The subject invention relates generally to industrial control systems, and more particularly to various automated interfaces that interact with industrial control systems based in part on detected factors such as a user's role, identity, location, and so forth.
Industrial controllers are special-purpose computers utilized for controlling industrial processes, manufacturing equipment, and other factory automation, such as data collection or networked systems. At the core of the industrial control system, is a logic processor such as a Programmable Logic Controller (PLC) or PC-based controller. Programmable Logic Controllers for instance, are programmed by systems designers to operate manufacturing processes via user-designed logic programs or user programs. The user programs are stored in memory and generally executed by the PLC in a sequential manner although instruction jumping, looping and interrupt routines, for example, are also common. Associated with the user program are a plurality of memory elements or variables that provide dynamics to PLC operations and programs. Differences in PLCs are typically dependent on the number of Input/Output (I/O) they can process, amount of memory, number and type of instructions, and speed of the PLC central processing unit (CPU).
One area that has grown in recent years is the need for humans to interact with industrial control systems in the course of business operations. This includes employment of human machine interfaces (HMI) to facilitate operations with such systems, where the HMI can be provided as a graphical user interface in one form. Traditional HMI/automation control systems are generally limited in their ability to make users aware of situations that require their attention or of information that may be of interest to them relative to their current tasks. Where such mechanisms do exist, they tend to be either overly intrusive (e.g., interrupting the user's current activity by “popping up” an alarm display on top of whatever they were currently looking at) or not informative enough (e.g., indicating that something requires the user's attention but not providing information about what). Often times, the user must navigate to another display (e.g., a “detail screen”, “alarm summary” or “help screen”) to determine the nature of the information or even to determine whether such information exists. As can be appreciated, navigation and dealing with pop-ups is time consuming and costly.
In other conventional HMI/automation control systems, information that is presented to users must be preconfigured by a control system designer and must be explicitly requested the user. For example, when an alarm condition occurs and the user wants additional information to help them diagnose/resolve the issue, they must explicitly ask the system to provide it. For this to occur, several conditions should be true: (1) when the control system was designed, the designer must have thought to make that specific information available to that user/role and for that specific situation; (2) the user must know that such information exists; and (3) the user must ask the system to fetch and display that information.
The following presents a simplified summary in order to provide a basic understanding of some aspects described herein. This summary is not an extensive overview nor is intended to identify key/critical elements or to delineate the scope of the various aspects described herein. Its sole purpose is to present some concepts in a simplified form as a prelude to the more detailed description that is presented later.
Various interface applications are provided to facilitate more efficient interactions with industrial automation systems. In one aspect, systems and methods are provided to mitigate navigation issues with human machine interfaces (HMI) and/or pop-up problems associated with such interfaces. By exploiting situation-specific data or “information of interest”, e.g., based on factors such as the user's identity, role, location (logical or physical), current task, current view, and so forth, an HMI can be provided to superimpose such situation-specific information upon the user's current view of the automation control system (“base presentation”) in a manner that communicates the essence of information as well as its importance/priority/urgency without completely dominating the user's attention or interrupting their current interaction with the system. In this manner, problems dealing with excessive navigation or obtrusive displays can be mitigated.
In another aspect, systems and methods are provided for mitigating pre-configuration interface issues by automatically providing users with relevant, situation-specific information. This includes automatically locating information that may be of interest/use in a user's current situation by matching attributes such as the user's identity, role, location (logical or physical), current activity, similar previous (historical) situations/activities, and so forth with other data such as device/equipment locations, device/equipment status, user/role/situation-specific reports, user-documentation, training manuals, and so forth. Thus, the user is automatically provided a rich set of information related to their current task/situation without generally requiring that person/situation/information mappings be predefined by control system designers.
To the accomplishment of the foregoing and related ends, certain illustrative aspects are described herein in connection with the following description and the annexed drawings. These aspects are indicative of various ways which can be practiced, all of which are intended to be covered herein. Other advantages and novel features may become apparent from the following detailed description when considered in conjunction with the drawings.
Systems and methods are provided that enable various interface applications that more efficiently communicate data to users in an industrial control system. In one aspect, an industrial automation system is provided. The system includes a base presentation component to display one or more elements of an industrial control environment. Various display items can be dynamically superimposed on the base presentation component to provide industrial control information to a user. In another aspect of the industrial automation system, a location component is provided to identify a physical or a virtual location for a user in an industrial control environment. This can include a context component to determine at least one attribute for the user in view of the physical or virtual location. A presentation component then provides information to the user based in part on the physical or virtual location and the determined attribute.
It is noted that as used in this application, terms such as “component,” “display,” “interface,” and the like are intended to refer to a computer-related entity, either hardware, a combination of hardware and software, software, or software in execution as applied to an automation system for industrial control. For example, a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program and a computer. By way of illustration, both an application running on a server and the server can be components. One or more components may reside within a process and/or thread of execution and a component may be localized on one computer and/or distributed between two or more computers, industrial controllers, and/or modules communicating therewith.
As used herein, the term to “infer” or “inference” refer generally to the process of reasoning about or inferring states of the system, environment, user, and/or intent from a set of observations as captured via events and/or data. Captured data and events can include user data, device data, environment data, data from sensors, sensor data, application data, implicit and explicit data, etc. Inference can be employed to identify a specific context or action, or can generate a probability distribution over states, for example. The inference can be probabilistic, that is, the computation of a probability distribution over states of interest based on a consideration of data and events. Inference can also refer to techniques employed for composing higher-level events from a set of events and/or data. Such inference results in the construction of new events or actions from a set of observed events and/or stored event data, whether or not the events are correlated in close temporal proximity, and whether the events and data come from one or several event and data sources.
It is to be appreciated that a variety of artificial intelligence (AI) tools and system can be employed in connection with embodiments described and claimed herein. For example, adaptive user interface (UI) machine learning and reasoning (MLR) can be employed to infer on behalf of an entity (e.g., user, group of users, device, system, business, . . . ). More particularly, a MLR component can learn by monitoring context, decisions being made, and user feedback. The MLR component can take as input aggregate learned rules (from other users), context of a most recent decision, rules involved in the most recent decision and decision reached, any explicit user feedback, any implicit feedback that can be estimated, and current set of learned rules. From these inputs, the MLR component can produce (and/or update) a new set of learned rules 1204.
In addition to establishing the learned rules, the MLR component can facilitate automating one or more novel features in accordance with the innovation described herein. For example, carious embodiments (e.g., in connection with establishing learned rules) can employ various MLR-based schemes for carrying out various aspects thereof. A process for determining implicit feedback can be facilitated via an automatic classifier system and process. A classifier is a function that maps an input attribute vector, x=(x1, x2, x3, x4, xn), to a confidence that the input belongs to a class, that is, f(x)=confidence(class). Such classification can employ a probabilistic, statistical and/or decision theoretic-based analysis (e.g., factoring into the analysis utilities and costs) to prognose or infer an action that a user desires to be automatically performed.
A support vector machine (SVM) is an example of a classifier that can be employed. The SVM operates by finding a hypersurface in the space of possible inputs, which the hypersurface attempts to split the triggering criteria from the non-triggering events. Intuitively, this makes the classification correct for testing data that is near, but not identical to training data. By defining and applying a kernel function to the input data, the SVM can learn a non-linear hypersurface. Other directed and undirected model classification approaches include, e.g., decision trees, neural networks, fuzzy logic models, naïve Bayes, Bayesian networks and other probabilistic classification models providing different patterns of independence can be employed.
As will be readily appreciated from the subject specification, the innovation can employ classifiers that are explicitly trained (e.g., via a generic training data) as well as implicitly trained (e.g., via observing user behavior, receiving extrinsic information). For example, the parameters on an SVM are estimated via a learning or training phase. Thus, the classifier(s) can be used to automatically learn and perform a number of functions, including but not limited to determining according to a predetermined criteria how/if implicit feedback should be employed in the way of a rule.
It is noted that the interfaces described herein can include a Graphical User Interface (GUI) to interact with the various components for providing industrial control information to users. This can include substantially any type of application that sends, retrieves, processes, and/or manipulates factory input data, receives, displays, formats, and/or communicates output data, and/or facilitates operation of the enterprise. For example, such interfaces can also be associated with an engine, editor tool or web browser although other type applications can be utilized. The GUI can include a display having one or more display objects (not shown) including such aspects as configurable icons, buttons, sliders, input boxes, selection options, menus, tabs and so forth having multiple configurable dimensions, shapes, colors, text, data and sounds to facilitate operations with the interfaces. In addition, the GUI can also include a plurality of other inputs or controls for adjusting and configuring one or more aspects. This can include receiving user commands from a mouse, keyboard, speech input, web site, remote web service and/or other device such as a camera or video input to affect or modify operations of the GUI.
It is also noted that the term PLC or controller as used herein can include functionality that can be shared across multiple components, systems, and or networks. One or more PLCs or controllers can communicate and cooperate with various network devices across a network. This can include substantially any type of control, communications module, computer, I/O device, Human Machine Interface (HMI)) that communicate via the network which includes control, automation, and/or public networks. The PLC can also communicate to and control various other devices such as Input/Output modules including Analog, Digital, Programmed/Intelligent I/O modules, other programmable controllers, communications modules, and the like. The network (not shown) can include public networks such as the Internet, Intranets, and automation networks such as Control and Information Protocol (CIP) networks including DeviceNet and ControlNet. Other networks include Ethernet, DH/DH+, Remote I/O, Fieldbus, Modbus, Profibus, wireless networks, serial protocols, and so forth. In addition, the network devices can include various possibilities (hardware and/or software components). These include components such as switches with virtual local area network (VLAN) capability, LANs, WANs, proxies, gateways, routers, firewalls, virtual private network (VPN) devices, servers, clients, computers, configuration tools, monitoring tools, and/or other devices.
Dynamically Generating Visualizations in Industrial Automation Environment as a Function of Context and State Information
Referring initially to
It is contemplated that visualization system 100 can form at least part of a human machine interface (HMI), but is not limited thereto. For example, the visualization system 100 can be employed to facilitate viewing and interaction with data related to automation control systems, devices, and/or associated equipment (collectively referred to herein as an automation device(s)) forming part of a production environment. Visualization system 100 includes interface component 102, context component 104, visualization component 106, display component 108, and data store 110.
The interaction component 102 receives input concerning displayed objects and information. Interaction component 102 can receive input from a user, where user input can correspond to object identification, selection and/or interaction therewith. Various identification mechanisms can be employed. For example, user input can be based on positioning and/or clicking of a mouse, stylus, or trackball, and/or depression of keys on a keyboard or keypad with respect to displayed information. Furthermore, the display device may be by a touch screen device such that identification can be made based on touching a graphical object. Other input devices are also contemplated including but not limited to gesture detection mechanisms (e.g., pointing, gazing . . . ) and voice recognition.
In addition to object or information selection, input can correspond to entry or modification of data. Such input can affect the display and/or automation devices. For instance, a user could alter the display format, color or the like. Additionally or alternatively, a user could modify automation device parameters. By way of example and not limitation, a conveyor motor speed could be increased, decreased or halted. It should be noted that input need not come solely from a user, it can also be provided by automation devices. For example, warnings, alarms, and maintenance schedule information, among other things, can be provided with respect to displayed devices.
Context component 104 can detect, infer or determine context information regarding an entity. Such information can include but is not limited to an entity's identity, role, location (logical or physical), current activity, similar or previous interactions with automation devices, context data pertaining to automation devices including control systems, devices and associated equipment. Device context data can include but is not limited to logical/physical locations and operating status (e.g., on/off, healthy/faulty . . . ). The context component 104 can provide the determined, inferred, detected or otherwise acquired context data to visualization component 106, which can employ such data in connection with deciding on which base presentations and or items to display as well as respective format and position.
By way of example, as an entity employs visualization system 100 (physically or virtually), the system 100 can determine and track their identity, their roles and responsibilities, their areas or regions of interest/responsibility and their activities. Similarly, the system can maintain information about devices/equipment that make up the automation control system, information such as logical/physical locations, operating status and the types of information that are of interest to different persons/roles. The system is then able to create mappings/linkages between these two sets of information and thus identify information germane to a user's current location and activities, among other things.
Display component 108 can render a display to and/or receive data from a display device or component such as a monitor, television, computer, mobile device, web browser or the like. In particular, automation devices and information or data concerning automation devices can be presented graphically in an easily comprehensible manner. The data can be presented as one or more of alphanumeric characters, graphics, animations, audio and video. Furthermore, the data can be static or updated dynamically to provide information in real-time as changes or events occur. Still further yet, one can interact with the interface 100 via the interface component 102.
The display component 110 is also communicatively coupled to visualization component 106, which can generate, receive, retrieve or otherwise obtain a graphical representation of a production environment including one or more objects representing, inter alia, devices, information pertaining to devices (e.g., gages, thermometers . . . ) and the presentation itself. In accordance with one aspect, a base presentation provided by visualization component 106 can form all or part of a complete display rendered by the display component 108. In addition to the base presentation, one or more items can form part of the display.
An item is a graphical element or object that is superimposed on at least part of the base presentation or outside the boundaries of the base presentation. The item can provide information of interest and can correspond to an icon, a thumbnail, a dialog box, a tool tip, and a widget, among other things. The items can be transparent, translucent, or opaque be of various sizes, color, brightness, and so forth as well as be animated for example fading in and out. Icons items can be utilized to communicate the type of information being presented. Thumbnails can be employed to present an overview of information or essential content. Thumbnails as well as other items can be a miniature but legible representation of information being presented and can be static or dynamically updating. Effects such as fade in and out can be used to add or remove superimposed information without overly distracting a user's attention. In addition, items can gradually become larger/smaller, brighter/dimmer, more/less opaque or change color or position to attract more or less of a user's attention, thereby indicating increasing or decreasing importance of the information provided thereby. The positions of the items can also be used to convey one or more of locations of equipment relative to a user's current location or view, the position or index of a current task within a sequence of tasks, the ability to navigate forward or back to a previously visited presentation or view and the like. The user can also execute some measure of control over the use/meaning of these various presentation techniques, for example via interface component 102.
If desired, a user can choose, via a variety of selection methods or mechanisms (e.g., clicking, hovering, pointing . . . ), to direct their attention to one or more items. In this case the selected information, or item providing such information, can become prominent within the presentation, allowing the user to view and interact with it in full detail. In some cases, the information may change from static to active/dynamically updating upon selection. When the focus of the presentation changes in such a manner, different information may become more/less interesting or may no longer be of interest at all. Thus, both the base presentation and the set of one or more items providing interesting information can be updated when a user selects a new view.
Data store 110 can be any suitable data storage device (e.g., random access memory, read only memory, hard disk, flash memory, optical memory), relational database, media, system, or combination thereof. The data store 110 can store information, programs, AI systems and the like in connection with the visualization system 100 carrying out functionalities described herein. For example, expert systems, expert rules, trained classifiers, entity profiles, neural networks, look-up tables, etc. can be stored in data store 100.
State identifier 204 can identify or determine available resources (e.g., service providers, hardware, software, devices, systems, networks, etc.). State information (e.g., work performed, tasks, goals, priorities, context, communications, requirements of communications, location, current used resources, available resources, preferences, anticipated upcoming change in entity state, resources, change in environment, etc.) is determined or inferred. Given the determined or inferred state and identified available resources, a determination is made regarding whether or not to transition a visualization session from the current set of resources to another set of resources. This determination can include a utility-based analysis that factors cost of making a transition (e.g., loss of fidelity, loss of information, user annoyance, interrupting a session, disrupting work-flow, increasing down-time, creating a hazard, contributing to confusion, entity has not fully processed current set of information and requires more time, etc.) against the potential benefit (e.g., better quality of service, user satisfaction, saving money, making available enhanced functionalities associated with a new set of resources, optimization of work-flow, . . . ). This determination can also include a cost-benefit analysis. The cost can be measured by such factors as the power consumption, computational or bandwidth costs, lost revenues or product, under-utilized resources, operator frustration. . . . The benefit can be measured by such factors as the quality of the service, the data rate, the latency, etc. The decision can be made based on a probabilistic-based analysis where the transition is initiated if a confidence level is high, and not initiated if the confidence level if low. As discussed above, AI-based techniques (including machine-learning systems) can be employed in connection with such determination or inference. Alternatively, a more simple rule-based process can be employed where if certain conditions are satisfied the transition will occur, and if not the transition will not be initiated. The transition making determination can be automated, semi-automated, or manual.
Profiles (e.g., user profiles, device profiles, templates, event profiles, alarm profiles, business profiles, etc.) 302 can also be saved in the data store 302 and employed in connection with customizing a visualization session in accordance with roles, preferences, access rights, goals, conditions, etc. Rules (e.g., policies, rules, expert rules, expert systems, look-up tables, neural networks, etc.) can be employed to carry-out a set of pre-defined actions given a set of information.
The visualization system 100 can dynamically tailor a visualization experience to optimize operator interaction in an industrial automation environment. For example, given a set of conditions (e.g., a subset of any of the following: alarms, location, type of machinery, state of system, environmental conditions, user, user role, user access, user state, cognitive load of the user, capacity of user to consume information, preferences, goals, intent, costs, benefits, etc.), the system 100 can automatically tune a visualization to be optimized, given the set of conditions, to meet the user's needs and facilitate achieving goals or requirements.
Accordingly, system 100 provides for a rich customized visualization in an industrial automation environment that can be a function, for example, of a subset of the following factors: entity context, work context, information content, entity goals, system optimization, work-flow optimization, rendering device capabilities, cognitive load of entity, processing capabilities, bandwidth, available resources, lack of resources, utility-based analysis, inference, entity preferences, entity roles, security, screen real estate, priority of information, relevance of information, content filtering, context filter, ambient conditions, machine or process prognostics information, machine or process diagnostics information, revenue generation, potential or actual system or device downtime, scheduling, entity capacity to understand information, entity limitations on understanding information, alerts, emergencies, security, authentication, etc.
The method 500 can identify the information of interest to one or more user without prompting or requesting such interest information from the user(s). The inference can be based, for example, on identity, role, location, and/or on text in a production facility by matching the user's location, context, and/or role with the location and/or status of device/equipment/system being monitored.
At 502 context of an information session is inferred or determined. The inference or determination can be a based on content of information, context of a sending entity or recipient entity, extrinsic information, etc. Learning context of the session substantially facilitates generating a visualization that is meaningful to the goals of the entity or session. At 504 entity intent is inferred or determined. A variety of information sources or types can be employed in connection with this act. For example, roles of the entity, access rights, prior interactions, what the entity is currently doing, entity preferences, historical data, entity declaration of intent, . . . can be employed in connection with inferring or determining intent of the entity. At 506 data associated with acts 502 and 504 are analyzed. A variety of analytical techniques (e.g., probabilistic, statistical, rules-based, utility-based analysis, look-up table . . . ) can be employed in connection with analyzing the data in connection with generating a relevant and meaningful visualization in accordance with embodiments described herein. For example, confidence levels can be calculated in connection with inferred context or intent, and if the confidence level meets a particular threshold (e.g., >80% confidence) automated action can be taken based on the inference. In addition or alternatively, for example, a utility-based analysis can be performed that factors the cost of taking an incorrect action in view of the benefits associated with the action being correct. If the benefits exceed the costs, an action may be taken. At 508, a determination is made as to whether or not the data is in an acceptable format. If not the data is reformatted at 510. If yes, the information is presented to the user as a rich, customized visualization that is a function of context, state, or preferences.
Thus, alarm data is analyzed and re-formatted so as to facilitate optimizing delivery of the alarm information to a user and particular device being employed. For example, if the user is at a remote location with a lot of ambient noise, and only a cell phone is available, the alarm would be delivered as a text message rather than relying on audible broadcast (given the excessive ambient noise which could hamper a user fully interpreting an audio delivery of the alarm information). Moreover, given limited screen real estate associated with the cell phone, the alarm information may be truncated so as to focus on most relevant language (e.g., alarm, location, when, where, status). On the other hand, if the user was in an office in front of a multi-screen computer system with a broadband connection, the alarm information may be provided as text, audio, images, video, chat sessions, etc. since there are more resources to utilize to convey the information as well as provide for the user to react to the alarm information.
The methodology allows for a user, upon authentication to the machine, to have a rich, customized visualization generated that facilitates achieving his/her goals. For example, different visualizations would be presented as a function of task at hand, operator role, operator preferences, context of the operation, state of the machine, access rights, strengths or weaknesses of the operator, operator cognitive load, extrinsic factors, complexity of task, duration of task, upcoming tasks, past tasks, etc.
Web-based Visualization Mash-Ups for Industrial Automation
Data store 804 can store information such as source address, filters, classifiers, preferences, profiles, design layout information, rules, historical data, and other information that can facilitate generation and execution of the mash-up. Visualization component 806 generates a mash-up visualization that includes information from the multiple sources.
In view of exemplary aspects described herein, methodologies that can be implemented in accordance with the disclosed subject matter are discussed. While, for purposes of simplicity, the methodologies are shown and described as a series of blocks, it is to be understood and appreciated that the claimed subject matter is not limited by the number or order of blocks, as some blocks may occur in different orders and/or concurrently with other blocks from what is depicted and described herein. Moreover, not all illustrated blocks may be required to implement respective methodologies. It is to be appreciated that the functionality associated with various blocks may be implemented by software, hardware, a combination thereof or any other suitable means (e.g., device, system, process component). Additionally, it should be further appreciated that some methodologies disclosed hereinafter and throughout this specification are capable of being stored on an article of manufacture to facilitate transporting and transferring such methodologies to various devices. Those skilled in the art will appreciate and understand that a methodology can alternatively be represented as a series of interrelated states or events such as for example in a state diagram.
For example, a user may be asked to furnish a user name and password. Authentication can also be accomplished by receiving a smart card to identify the user, or biometric authentication can be employed. Biometric authentication utilizes physical characteristic unique to individuals. For example, biometric authentication can include but is not limited to identifying a user via fingerprint, palm geometry, retina, facial features (e.g., 2-D, 3-D . . . ), signature, typing pattern (e.g., speed, rhythm . . . ), and/or voice recognition, among others. Identity of a user can be provided, and the user can be matched with particular credentials based on the individual user, group membership, or a position (e.g., administrator, manager . . . ). The credentials can specify type, class and/or category of information that a user can obtain, or alternatively is prohibited from receiving.
At 1408, a determination is made regarding whether or not conflicts exist with the mash-up (e.g., circular references, data or code incompatibility, system resource/capability mismatch, inconsistency with corporate protocols, ethics, security, . . . ). If a conflict exists, at 1410 the conflict is resolved and the mash-up is regenerated. If no conflict exists, at 1412 the generated mash-up is displayed and made available for use.
It is to be appreciated that the new display objects may be part of another mash-up, and at 1506, the new mash-up can be integrated with an existing mash-up. Accordingly, at 1502 the new set of display objects can be received from a 3rd party (e.g., e-mail), file sharing, etc. Security measures can be implemented that prevent certain display objects from executing if a recipient does not have proper credentials. Likewise, limited access rights may be granted by an author of a mash-up. Access rights can be granted, for example, based on an expiration period.
Visualization System(s) and Method(s) for Preserving or Augmenting Resolution and Data Associated with Zooming or Paning in an Industrial Automation Environment
Sparse images relating to an industrial automation environment are presented, and the images are pixel-mapped to high-resolution counterparts thereof. Conventionally, as a user zooms in (or magnifies) on an area of a sparse image the area becomes blurry, or loss of resolution manifests. However, in accordance with innovations described herein as a user zooms in on an area of an image that is pixel-mapped to a higher-resolution version thereof, data corresponding to the area under focus is streamed to the display area coincident with respect pixels mapped thereto and resolution of the image area can be augmented, preserved, or enhanced. The high-resolution image data is stored at a remote location and as an area on a client device is zoomed in on, data from the remote location is streamed to the client device as a function of the level of zoom, and region being magnified. Accordingly, as a user zooms in on a particular region of the image, instead of the image becoming grainy, or blurry, the image maintains or increases resolution as a result of image data being streamed to the user to supplement the region of interest with more image data.
In
Dynamically Generating Real-Time Video Visualizations in Industrial Automation Environment as a Function of Context and State Information
It is to be appreciated that static image data can be utilized as well as real-time image data. For example, in
Collaborative Environment for Sharing Visualizations of Industrial Automation Data
Collaboration component 2602 receives instructions or requests to initiate a collaboration with another user, machine, or display. The collaboration component provides for joining multiple users, machines or displays to create a common view or workspace via view component 2604 and visualization component 2606. For example, if a device have a display (that is one of X displays 2608, X being an integer) and a plurality of users desire to view the display concurrently as well as interact therewith the following occurs. Collaboration component 2602 identifies the users that desire to collaborate in connection with the display. The view component 2604 selects the display of interest and serves as a proxy for the display. The display data is multiplexed by the view component so that M number of the users (M being an integer) can see the display as part of a visualization generated by visualization component 2606. Data store 2610 can store data, code, lists, mapping info., addresses, etc. in connection with facilitating establishing a collaborative session.
In another example, multiple displays can be dynamically accessed and viewed as part of a shared working environment. User 1 (having display 1) can share his display with user 10 (having displays 10 and 11), and vice versa. View component 2604 allows for users to seamlessly designate displays of interest and provide for concurrent access to such displays. The user's display can serve as a thin client that displays information projected on displays of interest. Multiple display views can be shown as a mash-up or through independent portal views.
The virtualization component 2702 can also create avatars of individuals as well as devices to facilitate collaborating in a virtual environment. For example, if user 1 desired to engage user 15 or user 20 in connection with a trouble-shooting problem, he could view a virtual representation of current status of user 15 and user 20. If user 15's avatar was in a meeting, but user 20's avatar appeared available, user 1 could send a message to user 20's avatar and engage user 20 in connection with a collaborative trouble-shooting effort.
At 2904, a common view for the collaborating entities is established. A determination can be made regarding whether a user interest matches the device and/or equipment information obtained. For example, based on a user's context and/or historical information a determination or inference can be made that the user would be interested in information regarding device/equipment in a particular area of an industrial setting. If the determination or inference is that the user would most likely be interested in the information the information is presented to the user(s) via the common view. It should be understood that more than one user can receive substantially the identical information or different information at substantially the same time. It is to be understood that this act can be recursive such that any number of devices/equipment can be polled for information. Moreover, it is to be appreciated that automated and/or dynamic polling of device/equipment can be employed in connection with alternate aspects. For example, a system can be configured to automatically poll and/or report device/equipment information dynamically in accordance with inferring a user interest in such information.
At 2906, desired or appropriate industrial automation visualizations are determined or inferred, and at 2908, a collaborative visualization, or work environment is generated for viewing data or working with data of interest.
Turning to
A user can interact with any of the display objects which may cause the display to change. For instance, if a user selects or otherwise identifies item 3025 the display 3100 of
Referring now to
One or more users, illustrated at 3204 as User 1 through User Q, where Q is an integer equal to or greater than one, can physically and/or virtually (e.g., remotely) interact with and/or navigate through system 3200. As the user(s) 3204 contacts the system 3200, the information retrieval component 3202 obtains, receives, requests, and so forth information regarding each user 3204. A means for identifying each user 3204 can be employed, such as a unique user name and/or password, for example. In other aspects, system 3200 can use alternative identifications means, such as biometric authentication that utilizes physical characteristic unique to individuals. It is to be appreciated that a plurality of identification schemes can be utilized with system 3200 and all such alterations and modifications are intended to fall within the scope of the detailed description and appended claims.
Utilizing the user identification, information retrieval component 3202 can determine and/or track the context of each user 3204. This information can be retrieved from one or more database or other storage/retrieval means that can include a user/role context data component 3210 and/or a user/role historical data component 3212. The context of each user can be, for example, the role, position, responsibilities, authorized programs, areas or regions of interest, activities, etc. as it relates to the particular user.
The information retrieval component 3202 can further be configured to access historical data 3206 from a device equipment context component 3214 and/or a device/equipment historical component 3216 that include data relating to device(s) and/or equipment. For example, information regarding the devices and/or equipment that are included in the automation control system can include a plurality of information that is maintained and/or stored. Examples of maintained information include logical and/or physical locations, operating status, other types of information that are of interest to different users and/or user roles. For example, an operator of the automation control system may have a direct area of interest than a tester and/or maintenance user because of the disparate role of each user and how/why each user interacts with system 3200. The information retrieval component 3202 is further configured to update the historical data 3206.
The information retrieval component 3202 can also be configured to interact with real-time data 3218 regarding the device(s) and/or equipment associated with system 3200. One or more device, labeled Device 1 through Device T, and/or one or more equipment, labeled Equipment 1 through Equipment L, where L is an integer can be monitored for status information. For example, real time data can include the operating status of the device/equipment (e.g., off, on, run, . . . ), the current stage or process of each device/equipment (e.g., operating, line of code being implemented, . . . ).
The information retrieval component 3202 can make a determination whether a user 3204 would be interested in information relating to a particular device/equipment and is able to create mappings and/or linkages between the two sets of information (historical 3206 and real time 3218) and identify or infer information that may be relevant to users' current locations and activities. For example, if there is an alarm on a device and/or piece of equipment, based on the user context, the user may be presented information relating to such alarm condition. If the user context and/or historical information indicate that the user 3202 is not interested in the particular device and/or equipment, the information retrieval component 3204 will not present such information to the user. This determination can be made based on the user role, context, historical, and other information obtained as well as the device/equipment context, historical, current, and other information. If a determination is made that one or more user 3204 would be interested in such information, the information is presented to the one or more user interested in the data, as shown at 3210.
By way of example and not limitation, if an operator is working in the bottling area of a brewery, system 3200 can automatically present that operator with information about the current operational status of the devices and/or equipment located in the area in which the operator is located. Similarly, if a maintenance engineer is currently working in the same area, the system 3200 can present that user with information about the maintenance status of the devices and/or equipment located in that area at substantially the same time. In addition or alternatively, an electrician working in the same area might be presented with information about different devices and equipment, specifically, those related to the electrical systems in that area of the facility, at substantially the same time as the operator and maintenance engineer are presented information.
It is to be appreciated that the subject visualization scheme enables a user to quickly select different visualizations (via the thumbnail views 3302) and corresponding functionality associated with an application. Thus, multi-dimensional visualizations can be viewed so as to provide a user with a vast amount of information in relatively short time (e.g., several seconds or minutes).
As can be appreciated the overlays can utilize multiple data sources, contextual and content switches, and integrate data associated therewith in a rich overlay view that enables a user to quickly consume a vast amount of information. Cognitive load of users can be factored in connection with most appropriate overlay to present. Moreover, user rights, roles, state, goals, intentions can be employed as factors in connection with generating overlay views to assist a user with accessing and understanding complex data in a manner that facilitates achieving end goals given factors considered. Thus, a utility-based analysis can be employed where the cost associated with generating an presenting an overlay or subset thereof is weighed against the associated benefit. In addition, historical data, user preferences, MLR systems can be employed to facilitate automatically presenting overlays that are deemed or inferred to be most appropriate given a set of evidence.
Visualization of Workflow in an Industrial Automation Environment
It is contemplated that visualization system 4200 can form at least part of a human machine interface (HMI), but is not limited thereto. For example, the visualization system 4200 can be employed to facilitate viewing and interaction with data related to automation control systems, devices, and/or associated equipment (collectively referred to herein as an automation device(s)) forming part of a production environment. Moreover, associated workflow information can be presented concurrently to provide a user with a deep understanding of how production state and business state inter-depend. Visualization system 4200 includes interface component 4202, context component 4204, visualization component 4206, workflow component 4208, and data store 4210.
The interface component 4202 receives input concerning displayed objects and information. Interaction component 4202 can receive input from a user, where user input can correspond to object identification, selection and/or interaction therewith. Various identification mechanisms can be employed. For example, user input can be based on positioning and/or clicking of a mouse, stylus, or trackball, and/or depression of keys on a keyboard or keypad with respect to displayed information. Furthermore, the display device may be by a touch screen device such that identification can be made based on touching a graphical object. Other input devices are also contemplated including but not limited to gesture detection mechanisms (e.g., pointing, gazing . . . ) and voice recognition.
In addition to object or information selection, input can correspond to entry or modification of data. Such input can affect the display and/or automation devices. For instance, a user could alter the display format, color or the like. Additionally or alternatively, a user could modify automation device parameters. By way of example and not limitation, a conveyor motor speed could be increased, decreased or halted. It should be noted that input need not come solely from a user, it can also be provided by automation devices. For example, warnings, alarms, and maintenance schedule information, among other things, can be provided with respect to displayed devices.
Other applications and devices (e.g., enterprise resource planning (ERP) systems, financial applications, inventory application, diagnostic or prognostic applications . . . ) can also provide information to the interface component 4202.
Context component 4204 can detect, infer or determine context information regarding an entity or application. Such information can include but is not limited to an entity's identity, role, location (logical or physical), current activity, similar or previous interactions with automation devices, context data pertaining to automation devices including control systems, devices and associated equipment. Device context data can include but is not limited to logical/physical locations and operating status (e.g., on/off, healthy/faulty . . . ). The context component 4204 can provide the determined, inferred, detected or otherwise acquired context data to visualization component 4206, which can employ such data in connection with deciding on which base presentations and or items to display as well as respective format and position.
By way of example, as an entity employs visualization system 4200 (physically or virtually), the system 4200 can determine and track their identity, their roles and responsibilities, their areas or regions of interest/responsibility and their activities. Similarly, the system can maintain information about devices/equipment that make up the automation control system, information such as logical/physical locations, operating status and the types of information that are of interest to different persons/roles. The system is then able to create mappings/linkages between these two sets of information and thus identify information germane to a user's current location and activities, among other things.
The interface component 4202 is also communicatively coupled to visualization component 4206, which can generate, receive, retrieve or otherwise obtain a graphical representation of a production environment including one or more objects representing, inter alia, devices, information pertaining to devices (e.g., gages, thermometers . . . ) and the presentation itself. In accordance with one aspect, a base presentation provided by visualization component 4206 can form all or part of a complete rendered display. In addition to the base presentation, one or more items can form part of the visualization.
An item is a graphical element or object that is superimposed on at least part of the base presentation or outside the boundaries of the base presentation. The item can provide information of interest and can correspond to an icon, a thumbnail, a dialog box, a tool tip, and a widget, among other things. The items can be transparent, translucent, or opaque be of various sizes, color, brightness, and so forth as well as be animated for example fading in and out. Icons items can be utilized to communicate the type of information being presented. Thumbnails can be employed to present an overview of information or essential content. Thumbnails as well as other items can be a miniature but legible representation of information being presented and can be static or dynamically updating. Effects such as fade in and out can be used to add or remove superimposed information without overly distracting a user's attention. In addition, items can gradually become larger/smaller, brighter/dimmer, more/less opaque or change color or position to attract more or less of a user's attention, thereby indicating increasing or decreasing importance of the information provided thereby. The positions of the items can also be used to convey one or more of locations of equipment relative to a user's current location or view, the position or index of a current task within a sequence of tasks, the ability to navigate forward or back to a previously visited presentation or view and the like. The user can also execute some measure of control over the use/meaning of these various presentation techniques, for example via interface component 4202.
If desired, a user can choose, via a variety of selection methods or mechanisms (e.g., clicking, hovering, pointing . . . ), to direct their attention to one or more items. In this case the selected information, or item providing such information, can become prominent within the presentation, allowing the user to view and interact with it in full detail. In some cases, the information may change from static to active/dynamically updating upon selection. When the focus of the presentation changes in such a manner, different information may become more/less interesting or may no longer be of interest at all. Thus, both the base presentation and the set of one or more items providing interesting information can be updated when a user selects a new view.
Data store 4210 can be any suitable data storage device (e.g., random access memory, read only memory, hard disk, flash memory, optical memory), relational database, media, system, or combination thereof. The data store 4210 can store information, programs, AI systems and the like in connection with the visualization system 4200 carrying out functionalities described herein. For example, expert systems, expert rules, trained classifiers, entity profiles, neural networks, look-up tables, etc. can be stored in data store 4210.
Workflow component 4208 binds workflow information to industrial automation as presented infra. Visualization component 4206 thus presents views of an industrial automation environment as well as workflow information counterparts.
State identifier 4304 can identify or determine available resources (e.g., service providers, hardware, software, devices, systems, networks, etc.). State information (e.g., work performed, tasks, goals, priorities, context, communications, requirements of communications, location, current used resources, available resources, preferences, anticipated upcoming change in entity state, resources, change in environment, etc.) is determined or inferred. Given the determined or inferred state and identified available resources, a determination is made regarding whether or not to transition a visualization session from the current set of resources to another set of resources. This determination can include a utility-based analysis that factors cost of making a transition (e.g., loss of fidelity, loss of information, user annoyance, interrupting a session, disrupting work-flow, increasing down-time, creating a hazard, contributing to confusion, entity has not fully processed current set of information and requires more time, etc.) against the potential benefit (e.g., better quality of service, user satisfaction, saving money, making available enhanced functionalities associated with a new set of resources, optimization of work-flow, . . . ). This determination can also include a cost-benefit analysis. The cost can be measured by such factors as the power consumption, computational or bandwidth costs, lost revenues or product, under-utilized resources, operator frustration. . . . The benefit can be measured by such factors as the quality of the service, the data rate, the latency, etc. The decision can be made based on a probabilistic-based analysis where the transition is initiated if a confidence level is high, and not initiated if the confidence level if low. As discussed above, AI-based techniques (including machine-learning systems) can be employed in connection with such determination or inference. Alternatively, a more simple rule-based process can be employed where if certain conditions are satisfied the transition will occur, and if not the transition will not be initiated. The transition making determination can be automated, semi-automated, or manual.
The predicted operating state(s) of the machine may be determined based on expected demand or workload or a probabalistic estimate of future workload or demand. Similarly, expected environment (e.g. temperature, pressure, vibration, information and possible expected damage information may be considered in establishing the predicted future state of the system. Undesirable future states of the system may be avoided or deferred through a suitable change in the control while achieving required operating objectives and optimizing established operational and business objectives. Moreover, it is to be appreciated that data relating to subsets of the machines can be aggregated so as to provide for data relating to clusters of machines—the cluster data can provide for additional insight into overall system performance and optimization. The clusters may represent sub-systems or logical groupings of machines or functions. This grouping may be optimized as a collection of process entities. Clusters may be dynamically changed based on changing operating requirements, machinery conditions, or business objectives. The host computer 4420 includes an enterprise resource planning (ERP) component 4434 that facilitates analyzing the machine data as well as data relating to the business concern components 4430 (utilities component 136, inventor component 138, processes component 140, accounting component 142, manufacturing component 144 . . . ). The data is analyzed and the host computer 120 executes various optimization programs to identify configurations of the various components so as to converge more closely to a desired business objective. For example, assume a current business objective is to operate in a just in time (JIT) manner and reduce costs as well as satisfy customer demand. If the inventory component 138 indicates that finished goods inventory levels are above a desired level, the ERP component 134 might determine based on data from the utility component 136 and machine components 110 that it is more optimal given the current business objective to run the machines at 60% rather than 90% which would result in machinery prognostics indicating we may extend the next scheduled maintenance down time for another 4 months reducing the maintenance labor and repair parts costs. This will also result in reducing excess inventory over a prescribed period of time as well as result in an overall savings associated with less power consumption as well as increasing life expectancy of the machines as a result of operating the machines as a reduced working rate.
It is to be appreciated that optimization criteria for machinery operation can be incorporated into up-front equipment selection and configuration activities—this can provide additional degrees of freedom for operational control and enhanced opportunities for real-time optimization.
Maintenance, repair, and overhaul (MRO) activities are generally performed separate from control activities. Interaction and collaboration between these functions are typically limited to the areas of operations scheduling and to a lesser extent in equipment procurement—both are concerned with maximizing production throughput of the process machinery. Information from MRO systems and from machinery control and production systems are related and can provide useful information to enhance the production throughput of process equipment. The subject invention leverages off opportunities realized by closely coupling machinery health (e.g. diagnostics) and anticipated health (e.g. prognostics) information with real-time automatic control. In particular, the closed-loop performance of a system under feedback control provides an indication of the responsiveness, and indirectly, the health of the process equipment and process operation. More importantly, it is possible to change how the system is controlled, within certain limits, to alter the rate of machinery degradation or stress. Using real-time diagnostic and prognostic information the subject invention can be employed in connection with altering future state(s) of the machinery. Given a current operating state for both the machinery and the process the subject invention can drive the machine(s) 110 to achieve a prescribed operating state at a certain time in the future. This future operating state can be specified to be an improved state than would occur if one did not alter the control based on machinery health information. Furthermore, the future state achieved could be optimal in some manner such as machinery operating cost, machinery lifetime, or mean time before failure for example. The prescribed operating state of a particular machine may be sub-optimal however, as part of the overall system 100, the system-wide operating state may be optimal with regard to energy cost, revenue generation, or asset utilization.
For example, with reference to Table I below:
The above data exhibits energy utilization from a motor-pump system under conditions of full flow and reduced flow. The flow rate conditions shown are achieved using a variable speed drive to control motor speed and therefore flow rate (column 1) and with a motor running directly from the power line with a throttling valve used to control flow rate (column 2). The estimated energy savings with Drive Power at reduced flow is 0.468 kW—a 53% energy savings in connection with Drive Power. Pumping applications which require operation at various prescribed head Pressures, liquid levels, flow rates, or torque/speed values may be effectively controlled with a variable speed motor drive. The benefits of using a variable speed motor controller for pump applications are well established, particularly for pumps that do not operate at full rated flow all the time. In fact, the variable speed drive used for testing in connection with the data of Table I has a user-selectable factory setting optimized for fan and pump applications although these optimized settings were not employed for the energy savings reported herein. The scope of benefits beyond energy savings include improved machinery reliability, reduced component wear, and the potential elimination of various pipe-mounted components such as diverters and valves and inherent machinery protection such from over-current or under-current operation. Pumps which typically operate at or near full synchronous speed and at constant speed will not realize the energy savings as we have demonstrated in Table I. Process conditions that require pump operation at different flow rates or pressures (or are permitted to vary operation within process constraints) are candidates to realize substantial energy savings as we have shown. If maximum throughput is only needed infrequently, it may be beneficial to specify the hydraulic system and associated control to optimize performance over the complete span of operating modes based on the time spent in each mode. It will be necessary in this case to specify the duration of time the hydraulic system is operating at various rating levels coupled with the throughput and operating cost at each level.
Although machine control is discussed herein primarily with respect to motor speed, the invention is not to be construed to have control limited to such. Rather, there are other control changes that can be made such as for example changing controller gains, changing carrier frequency in the case of a VFD motor controller, setting current limits on acceleration, etc. The control can be broad in scope and encompass many simultaneous parameter changes beyond just speed. Moreover, the use of models can be a significant component of control and configuration optimization. A space of possible operating conditions for selection that optimizes a given process or business performance may be determined by employing a simulation model for example. Modeling techniques can also serve as a basis for prognostics—thus, a simulation model can encompass process machinery, throughput, energy costs, and business and other economic conditions.
With respect to asset management, it is to be appreciated that the system 4400 may determine for example that purchasing several smaller machines as compared to a single large machine may be more optimal given a particular set of business objectives.
It is also to be appreciated that the various machines 4410 or business components 4430 or a subset thereof can be located remotely from one another. The various machines 4410 and/or components 4430 can communicate via wireless or wired networks (e.g., Internet). Moreover, the subject invention can be abstracted to include a plant or series of plants with wireless or wired networked equipment that are linked via long distance communications lines or satellites to remote diagnostic centers and to remote e-commerce, distribution, and shipping locations for dynamic logistics integrated with plant floor prognostics and control. Thus, optimization and/or asset management in connection with the subject invention can be conducted at an enterprise level wherein various business entities as a whole can be sub-components of a larger entity. The subject invention affords for implementation across numerous levels of hierarchies (e.g., individual machine, cluster of machines, process, overall business unit, overall division, parent company, consortiums . . . ).
On the other hand, it can be discerned from the visualization that Conveyor line B 5020 is performing at a lower rate than conveyor line A 5001 by the reduced number of packages passing along the conveyor. In addition, there are a number of inventory icons associated with this line indicating an overstocking; and there are no order icons associated with this line. There is only one dollar icon associated with this line, and so it can be readily appreciated that the line is making some profit but is by no means as profitable as line A 5001. Likewise, worker productivity icon 5022 indicates that the workers are not as efficient as indicated by icon 5002 for line A.
Line c 5030 shows low productivity since no packages are moving on the line, and empty bucket icons 5032 indicate no inventor. Icon 5034 also indicates no or cancelled orders, and there are no dollar icons associated with this line. Thus, it is clear that the line is not being utilized effectively, and is not generating revenue.
The visualization 5000 provides for quickly understanding in a glanceable manner status, workflow, productivity, performance, revenue generation, inventory, back-orders, etc. It is to be appreciated that the foregoing is but one of many visualization schemes that can be presented to convey workflow information coincident with industrial automation system performance information. For example, in
Distance-Wise Presentation of Industrial Automation Data as a Function of Relevance to User
In particular a graphical user interface is provided via display component 108 and visualization component 106 that provides for organizing and accessing information or content (also referred to as an “object”) in a distance-wise framework that optimizes presentation of display objects as a function of user intent, state, context, or goals. A user can view or organize objects, edit or otherwise work on a selected object by, for example, representing, graphically, objects or content which can be added, moved, or deleted from a simulated three-dimensional environment on the user's display. Thus, display objects of higher relevance will appear closer to the user than objects of lower relevance. In addition to employing distance, resolution of objects can also be exploited such that objects of greater relevance will be displayed at a higher resolution than objects of lower relevance.
Spatial memory is utilized, for example, by simulating a plane located and oriented in three-dimensional space, or other three-dimensional landscape on which display are manipulated. The plane or landscape can include visual landmarks for enhancing a user's spatial memory. As the object thumbnails are moved about the landscape, the present invention may employ perspective views (perceived image scaling with distance), partial image occlusion, shadows, and/or spatialized audio to reinforce the simulated three-dimensional plane or landscape. Other audio cues may be used to indicate proximal relationships between object thumbnails, such as when an object thumbnail being “moved” is close to a pre-existing cluster of object thumbnails. An ancillary advantage of using a simulated three-dimensional landscape is that more objects can be represented, at one time, on a single display screen.
The set of evidence changes as the user is analyzing the motor display object 50 data, and as shown in
Surface-Based Computing in an Industrial Automation Environment
In one aspect, a user can provide input with respect to the plane by touching or otherwise contacting the plane or placing an object on the plane. Input given within a close proximity of the plane can also be “entered” for image processing as well. The cameras can be triggered to capture images or snapshots of the input (input images) to ultimately determine and generate a touch image updated in real-time. The touch image can include objects in contact with the plane and can exclude any background scenery. In particular, each camera can acquire an input image of the plane whereby object in that plane may be included in the image.
To obtain a touch image from input images, image processing techniques can be utilized to combine input images. In particular, camera can provide an input image comprising one or more objects in a scene. In addition, input images can be rectified such that the four corners of the plane region coincide with the four corners of the image. Image differencing procedures can be employed to highlight contours or edges of objects. For example, edge detection can be applied to rectified images to yield corresponding edge images. Thereafter, two edge images can be multiplied pixel-wise, for instance. The resulting image can reveal where edge contours of the two input images overlap. Such overlapping contours can indicate or identify objects that are in contact with the plane.
Accordingly, a user can place an object (e.g., device, equipment part, nut, bolt, washer, tool, component, . . . ) on an image surface and computing surface component 6030 can identify the object. Once the object is identified, information (e.g., type, age, history, warranty, documentation, order info., maintenance info., etc.) can be retrieved and made available to the user.
System 6000 includes at least two imaging components 110, 120 (e.g., IMAGING COMPONENT, and IMAGING COMPONENTM, where M is an integer greater than 1) positioned behind a non-diffuse sensing plane 6030 (or screen surface that includes a computing surface component). The imaging components (6010, 6020) can be mounted or otherwise positioned such that each can see all four corners of the computing surface plane or screen 6030.
The user can provide input with respect to the system 6000 by placing one or more objects in contact with or within a proximal distance to the plane 6030. Each imaging component can then capture an input image (e.g., first 6050 and second 6060 input images, respectively). Following, a detection component 6070 can process the images to detect and/or determine the shape and/or contour of the objects in each of the input images to ultimately compute a touch image (output image). In particular, the detection component 6070 can comprise a pixel-wise comparison component 6080 that compares pixels between at least two images to determine which pixels are located in the same positions in each image. Matching or overlapping pixels can remain while non-overlapping pixels can be essentially removed. A “final” touch image can be generated having only the matching or overlapping pixels included therein.
In addition, the detection component can include a variety of sub-components (not shown) to facilitate computing the output image. In particular, sub-components pertaining to lens distortion correction, image rectification, and object shape identification can be employed to generate an output image. Because some objects placed near the plane surface can be captured by the imaging components as well as those objects in contact with the surface, depth measurements may be considered when computing the output or touch image. Depth information can be computed by relating binocular disparity to the depth of the object in world coordinates. Binocular disparity refers to the change in image position an object undergoes when viewed at one position compared to another. That is, the displacement of the object from one view to the other is related to the depth of the object.
In computer vision, there is a long history of exploiting binocular disparity to compute the depth of every point in a scene. Such depths from stereo algorithms are typically computationally intensive, can be difficult to make robust, and can constrain the physical arrangement of the cameras. Often such general stereo algorithms are applied in scenarios that in the end do not require general depth maps. In the present invention, the interest rests more in the related problem of determining what is located on a particular plane in three dimensions (the display surface) rather than the depth of everything in the scene.
Turning to
In order to provide additional context for implementation,
Moreover, those skilled in the art will appreciate that the above-described components and methods may be practiced with other computer system configurations, including single-processor or multi-processor computer systems, minicomputers, mainframe computers, as well as personal computers, hand-held computing devices, microprocessor-based and/or programmable consumer electronics, and the like, each of which may operatively communicate with one or more associated devices. Certain illustrated aspects of the disclosed and described components and methods may also be practiced in distributed computing environments where certain tasks are performed by remote processing devices that are linked through a communications network or other data connection. However, some, if not all, of these aspects may be practiced on stand-alone computers. In a distributed computing environment, program modules may be located in local and/or remote memory storage devices.
One possible means of communication between a client 6210 and a server 6220 can be in the form of a data packet adapted to be transmitted between two or more computer processes. The system 6200 includes a communication framework 6240 that can be employed to facilitate communications between the client(s) 6210 and the server(s) 6220. The client(s) 6210 are operably connected to one or more client data store(s) 6250 that can be employed to store information local to the client(s) 6210. Similarly, the server(s) 6220 are operably connected to one or more server data store(s) 6230 that can be employed to store information local to the servers 6240.
With reference to
The system bus 6318 can be any of several types of bus structure(s) including the memory bus or memory controller, a peripheral bus or external bus, and/or a local bus using any variety of available bus architectures including, but not limited to, Industrial Standard Architecture (ISA), Micro-Channel Architecture (MSA), Extended ISA (EISA), Intelligent Drive Electronics (IDE), VESA Local Bus (VLB), Peripheral Component Interconnect (PCI), Card Bus, Universal Serial Bus (USB), Advanced Graphics Port (AGP), Personal Computer Memory Card International Association bus (PCMCIA), Firewire (IEEE 1394), and Small Computer Systems Interface (SCSI).
The system memory 6316 includes volatile memory 6320 and nonvolatile memory 6322. The basic input/output system (BIOS), containing the basic routines to transfer information between elements within the computer 6312, such as during start-up, is stored in nonvolatile memory 6322. By way of illustration, and not limitation, nonvolatile memory 6322 can include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable ROM (EEPROM), or flash memory. Volatile memory 6320 includes random access memory (RAM), which acts as external cache memory. By way of illustration and not limitation, RAM is available in many forms such as synchronous RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), Synchlink DRAM (SLDRAM), and direct Rambus RAM (DRRAM).
Computer 6312 also includes removable/non-removable, volatile/non-volatile computer storage media. For example,
It is to be appreciated that
A user enters commands or information into the computer 6312 through input device(s) 6336. The input devices 6336 include, but are not limited to, a pointing device such as a mouse, trackball, stylus, touch pad, keyboard, microphone, joystick, game pad, satellite dish, scanner, TV tuner card, digital camera, digital video camera, web camera, and the like. These and other input devices connect to the processing unit 6314 through the system bus 6318 via interface port(s) 6338. Interface port(s) 6338 include, for example, a serial port, a parallel port, a game port, and a universal serial bus (USB). Output device(s) 6340 use some of the same type of ports as input device(s) 6336. Thus, for example, a USB port may be used to provide input to computer 6312, and to output information from computer 6312 to an output device 6340. Output adapter 6342 is provided to illustrate that there are some output devices 6340 like monitors, speakers, and printers, among other output devices 6340, which require special adapters. The output adapters 6342 include, by way of illustration and not limitation, video and sound cards that provide a means of connection between the output device 6340 and the system bus 6318. It should be noted that other devices and/or systems of devices provide both input and output capabilities such as remote computer(s) 6344.
Computer 6312 can operate in a networked environment using logical connections to one or more remote computers, such as remote computer(s) 6344. The remote computer(s) 6344 can be a personal computer, a server, a router, a network PC, a workstation, a microprocessor based appliance, a peer device or other common network node and the like, and typically includes many or all of the elements described relative to computer 6312. For purposes of brevity, only a memory storage device 6346 is illustrated with remote computer(s) 6344. Remote computer(s) 6344 is logically connected to computer 6312 through a network interface 6348 and then physically connected via communication connection 6350. Network interface 6348 encompasses wire and/or wireless communication networks such as local-area networks (LAN) and wide-area networks (WAN). LAN technologies include Fiber Distributed Data Interface (FDDI), Copper Distributed Data Interface (CDDI), Ethernet, Token Ring and the like. WAN technologies include, but are not limited to, point-to-point links, circuit switching networks like Integrated Services Digital Networks (ISDN) and variations thereon, packet switching networks, and Digital Subscriber Lines (DSL).
Communication connection(s) 6350 refers to the hardware/software employed to connect the network interface 6348 to the bus 6318. While communication connection 6350 is shown for illustrative clarity inside computer 6312, it can also be external to computer 6312. The hardware/software necessary for connection to the network interface 1248 includes, for exemplary purposes only, internal and external technologies such as, modems including regular telephone grade modems, cable modems and DSL modems, ISDN adapters, and Ethernet cards.
What has been described above includes examples of the subject invention. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing the subject invention, but one of ordinary skill in the art may recognize that many further combinations and permutations of the subject invention are possible. Accordingly, the subject invention is intended to embrace all such alterations, modifications, and variations that fall within the spirit and scope of the appended claims.
In particular and in regard to the various functions performed by the above described components, devices, circuits, systems and the like, the terms (including a reference to a “means”) used to describe such components are intended to correspond, unless otherwise indicated, to any component which performs the specified function of the described component (e.g., a functional equivalent), even though not structurally equivalent to the disclosed structure, which performs the function in the herein illustrated exemplary aspects of the invention. In this regard, it will also be recognized that the invention includes a system as well as a computer-readable medium having computer-executable instructions for performing the acts and/or events of the various methods of the invention.
In addition, while a particular feature of the invention may have been disclosed with respect to only one of several implementations, such feature may be combined with one or more other features of the other implementations as may be desired and advantageous for any given or particular application. Furthermore, to the extent that the terms “includes,” and “including” and variants thereof are used in either the detailed description or the claims, these terms are intended to be inclusive in a manner similar to the term “comprising.”