Voice channel control of wireless packet data communications

Information

  • Patent Grant
  • 8036201
  • Patent Number
    8,036,201
  • Date Filed
    Tuesday, April 20, 2010
    14 years ago
  • Date Issued
    Tuesday, October 11, 2011
    13 years ago
Abstract
A data session with a wireless device ordinarily cannot be initiated from the network side because the wireless device has no predetermined IP or other network address. Methods are disclosed for instead causing the wireless unit to initiate a data session with a target destination, thereby obviating the IP addressing problem. A voice call is first initiated by a requester application to a remote wireless unit. The requester transmits a request message to the remote wireless unit via the wireless voice channel using in-band techniques; preferably including a payload in the polling message that identifies the target destination. In response, the remote wireless unit initiates a packet data session with the target destination.
Description
COPYRIGHT NOTICE

© 2010 Airbiquity Inc. A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever. 37 CFR §1.71(d).


TECHNICAL FIELD

This invention pertains to data communications via wireless communications networks, and more specifically it relates to use of the voice channel to trigger a network initiated data session such as an IP session.


BACKGROUND OF THE INVENTION

Data transfer services in the wireless domain are known and certainly still evolving. Examples include SMS (short messaging service) and other SS7 control channel services. They can be used, for example, for text messaging. They do not affect the voice channels, but offer very limited bandwidth, so the amounts of data transferred are quite limited.


The WAP (Wireless Application Protocol) specifications and software offer some improved services. For example, they can be implemented to provide limited Internet access to a mobile unit. (We use the term “mobile unit” herein to refer broadly to any device with wireless connectivity, including without limitation a cell phone, PDA, laptop computer, palmtop, motor vehicle, etc.). The WAP services, however, require that the mobile unit itself be WAP enabled, and that the wireless carrier network also be WAP enabled. Thus, wireless carriers have to deploy and maintain WAP gateways at the edges of the network to provide WAP services. Some mobile units, and some networks or geographic areas may not be WAP enabled, so these services would not be available for data communication.


One approach to wireless data transfer that does not require changes in the wireless network infrastructure, although it requires specific implementation at both endpoints of a session, is the use of “in-band” data transfer. As the name implies, this technique transfers data in the voice channel, using carefully selected and timed audio frequency tones. (Commonly, wireless data transfer services do not use the voice channel at all.) In-band or voice channel data transfer can be done with little or no interruption of a voice conversation. Details of in-band signaling are explained in U.S. Pat. Nos. 6,144,336; 6,690,681 and 6,493,338 all incorporated wherein by this reference. These types of in-voice-channel data communications have two primary advantages: the wireless voice channel is reliable, and the technique works transparently across networks and carriers throughout the country and beyond. The data simply passes transparently through the voice service, as it “looks” like voice. However, in-band signaling provides only a very low bandwidth up to around 400 bps. That makes it almost useless for transferring significant amounts of data.


Higher bandwidth wireless data services are rapidly becoming available throughout the world. These services operate over dedicated data channels, not the voice channels. The newer specifications, so-called “3G” or third generation wireless technologies, while not yet widely implemented, promise packet data rates as follows, according to IMT-2000 standards:

    • 2 Mbps for fixed environment
    • 384 Mbps for pedestrian (i.e. slow-moving mobile unit)
    • 144 kbps for vehicular traffic


One problem, however, with virtually all wireless data services, is the difficulty in accessing those services in a network “polling” type of application. Polling (or “pulling data”) here refers to contacting a mobile unit to pull or retrieve digital data needed by a requester. (The “requester” typically would be an application program.) Preferably, an authorized requester should be able to poll remote mobile units, and fetch data, without manual user intervention at the remote location. In other words, a polling process should be able to be completely automated, although for some applications it can be advantageously initiated by a user at the requester end.


To illustrate, a wireless automated inventory control system may seek to poll units, say trucks or tanks, to learn their present location, fuel supply, operator ID, etc. A packet data connection, for example an IP connection, cannot be established with a mobile unit from the network side (we call this “network initiated”) using prior technology, because the mobile device has no predetermined IP address. Rather, an IP address is dynamically assigned to a mobile unit only if and when it initiates a session to an IP network. Accordingly, a user application cannot poll a remote mobile unit to establish a packet data transfer session using known technologies.


A system has been suggested for IP addressing of GPRS mobile terminals that purportedly would enable TCP/IP connection without a phone call. That proposal recognized that there are not enough IP addresses available (under the current Ipv4 regime) to assign one to every wireless terminal. The proposal calls for a combination of Public Addresses (registered with public routing tables) and Private addresses, not to be routed on the public Internet. Rather, the private (IP-like) addresses would only be used within a GPRS operator's own network. This would require network address translation (NAT) facilities and is generally impractical. Even if implemented, such a scheme does not solve the problem that the mobile (or wireless) terminal address is unknown, and is not publicly discoverable in a convenient way.


The need remains for a convenient and effective way to poll a remote mobile unit, that is, to request a data packet session, for uploading or downloading data via the wireless network, without changing the wireless carrier infrastructure and in a manner compatible with existing packet data networks and protocols such as IP.


SUMMARY

In accordance with one embodiment of the present invention, a combination of in-band or voice channel signaling together with packet data services is employed to overcome the lack of a predetermined IP address of a mobile unit. A voice call is established between a requester and the remote mobile unit. A short polling message is transmitted in the voice channel from the requester using in-band digital data transmission (“IBS”). The request message includes in its payload data that identifies (directly or indirectly) a target resource such as a URL or IP address. The mobile unit responds by initiating a wireless packet data session with the indicated target resource which may be, for example, a server system.


This new approach of using the voice channel signaling to enable a network initiated data session will solve the existing problem associated with assigning an IP address (Simple IP and Mobile IP assignment for both Ipv4 and IPv6) to a mobile device and do so in a timely and more efficient manner.


Presently the existing cellular infrastructure does not allow mobile devices to pre-register their IP address with the cellular data network, instead it must be assigned to the mobile device by the cellular data network when a mobile device first initiates a request for a data session using a Simple IP protocol, or the mobile device must initiate an IP address discovery process using the Mobile IP protocol. In either case the cellular data network does not know of the routing location of the IP address for a mobile device until the mobile device first initiates a data session.


The core data network of any data enabled cellular network can use this unique invention to initiate a data transfer session, which we will call a Network Initiated Data Session (NIDS) and is described as follows:


According to one aspect of the invention, in-band signaling methods and apparatus are employed to “push” a request to a mobile unit or “node”. We call this a Mobile Terminated (MT) request. (The mobile device is of course in-band signaling enabled, meaning essentially that it can send and receive digital data through the voice channel of a wireless network.)


The receiving mobile unit (mobile node) detects—and triggers the mobile device (or other system coupled to the mobile device) to initiate a data session with the cellular network using an available data channel, not the voice channel, to transmit data to a specified (or default) destination.


When a request is made of the mobile device, by using voice channel signaling, the network can initiate a data session between the mobile device and any network or internet entity at any time using the voice channel of the cellular network, or any other radio frequency derived audio channel where voice channel signaling functions. Due to the real time speed and quality of service of in-band (voice channel) services, a distinct time savings and reliability advantage can be made over any other approach for network initiated data sessions. These advantages are of paramount importance for public safety and security applications.


The present invention is also independent of any digital cellular technology and is not tied to any individual cellular carrier's voice, data, or messaging service, which is also unique and advantageous offering greater cellular coverage capabilities when compared to existing approaches.


Additional aspects and advantages will be apparent from the following detailed description of preferred embodiments, which proceeds with reference to the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a simplified high-level diagram illustrating operation of representative embodiments of the invention.



FIG. 2 is a messaging diagram showing principle interactions among nodes involved in an embodiment of the invention.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Reference is now made to the figures in which like reference numerals refer to like elements. For clarity, the first digit of a reference numeral indicates the figure number in which the corresponding element is first used.


In the following description, certain specific details of programming, software modules, user selections, network transactions, database queries, database structures, etc., are provided for a thorough understanding of the embodiments of the invention. However, those skilled in the art will recognize that the invention can be practiced without one or more of the specific details, or with other methods, components, materials, etc.


In some cases, well-known structures, materials, or operations are not shown or described in detail in order to avoid obscuring aspects of the invention. Furthermore, the described features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.



FIG. 1 is a simplified high-level diagram illustrating certain embodiments of the methodology of the present invention. Referring to FIG. 1, a requester application program can be provided on a suitable computer 100. The request or polling application can be activated by a user as needed or preprogrammed for automatic operation at scheduled times. The computer system 100 is coupled to a telephone line which may include a conventional telephone 102 and in any event is connected via 104 to the public switched telephone network PSTN 106. This connection can be, for example, an ordinary telephone land line as is commonly used for voice calls. It could also be part of a larger enterprise system that may involve a PBX (not shown), or it may be a wireless telecom connection.


A wireless carrier network 108 is connected to the PSTN 106 for handling wireless call traffic, the details of which are well known. The wireless network 108 includes a series of base stations which include antennas and wireless transceivers, generally referred to as a cell tower 110. Transceivers are mounted atop the cell tower 110 for two-way wireless communications with various wireless mobile devices such as a cell phone 112 or PDA 114. The base station antennas need not literally be mounted on a tower. In urban areas, in particular, they are more commonly affixed to buildings.


In accordance with the invention, a requester or a requester application executing on computer 100 initiates a voice telephone call, via the PSTN or wireless, directed to a remote mobile unit such as the cell phone 112. The connection from the requester application need not be hard wired to the PSTN but could itself be a wireless telephone link. The requester system 100 also may have access to the Internet 122, typically through an ISP (internet service provider) 124. The connection to the ISP could take any of various forms, for example utilizing cable or the PSTN network, as are known.


According to a preferred embodiment of the invention, a method is provided for polling the remote wireless unit as follows: First, the requester system 100 initiates a voice call to the remote wireless station. This of course requires that the telephone number of the device is known. Other kinds of mobile devices, such as the PDA 114 or even a motor vehicle 116 can include an apparatus that is configured to interact with the wireless network as if it were a cell phone, although it may not actually include a microphone or a speaker. For example, devices can be configured to automatically answer a wireless call, and provide the control channel signaling to emulate answering a cell phone. Once a voice call is established between the requester 100 and the remote wireless unit 112, the requester system 100 transmits a digital request message to the remote wireless terminal via the wireless voice channel on which the voice call is established. In other words, the digital request message is sent “in band” through the use of audio frequency tones that are arranged so that they will pass through the voice channel unobstructed.


The request message preferably includes a payload that identifies a target resource. In the remote wireless unit, for example 112, 114, apparatus or software is implemented that will respond to the digital request message by initiating a packet data session with the target resource identified in the request message. By “packet data session” we mean a data transfer session that utilizes one or more of the data services provided by the wireless carrier, as distinguished from voice services.


The target resource may be, but is not limited to, the requester system 100 itself. In other words, the wireless terminal 112 may be instructed to initiate a packet data session back to the requester system. That session would traverse link 120 from the wireless network infrastructure to the Internet 122 and thence to the requester 100 via the ISP 124. As noted, this process can be automated by implementing suitable software at the requester 100 and at the wireless unit 112 so that it can occur without user action at either end of the packet data session.


The target resource can be identified in the request message by a predetermined identifier, such as a simple alphanumeric name or code. The wireless terminal software can perform a look-up in memory to determine a corresponding URL or IP address. Alternatively, the target URL or IP address can be included in the request message itself.


The target resource need not be the requesting system 100. In one alternative embodiment, it could be a server 130 which is coupled to the Internet through an ISP and configured to perform data collection, utilizing standard packet data session protocols such as the Internet protocol. The target may be a web server suitably configured to interact with the mobile unit.


In other embodiments, the request message payload can include various delivery parameters, in addition to identification of a target resource. The delivery parameters might include, by way of example and not limitation, a preferred packet data service, a packet data rate, and/or a priority parameter. These parameters can be recovered from the message payload by the wireless terminal software and it can initiate a responsive packet data session in accordance with those parameters. For example, in the case of a relatively low priority parameter, the application software might select a data service or time of day to initiate the packet data session that is lower performance but incurs lower cost.


Referring again to FIG. 1, the tanker truck 116 is merely illustrative of a wide variety of mobile assets, including but not limited to motor vehicle assets, that could participate in the present system, assuming they are outfitted with a wireless unit as explained above. FIG. 1 also shows a second wireless base station tower 136 illustrating that the packet data session need not involve the same base station, or even the same wireless carrier, as that which carried the request message via the voice channel. The requested packet data session could occur through a second wireless network 138 which is also coupled to the Internet via 140. And again, the packet data session could be established with any target resource, including but not limited to the requester application 100 or a separate server 130.


In other embodiments of the invention, a live user or operator at a computer 150, having access to the Internet, could poll one or more remote wireless units to request a data transfer. For example, a user at say a public safety location such as a 911 emergency call taker, could access a web server (not shown) which has voice call telephone access such as 104. Through the means of a suitably programmed web page interface (using, for example, CGI scripting or the like), a user at 150 could initiate a request message which would take the form of a voice call from the web server, through the PSTN and the wireless network as described above, to a remote or mobile unit. The request message could include identification of the call taker center at 150 as the target resource to deliver requested information via a packet data session.


The present invention is not limited to downloading data from the wireless terminal to the requester. The requested packet data session could also be used to download information to the wireless terminal.



FIG. 2 is a messaging diagram that further illustrates principle features and characteristics of certain embodiments of the invention.


Referring to FIG. 2, a signaling or message flow diagram further illustrates methodologies in accordance with the present invention. Beginning with “time interval A” and initiating application 208 essentially places a voice call out to the mobile telephony device 204. As noted above, the initiating application could be a software application deployed on a computer or on a server and it may or may not necessarily require a conventional telephone. It does require access to the wireless network, directly or through the PSTN. The telephony device, in turn, makes a voice call through the cellular network 202 which in turn makes a wireless call to the mobile unit 200. The mobile unit answers the call, thereby establishing a voice channel “connection” back to the telephony device 204. Once that voice call is established, the initiating application, at “time interval B” transmits a request message in the voice channel to the mobile device 200. Optionally, the mobile device may respond with an acknowledgement message in the voice channel.


Referring now to “time point C,” responsive to the request message, the mobile terminal 200 initiates a data network connection, which traverses the cellular network 202 and establishes a packet data session via the IP network 206. Here, the target or destination resource is coupled to the IP network 206. The IP network in turn responds to the mobile node 200 at “time point D” and then, as indicated at “time point E” a packet data session is established between the mobile node 200 and the IP network or target 206. “Time point F” indicates that the IP resource may not be the ultimate recipient of the data, but rather, it could be configured to forward that data to an ultimate destination address which may be, but is not limited to, the initiating application 208.


The process used by the core data network, internet application, or stand alone device to initiate a data session using aqLink begins with the establishment of a circuit switched voice channel connection to the mobile device. This can be accomplished by any means made available to the initiating application or device.


It will be obvious to those having skill in the art that many changes may be made to the details of the above-described embodiments without departing from the underlying principles of the invention. The scope of the present invention should, therefore, be determined only by the following claims.

Claims
  • 1. A memory device encoded with instructions that, if executed by a processor, result in: receiving incoming signaling at a wireless unit;in response to receiving the incoming signaling at the wireless unit, establishing a remotely initiated connection communicatively coupling the wireless unit and a remote server, the remotely initiated connection initiated by the remote server;receiving, over the remotely initiated connection, a digital polling message at the wireless unit;identifying a target address in the digital polling message; andin response to receiving the digital polling message, transmitting outgoing signaling to the target address to initiate a wireless network data session with the target address without manual user intervention at the wireless unit, the wireless network data session to be used by a computing device associated with the target address to pull data from the wireless unit over the wireless network data session.
  • 2. The memory device according to claim 1, wherein the polling message includes at least one delivery parameter specifying at least one of a selected wireless network packet data service, a data rate, and a priority parameter.
  • 3. The memory device according to claim 1, wherein the polling message identifies a type of data to be transmitted from the wireless unit to the target address in the wireless network data session.
  • 4. The memory device according to claim 3, wherein the type of data to be transmitted is data indicating a location of the wireless unit.
  • 5. The memory device according to claim 1, wherein the polling message is transmitted in a voice call via a digital wireless telecommunications network.
  • 6. A system, comprising: a transmitter configured to transmit incoming signaling to a wireless unit to establish an outbound connection thereto, the outbound connection initiated by the transmitter;the transmitter configured to transmit a digital polling message specifying a target address over the outbound connection; andthe wireless unit configured to transmit outgoing signaling to the target address to initiate a wireless network data session with the target address in response to receiving the digital polling message and without manual user intervention at the wireless unit, the wireless network data session to be used by a computing device associated with the target address to pull data from the wireless unit over the wireless network data session.
  • 7. The system of claim 6, wherein the polling message includes at least one delivery parameter specifying at least one of a selected wireless network packet data service, a data rate, and a priority parameter.
  • 8. The system of claim 6, wherein the polling message identifies a type of data to be transmitted from the wireless unit to the target address in the wireless network data session.
  • 9. The system of claim 8, wherein the type of data to be transmitted is data indicating a location of the wireless unit.
  • 10. The system of claim 6, wherein the polling message is transmitted in a voice call via a digital wireless telecommunications network.
  • 11. A method, comprising: receiving incoming signaling at a wireless unit;in response to receiving the incoming signaling at the wireless unit, establishing a remotely initiated connection communicatively coupling the wireless unit and a remote server, the remotely initiated connection initiated by the remote server;receiving, over the remotely initiated connection, a digital polling message at the wireless unit;identifying a target address in the digital polling message; andin response to receiving the digital polling message, transmitting outgoing signaling to the target address to initiate a wireless network data session with the target address without manual user intervention at the wireless unit, the wireless network data session to be used by a computing device associated with the target address to pull data from the wireless unit over the wireless network data session.
  • 12. The method of claim 11, wherein the polling message includes at least one delivery parameter specifying at least one of a selected wireless network packet data service, a data rate, and a priority parameter.
  • 13. The method of claim 11, wherein the polling message identifies a type of data to be transmitted from the wireless unit to the target address in the wireless network data session.
  • 14. The method of claim 13, wherein the type of data to be transmitted is data indicating a location of the wireless unit.
  • 15. The method of claim 11, wherein the polling message is transmitted in a voice call via a digital wireless telecommunications network.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 12/372,255, filed Feb. 17, 2009, which is a continuation of U.S. application Ser. No. 11/048,623, filed Jan. 31, 2005, now U.S. Pat. No. 7,508,810, each of which is incorporated by reference herein in its entirety.

US Referenced Citations (415)
Number Name Date Kind
3742197 Pommerening Jun 1973 A
3742463 Haselwood Jun 1973 A
3971888 Ching Jul 1976 A
3984814 Bailey, Jr. Oct 1976 A
3985965 Field Oct 1976 A
4158748 En Jun 1979 A
4218654 Ogawa Aug 1980 A
4310722 Schaible Jan 1982 A
4355310 Belaigues Oct 1982 A
4368987 Waters Jan 1983 A
4494114 Kaish Jan 1985 A
4494211 Schwartz Jan 1985 A
4539557 Redshaw Sep 1985 A
4577343 Oura Mar 1986 A
4595950 Lofberg Jun 1986 A
4598272 Cox Jul 1986 A
4599583 Shimozono Jul 1986 A
4607257 Noguchi Aug 1986 A
4630301 Hohl Dec 1986 A
4641323 Tsang Feb 1987 A
4651157 Gray Mar 1987 A
4656463 Anders Apr 1987 A
4675656 Narcisse Jun 1987 A
4685131 Horne Aug 1987 A
4750197 Denekamp Jun 1988 A
4754255 Sanders Jun 1988 A
4766589 Fisher Aug 1988 A
4776003 Harris Oct 1988 A
4831647 D'Avello May 1989 A
4860336 D'Avello Aug 1989 A
4914651 Lusignan Apr 1990 A
4918425 Greenberg Apr 1990 A
4918717 Bissonnette Apr 1990 A
4926444 Hamilton May 1990 A
4941155 Chuang Jul 1990 A
4965821 Bishop Oct 1990 A
4977609 McClure Dec 1990 A
4984238 Watanabe Jan 1991 A
5014344 Goldberg May 1991 A
5025455 Nguyen Jun 1991 A
5036537 Jeffers Jul 1991 A
5040214 Grossberg et al. Aug 1991 A
5043736 Darnell Aug 1991 A
5081667 Drori Jan 1992 A
5095307 Shimura Mar 1992 A
5119403 Krishnan Jun 1992 A
5119504 Durboraw, III Jun 1992 A
5134644 Garton Jul 1992 A
5155689 Wortham Oct 1992 A
5191611 Lang Mar 1993 A
5201071 Webb Apr 1993 A
5203012 Patsiokas Apr 1993 A
5208446 Martinez May 1993 A
5212831 Chuang May 1993 A
5214556 Kilbel May 1993 A
5218618 Sagey Jun 1993 A
5223844 Mansell Jun 1993 A
5227776 Starefoss Jul 1993 A
5235633 Dennison Aug 1993 A
5245634 Averbuch Sep 1993 A
5245647 Grouffal Sep 1993 A
5272747 Meads Dec 1993 A
5282204 Shpancer Jan 1994 A
5289372 Guthrie Feb 1994 A
5301353 Borras Apr 1994 A
5301359 Van Den Heuvel Apr 1994 A
5305384 Ashby, III Apr 1994 A
5317309 Vercellotti May 1994 A
5331635 Ota Jul 1994 A
5333175 Ariyavisitakul Jul 1994 A
5334974 Simms Aug 1994 A
5347272 Ota Sep 1994 A
5363375 Chuang Nov 1994 A
5363376 Chuang Nov 1994 A
5365450 Schuchman Nov 1994 A
5365577 Davis Nov 1994 A
5379224 Brown Jan 1995 A
5381129 Boardman Jan 1995 A
5388147 Grimes Feb 1995 A
5388247 Goodwin Feb 1995 A
5389934 Kass Feb 1995 A
5390216 Bilitza Feb 1995 A
5396539 Slekys Mar 1995 A
5396653 Kivari Mar 1995 A
5408684 Yunoki Apr 1995 A
5410541 Hotto Apr 1995 A
5410739 Hart Apr 1995 A
5414432 Penny, Jr. May 1995 A
5418537 Bird May 1995 A
5420592 Johnson May 1995 A
5422816 Sprague Jun 1995 A
5428636 Meier Jun 1995 A
5438337 Aguado Aug 1995 A
5440491 Kawano Aug 1995 A
5448622 Huttunen Sep 1995 A
5450130 Foley Sep 1995 A
5459469 Schuchman Oct 1995 A
5461390 Hoshen Oct 1995 A
5475864 Hamabe Dec 1995 A
5475868 Duque-Anton Dec 1995 A
5479480 Scott Dec 1995 A
5479482 Grimes Dec 1995 A
5483549 Weinberg Jan 1996 A
5491690 Alfonsi Feb 1996 A
5497149 Fast Mar 1996 A
5504491 Chapman Apr 1996 A
5506888 Hayes Apr 1996 A
5509035 Teidemann, Jr. Apr 1996 A
5510797 Abraham Apr 1996 A
5513111 Wortham Apr 1996 A
5515043 Berard May 1996 A
5519403 Bickley May 1996 A
5519621 Wortham May 1996 A
5528232 Verma Jun 1996 A
5530701 Stillman Jun 1996 A
5537458 Suomi Jul 1996 A
5539810 Kennedy, III Jul 1996 A
5543789 Behr Aug 1996 A
5544222 Robinson Aug 1996 A
5544225 Kennedy, III Aug 1996 A
5546445 Dennison Aug 1996 A
5550551 Alesio Aug 1996 A
5551066 Stillman Aug 1996 A
5555286 Tendler Sep 1996 A
5555520 Sudo Sep 1996 A
5557254 Johnson Sep 1996 A
5565858 Guthrie Oct 1996 A
5566173 Steinbrecher Oct 1996 A
5572204 Timm Nov 1996 A
5576716 Sadler Nov 1996 A
5587715 Lewis Dec 1996 A
5590396 Henry Dec 1996 A
5594425 Ladner Jan 1997 A
RE35498 Barnard Apr 1997 E
5619684 Goodwin Apr 1997 A
5621388 Sherburne Apr 1997 A
5625668 Loomis Apr 1997 A
5627517 Theimer May 1997 A
5630206 Urban May 1997 A
5635450 Mayer Jun 1997 A
5637355 Stanforth Jun 1997 A
5640444 O'Sullivan Jun 1997 A
5650770 Schlage Jul 1997 A
5663734 Krasner Sep 1997 A
5666357 Jangi Sep 1997 A
5668803 Tymes Sep 1997 A
5673305 Ross Sep 1997 A
5680439 Aguilera Oct 1997 A
5686910 Timm Nov 1997 A
5687215 Timm Nov 1997 A
5687216 Svensson Nov 1997 A
5691980 Welles, II Nov 1997 A
5703598 Emmons Dec 1997 A
5711013 Collett Jan 1998 A
5712619 Simkin Jan 1998 A
5712899 Pace, II Jan 1998 A
5724243 Westerlage Mar 1998 A
5726893 Schuchman Mar 1998 A
5726984 Kubler Mar 1998 A
5731757 Layson, Jr. Mar 1998 A
5732326 Maruyama Mar 1998 A
5734981 Kennedy, III Mar 1998 A
5742233 Hoffman Apr 1998 A
5748083 Rietkerk May 1998 A
5748084 Isikoff May 1998 A
5751246 Hertel May 1998 A
5752186 Malackowski May 1998 A
5752193 Scholefield May 1998 A
5752195 Tsuji May 1998 A
5754554 Nakahara May 1998 A
D395250 Kabler Jun 1998 S
5761204 Grob Jun 1998 A
5761292 Wagner Jun 1998 A
5771001 Cobb Jun 1998 A
5771455 Kennedy, III Jun 1998 A
5774876 Woolley Jun 1998 A
5781156 Krasner Jul 1998 A
5784422 Heermann Jul 1998 A
5786789 Janky Jul 1998 A
5790842 Charles Aug 1998 A
5794124 Ito Aug 1998 A
5796808 Scott Aug 1998 A
5797091 Clisel Aug 1998 A
5804810 Woolley Sep 1998 A
5805576 Worley, III Sep 1998 A
5812087 Krasner Sep 1998 A
5812522 Lee Sep 1998 A
5815114 Speasl Sep 1998 A
RE35916 Dennison Oct 1998 E
5825283 Camhi Oct 1998 A
5825327 Krasner Oct 1998 A
5826188 Tayloe Oct 1998 A
5831574 Krasner Nov 1998 A
5832394 Wortham Nov 1998 A
5835907 Newman Nov 1998 A
5838237 Revell Nov 1998 A
5841396 Krasner Nov 1998 A
5841842 Baum Nov 1998 A
5842141 Vaihoja Nov 1998 A
5850392 Wang Dec 1998 A
5856986 Sobey Jan 1999 A
5864578 Yuen Jan 1999 A
5864763 Leung Jan 1999 A
5870675 Tuutijarvi Feb 1999 A
5874914 Krasner Feb 1999 A
5881069 Cannon Mar 1999 A
5881373 Elofsson Mar 1999 A
5884214 Krasner Mar 1999 A
5886634 Muhme Mar 1999 A
5890108 Yeldener Mar 1999 A
5892441 Woolley Apr 1999 A
5892454 Schipper Apr 1999 A
5901179 Urabe May 1999 A
5911129 Towell Jun 1999 A
5912886 Takahashi Jun 1999 A
5913170 Wortham Jun 1999 A
5917449 Sanderford Jun 1999 A
5918180 Dimino Jun 1999 A
5930340 Bell Jul 1999 A
5930722 Han Jul 1999 A
5933468 Kingdon Aug 1999 A
5936526 Klein Aug 1999 A
5937355 Joong Aug 1999 A
5940598 Strauss Aug 1999 A
5945944 Krasner Aug 1999 A
5946304 Chapman Aug 1999 A
5946611 Dennison Aug 1999 A
5949335 Maynard Sep 1999 A
5953694 Pillekamp Sep 1999 A
5960363 Mizikovsky Sep 1999 A
5961608 Onosaka Oct 1999 A
5963130 Schlager Oct 1999 A
5963134 Bowers Oct 1999 A
5970130 Katko Oct 1999 A
5978676 Guridi Nov 1999 A
5991279 Haugli Nov 1999 A
5999124 Sheynblat Dec 1999 A
5999126 Ito Dec 1999 A
6002363 Krasner Dec 1999 A
6006189 Strawczynski Dec 1999 A
6009325 Retzer Dec 1999 A
6009338 Iwata Dec 1999 A
6011973 Valentine Jan 2000 A
6014089 Tracy Jan 2000 A
6014090 Rosen Jan 2000 A
6014376 Abreu Jan 2000 A
6018654 Valentine Jan 2000 A
6021163 Hoshi Feb 2000 A
6024142 Bates Feb 2000 A
6031489 Wyrwas Feb 2000 A
6032037 Jeffers Feb 2000 A
6038310 Hollywood Mar 2000 A
6038595 Ortony Mar 2000 A
6041124 Sugita Mar 2000 A
6044257 Boling Mar 2000 A
6049971 Petit Apr 2000 A
6055434 Seraj Apr 2000 A
6057756 Engellenner May 2000 A
6067044 Whelan May 2000 A
6067457 Erickson May 2000 A
6069570 Herring May 2000 A
6070089 Brophy May 2000 A
6075458 Ladner Jun 2000 A
6076099 Chen Jun 2000 A
6081523 Merchant Jun 2000 A
6091969 Brophy Jul 2000 A
6097760 Spicer Aug 2000 A
6101395 Keshavachar Aug 2000 A
6122271 McDonald Sep 2000 A
6122514 Spaur Sep 2000 A
6131067 Girerd Oct 2000 A
6131366 Fukuda Oct 2000 A
6133874 Krasner Oct 2000 A
6140956 Hillman Oct 2000 A
6144336 Preston Nov 2000 A
6151493 Sasakura Nov 2000 A
6154658 Caci Nov 2000 A
6166688 Cromer Dec 2000 A
6169497 Robert Jan 2001 B1
6173194 Vanttila Jan 2001 B1
6175307 Peterson Jan 2001 B1
6181253 Eschenbach Jan 2001 B1
6195736 Lisle Feb 2001 B1
6208959 Jonsson Mar 2001 B1
6212207 Nichols Apr 2001 B1
6226529 Bruno May 2001 B1
6236652 Preston May 2001 B1
6249227 Brady Jun 2001 B1
6266008 Huston Jul 2001 B1
6269392 Cotichini Jul 2001 B1
6272315 Chang Aug 2001 B1
6275990 Dapper Aug 2001 B1
6282430 Young Aug 2001 B1
6288645 McCall Sep 2001 B1
6295461 Palmer Sep 2001 B1
6300863 Cotichini Oct 2001 B1
6300875 Schafer Oct 2001 B1
6301480 Kennedy, III Oct 2001 B1
6304186 Rabanne Oct 2001 B1
6304637 Mirashrafi Oct 2001 B1
6307471 Xydis Oct 2001 B1
6308060 Wortham Oct 2001 B2
6320535 Hillman Nov 2001 B1
6321091 Holland Nov 2001 B1
6326736 Kang Dec 2001 B1
6327533 Chou Dec 2001 B1
6343217 Borland Jan 2002 B1
6345251 Jansson Feb 2002 B1
6351495 Tarraf Feb 2002 B1
6358145 Wong Mar 2002 B1
6359923 Agee Mar 2002 B1
6362736 Gehlot Mar 2002 B1
6373842 Coverdale Apr 2002 B1
6405033 Kennedy, III Jun 2002 B1
6430176 Christie, IV Aug 2002 B1
6434198 Tarraf Aug 2002 B1
6466582 Venters Oct 2002 B2
6470046 Scott Oct 2002 B1
6477633 Grimmett Nov 2002 B1
6493338 Preston Dec 2002 B1
6516198 Tendler Feb 2003 B1
6519260 Galyas Feb 2003 B1
6522265 Hillman Feb 2003 B1
6526026 Menon Feb 2003 B1
6529744 Birkler Mar 2003 B1
6611804 Dörbecker Aug 2003 B1
6614349 Proctor Sep 2003 B1
6617979 Yoshioka Sep 2003 B2
6628967 Yue Sep 2003 B1
6665333 McCrady Dec 2003 B2
6677894 Sheynblat Jan 2004 B2
6681121 Preston Jan 2004 B1
6683855 Bordogna Jan 2004 B1
6690681 Preston Feb 2004 B1
6690922 Lindemann Feb 2004 B1
6697987 Lee Feb 2004 B2
6700867 Classon Mar 2004 B2
6747571 Fierro Jun 2004 B2
6754265 Lindemann Jun 2004 B1
6771629 Preston Aug 2004 B1
6778645 Rao Aug 2004 B1
6799050 Krasner Sep 2004 B1
6836515 Kay Dec 2004 B1
6845153 Tibutius Jan 2005 B2
6917449 Nakajima Jul 2005 B2
6940809 Sun Sep 2005 B2
6981022 Boundy Dec 2005 B2
6993362 Aberg Jan 2006 B1
7092370 Jiang Aug 2006 B2
7103550 Gallagher Sep 2006 B2
7151768 Preston Dec 2006 B2
7164662 Preston Jan 2007 B2
7206305 Preston Apr 2007 B2
7206574 Bright Apr 2007 B2
7215965 Fournier May 2007 B2
7221669 Preston May 2007 B2
7269188 Smith Sep 2007 B2
7286522 Preston Oct 2007 B2
7317696 Preston Jan 2008 B2
7398100 Harris Jul 2008 B2
7426466 Ananthapadmanabhan Sep 2008 B2
7430428 Van Bosch Sep 2008 B2
7477906 Radic Jan 2009 B2
7483418 Maurer Jan 2009 B2
7511611 Sabino Mar 2009 B2
7512098 Jiang Mar 2009 B2
7562393 Buddhikot Jul 2009 B2
7583959 Holmes Sep 2009 B2
7593449 Shattil Sep 2009 B2
7606555 Walsh Oct 2009 B2
7856240 Gunn Dec 2010 B2
20020095293 Gallagher et al. Jul 2002 A1
20020111167 Nguyen Aug 2002 A1
20020122401 Xiang Sep 2002 A1
20030016639 Kransmo Jan 2003 A1
20030073406 Benjamin Apr 2003 A1
20030147401 Kyronaho Aug 2003 A1
20030227939 Yukie Dec 2003 A1
20040034529 Hooper, III Feb 2004 A1
20040171370 Natarajan Sep 2004 A1
20040192345 Osborn Sep 2004 A1
20050031097 Rabenko Feb 2005 A1
20050090225 Muehleisen Apr 2005 A1
20050111563 Tseng May 2005 A1
20050147057 LaDue Jul 2005 A1
20050187882 Sovio Aug 2005 A1
20050207511 Madhavan Sep 2005 A1
20050215228 Fostick et al. Sep 2005 A1
20050226202 Zhang Oct 2005 A1
20060171368 Moinzadeh Aug 2006 A1
20060246910 Petermann Nov 2006 A1
20060276196 Jiang et al. Dec 2006 A1
20070087756 Hoffberg Apr 2007 A1
20070124625 Hassan May 2007 A1
20070155360 An Jul 2007 A1
20070211624 Schmidt Sep 2007 A1
20070258398 Chestnutt Nov 2007 A1
20070264964 Birmingham Nov 2007 A1
20080025295 Elliott Jan 2008 A1
20080039017 Kim Feb 2008 A1
20080056469 Preston Mar 2008 A1
20080107094 Borella et al. May 2008 A1
20080132200 Shinoda Jun 2008 A1
20080143497 Wasson Jun 2008 A1
20080182570 Kuhl Jul 2008 A1
20080212820 Park Sep 2008 A1
20080266064 Curran Oct 2008 A1
20080294340 Schmidt Nov 2008 A1
20090055516 Zhodzishsky Feb 2009 A1
20090077407 Akimoto Mar 2009 A1
20090110033 Shattil Apr 2009 A1
20090265173 Madhavan Oct 2009 A1
20090298428 Shin Dec 2009 A1
20090306976 Joetten Dec 2009 A1
20100211660 Kiss et al. Aug 2010 A1
Foreign Referenced Citations (44)
Number Date Country
2242495 Jan 2000 CA
44 24 412 Jan 1996 DE
0 242 099 Oct 1987 EP
0 528 090 Aug 1991 EP
0 512 789 May 1992 EP
0 501 058 Sep 1992 EP
0 545 783 Nov 1992 EP
545783 Nov 1992 EP
0 545 753 Jun 1993 EP
0 580 397 Jan 1994 EP
0889610 Jan 1999 EP
0 896 442 Feb 1999 EP
01 950 402 Dec 2004 EP
1 843 503 Oct 2007 EP
2 290 005 May 1994 GB
03232349 Oct 1991 JP
5130008 May 1993 JP
5252099 Sep 1993 JP
6077887 Mar 1994 JP
11109062 Apr 1999 JP
201018163 May 2010 TW
WO 8912835 Dec 1989 WO
WO 9107044 May 1991 WO
WO 9521511 Aug 1995 WO
WO 9607110 Mar 1996 WO
WO 9615636 May 1996 WO
WO 9618275 Jun 1996 WO
WO 9834164 Aug 1998 WO
WO 9834359 Aug 1998 WO
WO 9853573 Nov 1998 WO
WO 9859256 Dec 1998 WO
WO 9859257 Dec 1998 WO
WO 9914885 Mar 1999 WO
WO 9956143 Apr 1999 WO
WO 9956144 Apr 1999 WO
WO 9936795 Jul 1999 WO
WO 9949677 Sep 1999 WO
WO 0011893 Mar 2000 WO
WO 0178249 Oct 2001 WO
WO 0199295 Dec 2001 WO
WO 02054694 Jul 2002 WO
WO 03034235 Apr 2003 WO
WO 03081373 Oct 2003 WO
WO 2009149356 Dec 2009 WO
Related Publications (1)
Number Date Country
20100202435 A1 Aug 2010 US
Continuations (2)
Number Date Country
Parent 12372255 Feb 2009 US
Child 12763944 US
Parent 11048623 Jan 2005 US
Child 12372255 US