelles pack more tightly when the alcohol is present.
It is also known to dilute VES-based treatment fluids with alcohol (see e.g. U.S. Pat. No. 5,551,516 and U.S. Pat. No. 6,239,183). However, alcohol additions of this type are typically made with the aim of producing a suitable surface viscosity for injection. The effect of such additions on the downhole rheological performance of VES gels has not been investigated. Furthermore, WO 01/77487 describes the use of an alcohol or amine additive to reduce the viscosity of a viscoelastic surfactant based fluid. As is described therein, above a critical concentration, specific to the alcohol or amine additive, the addition of the alcohol or amine may reduce the viscosity of the gel. This critical alcohol or amine concentration depends on temperature such that typically a lower critical concentration is observed at elevated temperature. In this situation, a precursor is used to slowly release a concentration of the alcohol which is above the critical concentration, thereby reducing the viscosity.
The present invention is at least partly based on the discovery that the temperature at which the viscosity of a VES gel decreases can be increased by the addition of an alcohol or amine. It was also discovered that such an addition can cause an increase in the viscosity of the VES gel.
Accordingly, a first aspect of the present invention provides a wellbore fluid and its use including an organic compound having one or more polar groups to raise the critical temperature of a VES gel useful in a wellbore treatment fluid.
Thus the organic compound can be used to extend the range of downhole operating temperatures under which VES gels can be usefully employed.
A second aspect of the present invention provides the use of an organic compound having one or more alcohol or amine groups to reduce the concentration of inorganic salt that raises the viscosity of a VES gel above a level useful in a wellbore treatment fluid.
In a further embodiment of this aspect of the invention, in a VES gel comprising an inorganic salt, the present invention provides the use of an organic compound having one or more alcohol or amine groups to reduce or substantially eliminate the amount of that salt. The salt concentration of the well bore fluid in wt % preferably ranges between 0 and 6, more preferably between 0 and 4 and even more preferable between 0 and 3, or even under 3 using for example fresh water instead of brine. The above salt concentration may include organic salts.
Advantageously, the organic compound used in this way allows the inorganic salt requirements of VES gels to be reduced. Indeed, under certain circumstances, the useful viscosity level can be achieved in the absence of inorganic salt.
Furthermore, the first and second aspects can be combined and an organic compound having one or more alcohol or amine groups can be used to both raise the temperature at which the viscosity of a VES gel falls below a level useful in a wellbore treatment fluid, and to reduce the concentration of inorganic salt required to raise the viscosity of a VES gel above that level.
A further aspect of the present invention provides a method of treating a subterranean formation of a hydrocarbon well comprising injecting a treatment fluid into the well, the fluid comprising a surfactant for forming a VES gel, an organic compound having one or more alcohol or amine groups, and optionally an inorganic salt; whereby the organic compound raises the temperature at which the viscosity of the VES gel falls below a level useful for treating a subterranean formation of a hydrocarbon well, and/or reduces the concentration of inorganic salt required to raise the viscosity of the VES gel above that level.
The wellbore treatment fluid may be e.g. a fracturing fluid, a selective acidising fluid or diverting fluid, or a water shut-off fluid. Fracturing fluids are used to create opening or cracks in the formation and carry components such as proppants to prevent the openings from closing. Diverting fluids are fluids that inhibit access of subsequently injected fluids, such as acidising fluids, into formation layers with low oil saturation.
The following optional features and preferred embodiments relate to any of the previous aspects of the invention.
The viscosity level useful for most well bore applications, including for example fracturing fluids, is generally between 50 and 100 cP at a shear rate of 100 s−1. Fluids in accordance with the present invention may exhibit viscosities of 50 cP or 60 cP at temperatures above 50 degrees Celsius, or above 60 degrees Celsius and even above 70 degrees Celsius without increasing the salt level above 6 wt %.
The useful viscosity level should be attained at a broad range of reservoir temperatures. Typically reservoir temperatures can range from around 30° C. to around 200° C. Using the present invention, the critical temperature before significant loss of viscosity occurs, can be raised to above 100, 130 and even 150 degrees Celsius without turning to high salt concentrations.
The low shear viscosity level useful for effective transport of proppant particles is suitably >1000 cP at less than or equal to 1 s−1.
The viscosity level of a diverting gel useful for VES diversion systems is suitably >20 cP at 100 s−1.
The viscosity level useful for water control treatments is typically <100 cP at encountered shear rates.
The organic compound may be suitably miscible with the VES gel formulation and it is typically non-ionic.
The organic compound may be composed of a linear or branched saturated or partially unsaturated carbon chain comprising one or more polar groups, wherein the polar groups are typically —OH, —SH or —NH2. As the observed effect becomes more pronounced at high molecular weight, the organic compound may be preferably selected from a range comprising between 7 and 22 carbon atoms or more preferably comprising between 7 and 16 carbon atoms.
The organic compound may contain at least one other group selected from an ether, ketone, amide, ester, phosphate ester or phosphonate ester group.
The organic compound may be a mono-alcohol, a diol, an ethoxylated alcohol, ethyoxylated amine, alkanolamide or fatty acid ethoxylate, for example propan-2-ol, butanol, octan-1-ol, oleyl alcohol, versatyl alcohol, butanediol, butyl amine, oleyl amine or a dimeric oleyl amine. The VES gel may be formed from a surfactant which is anionic, cationic or zwitterionic, and is, for example, a carboxylate or modified carboxylate, a compound of formula R—X—Y-Z (as hereinafter defined), a quaternary ammonium compound, an alkyl betaine/sulphobetaine or an alkyl amido betaine/sulphobetaine. Preferably the surfactant is derived from oleic acid, linoleic acid or mixtures thereof, erucic acid, tallow acid, dimeric/trimeric/oligomeric carboxylic acids; or is E1018, oleyl ester succinate, oleyl amide succinate, oleyl sarcosinate or N-erucyl-N,N-bis(2-hydroxyethyl)-N-methyl ammonium chloride.
Preferably, the molar ratio, the ration between the concentration measured in mol/l, of the organic compound to the surfactant on which the VES gel is based is 0.5 or less. More preferably, the molar ratio is in the range of 0.05 to 3, and even more preferably in the range of 0.05 to 2.
In conventional treatment fluids based on VES gels, the temperature dependence of the viscosity may be controlled to some extent by varying the concentration of salt in the VES gel.
The viscosity level of a wellbore treatment fluid, and in particular of such a fluid useful for treating a subterranean formation of a hydrocarbon well will depend on the type of treatment. The viscosity of a VES-based fracturing fluid should be 50-100 cP at 100 s−1, preferably >75 cP at 100 s−1. In order to transport proppant particles effectively, the fracturing fluid should also have a much higher low shear viscosity, typically >100 cP at <1 s−1. For VES diversion systems, the viscosity of the diverting gel should be greater than about 30 cp at 100 s−1 and preferably about 50 cP at 100 s−1. For treatments where the fluid is required to penetrate rock matrix, e.g. water control treatments, then the typical fluid viscosity during injection should be <100 cP and preferably <50 cP throughout the range of shear rates encountered during placement.
Generally, a VES gel-based fluid will display an optimum salt concentration at which the critical temperature shows a maximum. This optimum salt concentration is often above the 6 wt % commonly achievable in oilfield operations and may, in some cases be above 12 wt %.
In VES gels according to the present invention, the addition of an organic compound such as an alcohol or amine to the VES gel has the effect of increasing the critical temperature of the gel.
Alternatively or additionally the addition of an organic compound such as an alcohol or amine reduces or possibly substantially eliminates the salt requirement of the gel. In many cases this allows gels to be formed with similar viscosities to those achieved with the optimum salt concentration in the absence of the organic compound.
The effects of raising the critical temperature of a VES gel and reducing or substantially eliminating the salt requirement by addition of an organic compound such as an alcohol or amine extend across a wide range of such organic compounds.
As used herein, “critical temperature” means the temperature above which the viscosity of the gel ceases to be useful for a wellbore treatment fluid and in particular for the treatment of a subterranean formation of a well. The critical temperature will vary depending on the exact composition of the VES gel, but can be determined for a particular gel using techniques known and available in the art.
The organic compound is typically a compound which is miscible with the VES gel formulation and which either resides mainly in the continuous aqueous phase of the fluid or at least partially resides within the worm-like micellar phase of the fluid. If the compound is too hydrophobic, then a low molar ratio of the compound will migrate to the interior of the worm-like micelles causing the worm-like micellar structure to be broken resulting in a reduction in the viscosity of the fluid at ambient temperature. Relative to the latter behaviour, the preferred compounds are more hydrophilic such that a molar ratio of the compound to the surfactant <0.5 or preferably <0.3 or more preferably ≦0.1 does not cause the worm-like structure of the fluid to break, but rather it enhances the viscosity at elevated temperatures and it also reduces the concentration of inorganic salt which is required to optimize the high temperature tolerance of the gel.
The organic compound is preferably non-ionic. Typically it may be composed mainly of a linear or branched saturated or partially unsaturated carbon chain with a sufficient number of polar groups to impart a hydrophilic-lipophilic balance (HLB) high enough to render the compound miscible with the aqueous VES gel formulation and high enough such that low molar ratios of the compound do not break the worm-like micellar structure of the VES gel. Typical polar group(s) of the compound are —OH, —SH, —NH2. The compound may also contain other groups such as ether, ketone, amide, ester, phosphate ester or phosphonate ester groups. Thus, when the compound contains —OH groups, it can be a simple mono-alcohol such propan-2-ol, butanol, octan-1-ol or oleyl alcohol, an alpha-branched alcohol such as versatyl alcohol, a diol such as butanediol or a more complex molecule such as an ethoxylated alcohol, ethoxylated amine, alkanolamide or fatty acid ethoxylate. Dimeric or oligomeric forms such as a dimer acid ethoxylate may also be used. When the compound is more hydrophilic and completely miscible with the continuous phase, e.g. propan-2-ol or butanediol, then the compound can be symmetric or asymmetric. When the compound is more hydrophobic, e.g. octan-1-ol or oleyl alcohol, then the compound is asymmetric such that it can penetrate the worm-like micelles. When the compound does not contains —OH groups, it can be an amine such as butyl amine, oleyl amine or a dimeric oleyl amine.
For VES treatment fluids formed with alcohol and amine additives, the concentrations of additive required to elevate the critical temperature are similar. In each case, the molar ratio of the additive to the surfactant which forms the VES gel may be 0.5 or less, and more preferably the molar ratio is in the range from 0.01 and 0.4.
The VES gel may be formed from a surfactant which is anionic, cationic or zwitterionic. Typical anionic viscoelastic surfactants include carboxylates and modified carboxylates where the typical carboxylates can be those derived from oleic acid, linoleic acid, erucic acid, mixtures of oleic and linoleic acid, tallow acid, dimeric/trimeric/oligomeric carboxylic acids and where the modified carboxylates can be ethoxycarboxylates, ester carboxylates or amide carboxylates. Exemplary modified carboxylates include oleyl ester succinate, oleyl amide succinate and oleyl sarcosinate. When the viscoelastic surfactant is anionic, it may be of general formula R—X—Y-Z (as described in WO/02/064945 and WO/02/064947) and in which R is the hydrophobic tail of the surfactant, Z is the hydrophilic head of the surfactant, said hydrophilic head group being charged, X is a stabilising group and Y is a linear, saturated or unsaturated chain of 1, 2 or 3 carbon atoms or a branched, saturated or unsaturated hydrocarbon chain wherein the main chain is of 1, 2 or 3 carbon atoms, possibly incorporating an aromatic ring. Preferably the anionic group Z can be carboxylate, COO− or sulphonate, SO3−.
Typical cationic surfactants include quaternary ammonium compounds such as N-erucyl-N,N-bis(2-hydroxy-ethyl)-N-methyl ammonium chloride. Typical zwitterionic surfactants include the alkyl betaines/sulphobetaines and alkyl amido betaines/sulphobetaines where the alkyl group is typically oleyl or erucyl and dimeric/trimeric/oligomeric forms of these betaines/sulphobetaines.
Preferred VES surfactants to which the present invention may be applied include conventional commercially available surfactants, such as oleyl ester succinate, oleyl amide succinate, dimeric oleyl amide succinate, oleyl sarcosinate, oleic acid salt, oleic acid salt dimer, EHAC and a mixture of linoleic and oleic acids, as well as e.g. the surfactant compounds (I-VII) shown below which are intended to have extended temperature capabilites.
VES-based treatment fluids according to the present invention show wide applicability in wellbore applications. The fluids may be used as, for example, fracturing fluids, selective acidising fluids, water shut-off fluids, well clean-out fluids, diversion fluids for acid and scale dissolver treatments. VES-based treatment fluids of the present invention are particularly useful in the treatment of a subterranean formation of a well.
VES gel treatment fluids of the present invention may be formulated by simple admixing of the VES surfactant with an appropriate alcohol or amine additive. In some embodiments of the invention, the treatment fluid may also comprise other elements such as a proppant, if the gel is formulated as a fracturing fluid, such as 20-40 mesh sand, bauxite, glass beads etc.
The alcohol or amine additive may be pre-mixed with the surfactant to a given concentration. This facilitates transport of the alcohol or amine additives to oilfield sites. When on site, water or aqueous salt solution (usually KCl brine) is added to the pre-mixed surfactant-alcohol/amine to formulate the treatment fluid.
Alternatively, the alcohol or amine additive may be mixed on-site with the surfactant and water/brine to form the treatment fluid.
The performance of VES surfactant systems according to the present invention have been assessed in terms of the rheology (variation of viscosity with temperature or salt concentration) of the respective gel.
A controlled stress rheometer (Bohlin model type CVO-50) was used to measure the rheological properties of the solutions. Using a concentric cylinders (Couette) geometry (inner radius of the outer cylinder, Ri=1.375 cm, outer radius of the inner cylinder, Ro=1.25 cm, and inner cylinder length=3.78 cm), corresponding to the geometry of German DIN standard 53019, the viscosity of each gel was measured at a particular shear rate.
For the particular geometry of the rheometer, the shear rate was calculated as:
where RPM is the rotational speed (in revolutions per minute) of the inner cylinder. The viscosity was then obtained for each measurement by dividing the measured stress by the calculated shear rate.
A surfactant derived from dimeric oleyl amide succinate forms a gel when it is dissolved in aqueous base and salt is added. In a VES gel containing 4 wt % oleyl amide succinate and aqueous KCl, the optimum salt concentration is around 8 wt % KCl. At this salt concentration, the temperature at which the viscosity of the gel drops below 50 cp is just over 130° C. This temperature drops dramatically to just over 70° C. if only 4 wt % KCl is added. This effect can be seen in
Monomeric oleyl amide succinate shows similar behaviour to that of its dimeric counter-part in forming VES gels on addition of aqueous base and a salt. The rheological performance of the monomeric version of oleyl amide succinate is shown in
The method of Example 1 is also applicable to other amide systems, such as oleyl sarcosinate (commercially available from Dow chemicals and known as Hamposyl O). A 4 wt % solution of the amide requires 10 wt % KCl to remain as a gel up to around 100° C. The viscosity of the same material with only 6 wt % KCl loses its gel properties at just under 80° C. The addition of a 0.15 molar ratio of oleyl alcohol to the gel containing 6 wt % KCl restores the temperature at which the viscosity falls below 50 cp to around 95° C. The rheological profile is shown in
This phenomenon is not only related to oleyl alcohol. On addition of a 0.3 molar ratio of 1-octanol to the VES system containing 6 wt % KCl, the temperature at which the viscosity of the gel falls below 50 cp is restored to around 90° C. compared to just under 80° C. in the absence of 1-octanol. The effect of adding the 1-octanol to the oleyl sarcosinate gel containing 6 wt % KCl is shown in
Furthermore, on addition of a 0.1 molar ratio of oleyl amine to the VES system containing 6 wt % KCl, the temperature at which the viscosity of the gel falls below 50 cp is restored to around 85° C. The rheological profile for this system is shown in
VES gels derived from the salts of oleic acid dimers have also been examined. The KCl concentration required to achieve optimum performance for these systems is around 8 wt %. VES gels based on one of these oleic acid dimers, E1018 (supplied by Cognis) is of interest due to its reasonable tolerance to the presence of divalent cations such as calcium. The gel formed from this blend of oligomeric acids (E1018) has an upper operating temperature of around 90° C. This temperature drops to below 80° C. when the KCl concentration is reduced to the 6 wt % which is manageable in the field. However, the temperature at which the viscosity of a gel formed form E1018 with 6 wt % KCl falls below 50 cp can be raised to around 90° C. by the addition of a 0.15 molar ratio of an alcohol such as 1-octanol or oleyl alcohol. This effect is shown in the rheological profile of
It can be seen in
N-erucyl-N,N-bis(2-hydroxyethyl)-N-methylammonium chloride (EHAC) forms VES gels in the presence of chloride salt solutions (see
A range of VES gels were formulated with 3.375 wt % EHAC and varying overall concentrations of KCl. The viscosity of these gels was tested at each of 40, 60, 80, and 100° C. The results of these tests are shown in
A second range of VES gels was then formulated again with 3.375 wt % EHAC and varying overall concentrations of KCl but now with an additional 1.125 wt % iso-propyl alcohol (IPA). The viscosity of these gels was tested at each of 40, 60, 80, and 100° C. The results of these tests are shown in
The effect of adding 1.125 wt % IPA to the 3.375 wt % EHAC solution is shown in
Two VES gels were formulated, the first using 4 wt % oleyl ester succinate surfactant and 1.5 wt % KCl and the second the same but including 0.1 molar ratio or oleyl alcohol. The viscosity at 80° C. of the gels is shown in
A commercial mixture of linoleic and oleic acids (sold under the name Edenor™) is known to form VES gels on addition of aqueous KCl. Without other additions, around 10 wt % KCl is required to give optimum temperature performance.
While the invention has been described in conjunction with the exemplary embodiments described above, many equivalent modifications and variations will be apparent to those skilled in the art when given this disclosure. Accordingly, the exemplary embodiments of the invention set forth above are considered to be illustrative and not limiting.
Number | Date | Country | Kind |
---|---|---|---|
0323916.7 | Oct 2003 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB04/04280 | 10/11/2004 | WO | 11/20/2006 |