The invention relates to a viscous material dispenser, kit and method and more particularly to a dispenser, kit and method for dispensing a sealant.
Viscous materials can include sealant, mastic, adhesive, glazing, caulk, grout and glue compositions. Typically, such viscous materials are packaged, stored or commercialized in cardboard containers or plastic dispensers or cartridges that are adapted to be loaded into an extrusion device such as a caulking gun. These viscous materials include silicone sealants and caulks that are used in building and construction applications. Some of these compositions are referred to as room temperature vulcanizable (RTV) compositions. They may include a moisture-curable polyorganosiloxane polymer, filler, and a condensation cure catalyst. When used as sealants, these compositions can be packaged in a moisture impervious tube and applied to a substrate by extrusion from the packaging tube.
There are difficulties associated with these containers. For example, some materials are merchandised in cartridges for loading into a caulk dispenser or gun. The dispenser or gun is another item that must be purchased, stored, cleaned and maintained as part of the caulking process. The dispenser or gun may be cumbersome and difficult to operate, especially in constrained spaces in buildings under construction. Also, the dispensing device may require significant hand strength, which adds challenge to dispensing and laying a clean sealant bead.
In one process, a quantity of sealant is expressed from a dispensing tube or cartridge directly to a device to seal the area when dried. Typically, the dispensing tube or cartridge will contain more material than an amount required for a particular sealing job. Usually some unused portion of the tube remains after a required amount has been dispensed. The dispensing tube with the unused portion is discarded or is saved for futures use. Discarding is uneconomical and may be highly undesirable for environmental reasons. At present, there is no known recycling available for the wide variety of sealant compositions available on the market.
If the container with residual sealant is not discarded, it will need to be capped to save the material without setting for future use. But, the sealant may include a volatile component that will evaporation to harden residual material. Other sealants may be settable from exposure to atmosphere oxygen. And unless the container is correctly reclosed, the residual material will be lost.
Some dispensing containers are merchandised with a nozzle-engaging, snap-fit bead and groove or screw thread to provide a secure fit to the container body. But these caps are fragile pieces that are easily split or otherwise damaged from overtightening. Or, the snap-fit bead and groove may not provide an enduring reclose fit until the time when the tube is next required for a caulk job. Some informal capping devices have included the placing of a nail into the tube opening, to effect a plug type reclosure. Or, the container cap may be merchandised with a plug member to provide this function. But frequently, these solutions do not prevent content hardening for more than a short period of time.
Other reclosing approaches have included wrapping the container tip with aluminum foil or plastic wrap, secured with a rubber band and enclosing the entire container in a sealable plastic packet. But, oftentimes these mechanisms do not work because the packets rupture or the packets contain enough air to dry the tube contents. And, a foil or wrap can not be closely and tightly wrapped around the tube and nozzle without air gap.
There is a need for a viscous material container that overcomes the problems of waste and difficulty of use of current dispensers. Also, many merchandising containers are unduly expensive. There is a need for a reasonably priced solution in these viscous material container problems.
The invention provides a viscous material dispenser, method and kit to overcome current problems of waste, cost and difficulty of use.
The invention can be described as a viscous material dispenser, comprising a container having at least two opposing sidewalls; a first closure end; and a second closure end; the sidewalls and closure ends defining an enclosure, and at least one closure end comprising an expressing shape and at least one sidewall comprising a crease running from the expressing shaped closure end to the other closure end to permit folding the container at the crease to express a content from an interior of the container through the expressing shaped closure end to an exterior.
In an embodiment, the invention is a method of applying a sealant, comprising: providing a container having at least two opposing sidewalls; a first closure end; and a second closure end; the sidewalls and closure ends defining an enclosure including a container sealant, and at least one closure end comprising an expressing shape and at least one sidewall comprising a crease running from the expressing shaped closure end to the other end; and folding the container at the crease to express the sealant from the container through the expressing shaped closure end to an exterior.
In another embodiment, the invention is a sealant kit, comprising: a plurality of sealed packets having a crease along an axis of at least one packet; and a sealant contained within the at least one packet.
And in another embodiment, the invention is a method of applying a sealant, comprising: identifying a sealant job; selecting a packet having a quantity of sealant to accomplish the job without substantial unused sealant; and expressing sealant from the packet to the job.
The term sealant as used herein includes an entire variety of caulks including silicones, latex and acrylic caulk; filler compounds; adhesive or mastic-type materials, such as stucco, concrete and cementious-material patching and crack filling compounds; gasketing compounds; gutter, flashing, skylight, or fish tank seam or sealant compounds; butyl or rubber sealants, cements and caulk; roof cements; panel and construction adhesives; glazing compounds and caulks; gutter and lap sealants; silica gel-based firebrick, masonry and ceramic crack fillers and cements; silicon-based glues; ethylene-glycol-containing latex glazing compounds; and the like.
One preferred sealant is an organopolysiloxane room temperature vulcanizable (RTV) composition. The room temperature vulcanizable silicone elastomer composition can contain a silanol stopped base polymer or elastomer, reinforcing and/or extending filler, cross-linking silane and cure catalyst. These RTV compositions are prepared by mixing diorganopolysiloxanes having reactive end groups with organosilicon compounds that possess at least three hydrolyzably reactive moieties per molecule. The known RTV compositions are widely used as elastic sealing materials for applications involving the gaps between various joints such as the gaps between the joints of building materials, the joints between structural bodies and building materials in buildings, between the bathtub and wall or floor, cracks on tiles in bathrooms, gaps in the bathroom such as those around the washbasin and those between the washbasin supporting board and the wall, gaps around the kitchen sink and the vicinity, between panels in automobiles, railroad vehicles, airplanes, ships, gaps between prefabricated panels in various electric appliances, machines, and the like. Room temperature vulcanizable silicone sealants thus may be utilized in a wide variety of caulking and sealing applications.
Features of the invention will become apparent from the drawings and following detailed discussion, which by way of example without limitation describe preferred embodiments of the invention.
A portion 30 of the dispenser toward the second closure end 22 can comprise a more rigid or thicker material to impart added structure and strength. For example, the portion 30 can comprise a multiple laminated film that is the same film as the rest of the dispenser. Or, the portion 30 can comprise a different film that is more dense than the film of the rest of the dispenser.
The size of packet 10 can vary but can be about 20 cm by 15 cm or smaller. For example,
A selected packet from a kit of the invention can provide a desired amount of sealant for any particular job. No caulk gun is needed to apply the sealant. Indeed, no extra tools or materials are needed. The packet is relatively small and easily maneuverable to apply an appropriate bead. The packet requires little application force for dispensing and in most instances, sealant can be fully dispensed by one hand. Saving left over caulk is eliminated. Both kit and packet packaging are inexpensive.
The following Example is illustrative and should not be construed as a limitation on the scope of the claims.
Packet samples are evaluated to establish a design for dispensing a viscous material.
The samples are constructed from clear polypropylene Ziploc® packets, thin (<1 mm) black polypropylene and polyethylene sheet and acrylic thin film (<1 mm). The sheet materials are formed and heat sealed into packet shapes by first cutting oversized top and bottom rectangular shapes with triangular ends and heat sealing the pieces together with the triangular ends at one side to form a nozzle. Some of the packets are formed with gussets. The gussets are formed by folding the film at the packet sides and bottom.
Excess material is cut away from the packet after forming. Each packet is filled with material and then heat sealed to form an enclosure. The packets vary in length from about 4 cm to 20 cm, in width from about 2 cm to 15 cm and in thickness (filled with material) from about 0.5 to 2 cm. The packets are filled with acrylic caulk or silicone sealant.
A panel of evaluators is assembled to evaluate each packet from an array of 20 to 30. The packets are evaluated for content integrity and ease and control of material expression. In the evaluation, the panel visually and tactilely inspects each packet before dispensing material. Then members of the panel fold each packet to express its contents. The panel notes ease of control of expression of the material bead onto a test cardboard. Also, the panel observes any failure in packet integrity.
The packets are evaluated for dispersing both acrylic caulk and silicone sealant. The panel practices multiple dispensing for each configured packet. The panel then approves a selection of packets for next step evaluation. The process is reiterated with successive packets constructed according to characteristics of successful packets from a round of a previous evaluation.
The panel identifies packet designs that do not fully fill with material, do not form a round orifice for expressing a uniform bead and are insufficiently flexible to fully fill. Some expressing faults are addressed by changing nozzle angle and length in packets for subsequent evaluation rounds. Some first round designs are observed as too flimsy to allow for fine control needed to dispense a continuous smooth bead of material. This is addressed by (1) making one of the surfaces of the packet out of a more rigid plastic sheet, and (2) modifying user interaction to fold the packet along the crease length to provide an even more rigid dispensing structure.
Some designs are noted as having too thin a film. With these packets, the material resists sliding inside the packet thus making it difficult to completely express packet contents. This problems is addressed with a gusset designed packet to increase the volume of the packet while maintaining or decreasing the packet internal surface area.
A creased semi-rigid plastic backing for the packet is determined as a best design to hold a desired quantity of material and to ease folding for dispensing. The packet is sized overall (7 cm×5 cm×1.5 cm) to be manipulated to completely express material with one hand. The selected dispenser nozzle has a longer, 2 cm and narrower, 1 cm nozzle to allow the packet to be squeezed without nozzle deformation. And, the selected packet design has gussets on the sides to increase volume while minimizing internal surface area, so that material can be dispensed by one hand finger compression.
A resulting design was functionally tested by others that represented a consumer panel. Ten packets of the design were distributed among 6 persons of the panel. Each person was instructed to express material from a packet according to a procedure of manually pressing the packet with one hand with an index finger along the crease to fold the packet longitudinally to express the sealant from the packet nozzle.
A jury of designers observed from the expressing procedures and noted the panel's comments. The consumer panel responses were filmed to capture use of the packet and comments
The panel approved the proposed design. The following panel comments on the design were recorded: “This is really nice! I'm digging this.” “I think that's kind of amazing. I can only say good things about it.” “Super easy to use. I love the bead that it gave me. If feels like I have a lot of control.” “I like this already, and I'll tell you why. Because you can really manipulate the pressure. You can do a lot, or you can do a little.” “You've addressed the issue of most people at home not needing a huge quantity [of caulk].” “Once you get used to using these, as you can see already on my first run, you're pretty much a professional.”
This EXAMPLE illustrates a prospective commercial success for a viscous dispenser according to the invention.
While preferred embodiments of the invention have been described, the present invention is capable of variation and modification and therefore should not be limited to the precise details of the Examples. The invention includes changes and alterations that fall within the purview of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
2390822 | Wren | Dec 1945 | A |
2723779 | Parker et al. | Nov 1955 | A |
2878967 | Duke | Mar 1959 | A |
3354924 | Birrell et al. | Nov 1967 | A |
3635376 | Hellstrom | Jan 1972 | A |
3986640 | Redmond | Oct 1976 | A |
4148417 | Simmons | Apr 1979 | A |
4236652 | Beguhn | Dec 1980 | A |
4671026 | Wissinger | Jun 1987 | A |
4817344 | Wissinger | Apr 1989 | A |
4863014 | Simmons | Sep 1989 | A |
4974732 | Sullivan | Dec 1990 | A |
5034455 | Stein | Jul 1991 | A |
5180063 | Sakno | Jan 1993 | A |
5228782 | Imer | Jul 1993 | A |
5373965 | Halm et al. | Dec 1994 | A |
5654082 | Kagawa | Aug 1997 | A |
6090451 | Barth | Jul 2000 | A |
6241287 | Best | Jun 2001 | B1 |
6269654 | Murray | Aug 2001 | B1 |
6305132 | Smith | Oct 2001 | B1 |
6305577 | Fillmore | Oct 2001 | B1 |
6451440 | Atwood | Sep 2002 | B2 |
6557731 | Lyon et al. | May 2003 | B1 |
6659278 | Velliquette | Dec 2003 | B1 |
6662948 | Velliquette | Dec 2003 | B1 |
7241066 | Rosen et al. | Jul 2007 | B1 |
20010038020 | Schalow | Nov 2001 | A1 |
20010048198 | Dulin | Dec 2001 | A1 |
20010049427 | Atwood et al. | Dec 2001 | A1 |
20030089625 | Moodie | May 2003 | A1 |
20040226968 | LaFond | Nov 2004 | A1 |
20050152624 | Versluys | Jul 2005 | A1 |
20050217034 | Miller | Oct 2005 | A1 |
20060226171 | Sternberg | Oct 2006 | A1 |
20070266901 | Rance et al. | Nov 2007 | A1 |
20070272705 | Beine et al. | Nov 2007 | A1 |
20080197042 | Ullrich | Aug 2008 | A1 |
20090110856 | Gummaraju et al. | Apr 2009 | A1 |
Number | Date | Country |
---|---|---|
2001-018989 | Jan 2001 | JP |
9209494 | Jun 1992 | WO |
PCT 2009060541 | Sep 2009 | WO |
Entry |
---|
JP 2001—18989 english translation. |
Number | Date | Country | |
---|---|---|---|
20080149667 A1 | Jun 2008 | US |