Viscosity Breaker for Polyacrylamide Friction Reducers

Information

  • Patent Application
  • 20070284101
  • Publication Number
    20070284101
  • Date Filed
    May 31, 2007
    17 years ago
  • Date Published
    December 13, 2007
    16 years ago
Abstract
A well treating fluid useful in slickwater fracturing processes contains polyacrylamide friction reducer and a viscosity breaker capable of reducing the viscosity of the well treating fluid to about the viscosity of water at ambient temperatures of typical underground formations. The viscosity breaker is selected from the group consisting of hydrogen peroxide, calcium peroxide, magnesium peroxide, and zinc peroxide and is present in an amount above about 0.002% by weight.
Description
DESCRIPTION OF THE PREFERRED EMBODIMENTS

The inventors have discovered that polyacrylamides of the type used in slickwater fracturing can be degraded to the point of having a viscosity about that of water by agents selected from the group of hydrogen peroxide, calcium peroxide, magnesium peroxide, and zinc peroxide. The metal peroxides may be encapsulated as taught in U.S. Pat. No. 4,506,734. Loadings of as low as 0.002% by weight of solution of these materials has been found to destroy the viscosity of polyacrylamide solutions within a few hours at room temperature without interfering with the friction reduction properties required of the polymers within the minutes after mixing the agents. Only a very few minutes of effective friction reduction are required or even desirable in slickwater fracturing treatments. The agents of this invention are effective without the addition of supplemental reducing agents and/or crosslinkers.


In a preferred embodiment hydrogen peroxide is added at a concentration of about 0.004%, to a well treating fluid containing fresh water and about 0.01% polyacrylamide. For ease of handling the hydrogen peroxide is preferably added as a 7% solution and the polyacrylamide is added as about a 32% emulsion. The well treating fluid may optionally contain other additives such as surfactants, scale inhibitors, and microbiocides. However, the well treating fluid does not contain any water soluble transition metal salts, esters, cross-linking compounds, or free radical scavengers. The viscosity of the above well treating fluid, which has an initial viscosity of about 2-5 centipose, returns to the approximate viscosity of water, which is about 0.79 centipose, within about 18 hours at a temperature of about 90° F.


Various embodiments of the current invention may be better understood by reference to the following examples. All viscosities were measured in the form of flow times through a Cannon-Fenske viscometer, which is a piece of glassware in which a precisely repeatable volume of fluid is allowed to flow through a length of fine capillary tubing. The time taken for this flow is recorded and compared with the time taken by a fluid of known viscosity. The Cannon-Fenske viscometer was selected because electromechanical instruments are much less accurate in these low ranges. The testing was conducted at 90° F. at which the viscosity of water is 0.79 centipose. This corresponds to a time of 145 seconds through the particular Cannon-Fenske viscometer used here.


EXAMPLE 1

A well treating fluid was produced by adding 0.33 gallons of the polyacrylamide emulsion sold as “PLEXSLICK 961,” which is manufactured by Cytec Industries of North Carolina per 1000 gallons of fresh water. This corresponds with about 0.01% weight percent of polyacrylamide. For sample A, 1.0 gallon per 1000 gallons of the 7% hydrogen peroxide solution disclosed above was added immediately to the well treating fluid prior to the start of testing. This corresponds to about 0.007% by weight of hydrogen peroxide in the well treating fluid. For Sample B, 0.5 gallons per thousand gallons of the 7% hydrogen peroxide solution was added immediately to the well treating fluid prior to the start of testing. This corresponds to about 0.0035% by weight of hydrogen peroxide in the well treating fluid. For Sample C, 0.33 gallons of the 7% hydrogen peroxide solution was added immediately to the well treating fluid prior to the start of testing. This corresponds to about 0.002% by weight of hydrogen peroxide in the well treating fluid. For each sample, the fresh solution was transferred to the viscometer and its viscosity was measured at the intervals noted in the table. The viscosities are reported in the number of seconds it took to pass through a Cannon-Fenske viscometer. Times through this Cannon-Fenske viscometer can be converted to centipose by multiplying the time by 0.00545.














TABLE 1







Time
Sample A
Sample B
Sample C









Initial
186
183
185



 1 hour
175
172
176



 2 hours
170
166
166



 4 hours
165
160
166



 6 hours
160
155
160



18 hours
146
149
153










EXAMPLE 2

A well treating fluid was produced according to the method described in Example 1 except that the 0.5 gallons of the polyacrylamide emulsion sold as ““PLEXSLICK 961,” which is also manufactured by Cytec Industries was added per 1000 gallons of fresh water. This corresponds with about 0.0175% by weight of polyacrylamide. For sample D, 1.0 gallons of the 7% hydrogen peroxide solution was added immediately to the well treating fluid prior to the start of testing. This corresponds to about 0.007% by weight of hydrogen peroxide in the well treating fluid. For Sample E, 0.5 gallons of the 7% hydrogen peroxide solution was added immediately to the well treating fluid prior to the start of testing. This corresponds to about 0.035% by weight of hydrogen peroxide in the well treating fluid. For Sample F, 0.33 gallons of the 7% hydrogen peroxide solution was added immediately to the well treating fluid prior to the start of testing. This corresponds to about 0.002% by weight of hydrogen peroxide in the well treating fluid.














TABLE 2







Time
Sample D
Sample E
Sample F









Initial
213
215
215



 1 hour
183
196
202



 2 hours
172
188
193



 4 hours
159
181
185



 6 hours
152
176
180



18 hours
149
165
173










EXAMPLE 3

A well treating fluid was produced according to the method described in Example 1 except that the 0.33 gallons of the cationic polyacrylamide emulsion sold as ““PLEXSLICK 982C,” which is manufactured by Cytec Industries was added per 1000 gallons of fresh water. This corresponds with about 0.01% by weight of polyacrylamide. For sample G, 1.0 gallons of the 7% hydrogen peroxide solution was added immediately to the well treating fluid prior to the start of testing. This corresponds to about 0.007% by weight of hydrogen peroxide in the well treating fluid.












TABLE 3







Time
Sample G









Initial
174



 1 hour
169



 2 hours
161



 4 hours
152



 6 hours
147



18 hours
145










EXAMPLE 4

A well treating fluid was produced according to the method described in Example 1 except that the 0.5 gallons of the cationic polyacrylamide emulsion sold as ““PLEXSLICK 982C,” which is manufactured by Cytec Industries was added per 1000 gallons of deionized water. This corresponds with about 0.0175% by weight of polyacrylamide. For sample H, 1.0 gallons of the 7% hydrogen peroxide solution was added immediately to the well treating fluid prior to the start of testing. This corresponds to about 0.007% by weight of hydrogen peroxide in the well treating fluid.












TABLE 4







Time
Sample H









Initial




 1 hour
192



 2 hours
185



 4 hours
176



 6 hours
151



18 hours
147










As can be seen from the above examples, hydrogen peroxide in amounts ranging from about 0.002 to about 0.007 weight percent are effective at reducing the viscosity of a well treating fluid containing from about 0.01 to about 0.02 weight percent of two polyacrylamide emulsions that are commonly used in slickwater fracturing to about the viscosity of water in about 18 hours at 90° F.


The above descriptions of certain embodiments are made for the purposes of illustration only and are not intended to be limiting in any manner. Other alterations and modifications of the preferred embodiments will become apparent to those of ordinary skill in the art upon reading the disclosure, and it is intended that the scope of the invention disclosed herein be limited only by the broadest interpretation of the appended claims to which the inventors are legally entitled.

Claims
  • 1. A well treating fluid for use in slickwater fracturing comprising: Water;A polyacrylamide friction reducer present in an amount of from about 0.005% to about 0.04%;A viscosity breaker, present in an amount above about 0.002% by weight;wherein the friction reducer is a peroxide selected from the group consisting of hydrogen peroxide, calcium peroxide, magnesium peroxide, and zinc peroxide; andwhereby the well treating fluid has a viscosity and the viscosity is reduced from an initial viscosity to about the viscosity of water within about 18 hours.
  • 2. The well treating fluid of claim 1 wherein the viscosity breaker is hydrogen peroxide.
  • 3. The well treating fluid of claim 1 wherein the polyacrylamide is cationic.
  • 4. The well treating fluid of claim 1 wherein the water is fresh water.
  • 5. The well treating fluid of claim 1 wherein the water is salt water containing less than about 10% salt content.
  • 6. The well treating fluid of claim 1 further comprising other additives selected from the group consisting of surfactants, scale inhibitors, microbiocides, and mixtures thereof.
  • 7. The well treating fluid of claim 1 wherein the well treating fluid has an initial viscosity below about 3 centipose at a temperature of about 90° F.
  • 8. The well treating fluid of claim 2 wherein: The polyacrylamide friction reducer is present in an amount of from about 0.005% to about 0.04% by weight;The viscosity breaker is present in an amount of from about 0.002% to about 0.02% by weight; andThe well treating fluid has an initial viscosity from about 0.8 to about 5 centipose at a temperature of about 90° F.
  • 9. The well treating fluid of claim 1 wherein the viscosity breaker is an encapsulated peroxide selected from the group consisting of calcium peroxide, magnesium peroxide and zinc peroxide.
  • 10. A method of slickwater fracturing an underground formation comprising; Providing a well treating fluid comprising water;Adding a polyacrylamide friction reducer in an amount of from about 0.005% to about 0.04% by weight;Adding a viscosity breaker selected from the group consisting of hydrogen peroxide, calcium peroxide, magnesium peroxide, and zinc peroxide in an amount above about 0.002% by weight;Injecting the well treating fluid into an underground formation at a pressure sufficient to fracture the underground formation; andAllowing the viscosity breaker to reduce the viscosity of the well treating fluid to about that of water over a period of time;
  • 11. The method of claim 8 wherein the viscosity breaker reduces the viscosity of the well treating fluid to about that of water within about 18 hours.
  • 12. The method of claim 8 wherein the viscosity of the well treating fluid is reduced to about 0.79 centipose at about 90° F.
  • 13. The method of claim 8 that does not include the step of raising the temperature of the formation.
  • 14. The method of claim 8 wherein the polyacrylamide is added to the well treating fluid by adding a polyacrylamide emulsion.
  • 15. The method of claim 8 wherein the viscosity breaker is hydrogen peroxide.
  • 16. The method of claim 1 wherein the water is fresh water.
  • 17. The method of claim 1 wherein the water is salt water containing less than about 10% salt content.
  • 18. The method of claim 8 further comprising adding to the well treating fluid other additives selected from the group consisting of surfactants, scale inhibitors, microbiocides, and mixtures thereof.
  • 19. The method of claim 8 wherein the well treating fluid has an initial viscosity below about 5 centipose at a temperature of about 90° F.
  • 20. The method of claim 13 wherein: The polyacrylamide friction reducer is present in an amount of from about 0.005% to about 0.04% by weight;The viscosity breaker is present in an amount of from about 0.002% to about 0.02% by weight;The well treating fluid has an initial viscosity from about 0.8 to about 5 centipose at a temperature of about 90° F.; andThe viscosity breaker reduces the viscosity of the well treating fluid to about 0.79 centipose at about 90° F. within about 18 hours.
  • 21. The method of claim 8 wherein the viscosity breaker is an encapsulated peroxide selected from the group consisting of calcium peroxide, magnesium peroxide and zinc peroxide.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application No. 60/811,740 filed on Jun. 8, 2006, which is entitled “Viscosity Breaker for Polyacrylamide Friction Reducers.”

Provisional Applications (1)
Number Date Country
60811740 Jun 2006 US