Visualization systems, instruments and methods of using the same in spinal decompression procedures

Information

  • Patent Grant
  • 9675303
  • Patent Number
    9,675,303
  • Date Filed
    Friday, March 15, 2013
    11 years ago
  • Date Issued
    Tuesday, June 13, 2017
    7 years ago
Abstract
A method for positioning a treatment instrument in a subject involves positioning a tissue protector of a visualization instrument in an epidural space of the subject. The tissue protector is viewed and positioned in the epidural space using fluoroscopy. A treatment instrument between a first vertebra and a second vertebra and while viewing the tissue protector positioned in the epidural space. A decompression procedure is performed using the treatment instrument.
Description
TECHNICAL FIELD

The present disclosure relates generally to medical systems and, more particularly, to visualization systems, treatment systems, and methods for treating the spine.


BACKGROUND

Spinal nerve compression can be caused by narrowing of the spinal canal associated with arthritis (e.g., osteoarthritis) of the spine, degeneration of spinal discs, and thickening of ligaments. Arthritis of the spine often leads to the formation of bone spurs which can narrow the spinal canal and press on the spinal cord. In spinal disk degeneration, inner tissue of the disk can protrude through a weakened fibrous outer covering of the disk. The bulging inner tissue can press on the spinal cord and/or spinal nerve roots. Ligaments located along the spine can thicken over time and press on the spinal cord and/or or nerve roots. Spinal nerve compression can cause lower back pain, hip pain, and leg pain and may also result in numbness, depending on the location of the compressed nerve tissue. In the lower back, spinal stenosis may lead to spinal cord compression and numbness of the legs. Unfortunately, it may be difficult to treat spinal nerve compression without injuring or traumatizing non-targeted tissue.





BRIEF DESCRIPTION OF THE DRAWINGS

The same reference numerals refer to like parts or acts throughout the various views, unless otherwise specified.



FIG. 1 is a side view of a visualization system in accordance with an embodiment of the disclosure.



FIG. 2 is a side view of a visualization instrument protecting a spinal cord in accordance with an embodiment of the disclosure.



FIG. 3 is an enlarged superior view of tissue adjacent to a vertebral foramen and the visualization instrument positioned between a ligamentum flavum and dura sac.



FIG. 4 is a flowchart illustrating a method for reducing spinal nerve compression in accordance with one embodiment of the disclosure.



FIGS. 5-8 illustrate various stages of a procedure for reducing spinal nerve compression in accordance with one embodiment of the disclosure.



FIG. 9 is a superior anatomical view of a visualization instrument positioned using a transforamonal approach in accordance with an embodiment of the disclosure.



FIG. 10 is an enlarged view of the visualization instrument of FIG. 9 adjacent to the spinal cord in accordance with one embodiment of the disclosure.



FIG. 11 is a superior anatomical view of a visualization instrument positioned using a lateral approach in accordance with an embodiment of the disclosure.



FIG. 12 is an enlarged view of the vertebral foramen of FIG. 11 with the visualization instrument positioned between the spinal cord and the ligamentum flavum.



FIG. 13 is a side view of a distal portion of a visualization instrument positioned within a dura sac in accordance with an embodiment of the disclosure.



FIG. 14 is a superior anatomical view of the vertebral foramen of FIG. 13 in accordance with an embodiment of the disclosure.



FIG. 15 is a side view of a visualization system and a treatment system positioned at different levels along a spine in accordance with an embodiment of the disclosure.



FIG. 16 is a side view of the visualization system and the treatment system of FIG. 15 with the spine shown in cross-section.



FIGS. 17-19 are side views of a visualization instrument and treatment system positioned along a spine.



FIG. 20 is a side view of the visualization instrument in accordance with an embodiment of the disclosure.



FIG. 21 is a plan view of the visualization instrument of FIG. 20.



FIG. 22 is a side view of a distal portion of the visualization instrument of FIG. 20 positioned between the ligamentum flavum and the spinal cord in accordance with an embodiment of the disclosure.



FIG. 23 is an isometric view of a visualization instrument in accordance with an embodiment of the disclosure.



FIG. 24 is a plan view of a visualization instrument capable of delivering contrast media in accordance with an embodiment of the disclosure.



FIG. 25 is a plan view of a visualization instrument with the deployable media delivery element in accordance with an embodiment of the disclosure.



FIG. 26 is a plan view of the delivery element of FIG. 25 in a deployed position.





DETAILED DESCRIPTION

The following disclosure describes various embodiments in medical systems, instruments, devices, and associated methods of use. At least some embodiments include a visualization instrument that can be viewed to assist in a spinal procedure. Visualization techniques can be used to view at least a portion of a treatment instrument (e.g., a distal tip of a tissue removal instrument) and at least a portion of the visualization instrument to perform the procedure. Certain details are set forth in the following description and in FIGS. 1-26 to provide a thorough understanding of such embodiments of the disclosure. Other details describing well-known structures and systems often associated with, for example, visualization, treating the spine, spinal nerves (e.g., nerves in the spinal cord, nerves in nerve roots exiting the spinal cord, etc.), or decompression procedures are not set forth in the following description to avoid unnecessarily obscuring the description of various embodiments of the disclosure.


The terms “distal” and “proximal” within this description, unless otherwise specified, reference a relative position of the portions of a system, instruments, and/or associated delivery devices with reference to an operator and/or a location in the patient. For example, in referring to visualization instruments described herein, the term “proximal” can refer to a position closer to the operator, and the term “distal” can refer to a position that is more distant from the operator.


A. Overview


At least some visualization instruments disclosed herein can be used to identify features, such as targeted tissue and non-targeted tissue, and/or used as a point of reference to position other instruments and tools. In some embodiments, a visualization instrument can be positioned to protect the spinal cord and define a working space. A series of treatment instruments can be moved within the working space to crush, separate, cut, debulk, break, fracture, remove, or otherwise alter tissue at a treatment site. If the treatment instruments move towards the spinal cord, the visualization instrument can serve as a working barrier to inhibit or prevent injury and/or trauma to the spinal cord.


At least some embodiments are methods for treating a subject (e.g., a human subject). The methods include positioning a tissue protector of a visualization instrument in an epidural space. The tissue protector can be viewed via fluoroscopy to identify margins of the epidural space, dura, ligamentum flavum, nerve roots, and/or other tissue. The wide range of different types of fluoroscopy (e.g., anterior posterior imaging, lateral imaging, contralateral oblique imaging, etc.) can be used to view the visualization instrument, as well as treatment tools or delivery devices used to perform a procedure.


At least some embodiments are methods for performing a procedure on a subject and include positioning a distal portion of a visualization instrument in a vertebral column of the subject. Another instrument (e.g., a treatment instrument) can be positioned while viewing both the treatment instrument and a distal portion of the visualization instrument under, for example, fluoroscopy. A spinal decompression procedure can be performed using the treatment instrument. In one embodiment, the visualization instrument can be a radiopaque epidural catheter having a flexible elongated main body. In some procedures, the epidural catheter can be moved along the vertebral column through any number of vertebrae. In other embodiments, the visualization instrument is a catheter configured to be positioned within the dura sac or other suitable location. Such catheters can have a relatively low profile. An opening, if any, defined by, and laterally adjacent to, the distal portion can be smaller than a distal head or tool portion of the treatment instrument. As such, the distal head of the treatment instrument is prevented from contacting non-target tissue. In some embodiments, the visualization instrument includes an elongate radiopaque wire. The wire can extend from a distal end of the visualization instrument to a proximal end of the visualization instrument.


In some embodiments, a method for positioning an instrument in a subject comprises moving the tissue protector of the visualization instrument through a subject. The tissue protector can be moved from a delivery configuration to a deployed configuration to define a working space. A decompression procedure can be performed at the treatment site while viewing the deployed tissue protector. When using a treatment instrument at the working space, the treatment instrument and non-targeted tissue can be kept on opposite sides of the tissue protector.


In yet other embodiments, a method for performing a procedure on a subject includes positioning a tissue protector of a visualization instrument in an epidural space of a subject. A treatment instrument can be moved between a first vertebra and a second vertebra while the tissue protector remains in the epidural space and viewed via fluoroscopy. A physician can view both the treatment instrument and the tissue protector before, during, and after performing a procedure using the treatment instrument.


In some embodiments, a treatment system for treating spinal compression comprises a visualization instrument including a tissue protector configured to be positioned in an epidural space and viewed using a fluoroscopy. The treatment system can further include a treatment instrument configured to perform a decompression procedure at a treatment site while the tissue protector prevents access to the spinal cord. In some embodiments, the tissue protector can cover a posterior region of the spinal cord facing a treatment site.


B. Visualization Systems, Visualization Procedures, and Decompression Procedures



FIG. 1 is a side view of a visualization system 100 in accordance with one embodiment of the disclosure. The visualization system 100 includes a visualization instrument 110 and a delivery device in the form of a cannula 120. The cannula 120 extends through a subject's skin 140, subcutaneous tissue 142, and a supraspinal ligament 150. The visualization instrument 110 extends through the cannula 120 and along a spinal or vertebral column 123.



FIG. 2 is a detailed side view of a portion of the visualization system 100. Vertebra 170, 174 are shown in cross section. FIG. 3 is a detailed superior anatomical view of a spinal canal 200. Referring to FIGS. 2 and 3 together, the visualization instrument 110 includes a distal portion 163 positioned between a ligamentum flavum 194 and a spinal cord 180. The spinal cord 180 is positioned between the ligamentum flavum 194 and a ligament 198 and extends from the brain to the bottom of the spine. Spinal nerves branch from the spinal cord 180, exit the spine, and extend to the parts of the body.


The distal portion 163 is viewable using, for example, fluoroscope, MR imaging, CT imaging, or other suitable imaging techniques. By viewing the distal portion 163, a physician can conveniently identify the location and/or margins of the spinal cord 180 and ligamentum flavum 194. The distal portion 163 can be moved to different positions to identify targeted or non-targeted tissue, which can include, without limitation, the ligamentum flavum 194, the spinal cord 180, the ligament 198, nerves branching from the spinal cord 180, vertebrae 170, 174, and other features or anatomical structures proximate to the spine. The distal portion 163 can include a tissue protector 190 (e.g., a section of the distal portion 163) configured to inhibit, limit, or substantially prevent damage and/or injury to the spinal cord 180 and can define a working space 127 (FIG. 2).



FIG. 4 is a flow chart illustrating a method 301 for visualizing and performing spinal nerve decompression in accordance with an embodiment of the disclosure. At stage 300, a delivery device can provide access to a treatment site. At stage 302, a visualization instrument can be positioned using fluoroscopy. At stage 304, one or more treatment instruments can be delivered to a working space defined, at least in part, by a tissue protector of the visualization instrument. At stage 305, a spinal procedure can be performed. The spinal procedure (including posterior lumbar decompression procedures) can involve altering tissue, implanting devices, or other procedures for treating various spine conditions. Tissue can be altered by cutting tissue, loosening tissue, crushing bone, or otherwise disrupting tissue at a treatment site. In some decompression procedures, tissue can be removed from one or more lateral recesses of a vertebra. In other decompression procedures, tissue can be removed from the spinal cord, vertebrae, or other site along the spine, as discussed in connection with FIGS. 8-19 and 22.



FIGS. 5-8 illustrate various stages of a procedure in accordance with one embodiment of the disclosure. Referring now to FIG. 5, the cannula 120 can be delivered using a posterior midline approach. An incision can be made in the supraspinal ligament 150 and the cannula 120 can be passed through the incision until it is inserted between spinous processes 240, 244. A distal end 252 of the cannula 120 can be positioned within an interspinous space 261. Delivery sheaths, delivery catheters, access ports, or other types of delivery devices can also be used to provide access to the treatment site. The distal portion 163 can be inserted into a proximal end 250 of the cannula 120, moved along a passageway of the cannula 120, and delivered out of the distal end 252. The distal portion 163 can be moved in the anterior direction through the interspinous space 261, through the ligamentum flavum, and into the epidural space (or other desired location).



FIG. 6 shows the visualization instrument 110 including the main body 280 and a proximal portion 269 positioned outside of the subject. The proximal portion 269 can include a steering assembly 270 used to steer the visualization instrument 110 by, for example, operating control elements 272, 274. One or more pull wires, pull rods, or other components can extend through the main body 280 and can be coupled to the distal end of the visualization instrument 110. The control elements 272, 274 can be levers, dials, or other elements that can be manipulated to bend, rotate, displace, or otherwise move the instrument 110. In other embodiments, the visualization instrument 110 may not have steering capability. A delivery device can be used to guide such visualization instruments to a desired site.



FIGS. 7 and 8 show a treatment instrument 299 that has been delivered through the cannula 120 and positioned at the working space 127. One or more markers (one marker 197 is shown in FIG. 8) can be used to identify the spinal cord 180 and can serve as a reference point to position the treatment instrument 299. However, markers can also be located on the exterior surface of the main body 280 and/or tissue protector 190, within the main body 280 and/or tissue protector 190, or at other suitable locations. Markers can include, without limitation, an array of radiopaque markers made of radiopaque materials, such as metals, radiopaque polymers, or the like. The radiopaque markers can be evenly or unevenly spaced apart along the length of the tissue protector 190. In other embodiments, the entire main body 280 and distal portion 193 can be made of radiopaque material. For example, the main body 280 and tissue protector 190 can be a flexible metal wire (e.g., an elongate radiopaque wire) or a bundle of flexible metal wires.


Referring to FIG. 8, a longitudinal axis 191 of the tissue protector 190 is oriented in the superior-inferior direction and is generally parallel to the long axis of the spinal cord 180. Additionally, the axis 191 can be generally perpendicular to the portion of the main body 280 extending in posterior-anterior direction. The ligamentum flavum 194 and spinal cord 180 can snugly hold the tissue protector 190 to help minimize movement of the instrument 110, even if the instrument 299 contacts the main body 280. An atraumatic tip 314 can be moved in the superior direction (indicate by arrow 316) to position most of the tissue protector 190 within the vertebral canal 200, but it can be located at other locations. In some embodiments, the tissue protector 190 can made of a compliant material (e.g., silicon, rubber, elastomers, etc.) to cushion tissue. In other embodiments, the tissue protector 190 can be made of a rigid or semi-rigid materials to distribute pressure to a large area of tissue.



FIG. 8 shows the instrument 299 having a working or distal portion 307 configured to break, cut, scrape, crush, or otherwise alter target tissue at the treatment site 263. The target tissue can include, without limitation, bone (e.g., lamina, bone of lateral recesses, facets, including inferior facets, etc.), bone spurs (e.g., bone spurs associated with osteoarthritis), tissue bulging from discs, tissue of thickened ligaments, spinal tumors, displaced tissue (e.g., tissue displaced by spinal injury), or other tissue that may cause or contribute to spinal nerve decompression. In procedures treating stenosis, the distal portion 307 can be used to remove tissue associated with central canal stenosis, lateral recess stenosis, or other types of stenosis.


If the distal portion 307 is moved in the anterior direction (indicated by arrow 310) the tissue protector 190 can physically block the distal portion 307. The distal portion 307 can also be inserted into the vertebral canal 200 without injuring or traumatizing the spinal cord 180. As a result, the instrument 299 can be safely moved throughout the working space 127. The shape and configuration of the tissue protector 190 can be selected based on the configuration of the distal portion 307. For example, the tissue protector 190 can be large enough to ensure that exposed regions, if any, of the spinal cord 180 (i.e., the regions of the spinal cord 180 accessible via the interspinous space 313) are smaller than the distal portion 307.


The treatment instrument 299 can be, without limitation, a surgical instrument (e.g., a scalpel), scraping instrument, cutting instrument, or other instrument or tool for altering tissue. U.S. Patent Application No. 61/755,392, filed on Jan. 22, 2013, discloses various types of surgical instruments that can be used in, or incorporated into, the systems and methods disclosed herein. Such instruments include, but are not limited to, debulker instruments, tissue removal instruments, cutting instruments, and debulker instruments and other systems, instruments, and devices disclosed in U.S. Application No. 61/755,329, which is incorporated by reference in its entirety.


To help position the distal portion 307, both the distal portion 307 and the tissue protector 190 can be viewed using, for example, fluoroscopy. The tissue protector 190 can serve as a reference point to help the physician identify critical areas of non-targeted tissue and/or assist in positioning of the distal portion 307. In some procedures, the tissue protector 190 can remain substantially stationary while the distal portion 307 is used to perform a procedure at the treatment site 263, although the tissue protector 190 can be repositioned any number of times during a treatment session.


After completing the procedure, the instrument 299 can be removed from the subject. The visualization instrument 110 and the cannula 120 can then be removed from the subject without injuring and/or traumatizing tissue.



FIGS. 9 and 10 show a visualization instrument 292 positioned using a transforaminal approach. The visualization instrument 292 can include a distal portion 294 with a tissue protector 293 extending laterally about the spinal cord 180 to provide a wide working space. An operator can grip the proximal portion 297 positioned outside of the subject to reposition the tissue protector 293. Treatment instruments or tools can be delivered using a transforaminal approach to perform decompression procedures at, for example, the lateral recesses. The tissue protector 293 can have a generally rectangular shape, partially cylindrical shape, or other shape or configuration suitable for overlaying the spinal cord 180.


Visualization instruments can be delivered using other access techniques. For example, FIGS. 11 and 12 show a visualization instrument 303 positioned using a lateral approach and having a distal portion 311 with a tissue protector 309 overlaying the posterior region of the dura sac 181. FIG. 12 shows the tissue protector 309 adjacent to opposing sides 500, 502 of the ligamentum flavum 194. In some embodiments, the tissue protector 309 wraps around most of the circumference of the spinal cord 180 to protect the dura sac 181 when performing decompression procedures at the lateral-most regions of the vertebral foramen 503. An operator can use a handle 317 (FIG. 11) at the proximal portion 315 (FIG. 11) to manually reposition the tissue protector 309.



FIGS. 13 and 14 show a visualization instrument 402 that includes a distal portion 401 with a tissue protector 403 positioned within dura sac 181. Referring to FIG. 13, the tissue protector 403 spans a gap 209 between the vertebra 170, 174. As such, the entire length of the spinal cord 180 positioned between the vertebra 170, 174 is protected. Other visualization instruments can also be positioned within the spinal cord 180. For example, the visualization instrument 110 of FIGS. 1 and 2 can be inserted into the dura and moved in the anterior or superior direction. To perform a myelogram, such instrument can have a port capable of delivering contrast media directly into the spinal cord 180.


Referring now to FIG. 14, the tissue protector 403 is positioned between the dura sac 181 and spinal nerves 405. If a treatment instrument or tool punctures the dura sac 181, the tissue protector 403 can shield the spinal nerves 405. Multiple visualization instruments can be used together in a single procedure. In one procedure, the visualization instrument 402 can be used to protect spinal nerves 405 while another visualization instrument, such as the visualization instrument 110 of FIGS. 1 and 2, protects the dura sac 181.



FIG. 15 is a side view of a visualization instrument 610 and a treatment system 612 in accordance with an embodiment of the disclosure. FIG. 16 is a detailed side view of portions of the visualization instrument 610 and treatment system 612. The spine 121 is shown in cross-section in FIG. 16. The visualization instrument 610 extends through an interspinous space 613 and its main body 620 extends through the vertebral canal 629 (FIG. 16). A tissue protector 690 can extend along the spinal canal 621 to a location superior to the treatment site. In FIG. 16, the treatment site is between the spinous processes 450, 451, so the tissue protector 690 can extend from a first level 660 to an adjacent level 661, thereby spanning a gap 340 (FIG. 16).


Referring again to FIG. 15, the treatment system 612 can include a delivery device in the form of a cannula 644, an instrument 619, and an implantable device 710. The implantable device 710 can be an interspinous spacer, fixation device, plate, or other type of spinal implant. One suitable such implantable device is the Superion® interspinous spacer from VertiFlex, Inc. or other similar device. The implantable device 710 can be implanted while imaging the device 710 and the tissue protector 690 and can be delivered via a midline approach, a transforaminal approach, an ipsilateral approach, or a lateral approach. The implantable device 710 can be deployed to engage, and couple to, the spinous processes 450, 451 to, for example, reduce or eliminate spinal compression, pain, or combinations thereof. Throughout the deployment process, the spinal cord 180 is protected by the tissue protector 190.


After implanting the device 710, the treatment system 612 can be removed from the subject. The visualization instrument 610 can be pulled proximally through the cannula 120 and removed from the subject. The visualization instrument 610 and treatment system 612 can be used to treat other locations along the spine.



FIG. 17 shows a visualization instrument 800 entering the spine at the lumbar region 810. A treatment instrument 820 can perform a procedure at the thoracic region 812 while a tissue protector 833 (shown in phantom) protects non-targeted tissue at the thoracic region 812. The visualization instrument 800 can be a catheter (e.g., a radiopaque epidural catheter or other instrument disclosed herein). FIG. 18 shows the visualization instrument 800 accessing the spine or vertebral column at the thoracic region 812 to protect non-targeted tissue at the lumbar region 810. FIG. 19 shows the visualization instrument 800 positioned at the sacral region 850 to perform a procedure at another level. Because the tissue protectors disclosed herein can be conveniently moved along the spine, the tissue protectors can be inserted at an access that is separated from the treatment site by one or more vertebrae. Accordingly, the access site can be at the cervical region, thoracic region, lumbar region, or sacral region to perform a procedure at treatment site at the cervical region, thoracic region, lumbar region, or sacral region.



FIG. 20 is a side view of a visualization instrument 900 that includes a distal portion 901, a proximal portion 903, and a main body 905. The distal portion 901 includes a tissue protector 902 in accordance with an embodiment of the disclosure. FIG. 21 is a plan view of the tissue protector 902 that includes protective arms 912 (individually 912a, 912b, 912c, 912d, 912e, 912f in FIG. 21) movable from a delivery configuration 917 (shown in phantom line in FIG. 20) to the deployed configuration 919. To deliver the tissue protector 902, the arms 912 can be in the delivery configuration 917 for delivery through a cannula or other delivery device. As the tissue protector 902 exits the cannula, the arms 912 to move from the delivery configuration to the deployed configuration, as indicated by arrow 924, 926. In some embodiments, the arms 912 are biased outwardly and can self-deploy. In other embodiments, the arms 912 can be deployed using one or more balloons, pull rods, pull wires, or other component for providing controlled movement of the arms 912.


Referring to FIG. 21, the arms 912 can be generally evenly spaced apart from one another and made of metal, plastic, or other material capable of withstanding contact with a treatment instrument so as protect adjacent tissue. In some embodiments, a protective or shielding member 920 (shown in phantom line) can be carried by the arms 912 and can include, without limitation, a mesh, a net, a sheet (single layer or multilayer layer sheet), drapable fabric, a plate, or other protective barrier (i.e., a barrier for preventing injury or trauma to tissue) that can assume different configurations by expanding, unfurling, or the like. The protective member 920 can have a wide range of shapes and configurations, including a generally circular shape, spherical shape, rectangular shape, or the like.



FIG. 22 shows the tissue protector 902 in the deployed configuration. Tips 930 of the arms 912 can be positioned within vertebral canals 200, 204 to protect the entire length of the spinal cord 180 exposed by the interspinous space 911. In some embodiments, the entire portion of the spinal cord 180 accessible via the interspinous space 911 is covered by the protective member 920 to prevent puncturing of the dura sac 181, while the arms 912 can help withstand significant forces from treatment instruments. Accordingly, the arms 912 and protective member 920 can work together to provide enhanced protection.



FIG. 23 is an isometric view of a visualization instrument 1100 including a tissue protector 1102 in accordance with another embodiment of the disclosure. The tissue protector 1102 is movable from a delivery configuration 1110 (shown in phantom line) to the deployed configuration 1112. The tissue protector 1102 can include an inflatable member (e.g., a single chamber balloon, a multi-chamber balloon) that can be inflated with a fluid to provide cushion to further inhibit or prevent tissue trauma and/or injury. Such inflatable members can be made of a highly compliant material, including, without limitation, silicon, rubber, elastomers, or the like. One or more markers can be positioned along the exterior surface or within the tissue protector 1102. The inflation fluid can be visualization media (e.g., contrast media) in the form of a flowable radiopaque substance (e.g., a radio contrast agent, barium sulfate solution, or the like) or other viewable substance. Non-ionic contrast media can be used if the tissue protector 1102 is positioned within the dura sac. As a result, the inflation fluid can provide both cushioning and visualization functionality.



FIG. 24 is an elevational view of a visualization instrument 1200 that includes a distal portion 1201, a proximal portion 1203, and a main body 1205 therebetween. The distal portion 1201 includes a tissue protector 1211 having deployable elements 1204, 1204 movable from a delivery configuration inside the body 1205 to the illustrated deployed configuration. Visualization media can be delivered out of a port 1220 for additional imaging. To perform an epidurogram, the visualization media can be delivered out of the port 1220 when the tissue protector 1211 is positioned in the epidural space. The members 1202, 1204 can be deployed before, during, or after delivery of the Visualization media. Other visualization instruments disclosed herein can also include one or more ports for delivering media.



FIG. 25 is a side elevational view of a visualization instrument 1300 in accordance with an embodiment of the disclosure. FIG. 26 is a side view of the visualization instrument 1300. Referring to FIG. 25, the visualization instrument 1300 includes a distal portion 1301, a proximal portion 1303, a main body 1305, and a media delivery element 1320 in an undeployed position. In some embodiments, the media delivery element 1320 can be housed within a lumen 1321. Referring to FIG. 26, the delivery element 1320 can be moved out of an aperture 1330 to deliver media.


In myelography procedures, a tissue protector 1333 can moved along the epidural space adjacent to the dura. The delivery element 1302 can be moved out of the aperture 1330, which faces the dura, to puncture the dura sac. After an end 1329 is within the dura, visualization media (e.g., a non-ionic contrast media) can be delivered directly into the spinal fluid surrounding the spinal cord. The delivery element 1320 can be positioned under fluoroscopic guidance to ensure that spinal nerves are not damaged or injured. After delivering the media, the delivery element 1302 can be drawn back into the main body 1323. As such, the media can be kept outside of the epidural space and localized within the dura. Myelography can provide detailed images (i.e., myelograms) of the spinal cord, thecal sac, nerve tissue (including nerve roots), or other features of interest. Additionally, myelography procedures can provide enhanced viewing of non-targeted structures (e.g., dura), and nerve roots compared to epidurography procedures. For example, visualization media of a myelography procedure may travel (e.g., via controlled leakage) to nerve roots to visualize the nerve roots when removing bone of the neural foramen. In some embodiments, myelography visualization media can be used to verify decompression of the spinal cord because the dura can move outwardly to confirm that the pressure applied to the spinal cord is decreased or eliminated. If the dura is damaged (e.g., tears, leaks, or the like), myelography visualization media can escape out of the damaged region of the dura. A physician can view the leakage to confirm that the dura has been damaged, as well as identifying the location of the damage. The physician can then repair the dura or otherwise alter the surgical procedure. Accordingly, myelography visualization media can be used to provide useful real-time feedback. Other visualization instruments disclosed herein can have delivery elements similar to the delivery element 1302 discussed in connection with FIGS. 25 and 26 in order to deliver contrast media (or other media) into tissue. For example, the tissue protector 190 of FIG. 2 can have a deployable delivery element.


Although many embodiments discussed herein are discussed in the context of fluoroscopy, other visualization techniques can be used to view treatment instruments and/or visualization instruments to identify targeted features, treatment sites, and/or non-targeted features. Treatment instruments and/or visualization instruments can be viewed when altering tissue and/or delivering a spinal device, such as a spinal implant, a spacer device, prosthetics disk, or the like. In certain procedures, visualization instruments disclosed herein can be used to identify margins of the epidural space, dura, ligamentum flavum, and/or nerve roots relative to the lamina and interlaminar space, as well as the features of instruments.


The visualization instruments disclosed herein can be located at other locations to protect other non-target tissue. Other embodiments can include tissue protectors specifically designed to protect portions of the vertebrae, nerve roots, or other structures near the spine. Additionally, multiple visualization instruments can cooperate to simultaneously protect tissue while also serving as reference points under visualization.


CONCLUSION

The above detailed descriptions of embodiments of the technology are not intended to be exhaustive or to limit the technology to the precise form disclosed above. Although specific embodiments of, and examples for, the technology are described above for illustrative purposes, various equivalent modifications are possible within the scope of the technology, as those skilled in the relevant art will recognize. For example, while steps are presented in a given order, alternative embodiments may perform steps in a different order. The various embodiments described herein may also be combined to provide further embodiments. For example, features from various instruments can be combined with features and methods disclosed in U.S. Pat. Nos. 8,012,207; 8,123,807; 8,152,837, and U.S. application Ser. No. 12/217,662 (U.S. Publication No. 2008/0287997) which are incorporated by reference in their entireties. U.S. Provisional Application Nos. 61/639,828, 61/745,470, and 61/755,329, which are hereby incorporated by reference herein and made a part of this application. A wide range of treatment instruments can be used to address a wide range of symptoms, conditions, and/or diseases, including, without limitation, spinal nerve compression (e.g., spinal cord compression, spinal nerve root compression, or the like), spinal disk herniation, osteoporosis, stenosis, or other diseases or conditions. In one embodiment, the system 100 is used to perform a spinal cord decompression procedure, which can include removing bone from one or more vertebrae, separating the ligamentum flavum from one or more vertebrae, cutting or debulking the ligamentum flavum, and/or removing loose tissue.


Where the context permits, singular or plural terms may also include the plural or singular term, respectively. Moreover, unless the word “or” is expressly limited to mean only a single item exclusive from the other items in reference to a list of two or more items, then the use of “or” in such a list is to be interpreted as including (a) any single item in the list, (b) all of the items in the list, or (c) any combination of the items in the list. Additionally, the term “comprising” is used throughout to mean including at least the recited feature(s) such that any greater number of the same feature and/or additional types of other features are not precluded. It will also be appreciated that specific embodiments have been described herein for purposes of illustration, but that various modifications may be made without deviating from the technology. Further, while advantages associated with certain embodiments of the technology have been described in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the technology. Accordingly, the disclosure and associated technology can encompass other embodiments not expressly shown or described herein.

Claims
  • 1. A method for performing a procedure on a subject, comprising: positioning a distal portion of a visualization instrument in a vertebral column of the subject such that the visualization instrument extends through a vertebral canal of a first vertebra, a vertebral canal of a second vertebra, and a vertebral canal of a third vertebra of the vertebral column;moving a treatment instrument between the first vertebra and the second vertebra of the vertebral column while viewing the distal portion of the visualization instrument positioned in the vertebral column using fluoroscopy;performing a first spinal decompression procedure at a first level along the vertebral column using the treatment instrument positioned between the first and second vertebrae while the visualization instrument extends between the first and second vertebrae; andperforming a second spinal decompression procedure at a second level along the vertebral column while the visualization instrument extends between the third vertebra and another vertebra.
  • 2. The method of claim 1 wherein positioning the distal portion of the visualization instrument includes moving the distal portion into an epidural space adjacent to the first vertebra or the second vertebra.
  • 3. The method of claim 1 wherein positioning the distal portion of the visualization instrument includes moving a distal tip of the distal portion through the vertebral canal of the first vertebra, the vertebral canal of the second vertebra, and the vertebral canal of the third vertebra while a proximal portion of the visualization instrument is positioned outside of the subject.
  • 4. The method of claim 1 wherein positioning the distal portion of the visualization instrument includes positioning the distal portion relative to the vertebral column to cover an exposed portion of the subject's spinal cord.
  • 5. The method of claim 1 wherein the distal portion includes at least one radiopaque marker.
  • 6. The method of claim 5 wherein positioning the distal portion includes positioning the radiopaque marker between a dura sac of the subject and an interspinous space between a spinous process of the first vertebra and a spinous process of the second vertebra.
  • 7. The method of claim 1 wherein positioning the distal portion comprises: positioning a distal end of a cannula in the subject; andmoving the distal portion through the cannula and into an epidural space of the subject.
  • 8. The method of claim 7 wherein moving the treatment instrument comprises moving a distal end of the treatment instrument through the cannula.
  • 9. The method of claim 1, further comprising delivering an interspinous spacer to an interspinous space between the first vertebra and the second vertebra while viewing the distal portion.
  • 10. The method of claim 1, wherein performing the first spinal decompression procedure includes removing bone from the vertebral column, separating a portion of a ligamentum flavum from one of the first and second vertebrae, and/or removing a portion of the ligamentum flavum of the subject.
  • 11. The method of claim 10, further comprising removing the visualization instrument from the subject after performing the first spinal decompression procedure.
  • 12. The method of claim 1 wherein the distal portion comprises an inflatable member movable between a delivery configuration and a deployed configuration.
  • 13. The method of claim 1 wherein the visualization instrument includes an elongate radiopaque wire.
  • 14. The method of claim 1, further comprising: moving a cannula through the subject's supraspinal ligament;moving the visualization instrument through the cannula extending through the supraspinal ligament to position the distal portion through the vertebral canal of the second vertebrae such that the distal portion extends through the vertebral canals of the first and second vertebrae; anddelivering media from the visualization instrument to perform an epidurogram or a myelogram.
  • 15. The method of claim 1 wherein the visualization instrument extends across an entire length of the subject's spinal cord between the first and third vertebrae while performing the first and second spinal decompression procedures.
  • 16. A method for treating a subject, comprising: moving a cannula through the subject's supraspinal ligament;moving a tissue protector of a visualization instrument through the cannula extending through the supraspinal ligament and into the subject;moving the tissue protector through vertebral canals of three vertebrae to define a first working space and a second working space, the first working space including a first treatment site, the second working space including a second treatment site, wherein the first and second working spaces are between different vertebrae;performing at least a portion of a first decompression procedure at the first treatment site while viewing the tissue protector positioned in the vertebral canals; andperforming at least a portion of a second decompression procedure at the second treatment site while viewing the tissue protector positioned in the vertebral canals.
  • 17. The method of claim 16 wherein the tissue protector physically blocks movement of a treatment instrument towards the dura sac while performing at least one of the first or second decompression procedures.
  • 18. The method of claim 16 wherein the tissue protector comprises a balloon, a net, a sheet, or a drapable fabric.
  • 19. A method for performing a procedure on a subject, comprising: moving a tissue protector of a visualization instrument into an end of a first vertebral canal of a first vertebra, through the first vertebral canal, and out another end of the first vertebral canal;moving the tissue protector into an end of a second vertebral canal of a second vertebra, through the second vertebral canal, and out another end of the second vertebral canal;moving the tissue protector into an end of a third vertebral canal of a third vertebra, through the third vertebral canal, and out another end of the third vertebral canal;viewing the tissue protector positioned in the subject's epidural space using fluoroscopy;performing a first decompression procedure using one or more first treatment instruments positioned between the first vertebra and the second vertebra; andperforming a second decompression procedure using one or more second treatment instruments positioned between the third vertebra and another vertebra through which the visualization instrument extends.
  • 20. The method of claim 19, further comprising positioning a first portion of the tissue protector within the first vertebral canal of the first vertebra and a second portion of the tissue protector within the second vertebral canal of the second vertebra.
US Referenced Citations (578)
Number Name Date Kind
2248054 Becker Jul 1941 A
2677369 Knowles May 1954 A
3242120 Steuber Mar 1966 A
3486505 Morrison Dec 1969 A
3648691 Lumb et al. Mar 1972 A
3986383 Petteys Oct 1976 A
4545374 Jacobson Oct 1985 A
4632101 Freedland Dec 1986 A
4685447 Iversen et al. Aug 1987 A
4799484 Smith et al. Jan 1989 A
4863476 Shepperd Sep 1989 A
4895564 Farrell Jan 1990 A
4986831 King et al. Jan 1991 A
5011484 Breard et al. Apr 1991 A
5015247 Michelson May 1991 A
5019081 Watanabe May 1991 A
5059193 Kuslich Oct 1991 A
5092866 Breard et al. Mar 1992 A
5178628 Otsuka et al. Jan 1993 A
5180393 Commarmond et al. Jan 1993 A
5182281 Frigola-Constansa et al. Jan 1993 A
5188281 Fujiwara et al. Feb 1993 A
5192281 de la Caffiniere Mar 1993 A
5195526 Michelson Mar 1993 A
5298253 LeFiles et al. Mar 1994 A
5368594 Martin et al. Nov 1994 A
5390683 Pisharodi Feb 1995 A
5415661 Holmes May 1995 A
5462738 LeFiles et al. Oct 1995 A
5472452 Trott Dec 1995 A
5484437 Michelson Jan 1996 A
5487739 Aebischer et al. Jan 1996 A
5489308 Kuslich et al. Feb 1996 A
5496318 Howland et al. Mar 1996 A
5531748 de la Caffiniere et al. Jul 1996 A
5549679 Kuslich Aug 1996 A
5571189 Kuslich Nov 1996 A
5591165 Jackson Jan 1997 A
5609634 Voydeville et al. Mar 1997 A
5609636 Kohrs et al. Mar 1997 A
5645599 Samani et al. Jul 1997 A
5654599 Casper Aug 1997 A
5658337 Kohrs et al. Aug 1997 A
5674295 Ray et al. Oct 1997 A
5700264 Zucherman et al. Dec 1997 A
5725582 Bevan et al. Mar 1998 A
5741253 Michelson Apr 1998 A
5746720 Stouder, Jr. May 1998 A
5762629 Kambin Jun 1998 A
5836948 Zucherman et al. Nov 1998 A
5860977 Zucherman et al. Jan 1999 A
5863948 Epstein et al. Jan 1999 A
5876404 Zucherman et al. Mar 1999 A
RE36211 Nonomura et al. May 1999 E
5904636 Chen et al. May 1999 A
5904686 Zucherman et al. May 1999 A
5928207 Pisano et al. Jul 1999 A
5948017 Taheri Sep 1999 A
5972015 Scribner et al. Oct 1999 A
6039761 Li et al. Mar 2000 A
6045552 Zucherman et al. Apr 2000 A
6048342 Zucherman et al. Apr 2000 A
6048345 Berke et al. Apr 2000 A
6066154 Reiley et al. May 2000 A
6068630 Zucherman et al. May 2000 A
6074390 Zucherman et al. Jun 2000 A
6080155 Michelson Jun 2000 A
6080157 Cathro et al. Jun 2000 A
6090112 Zucherman et al. Jul 2000 A
6096038 Michelson Aug 2000 A
6102928 Bonutti Aug 2000 A
D433193 Gaw et al. Oct 2000 S
6132464 Martin Oct 2000 A
6149642 Gerhart et al. Nov 2000 A
6149652 Zucherman et al. Nov 2000 A
6152926 Zucherman et al. Nov 2000 A
6156038 Zucherman et al. Dec 2000 A
6159215 Urbahns et al. Dec 2000 A
6179873 Zientek Jan 2001 B1
6183471 Zucherman et al. Feb 2001 B1
6190387 Zucherman et al. Feb 2001 B1
6225048 Soderberg-Naucler et al. May 2001 B1
6235030 Zucherman et al. May 2001 B1
6238397 Zucherman et al. May 2001 B1
6264651 Underwood et al. Jul 2001 B1
6264656 Michelson Jul 2001 B1
6267765 Taylor et al. Jul 2001 B1
6270498 Michelson Aug 2001 B1
6280444 Zucherman et al. Aug 2001 B1
6312431 Asfora Nov 2001 B1
6328730 Harkrider, Jr. Dec 2001 B1
6332882 Zucherman et al. Dec 2001 B1
6332883 Zucherman et al. Dec 2001 B1
6336930 Stalcup et al. Jan 2002 B1
6348053 Cachia Feb 2002 B1
6364883 Santilli Apr 2002 B1
6371989 Chauvin et al. Apr 2002 B1
6375682 Fleischmann et al. Apr 2002 B1
6379355 Zucherman et al. Apr 2002 B1
6387130 Stone et al. May 2002 B1
6395032 Gauchet et al. May 2002 B1
6402740 Ellis et al. Jun 2002 B1
6402750 Atkinson et al. Jun 2002 B1
6402784 Wardlaw et al. Jun 2002 B1
6413228 Hung et al. Jul 2002 B1
6419676 Zucherman et al. Jul 2002 B1
6419677 Zucherman et al. Jul 2002 B2
6440169 Elberg et al. Aug 2002 B1
6443988 Felt et al. Sep 2002 B2
6447547 Michelson Sep 2002 B1
6451019 Zucherman et al. Sep 2002 B1
6451020 Zucherman et al. Sep 2002 B1
6471976 Taylor et al. Oct 2002 B1
6478796 Zucherman et al. Nov 2002 B2
6478822 Leroux et al. Nov 2002 B1
6500178 Zucherman et al. Dec 2002 B2
6514256 Zucherman et al. Feb 2003 B2
6530925 Boudard et al. Mar 2003 B2
6558333 Gilboa et al. May 2003 B2
6572617 Senegas et al. Jun 2003 B1
6575981 Boyd et al. Jun 2003 B1
6579281 Palmer et al. Jun 2003 B2
6579319 Goble et al. Jun 2003 B2
6582433 Yun Jun 2003 B2
6582451 Marucci et al. Jun 2003 B1
6599292 Ray Jul 2003 B1
6602248 Sharps Aug 2003 B1
6610065 Branch et al. Aug 2003 B1
6610091 Reiley Aug 2003 B1
6626944 Taylor et al. Sep 2003 B1
6645207 Dixon et al. Nov 2003 B2
6645211 Magana Nov 2003 B2
6652527 Zucherman et al. Nov 2003 B2
6652534 Zucherman et al. Nov 2003 B2
6663637 Dixon et al. Dec 2003 B2
6679886 Weikel et al. Jan 2004 B2
6695842 Zucherman et al. Feb 2004 B2
6699246 Zucherman et al. Mar 2004 B2
6699247 Zucherman et al. Mar 2004 B2
6702847 DiCarlo Mar 2004 B2
6712819 Zucherman et al. Mar 2004 B2
6716215 David et al. Apr 2004 B1
6716245 Pasquet et al. Apr 2004 B2
6726690 Eckman Apr 2004 B2
6733534 Sherman May 2004 B2
6746485 Zucherman et al. Jun 2004 B1
6761720 Senegas et al. Jul 2004 B1
6783529 Hover et al. Aug 2004 B2
6796983 Zucherman et al. Sep 2004 B1
6805697 Helm et al. Oct 2004 B1
6835205 Atkinson et al. Dec 2004 B2
6840944 Suddaby Jan 2005 B2
6858029 Yeh Feb 2005 B2
6869398 Obenchain et al. Mar 2005 B2
6875212 Shaolian et al. Apr 2005 B2
6902566 Zucherman et al. Jun 2005 B2
6926728 Zucherman et al. Aug 2005 B2
6946000 Senegas et al. Sep 2005 B2
6949123 Reiley Sep 2005 B2
6966930 Arnin et al. Nov 2005 B2
6974478 Reiley et al. Dec 2005 B2
7011685 Arnin et al. Mar 2006 B2
7029473 Zucherman et al. Apr 2006 B2
7033358 Taylor et al. Apr 2006 B2
7048736 Robinson et al. May 2006 B2
7070598 Lim et al. Jul 2006 B2
7083649 Zucherman et al. Aug 2006 B2
7087055 Lim et al. Aug 2006 B2
7087083 Pasquet et al. Aug 2006 B2
7097648 Globerman et al. Aug 2006 B1
7101375 Zucherman et al. Sep 2006 B2
7163558 Senegas et al. Jan 2007 B2
7179225 Shluzas et al. Feb 2007 B2
7187064 Tzu et al. Mar 2007 B2
7189234 Zucherman et al. Mar 2007 B2
7189236 Taylor et al. Mar 2007 B2
7201751 Zucherman et al. Apr 2007 B2
7217291 Zucherman et al. May 2007 B2
7223289 Trieu et al. May 2007 B2
7229441 Trieu et al. Jun 2007 B2
7238204 Le Couedic et al. Jul 2007 B2
7252673 Lim Aug 2007 B2
7273496 Mitchell Sep 2007 B2
7282063 Cohen et al. Oct 2007 B2
7297162 Mujwid Nov 2007 B2
7306628 Zucherman et al. Dec 2007 B2
7318839 Malberg et al. Jan 2008 B2
7320707 Zucherman et al. Jan 2008 B2
7335200 Carli Feb 2008 B2
7335203 Winslow et al. Feb 2008 B2
7354453 McAfee Apr 2008 B2
7384340 Eguchi et al. Jun 2008 B2
7390330 Harp Jun 2008 B2
7410501 Michelson Aug 2008 B2
7442208 Mathieu et al. Oct 2008 B2
7445637 Taylor Nov 2008 B2
7473268 Zucherman et al. Jan 2009 B2
7476251 Zucherman et al. Jan 2009 B2
7481839 Zucherman et al. Jan 2009 B2
7481840 Zucherman et al. Jan 2009 B2
7491204 Marnay et al. Feb 2009 B2
7497859 Zucherman et al. Mar 2009 B2
7503935 Zucherman et al. Mar 2009 B2
7504798 Kawada et al. Mar 2009 B2
7510567 Zucherman et al. Mar 2009 B2
7520887 Maxy et al. Apr 2009 B2
7520899 Zucherman et al. Apr 2009 B2
7547308 Bertagnoli et al. Jun 2009 B2
7549999 Zucherman et al. Jun 2009 B2
7550009 Arnin et al. Jun 2009 B2
7565259 Sheng et al. Jul 2009 B2
7572276 Lim et al. Aug 2009 B2
7575600 Zucherman et al. Aug 2009 B2
7585313 Kwak et al. Sep 2009 B2
7585316 Trieu Sep 2009 B2
7588588 Spitler et al. Sep 2009 B2
7591851 Winslow et al. Sep 2009 B2
7601170 Winslow et al. Oct 2009 B2
7621939 Zucherman et al. Nov 2009 B2
7635377 Zucherman et al. Dec 2009 B2
7635378 Zucherman et al. Dec 2009 B2
7637950 Baccelli et al. Dec 2009 B2
7658752 Labrom et al. Feb 2010 B2
7662187 Zucherman et al. Feb 2010 B2
7666186 Harp Feb 2010 B2
7666209 Zucherman et al. Feb 2010 B2
7666228 Le Couedic et al. Feb 2010 B2
7670377 Zucherman et al. Mar 2010 B2
7682376 Trieu Mar 2010 B2
7691146 Zucherman et al. Apr 2010 B2
7695513 Zucherman et al. Apr 2010 B2
7699852 Frankel et al. Apr 2010 B2
7699873 Stevenson et al. Apr 2010 B2
7727233 Blackwell et al. Jun 2010 B2
7727241 Gorensek et al. Jun 2010 B2
7731751 Butler et al. Jun 2010 B2
7742795 Stone et al. Jun 2010 B2
7749231 Bonvallet et al. Jul 2010 B2
7749252 Zucherman et al. Jul 2010 B2
7749253 Zucherman et al. Jul 2010 B2
7753938 Aschmann et al. Jul 2010 B2
7758619 Zucherman et al. Jul 2010 B2
7758647 Arnin et al. Jul 2010 B2
7763028 Lim et al. Jul 2010 B2
7763050 Winslow et al. Jul 2010 B2
7763051 Labrom et al. Jul 2010 B2
7763073 Hawkins et al. Jul 2010 B2
7763074 Altarac et al. Jul 2010 B2
7766967 Francis Aug 2010 B2
7776090 Winslow et al. Aug 2010 B2
7780709 Bruneau et al. Aug 2010 B2
7789898 Peterman Sep 2010 B2
7794476 Wisnewski Sep 2010 B2
7803190 Zucherman et al. Sep 2010 B2
7806911 Peckham Oct 2010 B2
7811308 Arnin et al. Oct 2010 B2
7811322 Arnin et al. Oct 2010 B2
7811323 Arnin et al. Oct 2010 B2
7811324 Arnin et al. Oct 2010 B2
7811330 Arnin et al. Oct 2010 B2
7819921 Grotz Oct 2010 B2
7828822 Zucherman et al. Nov 2010 B2
7828849 Lim Nov 2010 B2
7833272 Arnin et al. Nov 2010 B2
7837687 Harp Nov 2010 B2
7837688 Boyer, II et al. Nov 2010 B2
7837700 Harp Nov 2010 B2
7837711 Bruneau et al. Nov 2010 B2
7837734 Zucherman et al. Nov 2010 B2
7846183 Blain Dec 2010 B2
7846185 Carls et al. Dec 2010 B2
7846186 Taylor Dec 2010 B2
7857815 Zucherman et al. Dec 2010 B2
7862569 Zucherman et al. Jan 2011 B2
7862586 Malek Jan 2011 B2
7862590 Lim et al. Jan 2011 B2
7862592 Peterson et al. Jan 2011 B2
7862615 Carli et al. Jan 2011 B2
7867276 Matge et al. Jan 2011 B2
7871426 Chin et al. Jan 2011 B2
7896879 Solsberg et al. Mar 2011 B2
7942830 Solsberg et al. May 2011 B2
7955392 Dewey et al. Jun 2011 B2
7985246 Trieu et al. Jul 2011 B2
8012207 Kim Sep 2011 B2
8025684 Garcia-Bengochea et al. Sep 2011 B2
8057513 Kohm et al. Nov 2011 B2
8062332 Cunningham et al. Nov 2011 B2
8100823 Harp Jan 2012 B2
8123782 Altarac et al. Feb 2012 B2
8123807 Kim Feb 2012 B2
8128662 Altarac et al. Mar 2012 B2
8152837 Altarac et al. Apr 2012 B2
8167944 Kim May 2012 B2
8226690 Altarac et al. Jul 2012 B2
8273108 Altarac et al. Sep 2012 B2
8277488 Altarac et al. Oct 2012 B2
8292922 Altarac et al. Oct 2012 B2
8317864 Kim Nov 2012 B2
8409282 Kim Apr 2013 B2
8425559 Tebbe et al. Apr 2013 B2
8608762 Solsberg et al. Dec 2013 B2
8613747 Altarac et al. Dec 2013 B2
8628574 Altarac et al. Jan 2014 B2
8696671 Solsberg et al. Apr 2014 B2
8734477 Solsberg et al. May 2014 B2
8740948 Reglos et al. Jun 2014 B2
8845726 Tebbe et al. Sep 2014 B2
8864828 Altarac et al. Oct 2014 B2
8882772 Solsberg et al. Nov 2014 B2
8894653 Solsberg et al. Nov 2014 B2
8900271 Kim Dec 2014 B2
8945183 Altarac et al. Feb 2015 B2
9023084 Kim May 2015 B2
9039742 Altarac et al. May 2015 B2
9119680 Altarac et al. Sep 2015 B2
9125692 Kim Sep 2015 B2
9155570 Altarac et al. Oct 2015 B2
9155572 Altarac et al. Oct 2015 B2
9161783 Altarac et al. Oct 2015 B2
9186186 Reglos et al. Nov 2015 B2
9211146 Kim Dec 2015 B2
9283005 Tebbe et al. Mar 2016 B2
9314279 Kim Apr 2016 B2
9393055 Altarac et al. Jul 2016 B2
20010031965 Zucherman et al. Oct 2001 A1
20020042607 Palmer et al. Apr 2002 A1
20020143331 Zucherman et al. Oct 2002 A1
20030040746 Mitchell et al. Feb 2003 A1
20030040753 Daum et al. Feb 2003 A1
20030074075 Thomas et al. Apr 2003 A1
20030149438 Nichols et al. Aug 2003 A1
20030153976 Cauthen et al. Aug 2003 A1
20030176921 Lawson Sep 2003 A1
20030220643 Ferree Nov 2003 A1
20030220650 Major et al. Nov 2003 A1
20030233098 Markworth Dec 2003 A1
20040087947 Lim et al. May 2004 A1
20040106997 Lieberson Jun 2004 A1
20040106999 Mathews Jun 2004 A1
20040167625 Beyar et al. Aug 2004 A1
20040220568 Zucherman et al. Nov 2004 A1
20050049708 Atkinson et al. Mar 2005 A1
20050075634 Zucherman et al. Apr 2005 A1
20050090822 DiPoto Apr 2005 A1
20050101955 Zucherman et al. May 2005 A1
20050125066 McAfee Jun 2005 A1
20050143738 Zucherman et al. Jun 2005 A1
20050165398 Reiley Jul 2005 A1
20050192586 Zucherman et al. Sep 2005 A1
20050192671 Bao et al. Sep 2005 A1
20050209603 Zucherman et al. Sep 2005 A1
20050216087 Zucherman et al. Sep 2005 A1
20050228383 Zucherman et al. Oct 2005 A1
20050228384 Zucherman et al. Oct 2005 A1
20050228426 Campbell Oct 2005 A1
20050245937 Winslow Nov 2005 A1
20050261768 Trieu Nov 2005 A1
20050278036 Leonard et al. Dec 2005 A1
20060036258 Zucherman et al. Feb 2006 A1
20060064165 Zucherman et al. Mar 2006 A1
20060064166 Zucherman et al. Mar 2006 A1
20060074431 Sutton et al. Apr 2006 A1
20060084976 Borgstrom et al. Apr 2006 A1
20060084983 Kim Apr 2006 A1
20060084985 Kim Apr 2006 A1
20060084988 Kim Apr 2006 A1
20060084991 Borgstrom et al. Apr 2006 A1
20060085069 Kim Apr 2006 A1
20060085070 Kim Apr 2006 A1
20060085074 Raiszadeh Apr 2006 A1
20060089718 Zucherman et al. Apr 2006 A1
20060102269 Uchida et al. May 2006 A1
20060122620 Kim Jun 2006 A1
20060149254 Lauryssen et al. Jul 2006 A1
20060149289 Winslow et al. Jul 2006 A1
20060167416 Mathis et al. Jul 2006 A1
20060195102 Malandain Aug 2006 A1
20060217811 Lambrecht et al. Sep 2006 A1
20060224159 Anderson Oct 2006 A1
20060235386 Anderson Oct 2006 A1
20060241597 Mitchell et al. Oct 2006 A1
20060241614 Bruneau et al. Oct 2006 A1
20060241757 Anderson Oct 2006 A1
20060247623 Anderson et al. Nov 2006 A1
20060247632 Winslow et al. Nov 2006 A1
20060247633 Winslow et al. Nov 2006 A1
20060247650 Yerby et al. Nov 2006 A1
20060247773 Stamp Nov 2006 A1
20060264938 Zucherman et al. Nov 2006 A1
20060264939 Zucherman et al. Nov 2006 A1
20060265066 Zucherman et al. Nov 2006 A1
20060265067 Zucherman et al. Nov 2006 A1
20060271044 Petrini et al. Nov 2006 A1
20060271049 Zucherman et al. Nov 2006 A1
20060271055 Thramann Nov 2006 A1
20060271061 Beyar et al. Nov 2006 A1
20060271194 Zucherman et al. Nov 2006 A1
20060276801 Yerby et al. Dec 2006 A1
20060276897 Winslow et al. Dec 2006 A1
20060282077 Labrom et al. Dec 2006 A1
20060282078 Labrom et al. Dec 2006 A1
20070016196 Winslow et al. Jan 2007 A1
20070055237 Edidin et al. Mar 2007 A1
20070055246 Zucherman et al. Mar 2007 A1
20070073289 Kwak et al. Mar 2007 A1
20070100340 Lange et al. May 2007 A1
20070100366 Dziedzic et al. May 2007 A1
20070123863 Winslow et al. May 2007 A1
20070161991 Altarac et al. Jul 2007 A1
20070161993 Lowery et al. Jul 2007 A1
20070173818 Hestad et al. Jul 2007 A1
20070173821 Trieu Jul 2007 A1
20070173822 Bruneau et al. Jul 2007 A1
20070173823 Dewey et al. Jul 2007 A1
20070173832 Tebbe et al. Jul 2007 A1
20070173939 Kim et al. Jul 2007 A1
20070179500 Chin et al. Aug 2007 A1
20070185490 Implicito Aug 2007 A1
20070191948 Arnin et al. Aug 2007 A1
20070191991 Addink Aug 2007 A1
20070198045 Morton et al. Aug 2007 A1
20070198091 Boyer et al. Aug 2007 A1
20070203493 Zucherman et al. Aug 2007 A1
20070203495 Zucherman et al. Aug 2007 A1
20070203496 Zucherman et al. Aug 2007 A1
20070203497 Zucherman et al. Aug 2007 A1
20070203501 Zucherman et al. Aug 2007 A1
20070208345 Marnay et al. Sep 2007 A1
20070208346 Marnay et al. Sep 2007 A1
20070208366 Pellegrino et al. Sep 2007 A1
20070210018 Wallwiener et al. Sep 2007 A1
20070225706 Clark et al. Sep 2007 A1
20070225724 Edmond Sep 2007 A1
20070225807 Phan et al. Sep 2007 A1
20070225814 Atkinson et al. Sep 2007 A1
20070233068 Bruneau et al. Oct 2007 A1
20070233074 Anderson et al. Oct 2007 A1
20070233076 Trieu Oct 2007 A1
20070233077 Khalili Oct 2007 A1
20070233082 Chin et al. Oct 2007 A1
20070233083 Abdou Oct 2007 A1
20070233084 Betz et al. Oct 2007 A1
20070233088 Edmond Oct 2007 A1
20070233089 DiPoto et al. Oct 2007 A1
20070233096 Garcia-Bengochea Oct 2007 A1
20070233098 Mastrorio et al. Oct 2007 A1
20070233129 Bertagnoli et al. Oct 2007 A1
20070250060 Anderson et al. Oct 2007 A1
20070260245 Malandain et al. Nov 2007 A1
20070265623 Malandain et al. Nov 2007 A1
20070265624 Zucherman et al. Nov 2007 A1
20070265625 Zucherman et al. Nov 2007 A1
20070265626 Seme Nov 2007 A1
20070270822 Heinz Nov 2007 A1
20070270823 Trieu et al. Nov 2007 A1
20070270824 Lim et al. Nov 2007 A1
20070270826 Trieu et al. Nov 2007 A1
20070270827 Lim et al. Nov 2007 A1
20070270828 Bruneau et al. Nov 2007 A1
20070270829 Carls et al. Nov 2007 A1
20070270834 Bruneau et al. Nov 2007 A1
20070272259 Allard et al. Nov 2007 A1
20070276368 Trieu et al. Nov 2007 A1
20070276369 Allard et al. Nov 2007 A1
20070276372 Malandain et al. Nov 2007 A1
20070276373 Malandain Nov 2007 A1
20070276390 Solsberg Nov 2007 A1
20070276496 Lange et al. Nov 2007 A1
20070276497 Anderson Nov 2007 A1
20070276500 Zucherman et al. Nov 2007 A1
20080015700 Zucherman et al. Jan 2008 A1
20080021468 Zucherman et al. Jan 2008 A1
20080021560 Zucherman et al. Jan 2008 A1
20080021561 Zucherman et al. Jan 2008 A1
20080027545 Zucherman et al. Jan 2008 A1
20080027552 Zucherman et al. Jan 2008 A1
20080027553 Zucherman et al. Jan 2008 A1
20080033445 Zucherman et al. Feb 2008 A1
20080033553 Zucherman et al. Feb 2008 A1
20080033558 Zucherman et al. Feb 2008 A1
20080033559 Zucherman et al. Feb 2008 A1
20080039853 Zucherman et al. Feb 2008 A1
20080039858 Zucherman et al. Feb 2008 A1
20080039859 Zucherman et al. Feb 2008 A1
20080039945 Zucherman et al. Feb 2008 A1
20080039946 Zucherman et al. Feb 2008 A1
20080039947 Zucherman et al. Feb 2008 A1
20080045958 Zucherman et al. Feb 2008 A1
20080045959 Zucherman et al. Feb 2008 A1
20080046081 Zucherman et al. Feb 2008 A1
20080046085 Zucherman et al. Feb 2008 A1
20080046086 Zucherman et al. Feb 2008 A1
20080046087 Zucherman et al. Feb 2008 A1
20080046088 Zucherman et al. Feb 2008 A1
20080051785 Zucherman et al. Feb 2008 A1
20080051898 Zucherman et al. Feb 2008 A1
20080051899 Zucherman et al. Feb 2008 A1
20080051904 Zucherman et al. Feb 2008 A1
20080051905 Zucherman et al. Feb 2008 A1
20080058806 Klyce et al. Mar 2008 A1
20080058807 Klyce et al. Mar 2008 A1
20080058808 Klyce et al. Mar 2008 A1
20080058941 Zucherman et al. Mar 2008 A1
20080065212 Zucherman et al. Mar 2008 A1
20080065213 Zucherman et al. Mar 2008 A1
20080065214 Zucherman et al. Mar 2008 A1
20080071280 Winslow Mar 2008 A1
20080071378 Zucherman et al. Mar 2008 A1
20080086212 Zucherman et al. Apr 2008 A1
20080108990 Mitchell et al. May 2008 A1
20080114455 Lange et al. May 2008 A1
20080132952 Malandain et al. Jun 2008 A1
20080167655 Wang et al. Jul 2008 A1
20080167656 Zucherman et al. Jul 2008 A1
20080172057 Zucherman et al. Jul 2008 A1
20080177272 Zucherman et al. Jul 2008 A1
20080177306 Lamborne et al. Jul 2008 A1
20080177312 Perez-Cruet Jul 2008 A1
20080183210 Zucherman et al. Jul 2008 A1
20080188895 Cragg et al. Aug 2008 A1
20080208344 Kilpela et al. Aug 2008 A1
20080215058 Zucherman et al. Sep 2008 A1
20080221692 Zucherman et al. Sep 2008 A1
20080228225 Trautwein et al. Sep 2008 A1
20080234708 Houser et al. Sep 2008 A1
20080234824 Youssef et al. Sep 2008 A1
20080287997 Altarac Nov 2008 A1
20080288075 Zucherman et al. Nov 2008 A1
20080319550 Altarac et al. Dec 2008 A1
20090012528 Aschmann et al. Jan 2009 A1
20090118833 Hudgins et al. May 2009 A1
20090125030 Tebbe et al. May 2009 A1
20090125036 Bleich May 2009 A1
20090138046 Altarac et al. May 2009 A1
20090138055 Altarac et al. May 2009 A1
20090222043 Altarac et al. Sep 2009 A1
20090248079 Kwak et al. Oct 2009 A1
20090292315 Trieu Nov 2009 A1
20100042217 Zucherman et al. Feb 2010 A1
20100082108 Zucherman et al. Apr 2010 A1
20100114100 Mehdizade May 2010 A1
20100131009 Roebling et al. May 2010 A1
20100228092 Ortiz et al. Sep 2010 A1
20100234889 Hess Sep 2010 A1
20100262243 Zucherman et al. Oct 2010 A1
20100280551 Pool et al. Nov 2010 A1
20100305611 Zucherman et al. Dec 2010 A1
20110245833 Anderson Oct 2011 A1
20110313457 Reglos et al. Dec 2011 A1
20120078301 Hess Mar 2012 A1
20120158063 Altarac et al. Jun 2012 A1
20120226315 Altarac et al. Sep 2012 A1
20120232552 Morgenstern Lopez et al. Sep 2012 A1
20120303039 Chin et al. Nov 2012 A1
20120330359 Kim Dec 2012 A1
20130012998 Altarac et al. Jan 2013 A1
20130072985 Kim Mar 2013 A1
20130150886 Altarac et al. Jun 2013 A1
20130165974 Kim Jun 2013 A1
20130165975 Tebbe et al. Jun 2013 A1
20130172932 Altarac et al. Jul 2013 A1
20130172933 Altarac et al. Jul 2013 A1
20130289399 Choi et al. Oct 2013 A1
20130289622 Kim Oct 2013 A1
20140081332 Altarac et al. Mar 2014 A1
20140214082 Reglos et al. Jul 2014 A1
20140228884 Altarac et al. Aug 2014 A1
20150150598 Tebbe et al. Jun 2015 A1
20150150604 Kim Jun 2015 A1
20150164560 Altarac et al. Jun 2015 A1
20150374415 Kim Dec 2015 A1
20160030092 Altarac et al. Feb 2016 A1
20160045232 Altarac et al. Feb 2016 A1
20160066963 Kim Mar 2016 A1
20160135853 Altarac et al. May 2016 A1
20160248222 Miyata Aug 2016 A1
20160317193 Kim et al. Nov 2016 A1
Foreign Referenced Citations (127)
Number Date Country
268461 Feb 1927 CA
2794456 Jul 2006 CN
101897603 Dec 2010 CN
69507480 Sep 1999 DE
322334 Jun 1989 EP
0767636 Apr 1997 EP
0768843 Apr 1997 EP
0959792 Dec 1999 EP
1027004 Aug 2000 EP
1138268 Oct 2001 EP
1330987 Jul 2003 EP
1056408 Dec 2003 EP
1343424 Sep 2004 EP
1454589 Sep 2004 EP
1148850 Apr 2005 EP
1570793 Sep 2005 EP
1299042 Mar 2006 EP
1578314 May 2007 EP
1675535 May 2007 EP
1861046 Dec 2007 EP
2681525 Mar 1993 FR
2722980 Feb 1996 FR
2816197 May 2002 FR
2884136 Oct 2006 FR
2888744 Jan 2007 FR
988281 Jan 1983 SU
WO-9404088 Mar 1994 WO
WO-9426192 Nov 1994 WO
WO-9525485 Sep 1995 WO
WO-9531158 Nov 1995 WO
WO-9600049 Jan 1996 WO
WO-9829047 Jul 1998 WO
WO-9921500 May 1999 WO
WO-9921501 May 1999 WO
WO-9942051 Aug 1999 WO
WO-0013619 Mar 2000 WO
WO-0044319 Aug 2000 WO
WO-0044321 Aug 2000 WO
WO-0128442 Apr 2001 WO
WO-0191657 Dec 2001 WO
WO-0191658 Dec 2001 WO
WO-0203882 Jan 2002 WO
WO-0207623 Jan 2002 WO
WO-0207624 Jan 2002 WO
WO-02051326 Jul 2002 WO
WO-02067793 Sep 2002 WO
WO-02071960 Sep 2002 WO
WO-02076336 Oct 2002 WO
WO-03007791 Jan 2003 WO
WO-03007829 Jan 2003 WO
WO-03008016 Jan 2003 WO
WO-03015646 Feb 2003 WO
WO-03024298 Mar 2003 WO
WO-03045262 Jun 2003 WO
WO-03099147 Dec 2003 WO
WO-03101350 Dec 2003 WO
WO-2004073533 Sep 2004 WO
WO-2004110300 Dec 2004 WO
WO-2005009300 Feb 2005 WO
WO-2005013839 Feb 2005 WO
WO-2005025461 Mar 2005 WO
WO-2005041799 May 2005 WO
WO-2005044152 May 2005 WO
WO-2005055868 Jun 2005 WO
WO-2005079672 Sep 2005 WO
WO-2005086776 Sep 2005 WO
WO-2005115261 Dec 2005 WO
WO-2006033659 Mar 2006 WO
WO-2006034423 Mar 2006 WO
WO-2006039243 Apr 2006 WO
WO-2006039260 Apr 2006 WO
WO-2006045094 Apr 2006 WO
WO-2006063047 Jun 2006 WO
WO-2006064356 Jun 2006 WO
WO-2006065774 Jun 2006 WO
WO-2006089085 Aug 2006 WO
WO-2006102269 Sep 2006 WO
WO-2006102428 Sep 2006 WO
WO-2006102485 Sep 2006 WO
WO-2006107539 Oct 2006 WO
WO-2006110462 Oct 2006 WO
WO-2006110464 Oct 2006 WO
WO-2006110767 Oct 2006 WO
WO-2006113080 Oct 2006 WO
WO-2006113406 Oct 2006 WO
WO-2006113814 Oct 2006 WO
WO-2006118945 Nov 2006 WO
WO-2006119235 Nov 2006 WO
WO-2006119236 Nov 2006 WO
WO-2006135511 Dec 2006 WO
WO-2007015028 Feb 2007 WO
WO-2007035120 Mar 2007 WO
WO-2007075375 Jul 2007 WO
WO-2007075788 Jul 2007 WO
WO-2007075791 Jul 2007 WO
WO-2007089605 Aug 2007 WO
WO-2007089905 Aug 2007 WO
WO-2007089975 Aug 2007 WO
WO-2007097735 Aug 2007 WO
WO-2007109402 Sep 2007 WO
WO-2007110604 Oct 2007 WO
WO-2007111795 Oct 2007 WO
WO-2007111979 Oct 2007 WO
WO-2007111999 Oct 2007 WO
WO-2007117882 Oct 2007 WO
WO-2007121070 Oct 2007 WO
WO-2007127550 Nov 2007 WO
WO-2007127588 Nov 2007 WO
WO-2007127677 Nov 2007 WO
WO-2007127689 Nov 2007 WO
WO-2007127694 Nov 2007 WO
WO-2007127734 Nov 2007 WO
WO-2007127736 Nov 2007 WO
WO-2007131165 Nov 2007 WO
WO-2007134113 Nov 2007 WO
WO-2008009049 Jan 2008 WO
WO-2008048645 Apr 2008 WO
WO-2008057506 May 2008 WO
WO-2008130564 Oct 2008 WO
WO-2009014728 Jan 2009 WO
WO-2009033093 Mar 2009 WO
WO-2009086010 Jul 2009 WO
WO-2009091922 Jul 2009 WO
WO-2009094463 Jul 2009 WO
WO-2009114479 Sep 2009 WO
WO-2011084477 Jul 2011 WO
WO-2015171814 Nov 2015 WO
Non-Patent Literature Citations (35)
Entry
International Search Report, counterpart PCT Application PCT/US2013/038534, Aug. 7, 2013, 16 pages.
McCulloch, John A., Young, Paul H., “Essentials of Spinal Microsurgery,” 1998, pp. 453-485. Lippincott-Raven Publishers, Philadelphia, PA (37 pages total).
Lee, Seungcheol et al., “New Surgical Techniques of Percutaneous Endoscopic Lumbar Disectomy for Migrated Disc Herniation,” Joint Dis. Rel. Surg., 16(2); pp. 102-110 (2005).
Choi, Gun et al., “Percutaneous Endoscopic Interlaminar Disectomy for Intracanalicular Disc Herniations at L5-S1 Using a Rigid Working Channel Endoscope,” Operative Neurosurg., 58: pp. 59-68 (2006).
Lee, Seungcheol et al., “Percutaneous Endoscopic Interlaminar Disectomy for L5-S1 Disc Herniation: Axillary Approach and Preliminary Results,” J. of Korean Neurosurg. Soc., 40: pp. 19-83 (2006).
Vertos mild Devices Kit—PRT-00430-C—Instructions for Use (13 pages total); see http://vertosmed.com/docs/mildIFU—PRT-00430-C.pdf.
Decision on Petition in U.S. Appl. No. 60/592,099, May 4, 2005.
Vaccaro, Alexander J. et al., MasterCases Spine Surgery, 2001, pp. 100-107. Thieme Medical Publishers, Inc., NY. (10 pages total).
Tredway, Trent L. et al., “Minimally Invasive Transforaminal Lumbar Interbody Fusion (MI-TLIF) and Lateral Mass Fusion with the MetRx System.” (14 pages total).
Fast, Avital et al., “Surgical Treatment of Lumbar Spinal Stenosis in the Elderly,” Arch Phys. Med Rehabil., Mar. 1985, pp. 149-151, vol. 66.
Palmer, Sylvain et al., “Bilateral decompressive surgery in lumbar spinal stenosis associated with spondylolisthesis: unilateral approach and use of a microscope and tubular retractor system,” Neurosurgery Focus, Jul. 2002, pp. 1-6, vol. 13.
International Search Report and Written Opinion; Application No. PCT/US2005/044256; Mailing Date: Jul. 28, 2006, 7 pages.
International Search Report and Written Opinion; Application No. PCT/US2006/047824; Mailing Date: Oct. 16, 2008, 17 pages.
International Search Report and Written Opinion; Application No. PCT/US2006/048611; Mailing Date: Oct. 14, 2008; 10 pages.
International Search Report and Written Opinion; Application No. PCT/US2006/048614; Mailing Date: Feb. 3, 2006; 23 pages.
International Search Report and Written Opinion; Application No. PCT/US2007/022171; Mailing Date: Apr. 15, 2008, 9 pages.
International Search Report and Written Opinion; Application No. PCT/US2007/023312; Mailing Date: May 22, 2008, 14 pages.
International Search Report and Written Opinion; Application No. PCT/US2008/004901; Mailing Date: Aug. 19, 2008, 7 pages.
International Search Report and Written Opinion; Application No. PCT/US2008/008382; Mailing Date: Mar. 2, 2009, 13 pages.
International Search Report and Written Opinion; Application No. PCT/US2008/008983; Mailing Date: Feb. 23, 2009, 7 pages.
International Search Report and Written Opinion; Application No. PCT/US2008/075487; Mailing Date: Dec. 31, 2008, 7 pages.
International Search Report and Written Opinion; Application No. PCT/US2008/087527; Mailing Date: Jul. 30, 2009, 10 pages.
International Search Report and Written Opinion; Application No. PCT/US2009/031150; Mailing Date: Aug. 28, 2009, 6 pages.
International Search Report and Written Opinion; Application No. PCT/US2009/036561; Mailing Date: Sep. 17, 2009, 12 pages.
Minns, R.J., et al., “Preliminary Design and Experimental Studies of a Noval Soft Implant for Correcting Sagittal Plane Instability in the Lumbar Spine,” (1997) Spine, 22(16): 1819-1827.
Swan, Colby, “Preliminary Design and Experimental Studies of a Novel Soft Implant for Correcting Sogittal Plane Instability in the Lumbar Spine,” Spine, 1997, 22(16), 1826-1827.
International Search Report and Written Opinion; Application No. PCT/US2010/060498; Mailing Date: Aug. 25, 2011, 17 pages.
International Search Report and Written Opinion; Application No. PCT/US2009/029537; Applicant: Vertiflex, Inc. Mailing Date: Aug. 3, 2015, 14 pages.
European Extended Search Report Application No. EP13780608.9; Applicant: VertiFlex, Inc.; Date of Mailing: Nov. 23, 2015, 8 pages.
ASNR Neuroradiology Patient Information website, Brain and Spine Imaging: A Patient's Guide to Neuroradiology; Myelography; http://www.asnr.org/patientinfo/procedures/myelography.shtml#sthash.sXIDOxWq.dpbs, Copyright 2012-2013.
Australia Exam Report for Application No. AU2014203394, Applicant: VertiFlex, Inc., Date of Issue: Mar. 15, 2016, 2 pages.
Australia Exam Report for Application No. AU2014203394, Applicant: VertiFlex, Inc.; Date of Issue: Mar. 15, 2016, 2 pages.
Chinese Office Action for Application No. 201380027796.3; Applicant: VertiFlex, Inc.; Date of Mailing: Jun. 1, 2016, 12 pages.
European Further Exam Report for Application No. EP09702116.6; Applicant: VertiFlex, Inc.; Date of Mailing: Jul. 4, 2016, 4 pages.
European Search Report Application No. EP05815519.3; Applicant: The Board of Trustees of the Leland Stanford Junior University; Date of Mailing: Mar. 2, 2016, 4 pages.
Related Publications (1)
Number Date Country
20140275992 A1 Sep 2014 US