Many computing applications such as computer games, multimedia applications, or the like use controls to allow users to manipulate game characters or other aspects of an application. Typically such controls are input using, for example, controllers, remotes, keyboards, mice, or the like. Unfortunately, such controls can be difficult to learn, thus creating a barrier between a user and such games or applications. Furthermore, such controls may be different than actual game actions or other application actions for which the controls are used, thus, reducing the experience for the user. For example, a game controller that causes a game character to swing a baseball bat may not correspond to an actual motion of swinging the baseball bat.
One solution is to use a video game system that tracks motion of a user or other objects in a scene using visual and/or depth images. The tracked motion is then used to update an application. Therefore, a user can manipulate game characters or other aspects of the application by using movement of the user's body and/or objects around the user, rather than (or in addition to) using controllers, remotes, keyboards, mice, or the like. One challenge with such a system is to keep track of who is playing the game (or otherwise interacting with the application) as users move in, out and back into the field of view of the system.
A system (e.g., video game system or other type of data processing system) is disclosed that can identify and track players as they enter the field of view of the system. For example, when a person enters the field of view of a video game system (e.g., enters a room or otherwise is no longer occluded), the system determines whether that person is one of the players who had been interacting with the game. If so, then the system maps that person to the identified player who had been interacting with the game so that the person can continue to interact with the game (e.g., control an avatar or object).
One embodiment includes performing a computer based application including interacting with a subset of a set of enrolled players, determining that a person (who is not one of the subset of the set of enrolled players currently interacting with the computer based application) has become detectable in the play space, automatically identifying the person as a specific enrolled player of the set of enrolled players, mapping the person to the specific enrolled player, and interacting with the person based on the mapping.
One embodiment includes an interface to a monitor, a sensor system, and one or more processors in communication with the interface and the sensor system. The one or more processors establish thresholds, enroll players in a video game, perform the video game including interacting with a subset of the players based on the enrolling, determine that a person has become detectable in the play space of the video game, automatically determine whether the person is one of the enrolled players, map the person to an enrolled player and interact with the person in the video game based on the mapping if it is determined that the person is one of the enrolled players, and assign a new identification to the person and interact with the person in the video game based on the new identification if it is determined that the person is not one of the enrolled players.
One embodiment includes receiving visual data and depth data from one or more sensors pertaining to a first entity not currently interacting with an application, creating a set of visual signatures indicative of appearance of the first entity based on the visual data and depth data, comparing the set of visual signatures to stored signatures for entities enrolled in the application, determining whether the visual signatures correspond to stored signatures for any of the entities enrolled in the application, and mapping the first entity to a particular entity enrolled in the application if it is determined that the visual signatures correspond to stored signatures for the particular entity. The mapping allows the first entity to interact with the application.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter. Furthermore, the claimed subject matter is not limited to implementations that solve any or all disadvantages noted in any part of this disclosure.
A video game system (or other data processing system) is disclosed that can visually identify whether a person who has entered a field of view of the system (e.g., entered a room or otherwise is no longer occluded), is a player who has been previously interacting with the system. In one embodiment, the system creates a set of visual signatures indicative of appearance of the person who entered the field of view and determines whether the visual signatures correspond to stored signatures for any of the entities enrolled with the system. If the person's visual signatures match an entity already enrolled, then the person will be mapped to that entity and will interact with the system based on the mapped entity. For example, if a person controlling avatar A in a video game leaves the room and subsequently returns to the room, upon return the system will recognize that the person is the previous player operating avatar A and will resume allowing the person to control Avatar A.
In one embodiment, the video game system (or other data processing system) tracks players and objects using depth images and/or visual images. The tracking is then used to update an application (e.g., a video game). Therefore, a user can manipulate game characters or other aspects of the application by using movement of the user's body and/or objects around the user, rather than (or in addition to) using controllers, remotes, keyboards, mice, or the like. For example, a video game system will update the position of images displayed in the video based on the new positions of the objects or update an avatar based on motion of the user. If a user walks out of the room (or is otherwise occluded during the game/application) and then walks back into the room (or is no longer occluded), then the system will automatically identify the user as the entity previously playing the game (or interacting with the application) and resume the interaction as per the previous mapping.
Although the examples below include a video game system, the technology described herein also applies to other types of data processing systems and/or other types of applications.
As shown in
As shown in
According to one embodiment, the tracking system 10 may be connected to an audiovisual device 16 such as a television, a monitor, a high-definition television (HDTV), or the like that may provide game or application visuals and/or audio to a user such as the user 18. For example, the computing system 12 may include a video adapter such as a graphics card and/or an audio adapter such as a sound card that may provide audiovisual signals associated with the game application, non-game application, or the like. The audiovisual device 16 may receive the audiovisual signals from the computing system 12 and may then output the game or application visuals and/or audio associated with the audiovisual signals to the user 18. According to one embodiment, the audiovisual device 16 may be connected to the computing system 12 via, for example, an S-Video cable, a coaxial cable, an HDMI cable, a DVI cable, a VGA cable, component video cable, or the like.
As shown in
In the example depicted in
Other movements by the user 18 may also be interpreted as other controls or actions and/or used to animate the player avatar, such as controls to bob, weave, shuffle, block, jab, or throw a variety of different power punches. Furthermore, some movements may be interpreted as controls that may correspond to actions other than controlling the player avatar 40. For example, in one embodiment, the player may use movements to end, pause, or save a game, select a level, view high scores, communicate with a friend, etc. According to another embodiment, the player may use movements to select the game or other application from a main user interface. Thus, in example embodiments, a full range of motion of the user 18 may be available, used, and analyzed in any suitable manner to interact with an application.
In example embodiments, the human target such as the user 18 may have an object. In such embodiments, the user of an electronic game may be holding the object such that the motions of the player and the object may be used to adjust and/or control parameters of the game. For example, the motion of a player holding a racket may be tracked and utilized for controlling an on-screen racket in an electronic sports game. In another example embodiment, the motion of a player holding an object may be tracked and utilized for controlling an on-screen weapon in an electronic combat game. Objects not held by the user can also be tracked, such as objects thrown, pushed or rolled by the user (or a different user) as well as self propelled objects. In addition to boxing, other games can also be implemented.
According to other example embodiments, the tracking system 10 may further be used to interpret target movements as operating system and/or application controls that are outside the realm of games. For example, virtually any controllable aspect of an operating system and/or application may be controlled by movements of the target such as the user 18.
As shown in
As shown in
According to another example embodiment, time-of-flight analysis may be used to indirectly determine a physical distance from the capture device 20 to a particular location on the targets or objects by analyzing the intensity of the reflected beam of light over time via various techniques including, for example, shuttered light pulse imaging.
In another example embodiment, the capture device 20 may use a structured light to capture depth information. In such an analysis, patterned light (i.e., light displayed as a known pattern such as grid pattern, a stripe pattern, or different pattern) may be projected onto the scene via, for example, the IR light component 24. Upon striking the surface of one or more targets or objects in the scene, the pattern may become deformed in response. Such a deformation of the pattern may be captured by, for example, the 3-D camera 26 and/or the RGB camera 28 (and/or other sensor) and may then be analyzed to determine a physical distance from the capture device to a particular location on the targets or objects. In some implementations, the IR Light component 24 is displaced from the cameras 24 and 26 so triangulation can be used to determined distance from cameras 24 and 26. In some implementations, the capture device 20 will include a dedicated IR sensor to sense the IR light, or a sensor with an IR filter.
According to another embodiment, the capture device 20 may include two or more physically separated cameras that may view a scene from different angles to obtain visual stereo data that may be resolved to generate depth information. Other types of depth image sensors can also be used to create a depth image.
The capture device 20 may further include a microphone 30. The microphone 30 may include a transducer or sensor that may receive and convert sound into an electrical signal. According to one embodiment, the microphone 30 may be used to reduce feedback between the capture device 20 and the computing system 12 in the target recognition, analysis, and tracking system 10. Additionally, the microphone 30 may be used to receive audio signals that may also be provided by the user to control applications such as game applications, non-game applications, or the like that may be executed by the computing system 12.
In an example embodiment, the capture device 20 may further include a processor 32 that may be in communication with the image camera component 22. The processor 32 may include a standardized processor, a specialized processor, a microprocessor, or the like that may execute instructions including, for example, instructions for receiving a depth image, generating the appropriate data format (e.g., frame) and transmitting the data to computing system 12.
The capture device 20 may further include a memory component 34 that may store the instructions that are executed by processor 32, images or frames of images captured by the 3-D camera and/or RGB camera, or any other suitable information, images, or the like. According to an example embodiment, the memory component 34 may include random access memory (RAM), read only memory (ROM), cache, flash memory, a hard disk, or any other suitable storage component. As shown in
As shown in
Computing system 12 includes depth image processing and skeleton tracking 192, visual identification and tracking 194 and application 196. Depth image processing and skeleton tracking 192 uses the depth images to track motion of objects, such as the user and other objects. To assist in the tracking of the objects, depth image processing and skeleton tracking 192 uses a gestures library and structure data to track skeletons. The structure data includes structural information about objects that may be tracked. For example, a skeletal model of a human may be stored to help understand movements of the user and recognize body parts. Structural information about inanimate objects may also be stored to help recognize those objects and help understand movement. The gestures library may include a collection of gesture filters, each comprising information concerning a gesture that may be performed by the skeletal model (as the user moves). The data captured by the cameras 26, 28 and the capture device 20 in the form of the skeletal model and movements associated with it may be compared to the gesture filters in the gesture library to identify when a user (as represented by the skeletal model) has performed one or more gestures. Those gestures may be associated with various controls of an application. Visual images from capture device 20 can also be used to assist in the tracking.
Visual identification and tracking module 194 is in communication with depth image processing and skeleton tracking 192, and application 196. Visual identification and tracking module 194 visually identifies whether a person who has entered a field of view of the system is a player who has been previously interacting with the system, as described below. Visual identification and tracking module 194 will report that information to application 196.
Application 196 can be a video game, productivity application, etc. In one embodiment, depth image processing and skeleton tracking 192 will report to application 196 an identification of each object detected and the location of the object for each frame. Application 196 will use that information to update the position or movement of an avatar or other images in the display.
A graphics processing unit (GPU) 108 and a video encoder/video codec (coder/decoder) 114 form a video processing pipeline for high speed and high resolution graphics processing. Data is carried from the graphics processing unit 108 to the video encoder/video codec 114 via a bus. The video processing pipeline outputs data to an A/V (audio/video) port 140 for transmission to a television or other display. A memory controller 110 is connected to the GPU 108 to facilitate processor access to various types of memory 112, such as, but not limited to, a RAM (Random Access Memory).
The multimedia console 100 includes an I/O controller 120, a system management controller 122, an audio processing unit 123, a network interface controller 124, a first USB host controller 126, a second USB controller 128 and a front panel I/O subassembly 130 that are preferably implemented on a module 118. The USB controllers 126 and 128 serve as hosts for peripheral controllers 142(1)-142(2), a wireless adapter 148, and an external memory device 146 (e.g., flash memory, external CD/DVD ROM drive, removable media, etc.). The network interface 124 and/or wireless adapter 148 provide access to a network (e.g., the Internet, home network, etc.) and may be any of a wide variety of various wired or wireless adapter components including an Ethernet card, a modem, a Bluetooth module, a cable modem, and the like.
System memory 143 is provided to store application data that is loaded during the boot process. A media drive 144 is provided and may comprise a DVD/CD drive, Blu-Ray drive, hard disk drive, or other removable media drive, etc. The media drive 144 may be internal or external to the multimedia console 100. Application data may be accessed via the media drive 144 for execution, playback, etc. by the multimedia console 100. The media drive 144 is connected to the I/O controller 120 via a bus, such as a Serial ATA bus or other high speed connection (e.g., IEEE 1394).
The system management controller 122 provides a variety of service functions related to assuring availability of the multimedia console 100. The audio processing unit 123 and an audio codec 132 form a corresponding audio processing pipeline with high fidelity and stereo processing. Audio data is carried between the audio processing unit 123 and the audio codec 132 via a communication link. The audio processing pipeline outputs data to the A/V port 140 for reproduction by an external audio player or device having audio capabilities.
The front panel I/O subassembly 130 supports the functionality of the power button 150 and the eject button 152, as well as any LEDs (light emitting diodes) or other indicators exposed on the outer surface of the multimedia console 100. A system power supply module 136 provides power to the components of the multimedia console 100. A fan 138 cools the circuitry within the multimedia console 100.
The CPU 101, GPU 108, memory controller 110, and various other components within the multimedia console 100 are interconnected via one or more buses, including serial and parallel buses, a memory bus, a peripheral bus, and a processor or local bus using any of a variety of bus architectures. By way of example, such architectures can include a Peripheral Component Interconnects (PCI) bus, PCI-Express bus, etc.
When the multimedia console 100 is powered on, application data may be loaded from the system memory 143 into memory 112 and/or caches 102, 104 and executed on the CPU 101. The application may present a graphical user interface that provides a consistent user experience when navigating to different media types available on the multimedia console 100. In operation, applications and/or other media contained within the media drive 144 may be launched or played from the media drive 144 to provide additional functionalities to the multimedia console 100.
The multimedia console 100 may be operated as a standalone system by simply connecting the system to a television or other display. In this standalone mode, the multimedia console 100 allows one or more users to interact with the system, watch movies, or listen to music. However, with the integration of broadband connectivity made available through the network interface 124 or the wireless adapter 148, the multimedia console 100 may further be operated as a participant in a larger network community.
When the multimedia console 100 is powered ON, a set amount of hardware resources are reserved for system use by the multimedia console operating system. These resources may include a reservation of memory (e.g., 16 MB), CPU and GPU cycles (e.g., 5%), networking bandwidth (e.g., 8 kbs), etc. Because these resources are reserved at system boot time, the reserved resources do not exist from the application's view.
In particular, the memory reservation preferably is large enough to contain the launch kernel, concurrent system applications and drivers. The CPU reservation is preferably constant such that if the reserved CPU usage is not used by the system applications, an idle thread will consume any unused cycles.
With regard to the GPU reservation, lightweight messages generated by the system applications (e.g., pop ups) are displayed by using a GPU interrupt to schedule code to render popup into an overlay. The amount of memory required for an overlay depends on the overlay area size and the overlay preferably scales with screen resolution. Where a full user interface is used by the concurrent system application, it is preferable to use a resolution independent of application resolution. A scaler may be used to set this resolution such that the need to change frequency and cause a TV resynch is eliminated.
After the multimedia console 100 boots and system resources are reserved, concurrent system applications execute to provide system functionalities. The system functionalities are encapsulated in a set of system applications that execute within the reserved system resources described above. The operating system kernel identifies threads that are system application threads versus gaming application threads. The system applications are preferably scheduled to run on the CPU 101 at predetermined times and intervals in order to provide a consistent system resource view to the application. The scheduling is to minimize cache disruption for the gaming application running on the console.
When a concurrent system application requires audio, audio processing is scheduled asynchronously to the gaming application due to time sensitivity. A multimedia console application manager (described below) controls the gaming application audio level (e.g., mute, attenuate) when system applications are active.
Input devices (e.g., controllers 142(1) and 142(2)) are shared by gaming applications and system applications. The input devices are not reserved resources, but are to be switched between system applications and the gaming application such that each will have a focus of the device. The application manager preferably controls the switching of input stream, without knowledge the gaming application's knowledge and a driver maintains state information regarding focus switches. The cameras 26, 28 and capture device 20 may define additional input devices for the console 100 via USB controller 126 or other interface.
Computing system 220 comprises a computer 241, which typically includes a variety of computer readable media. Computer readable media can be any available media that can be accessed by computer 241 and includes both volatile and nonvolatile media, removable and non-removable media. The system memory 222 includes computer storage media in the form of volatile and/or nonvolatile memory such as read only memory (ROM) 223 and random access memory (RAM) 260. A basic input/output system 224 (BIOS), containing the basic routines that help to transfer information between elements within computer 241, such as during start-up, is typically stored in ROM 223. RAM 260 typically contains data and/or program modules that are immediately accessible to and/or presently being operated on by processing unit 259. By way of example, and not limitation,
The computer 241 may also include other removable/non-removable, volatile/nonvolatile computer storage media. By way of example only,
The drives and their associated computer storage media discussed above and illustrated in
The computer 241 may operate in a networked environment using logical connections to one or more remote computers, such as a remote computer 246. The remote computer 246 may be a personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to the computer 241, although only a memory storage device 247 has been illustrated in
When used in a LAN networking environment, the computer 241 is connected to the LAN 245 through a network interface or adapter 237. When used in a WAN networking environment, the computer 241 typically includes a modem 250 or other means for establishing communications over the WAN 249, such as the Internet. The modem 250, which may be internal or external, may be connected to the system bus 221 via the user input interface 236, or other appropriate mechanism. In a networked environment, program modules depicted relative to the computer 241, or portions thereof, may be stored in the remote memory storage device. By way of example, and not limitation,
As explained above, capture device 20 provides RGB images (or visual images in other formats or color spaces) and depth images to computing system 12. The depth image may be a plurality of observed pixels where each observed pixel has an observed depth value. For example, the depth image may include a two-dimensional (2-D) pixel area of the captured scene where each pixel in the 2-D pixel area may have a depth value such as distance of an object in the captured scene from the capture device.
The system will use the RGB images and depth images to track a player's movements. An example of tracking can be found in U.S. patent application Ser. No. 12/603,437, “Pose Tracking Pipeline,” filed on Oct. 21, 2009, incorporated herein by reference in its entirety. Other methods for tracking can also be used. Once the system determines the motions the player is making, the system will use those detected motions to control a video game or other application. For example, a player's motions can be used to control an avatar and/or object in a video game.
While playing a video game or interacting with an application, a person (or user) may leave the field of view of the system. For example, the person may walk out of the room or become occluded. Subsequently, the person may reenter the field of view of the system. For example, the person may walk back into the room or is no longer occluded. When the person enters the field of view of the system, the system will automatically identify that the person was playing the game (or otherwise interacting with the application) and map that person to the player who had been interacting with the game. In this manner, the person can re-take control of that person's avatar or otherwise resume interacting with the game/application.
The process of
In step 302, the system will enroll players. For example, when playing a video game, a system may ask the users how many players will be playing that game. After the users respond with the number of players, the system will ask each player to identify themselves. In one embodiment, each player will be asked to identify themselves by standing in front of the system so that depth images and visual images can be obtained from multiple angles for that player. For example, the player may be asked to stand in front of the camera, turn around, and make various poses. After the system obtains its data necessary to identify that person, that person will be provided with a unique identification and that unique identification can be assigned to an avatar or object in the game/application.
In step 304 of
In one embodiment, the visual identification discussed herein is performed by creating and comparing visual signatures. More details about the visual signatures will be provided below. In one embodiment of step 304, the system dynamically creates an/or updates signatures and store those updated or created signatures.
In step 306 of
In step 308, the system automatically determines whether that new person is an existing player who has already been enrolled in the currently active video game/application. If it is determined that the new person is an existing player who was already enrolled in the current application/game (step 310), then the new player is mapped to that existing player in step 312. If it is determined that the new person is not an existing player who was already enrolled in the game/application (step 310), then the system creates a new identification for the player, assigns that new identification to the player and reports to the application/game (application 196) that new player (with the new identification) to the application. After step 312 and after step 314 the process continues at step 304. In one embodiment, steps 308-312 are performed by visual identification and tracking module 194.
Note that
In step 380 of
If the conditions are not suitable (step 402), then after enough frames with a recurring unsuitable condition the system will notify the application (e.g., video game) that the conditions are unsuitable (e.g., “face is occluded”, “not facing the camera” etc.). As explained in more detail below, the system will try to remedy the issue in step 403. For example, the game can entice the player to correct these conditions either explicitly by a notification of some sort (e.g., text notification or a game character instructing the player on how to correct the condition, e.g., “please look at the screen”) or explicitly by soliciting an action by the player that will effectively improve the conditions (“throwing a ball” to the edge of the screen such that the player will attempt to hit that ball and thus not occlude his face). If the issue can be fixed, the process resumes at step 406 (discussed below). If the problem cannot be fixed, then no signature is created at this time.
If the conditions are suitable (step 402), then the system will track the skeleton of the person using the depth image to estimate the position of the face. There are many methods that can be used to track the skeleton of a person using depth images. In one embodiment of tracking a skeleton using depth image is provided in U.S. patent application Ser. No. 12/603,437, “Pose Tracking Pipeline” filed on Oct. 21, 2009, Craig, et al. (hereinafter referred to as the '437 Application), incorporated herein by reference in its entirety. The process of the '437 Application includes acquiring a depth image, down sampling the data, removing and/or smoothing high variance noisy data, identifying and removing the background, and assigning each of the foreground pixels to different parts of the body. Based on those steps, the system will fit a model with the data and create a skeleton. The skeleton will include a set of joints and connections between the joints.
In step 407, the RGB pixels (or other color space pixels) are converted into luminance values in the visual image for the portion of visual image that corresponds to the face. In one embodiment, the luminance values are gray scale values between 0 and 255 (or another range of numbers). In step 408, the system will refine the estimation in the face by identifying the eyes and nose and creating a box that more tightly bounds the eyes and nose with the face.
As mentioned above, sensor 20 will detect visual images and depth images. The visual image will be correlated to the depth image such that each pixel in the depth image will correspond to a pixel in the visual image. Therefore, when a face is determined in the depth image, the system will know the location of the face in the visual image. In step 410, the system can use the visual image (or the depth image) to identify the exact location of the eyes and nose. In step 412, the system will align the user's face based on the eyes identified in step 410. In order to match signatures, it is important that the face is in the correct alignment so the signatures are analogous. Therefore, the system will determine a reference alignment in advance. When a face is detected that is not in that reference alignment, step 412 will realign the face in the image to match the alignment of the reference alignment. In some embodiments, the system could have multiple reference alignments and create multiple face signatures in the different reference alignments. In one embodiment, only one alignment is used to create signatures and perform comparisons.
In step 416, the system will create a multi-dimensional vector for the face. Each dimension in the vector corresponds to a pixel in the face. So if box 452 includes 400 pixels, then the vector has 400 elements. In one embodiment, the box is align in step 412 such that the box has 48×42 pixels (2016 pixels in total) so that and the multi-dimensional vector in step 416 includes 2016 values. In some embodiments, the data for the face can be down-sampled. In step 418, the multi-dimensional vector is transformed into PCA space to an vector with 30 coefficients (e.g., a 30 dimensional vector). PCA (Principal Component Analysis) is a well known process in the art. However, other processes for transforming the vector can also be used. Additionally, in some embodiments, step 418 can be skipped. The 30 dimensional vector that is the result of step 418 is the signature for the face. However, other formats for the signature can also be used.
If the conditions are suitable for creating signatures (step 502), then at step 506 the system will store the current location of the skeleton being sensed by sensor 20. For example, the system may store the three dimensional coordinates of where the skeleton is. Alternatively, the system can classify the skeleton as being in one of a set of zones that are within the field of view of the sensor 20.
In one embodiment, the clothing signatures are based on color and the system will create multiple clothing signatures for different parts of the tracked person's body. Each of the different parts of the tracked person's body corresponding to a signature is referred to below as a target. In one embodiment, the system will create signatures for two targets. One example of a target is the player's pants, centered around j9, j10, j12, j13 and/or j15. Another example of a target is the player's shirt, centered around j8. These two targets may be represented by joints j8 and j9 of the skeleton (see
In step 508 of
In step 514, the system will access a depth value and position (x, y on the screen) of the second target (e.g., shirt). In step 516, the system will identify pixels that are near the second target in the visual image and within a threshold amount of depth from the position chosen in step 514. In step 518, the set of pixels is quantized and a histogram is built. In embodiments that use more than two targets, steps 514, 516 and 518 can be repeated for the additional targets.
In step 520, the system will look for one or more sub-regions along the skeleton that has unique color. For example, the system will use the skeleton to identify pixels in the visual image that belong to the person. The system will then look for one or more sub-regions of the pixels that have a unique color with respect to the remainder of the image. One example of a sub-region is a logo on a t-shirt. If the systems finds a sub-region of pixels that have a unique color, then in step 522 pixels that are proximate to the center of the sub-region and that have a similar depth value as the center of the sub-region are identified. The location of that sub-region in three dimensional space and on the skeleton are recorded and stored at step 524. In step 526, the set of pixels is quantized and a histogram is built. In some embodiments, steps 520-526 are skipped if the system cannot find such special regions of the clothing.
At this point, the system has up to three histograms: a first histogram pertaining to the first target, a second histogram pertaining to the second target, and a third histogram pertaining to the sub-region identified in step 520. In step of 528, the system calculates one or more signatures from the histograms using K-means clustering. The K means clustering returns a cluster center, how many pixels are in the cluster and how far to the center of the cluster the edge of the cluster is.
In one embodiment, the system generates separate signatures for the first target, the second target and the subregion with unique color. In such an embodiment, the K_means clustering is performed separately for each histogram. The result of the K-means clustering for each histogram includes 15 values for each histogram, representing a signature.
In another embodiment, the system generates one combine signature for first target, the second target and the subregion with unique color. In such an embodiment, the result of the K-means clustering for each histogram includes 15 values for the three histograms, representing one signature. In another embodiment, the system generates one combine signature for first target and the second target and creates a second signature for the subregion with unique color.
If the conditions are suitable (step 552), then the location of the skeleton is stored in step 554. In one embodiment, step 554 includes storing the three-dimensional location of the player at the time that the height signature is being created. This will be used to interpolate when comparing signatures, as described below.
In step 556 of
That sum that resulted from the L1 metric for the signature chosen in step 604 is compared to two thresholds. For example,
Looking back at step 606 of
The earth mover's distance(s) is/are compared to two thresholds (see
After steps 670, 674 and 676, the process continues at step 678. In step 678, the system determines whether there are any additional enrolled players (player ID's of enrolled players) that have not yet been evaluated. If there are no more enrolled players to consider, then the process of
In one embodiment, the process of
In step 702, the depth value accessed in step 700 is used to interpolate that person's height based on the stored height signature for the enrolled player under consideration. It is contemplated that the system will create multiple height value data points for each of the enrolled players. Height values may vary, for example, due to camera tilt, error in estimating the floor-normal or the gravity up from an accelerometer like device, or other reason. For example, as a players walks around different parts of the room in front of the sensor, multiple height values will be recorded. For each height value, the system will record the determined height of the player and the depth of the player. Based on those two pieces of information, the system can fit a curve or function to the data to create a mathematical function that best minimizes the error while characterizing the height data. In step 702, the depth value for the skeleton of the person who entered the play space is used to interpolate a height value from the curve or function that that best minimizes the error while characterizing the height data for the particular enrolled player.
In step 704, the interpolated height value from step 702 is compared to the height value calculated using the process of
After the process of
The system will apply a set of rules in order to match one of the enrolled players to the new person who entered the play space. In one embodiment, the system will apply the following three rules:
In one embodiment, the face comparison will override the other comparisons since we want to allow re-identification if the player decides to change his/her clothing color by taking off or adding a layer of clothing during gameplay or otherwise changing clothing. In one implementation, the greater emphasis on the face comparison only applies if there is only a single face positive and that face score is good enough (possibly required to be even better than the Positive threshold). In one embodiment, the score for the subregion of clothing (see step 520 of
When applying these rules to the data of
In step 800 of
Looking back at step 804, if it is determined that the number of positive scores was greater than one, then all positives are now considered to be unknown in step 814 and the process continues to step 812. If the number of positive matches (step 804) is zero, then the system will access the clothing scores in step 812.
After accessing the clothing scores, the system will eliminate all enrolled players with negative clothing scores in step 816. If the elimination of all enrolled players with negative clothing scores results in an empty candidate set, the system will early terminate with no match. In step 818, the system will determine the number of positive scores for the clothing. If the number of positive scores is exactly one, then the system determines whether that particular enrolled player having the positive score has a negative score for height in step 820. If that particular enrolled player does not have any negative scores, then that particular enrolled player is matched to the person who just entered the play space at step 822. If particular enrolled player does have a negative score, then that particular enrolled player is eliminated at step 824 and this process continues at step 826. If the number of positive scores determined at step 818 is greater than one, the system will consider all positive scores for the clothing to be unknown in step 828 and the process continues at step 826. If the number of positive matches in step 818 is determined to be zero, then the system will access the height scores in step 826.
In step 830, any enrolled ID that has a negative height score for height is eliminated. If the elimination of all enrolled players with height face scores results in an empty candidate set, the system will terminate with no match. At step 832, the system determines the number of positive scores for height,. If there is exactly one positive score, then that enrolled player is the matching enrolled player to the person who just entered the play space (step 834); otherwise, there is no match (step 836). Therefore, at the end of the process of
In one embodiment that has a separate score for the subregion of clothing (see step 520 of
As discussed above with respect to
Looking back at
The process of
When creating the signatures for the process of
In step 916, the system will observe the person's posture based on the skeleton returned from the depth images. If the person is not standing straight, then the problem with the posture will be reported in 920. At step 922, the lighting conditions are sensed. For example, the system may determine whether the lights are too bright or too dim. If the lighting is not suitable, then the lighting problem is reported in step 926. In step 928, the system determines whether the lateral position of the skeleton is a problem. For example, if the person is too close to the edge of the room or any location known to have problems, that information can be reported in step 932. In step 934, the system determines the depth of the person. If the person is too deep or too close (step 936), then the problem with the person's depth is reported at step 940. In step 942, the system will generate a report based on all the problems reported in steps 908, 914, 920, 926, 932 and 940. That report is sent to application 196 as part of step 942. In step 944, application 196 receives the report and guides the player in order to correct issues in a non-intrusive manner within the context of the game/application. For example, the system may cause an object to move in the video game to cause the player to change positions, poses, etc. so that the problems reported are corrected. Note that if the system is trying to identify or gather more signatures for the player without an explicit request from the application, then the system will silently fail if the conditions are not suitable for creating signatures so that there is no interference with game-play.
Looking back at
When enrolling an identity, one example technique includes getting multiple snapshots of the face, in various orientations. One approach includes defining a cone of supported facial orientations (facial normals). Within that cone, the system defined a discrete set of preferred orientations which are dense around the center and become sparse along the edges of the cone. Once the system gets a new face signature, the system will employ various heuristics to decide if the face is good enough and is fully visible (e.g., skeleton position and exemplar labeling are two such embodiments). If so, the system calculates the face normal and finds the closest entry in a discrete set of facial orientations. In one embodiment, only new normalized snapshots are added if the system does not already have a snapshot for that orientation. However, another possible embodiment may support replacing an existing snapshot if the new face signature is better given some scoring metric.
Another embodiment for enrolling the identity and getting multiple face signatures includes keeping a fixed number of face signatures for enrolling the identity and collecting those face samples during skeleton tracking. When a new face sample is available, it replaces the old one that has the shortest summation of distances (measured in PCA space) to all existing samples. In this way, the system obtains a set of samples that are as far apart as possible; therefore, spanning a large and complete face space for that identity.
In another embodiment, if the game/application enroll players at one time prior to the game or application starting, the system can keep getting samples for the various players in front of the sensor. When the game/application identifies that it wants to enroll a certain player, the data for that player will already be stored. The system can take the set of K data values that are furtherest from each other to provide a good set of data samples.
Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims. It is intended that the scope of the invention be defined by the claims appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
4627620 | Yang | Dec 1986 | A |
4630910 | Ross et al. | Dec 1986 | A |
4645458 | Williams | Feb 1987 | A |
4695953 | Blair et al. | Sep 1987 | A |
4702475 | Elstein et al. | Oct 1987 | A |
4711543 | Blair et al. | Dec 1987 | A |
4751642 | Silva et al. | Jun 1988 | A |
4796997 | Svetkoff et al. | Jan 1989 | A |
4809065 | Harris et al. | Feb 1989 | A |
4817950 | Goo | Apr 1989 | A |
4843568 | Krueger et al. | Jun 1989 | A |
4893183 | Nayar | Jan 1990 | A |
4901362 | Terzian | Feb 1990 | A |
4925189 | Braeunig | May 1990 | A |
5101444 | Wilson et al. | Mar 1992 | A |
5148154 | MacKay et al. | Sep 1992 | A |
5184295 | Mann | Feb 1993 | A |
5229754 | Aoki et al. | Jul 1993 | A |
5229756 | Kosugi et al. | Jul 1993 | A |
5239463 | Blair et al. | Aug 1993 | A |
5239464 | Blair et al. | Aug 1993 | A |
5288078 | Capper et al. | Feb 1994 | A |
5295491 | Gevins | Mar 1994 | A |
5320538 | Baum | Jun 1994 | A |
5347306 | Nitta | Sep 1994 | A |
5385519 | Hsu et al. | Jan 1995 | A |
5405152 | Katanics et al. | Apr 1995 | A |
5417210 | Funda et al. | May 1995 | A |
5423554 | Davis | Jun 1995 | A |
5454043 | Freeman | Sep 1995 | A |
5469740 | French et al. | Nov 1995 | A |
5495576 | Ritchey | Feb 1996 | A |
5516105 | Eisenbrey et al. | May 1996 | A |
5524637 | Erickson et al. | Jun 1996 | A |
5534917 | MacDougall | Jul 1996 | A |
5563988 | Maes et al. | Oct 1996 | A |
5577981 | Jarvik | Nov 1996 | A |
5580249 | Jacobsen et al. | Dec 1996 | A |
5594469 | Freeman et al. | Jan 1997 | A |
5597309 | Riess | Jan 1997 | A |
5616078 | Oh | Apr 1997 | A |
5617312 | Iura et al. | Apr 1997 | A |
5638300 | Johnson | Jun 1997 | A |
5641288 | Zaenglein | Jun 1997 | A |
5682196 | Freeman | Oct 1997 | A |
5682229 | Wangler | Oct 1997 | A |
5690582 | Ulrich et al. | Nov 1997 | A |
5703367 | Hashimoto et al. | Dec 1997 | A |
5704837 | Iwasaki et al. | Jan 1998 | A |
5715834 | Bergamasco et al. | Feb 1998 | A |
5875108 | Hoffberg et al. | Feb 1999 | A |
5877803 | Wee et al. | Mar 1999 | A |
5913727 | Ahdoot | Jun 1999 | A |
5933125 | Fernie | Aug 1999 | A |
5980256 | Carmein | Nov 1999 | A |
5989157 | Walton | Nov 1999 | A |
5995649 | Marugame | Nov 1999 | A |
6005548 | Latypov et al. | Dec 1999 | A |
6009210 | Kang | Dec 1999 | A |
6054991 | Crane et al. | Apr 2000 | A |
6066075 | Poulton | May 2000 | A |
6072494 | Nguyen | Jun 2000 | A |
6073489 | French et al. | Jun 2000 | A |
6077201 | Cheng et al. | Jun 2000 | A |
6098458 | French et al. | Aug 2000 | A |
6100896 | Strohecker et al. | Aug 2000 | A |
6101289 | Kellner | Aug 2000 | A |
6128003 | Smith et al. | Oct 2000 | A |
6130677 | Kunz | Oct 2000 | A |
6137896 | Chang et al. | Oct 2000 | A |
6141463 | Covell et al. | Oct 2000 | A |
6142876 | Cumbers | Nov 2000 | A |
6147678 | Kumar et al. | Nov 2000 | A |
6152856 | Studor et al. | Nov 2000 | A |
6159100 | Smith | Dec 2000 | A |
6173066 | Peurach et al. | Jan 2001 | B1 |
6181343 | Lyons | Jan 2001 | B1 |
6184926 | Khosravi et al. | Feb 2001 | B1 |
6188777 | Darrell | Feb 2001 | B1 |
6205231 | Isadore-Barreca et al. | Mar 2001 | B1 |
6215890 | Matsuo et al. | Apr 2001 | B1 |
6215898 | Woodfill et al. | Apr 2001 | B1 |
6226396 | Marugame | May 2001 | B1 |
6229913 | Nayar et al. | May 2001 | B1 |
6256033 | Nguyen | Jul 2001 | B1 |
6256400 | Takata et al. | Jul 2001 | B1 |
6283860 | Lyons et al. | Sep 2001 | B1 |
6289112 | Jain et al. | Sep 2001 | B1 |
6299308 | Voronka et al. | Oct 2001 | B1 |
6308565 | French et al. | Oct 2001 | B1 |
6316934 | Amorai-Moriya et al. | Nov 2001 | B1 |
6363160 | Bradski et al. | Mar 2002 | B1 |
6384819 | Hunter | May 2002 | B1 |
6411744 | Edwards | Jun 2002 | B1 |
6430997 | French et al. | Aug 2002 | B1 |
6476834 | Doval et al. | Nov 2002 | B1 |
6496598 | Harman | Dec 2002 | B1 |
6503195 | Keller et al. | Jan 2003 | B1 |
6539931 | Trajkovic et al. | Apr 2003 | B2 |
6570555 | Prevost et al. | May 2003 | B1 |
6633294 | Rosenthal et al. | Oct 2003 | B1 |
6640202 | Dietz et al. | Oct 2003 | B1 |
6661918 | Gordon et al. | Dec 2003 | B1 |
6674877 | Jojic et al. | Jan 2004 | B1 |
6681031 | Cohen et al. | Jan 2004 | B2 |
6714665 | Hanna et al. | Mar 2004 | B1 |
6731799 | Sun et al. | May 2004 | B1 |
6738066 | Nguyen | May 2004 | B1 |
6765726 | French et al. | Jul 2004 | B2 |
6788809 | Grzeszczuk et al. | Sep 2004 | B1 |
6801637 | Voronka et al. | Oct 2004 | B2 |
6873723 | Aucsmith et al. | Mar 2005 | B1 |
6876496 | French et al. | Apr 2005 | B2 |
6896618 | Benoy et al. | May 2005 | B2 |
6937742 | Roberts et al. | Aug 2005 | B2 |
6950534 | Cohen et al. | Sep 2005 | B2 |
7003134 | Covell et al. | Feb 2006 | B1 |
7036094 | Cohen et al. | Apr 2006 | B1 |
7038855 | French et al. | May 2006 | B2 |
7039676 | Day et al. | May 2006 | B1 |
7042440 | Pryor et al. | May 2006 | B2 |
7050606 | Paul et al. | May 2006 | B2 |
7058204 | Hildreth et al. | Jun 2006 | B2 |
7060957 | Lange et al. | Jun 2006 | B2 |
7113918 | Ahmad et al. | Sep 2006 | B1 |
7121946 | Paul et al. | Oct 2006 | B2 |
7170492 | Bell | Jan 2007 | B2 |
7184048 | Hunter | Feb 2007 | B2 |
7202898 | Braun et al. | Apr 2007 | B1 |
7218320 | Gordon et al. | May 2007 | B2 |
7222078 | Abelow | May 2007 | B2 |
7227526 | Hildreth et al. | Jun 2007 | B2 |
7227976 | Jung et al. | Jun 2007 | B1 |
7259747 | Bell | Aug 2007 | B2 |
7308112 | Fujimura et al. | Dec 2007 | B2 |
7317836 | Fujimura et al. | Jan 2008 | B2 |
7348963 | Bell | Mar 2008 | B2 |
7359121 | French et al. | Apr 2008 | B2 |
7367887 | Watabe et al. | May 2008 | B2 |
7372977 | Fujimura et al. | May 2008 | B2 |
7379563 | Shamaie | May 2008 | B2 |
7379566 | Hildreth | May 2008 | B2 |
7389591 | Jaiswal et al. | Jun 2008 | B2 |
7412077 | Li et al. | Aug 2008 | B2 |
7421093 | Hildreth et al. | Sep 2008 | B2 |
7430312 | Gu | Sep 2008 | B2 |
7436496 | Kawahito | Oct 2008 | B2 |
7450736 | Yang et al. | Nov 2008 | B2 |
7452275 | Kuraishi | Nov 2008 | B2 |
7460690 | Cohen et al. | Dec 2008 | B2 |
7489812 | Fox et al. | Feb 2009 | B2 |
7526101 | Avidan | Apr 2009 | B2 |
7536032 | Bell | May 2009 | B2 |
7555142 | Hildreth et al. | Jun 2009 | B2 |
7559834 | York | Jul 2009 | B1 |
7560701 | Oggier et al. | Jul 2009 | B2 |
7570805 | Gu | Aug 2009 | B2 |
7574020 | Shamaie | Aug 2009 | B2 |
7576727 | Bell | Aug 2009 | B2 |
7590262 | Fujimura et al. | Sep 2009 | B2 |
7593552 | Higaki et al. | Sep 2009 | B2 |
7598942 | Underkoffler et al. | Oct 2009 | B2 |
7607509 | Schmiz et al. | Oct 2009 | B2 |
7620202 | Fujimura et al. | Nov 2009 | B2 |
7668340 | Cohen et al. | Feb 2010 | B2 |
7680298 | Roberts et al. | Mar 2010 | B2 |
7683954 | Ichikawa et al. | Mar 2010 | B2 |
7684592 | Paul et al. | Mar 2010 | B2 |
7701439 | Hillis et al. | Apr 2010 | B2 |
7702130 | Im et al. | Apr 2010 | B2 |
7704135 | Harrison, Jr. | Apr 2010 | B2 |
7710391 | Bell et al. | May 2010 | B2 |
7729530 | Antonov et al. | Jun 2010 | B2 |
7746345 | Hunter | Jun 2010 | B2 |
7760182 | Ahmad et al. | Jul 2010 | B2 |
7809167 | Bell | Oct 2010 | B2 |
7834846 | Bell | Nov 2010 | B1 |
7852262 | Namineni et al. | Dec 2010 | B2 |
RE42256 | Edwards | Mar 2011 | E |
7898522 | Hildreth et al. | Mar 2011 | B2 |
8035612 | Bell et al. | Oct 2011 | B2 |
8035614 | Bell et al. | Oct 2011 | B2 |
8035624 | Bell et al. | Oct 2011 | B2 |
8072470 | Marks | Dec 2011 | B2 |
20030169906 | Gokturk et al. | Sep 2003 | A1 |
20040037450 | Bradski | Feb 2004 | A1 |
20050192097 | Farnham et al. | Sep 2005 | A1 |
20050196018 | Toyama | Sep 2005 | A1 |
20060177109 | Storch | Aug 2006 | A1 |
20070297645 | Pace | Dec 2007 | A1 |
20080026838 | Dunstan et al. | Jan 2008 | A1 |
20080030459 | Kouno | Feb 2008 | A1 |
20080152191 | Fujimura et al. | Jun 2008 | A1 |
20080309617 | Kong | Dec 2008 | A1 |
20090059007 | Wagg et al. | Mar 2009 | A1 |
20090141933 | Wagg | Jun 2009 | A1 |
20090186693 | Panoff | Jul 2009 | A1 |
20090221368 | Yen et al. | Sep 2009 | A1 |
20100002908 | Miyamoto et al. | Jan 2010 | A1 |
20100197390 | Craig et al. | Aug 2010 | A1 |
20100197399 | Geiss | Aug 2010 | A1 |
20110150271 | Lee et al. | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
101254344 | Jun 2010 | CN |
0583061 | Feb 1994 | EP |
08044490 | Feb 1996 | JP |
9310708 | Jun 1993 | WO |
9717598 | May 1997 | WO |
9944698 | Sep 1999 | WO |
WO2009059065 | May 2009 | WO |
Entry |
---|
G. Pan, S. Han, Z. Wu, and Y. Wang, 3D Face Recognition Using Mapped Depth Images, IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2005. 7 Pages. |
Kanade et al., “A Stereo Machine for Video-rate Dense Depth Mapping and Its New Applications”, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1996, pp. 196-202,the Robotics Institute, Carnegie Mellon University, Pittsburgh, PA. |
Miyagawa et al., “CCD-Based Range Finding Sensor”, Oct. 1997, pp. 1648-1652, vol. 44 No. 10, IEEE Transactions on Electron Devices. |
Rosenhahn et al., “Automatic Human Model Generation”, 2005, pp. 41-48, University of Auckland (CITR), New Zealand. |
Aggarwal et al., “Human Motion Analysis: A Review”, IEEE Nonrigid and Articulated Motion Workshop, 1997, University of Texas at Austin, Austin, TX. |
Shao et al., “An Open System Architecture for a Multimedia and Multimodal User Interface”, Aug. 24, 1998, Japanese Society for Rehabilitation of Persons with Disabilities (JSRPD), Japan. |
Kohler, “Special Topics of Gesture Recognition Applied in Intelligent Home Environments”, In Proceedings of the Gesture Workshop, 1998, pp. 285-296, Germany. |
Kohler, “Vision Based Remote Control in Intelligent Home Environments”, University of Erlangen-Nuremberg/Germany, 1996, pp. 147-154, Germany. |
Kohler, “Technical Details and Ergonomical Aspects of Gesture Recognition applied in Intelligent Home Environments”, 1997, Germany. |
Hasegawa et al., “Human-Scale Haptic Interaction with a Reactive Virtual Human in a Real-Time Physics Simulator”, Jul. 2006, vol. 4, No. 3, Article 6C, ACM Computers in Entertainment, New York, NY. |
Qian et al., “A Gesture-Driven Multimodal Interactive Dance System”, Jun. 2004, pp. 1579-1582, IEEE International Conference on Multimedia and Expo (ICME), Taipei, Taiwan. |
Zhao, “Dressed Human Modeling, Detection, and Parts Localization”, 2001, The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA. |
He, “Generation of Human Body Models”, Apr. 2005, University of Auckland, New Zealand. |
Isard et al., “Condensation—Conditional Density Propagation for Visual Tracking”, 1998, pp. 5-28, International Journal of Computer Vision 29(1), Netherlands. |
Livingston, “Vision-based Tracking with Dynamic Structured Light for Video See-through Augmented Reality”, 1998, University of North Carolina at Chapel Hill, North Carolina, USA. |
Wren et al., “Pfinder: Real-Time Tracking of the Human Body”, MIT Media Laboratory Perceptual Computing Section Technical Report No. 353, Jul. 1997, vol. 19, No. 7, pp. 780-785, IEEE Transactions on Pattern Analysis and Machine Intelligence, Caimbridge, MA. |
Breen et al., “Interactive Occlusion and Collusion of Real and Virtual Objects in Augmented Reality”, Technical Report ECRC-95-02, 1995, European Computer-Industry Research Center GmbH, Munich, Germany. |
Freeman et al., “Television Control by Hand Gestures”, Dec. 1994, Mitsubishi Electric Research Laboratories, TR94-24, Caimbridge, MA. |
Hongo et al., “Focus of Attention for Face and Hand Gesture Recognition Using Multiple Cameras”, Mar. 2000, pp. 156-161, 4th IEEE International Conference on Automatic Face and Gesture Recognition, Grenoble, France. |
Pavlovic et al., “Visual Interpretation of Hand Gestures for Human-Computer Interaction: A Review”, Jul. 1997, pp. 677-695, vol. 19, No. 7, IEEE Transactions on Pattern Analysis and Machine Intelligence. |
Azarbayejani et al., “Visually Controlled Graphics”, Jun. 1993, vol. 15, No. 6, IEEE Transactions on Pattern Analysis and Machine Intelligence. |
Granieri et al., “Simulating Humans in VR”, The British Computer Society, Oct. 1994, Academic Press. |
Brogan et al., “Dynamically Simulated Characters in Virtual Environments”, Sep./Oct. 1998, pp. 2-13, vol. 18, Issue 5, IEEE Computer Graphics and Applications. |
Fisher et al., “Virtual Environment Display System”, ACM Workshop on Interactive 3D Graphics, Oct. 1986, Chapel Hill, NC. |
“Virtual High Anxiety”, Tech Update, Aug. 1995, pp. 22. |
Sheridan et al., “Virtual Reality Check”, Technology Review, Oct. 1993, pp. 22-28, vol. 96, No. 7. |
Stevens, “Flights into Virtual Reality Treating Real World Disorders”, The Washington Post, Mar. 27, 1995, Science Psychology, 2 pages. |
Li, Y., et al., “Evaluating the Performance of Systems for Tracking Football Players and Ball,” IEEE 2005, [http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01577342], pp. 632-637. |
Fang, et al., “Full Body Tracking Using an Agent-based Architecture,” IEEE Oct. 2008, [http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4906445&isnumber=4906435], 7 pages. |
Gall, et al., “Motion Capture Using Joint Skeleton Tracking and Surface Estimation,” [http://www.mpi-inf.mpg.de/˜stoll/paper/stse.pdf], Jun. 2009, 8 pages. |
Huang, Yu, et al., “Players and Ball Detection in Soccer Videos Based on Color Segmentation and Shape Analysis,” Thomson Corporation Research, [http://www.ifp.illinois.edu/˜yuhuang/papers/detection07/pdf], 2007, pp. 416-425. |
Park, Sangho, et al., “Segmentation and Tracking of Interacting Human Body Parts under Occlusion and Shadowing,” IEEE Workshop on Motion and Video Computing, Dec. 2002, pp. 105-111. |
Singhal, Achal, et al., “Tracking soccer players using the graph representation,” [http:www.ces.clemson.edu/˜stb/ece847/projects/Tracking—soccer—players.pdf], Aug. 2004, 6 pages. |
Office Action dated Apr. 26, 2012, U.S. Appl. No. 13/410,626. |
Response to Office Action dated Jun. 25, 2012, U.S. Appl. No. 13/410,626. |
Response to Office Action dated Nov. 6, 2012, U.S. Appl. No. 13/410,626. |
Chinese Office Action dated Jan. 31, 2012, Chinese Patent Application No. 201110037227.X. |
Chinese Response to Office Action dated Apr. 17, 2013, Chinese Patent Application No. 201110037227.X. |
Chinese Second Office Action dated Jun. 18, 2013, Chinese Patent Application No. 201110037227.X. |
Chinese Response to Office Action dated Jul 15, 2013, Chinese Patent Application No. 201110037227.X. |
Office Action dated May 23, 2013, U.S. Appl. No. 13/410,626. |
Office Action dated Aug. 21, 2012, U.S. Appl. No. 13/410,626. |
Stevens, “Flights into Virtual Reality Treating Real-World Disorders”, Science Psychology. The Washington Post, Mar. 27, 1995. |
“Simulation and Training”, 1994, Division Incorporated. |
English Machine-translation of Japanese Publication No. JP08-044490 published on Feb. 16, 1996. |
Shivappa, et al., “Person Tracking With Audio-visual Cues Using The Iterative Decoding Framework,” IEEE 5th International Conference on Advanced Video and Signal Based Surveillance, 2008, pp. 260-267. |
Toyama, et al., “Probabilistic Tracking in a Metric Space,” Eighth International Conference on Computer Vision, Vancouver, Canada, vol. 2, Jul. 2001, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20110190055 A1 | Aug 2011 | US |