Claims
- 1. A visual probe for viewing subsurface areas, comprising:an entry segment having a tip end configured for insertion into a ground, an attachment end, and a push rod receiving point; an extension segment having first and second ends which are open, the first end configured to be selectively coupled to the attachment end of the entry segment at an entry segment joint to form an insertion chain, and a cylindrical sidewall at least a portion of which is transparent which extends between the first and second ends, the cylindrical sidewall and the first and second ends together defining in part a central cavity; an entry segment push rod having a leading end, a push rod connection tube, and a trailing end, the leading end being configured to be selectively coupled to the push rod receiving point of the entry segment; a pressure cap having a selectively operable valve, the pressure cap being configured to selectively couple with the second end of the extension segment, and the pressure cap selectively substantially sealing the central cavity before the extension segment and attached entry segment are driven into the ground.
- 2. A visual probe in accordance with claim 1 and further comprising a field cap configured to selectively couple with the second end of the extension segment to selectively substantially seal the central cavity, wherein the field cap includes a selectively operable valve for use in pressurizing the central cavity, and also for use in releasing pressure from the central cavity.
- 3. A visual probe in accordance with claim 1 wherein the entry segment includes multiple tiers which facilitate insertion into the ground.
- 4. A visual probe in accordance with claim 1 having a first portion having a first diameter, a second portion having a second diameter, and a third portion having a third diameter, the second diameter being larger than the first diameter, and the third diameter being larger than the second diameter.
- 5. A visual probe in accordance with claim 1 wherein all of the cylindrical sidewall is transparent.
- 6. A visual probe in accordance with claim 1 wherein the entry segment push rod is configured so that it may be removed after the insertion chain has been driven to a desired depth in the ground.
- 7. A visual probe in accordance with claim 1 wherein the entry segment push rod is configured so that it may be removed once the insertion chain has been driven to a desired depth in the ground, while leaving the insertion chain positioned within the ground, and wherein the entry segment push rod may later be reinserted to facilitate removal of the insertion chain from the ground.
- 8. A visual probe in accordance with claim 1 wherein the visual probe includes a framework comprising a plurality of spaced apart rods, whereby the probe is visually able to withstand large loads and to be inserted into the ground without prior excavation.
- 9. A visual probe in accordance with claim 1 wherein the visual probe includes a framework comprising a plurality of spaced apart rods, wherein the framework and push rod absorb installation loads and protect the cylindrical sidewall from such loads.
- 10. A visual probe in accordance with claim 1 wherein the visual probe includes a framework comprising a plurality of spaced apart rods in load bearing relation to the push rod, whereby the visual probe is of adequate durability to be inserted into the ground by direct push.
- 11. A visual probe in accordance with claim 1 wherein the visual probe includes a framework comprising a plurality of spaced apart members in load bearing relation to the push rod, whereby the visual probe is of adequate durability to be inserted into the ground by sonic drilling.
- 12. A visual probe in accordance with claim 1 wherein the visual probe includes a framework comprising a plurality of spaced apart longitudinally extending members in load bearing relation to the push rod, whereby the visual probe is of adequate durability to be inserted into the ground by a combination of direct push and sonic drilling.
- 13. A visual probe in accordance with claim 1 wherein the cylindrical sidewall of the extension segment has an inner diameter of at least two inches.
- 14. A visual probe in accordance with claim 1 wherein the push rod receiving point is located proximate the tip end of the entry segment, and wherein the push rod receiving point has left-handed threads configured to selectively couple with the leading end of the entry segment push rod.
- 15. A visual probe in accordance with claim 1 wherein the entry segment further comprises a first entry segment hub positioned proximate the tip end of the entry segment; a second entry segment hub positioned at the attachment end of the entry segment; an entry segment sidewall having open first and second ends and extending between the first and second entry segment hubs, the open first end of the entry segment sidewall being configured to selectively couple with the first hub, the open second end of the entry segment sidewall being configured to selectively couple with the second hub, the entry segment sidewall and the open first and second ends defining in part an entry segment cavity; and an entry segment support structure positioned within the entry segment cavity.
- 16. A visual probe in accordance with claim 15, wherein the entry segment further comprises a first entry segment hub seal positioned between the open first end of the entry segment sidewall and the first entry segment hub; and a second entry segment hub seal positioned between the open second end of the entry segment sidewall and the second entry segment hub.
- 17. A visual probe in accordance with claim 15 wherein the entry segment support structure comprises a first hub portion attached to the first entry segment hub; a second hub portion attached to the second entry segment hub; and a plurality of lateral supports extending between the first and second hub portion, wherein the plurality of lateral supports are radially positioned within the entry segment cavity and define an entry segment push rod cavity.
- 18. A visual probe in accordance with claim 1 wherein the extension segment further comprises a first extension segment hub positioned at the first end of the extension segment; a second extension segment hub positioned at the second end of the extension segment, wherein the cylindrical sidewall has a first open end which is configured to selectively couple with the first extension hub, and a second open end which is configured to selectively couple with the second extension hub; and an extension segment support structure positioned within the central cavity.
- 19. A visual probe in accordance with claim 18 wherein the extension segment further comprises a first extension segment hub seal positioned between the open first end of the cylindrical sidewall and the first extension segment hub; and a second extension segment hub seal positioned between the open second end of the cylindrical sidewall and the second extension segment hub.
- 20. A visual probe in accordance with claim 18 wherein the extension segment support structure comprises a first hub portion attached to the first extension segment hub; a second hub portion attached to the second extension segment hub; and a plurality of lateral supports extending between the first and second hub portions, wherein the plurality of lateral supports are radially positioned within the central cavity and define an extension segment push rod cavity.
- 21. A visual probe in accordance with claim 18 wherein the first extension segment hub is configured to be selectively coupled to the second entry segment hub at an entry segment joint as the insertion chain is formed, and wherein the entry segment joint includes an entry segment joint seal.
- 22. A visual probe in accordance with claim 1 wherein the entry segment joint includes a plurality of entry segment joint seals.
- 23. A visual probe for viewing subsurface areas, comprising:an entry segment having a tip end configured for insertion into a ground, an attachment end, and a push rod receiving point; a plurality of extension segments which are configured to be selectively coupled in series to the attachment end of the entry segment to form an insertion chain as the entry segment is driven progressively deeper into the ground; each extension segment having first and second ends which are open and a cylindrical sidewall, at least a portion of which is transparent, which extends between the first and second ends, the cylindrical sidewall and the first and second ends together defining in part a central cavity; the first end of one extension segment being configured to selectively couple with the second end of another extension segment at an extension segment joint as the insertion chain is formed, the insertion chain including a subsurface end which is defined by the tip end of the attached entry segment and a surface end which is defined by the second end of an extension segment which has been most recently added to the insertion chain, and including an insertion chain cavity which is defined by the central cavities of the plurality of extension segments which have been selectively coupled to form the insertion chain; an entry segment push rod having a leading end, a push rod connection tube, and a trailing end, the leading end being configured to be selectively coupled to the push rod receiving point of the entry segment; a plurality of extension segment push rods configured to be selectively coupled in series to the trailing end of the entry segment push rod to form a push rod string as the entry segment is driven progressively deeper into the ground, each extension segment push rod including a first end, a body portion having an outer wall, a second end; and a pressure cap having a selectively operable valve, the pressure cap being configured to selectively couple with the second end of an extension segment which has been most recently added to the insertion chain, and the pressure cap being configured to selectively couple with the second end of extension segment push rod which has been most recently added to the push rod string, and the pressure cap selectively closing the insertion chain cavity for selective pressure testing to reduce risk of contaminants reaching ground surface though the visual probe.
- 24. A visual probe in accordance with claim 23 wherein, as each of the extension segment push rods are selectively coupled to form the push rod string, the gas passageways of each of the extension segment push rods are coupled in fluid flowing relation to form an overall gas passageway which extends at least along the push rod string.
- 25. A visual probe in accordance with claim 23 and further comprising a field cap configured to substantially seal the surface end of the insertion chain, wherein the field cap includes a selectively operable valve for use in pressurizing the insertion chain cavity, and also for use in releasing pressure from the insertion chain cavity.
- 26. A visual probe in accordance with claim 23 wherein the entry segment has multiple tiers to facilitate insertion into the ground.
- 27. A visual probe in accordance with claim 23 wherein the entry segment push rod is tiered.
- 28. A visual probe in accordance with claim 23 wherein the cylindrical sidewall of each of the extension segments is transparent.
- 29. A visual probe in accordance with claim 23 wherein the cylindrical sidewall of each of the extension segments have an inner diameter of at least 2 inches.
- 30. A visual probe in accordance with claim 23 wherein the push rod string is configured so that it may be removed after the insertion chain has been driven to a desired depth in the ground, while leaving the insertion chain positioned within the ground.
- 31. A visual probe in accordance with claim 23 wherein the push rod string is configured so that it may be removed after the insertion chain has been driven to a desired depth in the ground, while leaving the insertion chain positioned within the ground, and wherein the push rod string may later be reinserted to facilitate removal of the insertion chain from the ground.
- 32. A visual probe in accordance with claim 23 wherein the pressure cap is configured to selectively couple with the second end of an extension segment which has been most recently added to the insertion chain, to substantially seal the insertion chain cavity, thereby allowing the integrity of the insertion chain cavity to be selectively tested as each extension segment is added to the insertion chain.
- 33. A visual probe in accordance with claim 23 wherein the visual probe includes a framework comprising a plurality of spaced apart rods, wherein the framework and push rod absorb installation loads and protect the cylindrical sidewall from such loads.
- 34. A visual probe in accordance with claim 23 wherein the visual probe includes a framework comprising a plurality of spaced apart rods in load bearing relation to the push rod, whereby the visual probe is of adequate durability to be inserted into the ground by direct push.
- 35. A visual probe in accordance with claim 23 wherein the visual probe includes a framework comprising a plurality of spaced apart members in load bearing relation to the push rod, whereby the visual probe is sufficiently robust to be inserted into the ground by sonic drilling.
- 36. A visual probe in accordance with claim 23 wherein the visual probe includes a framework comprising a plurality of spaced apart longitudinally extending members in load bearing relation to the push rod, whereby the visual probe is sufficiently robust to be inserted into the ground by a combination of direct push and sonic drilling.
- 37. A visual probe in accordance with claim 23 wherein the push rod receiving point is located proximate the tip end of the entry segment.
- 38. A visual probe in accordance with claim 23 wherein the push rod receiving point has means for selectively coupling with the leading end of the entry segment push rod.
- 39. A visual probe in accordance with claim 37 wherein the push rod receiving point has left-handed threads configured to selectively couple with the leading end of the entry segment push rod.
- 40. A visual probe in accordance with claim 23 wherein the plurality of extension segment push rods which are configured to be selectively coupled in series to the trailing end of the entry segment push rod to form a push rod string as the entry segment is driven progressively deeper into the ground are selectively coupled using means for coupling.
- 41. A visual probe in accordance with claim 38 wherein the plurality of extension segment push rods which are configured to be selectively coupled in series to the trailing end of the entry segment push rod to form a push rod string as the entry segment is driven progressively deeper into the ground are selectively coupled using means for coupling.
- 42. A visual probe in accordance with claim 23 wherein the entry segment further comprises a first entry segment hub positioned proximate the tip end of the entry segment; a second entry segment hub positioned at the attachment end of the entry segment, an entry segment sidewall having open first and second ends and extending between the first and second entry segment hubs, wherein the open first end of the entry segment sidewall configured to selectively couple with the first hub, wherein the open second end of the entry segment sidewall configured to selectively couple with the second hub, and wherein the entry segment sidewall and the open first and second ends define in part an entry segment cavity; and an entry segment support structure positioned within the entry segment cavity.
- 43. A visual probe in accordance with claim 42 wherein the entry segment further comprises a first entry segment hub seal positioned between the open first end of the entry segment sidewall and the first entry segment hub; and a second entry segment hub seal positioned between the open second end of the entry segment sidewall and the second entry segment hub.
- 44. A visual probe in accordance with claim 42 wherein the entry segment support structure comprises a first hub portion attached to the first entry segment hub; a second hub portion attached to the second entry segment hub; and a plurality of lateral supports extending between the first and second hub portions, wherein the plurality of lateral supports are radially positioned within the entry segment cavity and define an entry segment push rod cavity.
- 45. A visual probe in accordance with claim 23 wherein each extension segment further comprises a first extension segment hub positioned at the first end of the extension segment; a second extension segment hub positioned at the second end of the extension segment, wherein the cylindrical sidewall has a first open end which is configured to selectively couple with the first extension hub and a second open end which is configured to selectively couple with the second extension hub; and an extension segment support structure positioned within the central cavity.
- 46. A visual probe in accordance with claim 45 wherein the extension segment further comprises a first extension segment hub seal positioned between the open first end of the cylindrical sidewall and the first extension segment hub; and a second extension segment hub seal positioned between the open second end of the cylindrical sidewall and the second extension segment hub.
- 47. A visual probe in accordance with claim 45 wherein the extension segment support structure comprises a first hub portion attached to the first extension segment hub; a second hub portion attached to the second extension segment hub; and a plurality of supports extending between the first and second hub portions, wherein the plurality of supports are radially positioned within the central cavity and define an extension segment push rod cavity, and wherein the radial positioning of the supports allows data retrieval equipment to be lowered into the extension segment push rod cavity.
- 48. A visual probe in accordance with claim 47 wherein the supports protect the cylindrical sidewall from insertion loads by absorbing insertion loads.
- 49. A visual probe in accordance with claim 42 wherein the extension segment support structure comprises a first hub portion; a second hub portion attached to the second extension segment hub; and a plurality of supports extending between the first and second hub portions, wherein the plurality of supports are radially positioned within the central cavity and define an extension segment push rod cavity, and wherein the supports absorb loads along the direction of insertion of the visual probe and thereby protect the cylindrical sidewall from loads in the direction of insertion of the visual probe.
- 50. A visual probe in accordance with claim 42 wherein the extension segment support structure comprises a first hub portion; a second hub portion attached to the second extension segment hub; and a plurality of rods extending between the first and second hub portions, wherein the plurality of rods are radially positioned within the central cavity and define an extension segment push rod cavity, wherein the radial positioning of the lateral supports allows visual data capture equipment to be lowered into the extension segment push rod cavity, and wherein the rods are cylindrical, whereby blocking of the view of the visual data capture equipment by the rods is less than if another shape was used.
- 51. A visual probe in accordance with claim 42 wherein the extension segment support structure comprises a first hub portion; a second hub portion attached to the second extension segment hub; and a plurality of rods extending between the first and second hub portions, wherein the plurality of rods are radially positioned within the central cavity and define an extension segment push rod cavity, wherein the radial positioning of the lateral supports allows visual data capture equipment to be lowered into the extension segment push rod cavity, and wherein 360 degree rotation of the visual data capture equipment, relative to the direction of insertion of the visual probe, is possible.
- 52. A visual probe in accordance with claim 45 wherein a first extension segment hub is configured to be selectively coupled to the second entry segment hub at an entry segment joint as the insertion chain is formed, and wherein the entry segment joint includes an entry segment joint seal.
- 53. A visual probe in accordance with claim 45 wherein the first extension segment hub of one extension segment is configured to selectively couple with the second extension segment hub of another extension segment at an extension segment joint as the insertion chain is formed, and wherein the extension segment joint includes at least one extension segment joint seal.
- 54. A visual probe for gathering data from subsurface areas, comprising:an entry segment having a tip end configured for insertion into the ground and an attachment end; a plurality of extension segments which are configured to be selectively coupled in series to the attachment end of the entry segment to form an insertion chain as the entry segment is driven progressively deeper into the ground; each extension segment having first and second ends which are open and a transparent cylindrical sidewall which extends between the first and second ends, the transparent cylindrical sidewall and the first and second ends together defining in part a central cavity; the first end of one extension segment being configured to selectively couple with the second end of another extension segment at an extension segment joint as the insertion chain is formed, the insertion chain having an insertion chain cavity which is defined by the central cavities of each of the extension segments which have been selectively coupled to form the insertion chain; a push rod receiving point positioned on the entry segment; an entry segment push rod having a leading end, a push rod connection tube, and a trailing end, wherein the leading end is configured to be selectively coupled to the push rod receiving point of the entry segment; and a plurality of extension segment push rods which are configured to be selectively coupled in series to the trailing end of the entry segment push rod to form a push rod string as the entry segment is driven progressively deeper into the ground, wherein each extension push rod includes a first end, a body portion having an outer wall, a second end, a gas passageway, and a plurality of gas openings which are coupled in fluid flowing relation to the gas passageway, and which extend through the outer wall of the body portion; and a pressure cap configured to selectively couple with the second end of an extension segment which has been most recently added to the insertion chain, whereby the pressure cap substantially seals the insertion chain cavity before the most recently added extension segment is driven into the ground and selectively used to drive the visual probe into the ground.
- 55. A method for placing a visual probe into a subsurface area, comprising:providing an entry segment configured to be driven into a ground, the entry segment having a tip end and an attachment end; providing a plurality of extension segments configured to selectively couple in series to the entry segment to form an insertion chain as the entry segment is driven progressively deeper into the ground, each extension segment having a cylindrical sidewall defining in part a central cavity, at least a portion of each cylindrical sidewall being transparent; selectively coupling a first extension segment to the attachment end of the entry segment to begin forming the insertion chain; after selectively coupling a first extension segment to the attachment end of the entry segment, driving at least a portion of the entry segment and the first extension segment into the ground; and selectively coupling additional extension segments to the first extension segment to lengthen the insertion chain as the entry segment is driven to a selected depth in the ground, the central cavities of each of the extension segments which have been selectively coupled to form the insertion chain together defining an insertion chain cavity, the insertion chain cavity having an upper end which is open to ground's surface.
- 56. The method of claim 55, wherein the driving at least a portion of the entry segment and the first extension segment into the ground is accomplished by direct push.
- 57. The method of claim 55 wherein the driving at least a portion of the entry segment and the first extension segment into the ground is accomplished by sonic drilling.
- 58. The method of claim 55 wherein the driving at least a portion of the entry segment and the first extension segment into the ground is accomplished by a combination of direct push and sonic drilling.
- 59. The method of claim 55 wherein the selectively coupling additional extension segments to the first extension segment to lengthen the insertion chain as the entry segment is driven to the selected depth in the ground, comprises selectively coupling addition extension segments to lengthen the insertion chain until the entry segment reaches a desired depth.
- 60. The method of claim 55 wherein after selectively coupling additional extension segments to the first extension segment to lengthen the insertion chain as the entry segment is driven to the selected depth in the ground, the method further comprises placing data retrieval equipment into the insertion chain cavity so that, locations adjacent to the insertion chain may be viewed through the transparent portions of the sidewalls of the extension segments.
- 61. The method of claim 55 wherein after selectively coupling addition extension segments to lengthen the insertion chain as the entry segment is driven to the selected depth in the ground, the method further comprises selectively coupling a field cap to the upper end of the insertion chain.
- 62. The method of claim 55 wherein before driving at least a portion of the entry segment and the first extension segment into the ground, the method further comprises providing a pressure cap which is selectively coupled to the first extension segment to selectively test the integrity of the insertion chain cavity.
- 63. The method of claim 62 wherein before selectively coupling addition extension segments to lengthen the insertion chain as the entry segment is driven to the selected depth in the ground, the method further comprises pressurizing the insertion chain cavity by adding a gas into the insertion chain cavity using a selectively operable valve so that the insertion chain cavity is under a pressure; and evaluating the integrity of the insertion chain cavity by testing the ability of the insertion chain cavity to maintain the pressure.
- 64. A method for placing a visual probe into a subsurface area, comprising:providing an entry segment configured to be driven into a ground, the entry segment having a tip end and an attachment end; providing a plurality of extension segments which are configured to be selectively coupled in series to the entry segment to form an insertion chain as the entry segment is driven progressively deeper into the ground, wherein each extension segment has a first end, a second end and a sidewall which extends between the first and second ends, at least a portion of the sidewall being transparent, the first and second ends and the sidewall defining a central cavity, the first end of one extension segment being configured to selectively couple with the second end of another extension segment; selectively coupling a first end of a first extension segment with the attachment end of the entry segment to begin forming the insertion chain; after selectively coupling the first end of the first extension segment with the attachment end of the entry segment to begin forming the insertion chain, driving at least a portion of the entry segment and the first extension segment into the ground; and after driving at least a portion of the entry segment and the first extension segment into the ground, selectively coupling additional extension segments to the first extension segment to lengthen the insertion chain as the entry segment is driven progressively deeper into the ground to a selected depth, the central cavities of each respective extension segment which have been selectively coupled to form the insertion chain together defining an insertion chain cavity.
- 65. The method of claim 64 wherein before driving the portion of the entry segment and the first extension segment into the ground, the method further comprises providing a pressure cap which is selectively coupled to the second end of the first extension segment.
- 66. The method of claim 65 and further comprising after providing the pressure cap and before driving the portion of the entry segment and the first extension segment into the ground, adding a gas into the insertion chain cavity so that the insertion chain cavity is under a pressure; and after driving the portion of the entry segment and the first extension segment to the ground, and before selectively coupling additional extension segments to the first extension segment, evaluating the integrity of the insertion chain cavity by pressure testing the insertion chain cavity to ensure that the insertion chain cavity has not been breached, whereby spreading of contamination to ground surface can be avoided.
- 67. The method of claim 66 and further comprising, before selectively coupling additional extension segments to the first extension segment to lengthen the insertion chain as the entry segment is driven progressively deeper into the ground to the selected depth, evaluating the integrity of the insertion chain cavity by sequentially testing the ability of the insertion chain cavity to maintain containment as each additional extension segment is added to the insertion chain and driven into the ground.
- 68. The method of claim 64 and further comprising, after selectively coupling additional extension segments to the first extension segment to lengthen the insertion chain as the entry segment is driven progressively deeper into the ground to a selected depth, placing data gathering equipment into the insertion chain cavity to gather subsurface information through the transparent portions of the sidewalls of the extension segments which have been selectively coupled to form the insertion chain.
- 69. The method of claim 64 and further comprising, after selectively coupling additional extension segments to the first extension segment to lengthen the insertion chain as the entry segment is driven progressively deeper into the ground to a selected depth, selectively coupling a field cap to the second end of an extension segment which was most recently added to the insertion chain.
- 70. The method of claim 69 and further comprising, providing a selectively operable valve on the field cap which allows gas to be added or released from the insertion chain cavity while the field cap is in place.
- 71. The method of claim 64, wherein the driving at least a portion of the entry segment and the first extension segment into the ground is accomplished by direct push.
- 72. The method of claim 64 wherein the driving at least a portion of the entry segment and the first extension segment into the ground is accomplished by sonic drilling.
- 73. The method of claim 64 wherein the driving at least a portion of the entry segment and the first extension segment into the ground is accomplished by a combination of direct push and sonic drilling.
- 74. The method of claim 64 wherein the selectively coupling addition extension segments to the first extension segment to lengthen the insertion chain as the entry segment is driven progressively deeper into the ground to a selected depth, comprises selectively coupling addition extension segments to lengthen the insertion chain until the entry segment reaches a selected depth.
- 75. A method for placing a visual probe into a subsurface area, comprising:providing an entry segment configured to be driven into a ground, the entry segment having a tip end, an attachment end, and a push rod attachment point; providing a plurality of extension segments, each extension segment having a first end, a second end and a sidewall which extends between the first and second ends, at least a portion of the sidewall being transparent, the first and second ends and the sidewall of each respective extension segment defining a central cavity, the first end of one extension segment being configured to selectively couple with the second end of another extension segment, the central cavities of respective extension segments which are selectively coupled together defining an insertion chain cavity; providing a plurality of push rods which are configured to be selectively coupled to form a push rod string as the entry segment is driven deeper into the ground, each push rod having a first end, a body portion, and a second end; selectively coupling a first end of a first extension segment to the attachment end of the entry segment to begin forming an insertion chain; selectively coupling a first end of a first push rod to the push rod attachment point of the entry segment to begin forming a push rod string; after selectively coupling a first end of the first push rod to the push rod attachment point of the entry segment to begin forming a push rod string, and after selectively coupling a first end of the first extension segment to the attachment end of the entry segment to begin forming an insertion chain, selectively coupling a pressure cap to the second end of the first extension segment to substantially seal the insertion chain cavity for pressure testing, the pressure cap including a selectively operable valve; after providing the pressure cap, adding a gas into the insertion chain cavity using the selectively operable valve to pressure test the insertion chain cavity; releasing pressure from the insertion chain cavity; driving at least a portion of the entry segment and the first extension segment into the ground; after driving the portion of the entry segment and the first extension segment into the ground, evaluating the integrity of the insertion chain cavity by testing the ability of the insertion chain cavity to maintain the pressure to ensure that contamination does not reach ground surface; and after evaluating the ability of the insertion chain cavity to maintain the pressure, sequentially selectively coupling additional extension segments to lengthen the insertion chain, and sequentially selectively coupling additional push rods to lengthen the push rod string as the entry segment is driven progressively deeper into the ground, while testing the ability of the insertion chain cavity to maintain a pressure as the additional extension segments and the additional push rods are sequentially added.
- 76. A method for placing a visual probe into a subsurface area, comprising:providing an entry segment configured to be driven into a ground, the entry segment having a tip end, an attachment end, and a push rod receiving point; providing an extension segment having a first end, a second end and a transparent cylindrical sidewall which extends between the first and second ends, the sidewall being transparent, and wherein the first and second ends and the transparent cylindrical sidewall together define in part a central cavity, and wherein the first end of the extension segment being configured to selectively couple with the attachment end of the entry segment; selectively coupling a first end of a first extension segment with the attachment end of the entry segment to begin forming an insertion chain; providing an entry segment push rod, the entry segment push rod having a leading end, a connection tube having an outer wall, and a trailing end, and wherein the connection tube includes a gas passageway, and has a plurality of gas openings which are coupled in fluid flowing relation to the gas passageway and extend through the outer wall of the connection tube; selectively coupling the leading end of the entry segment push rod with the push rod receiving point; after selectively coupling the leading end of the entry segment push rod to the push rod attachment point, and after selectively coupling a first end of the first extension segment to the attachment end of the entry segment, providing a pressure cap which is selectively coupled to the second end of the extension segment, and wherein the pressure cap includes a selectively operable valve; after providing the pressure cap, adding a gas into the central cavity using the selectively operable valve to pressure test the central cavity; releasing pressure from the central cavity; after releasing pressure from the central cavity, driving at least a portion of the entry segment and the first extension segment into the ground; and after driving at least a portion of the entry segment and the first extension segment into the ground, evaluating the integrity of the visual probe by testing the ability of the central cavity to maintain the pressure.
- 77. The method of claim 76 wherein the driving at least a portion of the entry segment and the first extension segment into the ground is accomplished by direct push.
- 78. The method of claim 76 wherein the driving at least a portion of the entry segment and the first extension segment into the ground is accomplished by sonic drilling.
- 79. The method of claim 76 wherein the driving at least a portion of the entry segment and the first extension segment into the ground is accomplished by a combination of direct push and sonic drilling.
- 80. The method of claim 76 and further comprising:providing a plurality of extension segments which are configured to be sequentially selectively coupled to the insertion chain as the entry segment is driven progressively deeper into the ground; providing a plurality of extension segment push rods which are configured to be sequentially selectively coupled to the trailing end of the entry segment push rod to form a push rod string as the entry segment is driven deeper into the ground; evaluating the integrity of the visual probe by testing the ability of the central cavity to maintain the pressure before each additional extension segment is added to the insertion chain; and evaluating the integrity of the visual probe by testing the ability of the central cavity to maintain the pressure after each additional extension segment is driven into the ground.
- 81. The method of claim 76 and further comprising providing visual data capture equipment in the visual probe and using the visual data capture equipment to determine spacial relationships between subsurface objects.
- 82. The method of claim 76 and further comprising providing visual data capture equipment in the visual probe and moving the visual data capture equipment within the probe to determine spacial relationships between subsurface objects.
- 83. The method of claim 76 and further comprising providing data capture equipment in the visual probe and using the data capture equipment to determine below ground topology information.
- 84. A visual probe for gathering data from subsurface areas, comprising:an entry segment having a tip end configured for insertion into the ground and an attachment end; a plurality of extension segments which are configured to be selectively coupled in series to the attachment end of the entry segment to form an insertion chain as the entry segment is driven progressively deeper into the ground; each extension segment having first and second ends which are open and a transparent cylindrical sidewall which extends between the first and second ends, the transparent cylindrical sidewall and the first and second ends together defining in part a central cavity; the first end of one extension segment being configured to selectively couple with the second end of another extension segment at an extension segment joint as the insertion chain is formed, the insertion chain having an insertion chain cavity which is defined by the central cavities of each of the extension segments which have been selectively coupled to form the insertion chain, and an extension segment support structure positioned within the central cavity, interior of the cylindrical sidewall, the extension segment support structure including a first hub portion; a second hub portion attached to the second extension segment hub; and a plurality of rods extending between the first and second hub portions, the plurality of rods being radially positioned within the central cavity to define an extension segment push rod cavity for receipt of visual data capture equipment movable along the direction of insertion of the visual probe.
- 85. A visual probe in accordance with claim 83 and further comprising markings along the length of the cylindrical sidewall for use in correlating objects below ground, using the visual data capture equipment to provide a data spacial reference of depth of an object relative to ground surface.
CONTRACTUAL ORIGIN OF THE INVENTION
This invention was made with United States Government support under Contract DE-AC07-99ID13727 awarded by the U.S. Department of Energy. The Government has certain rights in the invention.
US Referenced Citations (15)
Non-Patent Literature Citations (2)
Entry |
Applied Research Associates, Inc., Article Entitled Digital Cones, 1999 as found on the following internet address http://www.vertek.ara.com/products/probes/video.html on Jan. 31, 2002. |
Applied Research Associates, Inc., Article entitled Video Cone Penetrometer, 1999. |