The present disclosure relates to braking systems and, more specifically, to a bi-stable voice coil linear activated park brake.
Typical aircraft brakes comprise one or more rotors and stator that, when compressed axially, cause an aircraft wheel to resist rotation. While parked, it may be desirable to maintain brake compression to resist unwanted movement of the aircraft.
Park brake systems comprising a tapered motor shaft having a first diameter and a second diameter, the second diameter being greater than the first diameter, a spring disposed at least partially around a circumference of the tapered motor shaft, a voice coil disposed at least partially around a circumference of a bobbin, a first one-way clutch housed at least partially within the bobbin, the first one-way clutch disposed coaxial to the tapered motor shaft, and an annular magnet disposed coaxial to the tapered motor shaft and proximal to the first one-way clutch, wherein, in response to a first voltage applied to the voice coil, the first one-way clutch translates axially in a first direction with respect to the tapered motor shaft and engages with the second diameter, and wherein, in response to a second voltage applied to the voice coil, the first one-way clutch translates axially in a second direction and is disposed about the first diameter are disclosed.
Methods comprising applying a first voltage to a voice coil disposed at least partially around a circumference of a bobbin, wherein a first one-way clutch is housed at least partially within the bobbin, the first one-way clutch disposed coaxial to a tapered motor shaft having a first diameter and a second diameter, the second diameter being greater than the first diameter, translating the bobbin and the first one-way clutch, translating the first one-way clutch axially in a first direction with respect to the tapered motor shaft, and engaging the first one-way clutch to the second diameter, wherein rotation of the tapered motor shaft is prevented in a first rotational direction in response to engagement of the first one-way clutch with the tapered motor shaft are disclosed.
The subject matter of the present disclosure is particularly pointed out and distinctly claimed in the concluding portion of the specification. A more complete understanding of the present disclosure, however, may best be obtained by referring to the detailed description and claims when considered in connection with the drawing figures, wherein like numerals denote like elements.
The detailed description of exemplary embodiments herein makes reference to the accompanying drawings, which show exemplary embodiments by way of illustration and their best mode. While these exemplary embodiments are described in sufficient detail to enable those skilled in the art to practice the disclosure, it should be understood that other embodiments may be realized and that logical, electrical, and mechanical changes may be made without departing from the spirit and scope of the disclosure. Thus, the detailed description herein is presented for purposes of illustration only and not of limitation. For example, the steps recited in any of the method or process descriptions may be executed in any order and are not necessarily limited to the order presented. Furthermore, any reference to singular includes plural embodiments, and any reference to more than one component or step may include a singular embodiment or step. Also, any reference to attached, fixed, connected or the like may include permanent, removable, temporary, partial, full and/or any other possible attachment option. Additionally, any reference to “without contact” (or similar phrases) may also include reduced contact or minimal contact.
An aircraft brake system may comprise an end plate distal from a plurality of interleaved rotor disks and stator disks which together form a brake heat sink. Each rotor disk may be coupled to the wheel for rotation therewith and each stator disk may be coupled to the wheel support against rotation. The brake mechanism also generally includes a torque tube and a back leg on which a pressure plate, end plate and stator disks are slidably mounted against rotation relative to the wheel and rotor disks. The stator disks may comprise two wear faces and the pressure plate may comprise a single wear face. The rotors disks and stator disks may be formed of a friction material, such a carbon/carbon or a carbon metallic matrix material. A brake head may house the piston motor or one or more rams that extend to move the pressure plate and axially compress the brake disk stack against the end plate.
In various embodiments, a brake system may comprise a brake system controller (“BSC”) coupled to one or more electromechanical actuator controller (“EMACs”), which may drive an electromechanical actuator (“EMA”). The BSC may be in communication with a brake pedal, and thus may control the EMACs in accordance with pilot/copilot braking commands. The EMA may be coupled to or otherwise operate a pressure generating device, such as, for example, a ball screw, a ram, and/or the like. In operation, the EMA may cause the pressure generating device to move and/or exert a force on other brake system structures, such as a brake disk or pad to exert a stopping force on a wheel or other suitable moving structure. This stopping force may load and/or exert a corresponding force on the EMA structures such as, for example, an EMA housing.
For example, with reference to
A brake may be used to prevent an EMA from rotating the ball screw in a first direction in one state, while permitting rotation of the ball screw in the first direction in a second state. For example, in a bi-stable brake, prevention of ball screw rotation may be advantageous in a parking brake mode. A bi-stable brake may be switched from one state to another vis-à-vis the brake stack. The brake stack may take a first state that prevents ball screw rotation (i.e., a “locked state”) and a second state that allows ball screw rotation (i.e., an “unlocked state”).
For example, with reference to
According to various embodiments, a voice coil 120 may be disposed at least partially around a circumference of a bobbin 110. In various embodiments, voice coil 120 may be a wire of copper or any other material now known or hereinafter developed capable of creating a magnetic field. According to various embodiments, the bobbin 110 may comprise a ferromagnetic insert 115. In various embodiments, ferromagnetic insert 115 may be disposed in apertures 114 of bobbin 110. Furthermore, in various embodiments, the spring 140 may exert a distal force on the bobbin 110 (e.g., towards A along axis A-A′).
In various embodiments, park brake system 100 may also comprise a first one-way clutch 160 housed at least partially within the bobbin 110. In various embodiments, the first one-way clutch 160 may be disposed coaxial to the tapered motor shaft 150 (e.g., along axis A-A′). First one-way clutch 160 is not particularly limited according to various embodiments and, thus, may include any now known or hereinafter developed one-way clutch. For example, various one-way clutches may include at one of an HF type one-way clutch, an HFL type one-way clutch, an NCM type one-way clutch, an NHF type one-way clutch, an NCU type one-way clutch, an NCZ type one-way clutch, an NCZC type one-way clutch, an NCZX type one-way clutch, and an NCUX type one-way clutch, all commercially available from the NTN® Corporation.
Moreover, in various embodiments, and with momentary reference to
With reference back to
Accordingly, in various embodiments, when a first voltage is applied to the voice coil 120, a magnetic axial force may be generated due to a flux field created between the annular magnet 145 and the annular steel ring 135. Due to the axial force, the bobbin 110, which carries the first one-way clutch 160, may translate axially in a first direction (e.g., proximally from section 151 to section 157) with respect to the tapered motor shaft 150 and may engage with the second diameter of section 157.
For example, with reference to
According to various embodiments, bobbin 110 may be held in contact with the annular steel ring 135 due to the proximity of the bobbin 110 and the ferromagnetic insert 115 to the annular magnet 145. Thus, in various embodiments, the first one-way clutch 160 may maintain engagement with the second diameter of section 157 (shown in
According to various embodiments, when a second voltage is applied to the voice coil 120, the first one-way clutch 160 may translate axially in a second direction (e.g., a distal direction) and may be disposed about the first diameter of section 151. For example, in various embodiments, application of a second voltage may allow the force of spring 140 to overcome the force of annular magnet 145 and translate bobbin 110 and one-way clutch 160 distally along motor shaft 150. In various embodiments, the second voltage may be reversed relative to the first voltage.
With reference to
With reference to
According to various embodiments, method 600 is not particularly limited and may include a second one-way clutch 162 housed at least partially within the bobbin 110 (as shown in
With reference to
Method 700 may also comprise applying a second voltage to the voice coil 120 (step 740). In various embodiments, method 700 may include translating the first one-way clutch 160 axially in a second direction (step 750). Method 700 may also include disposing the first one-way clutch 160 about the first diameter (step 760), in accordance with various embodiments. According to various embodiments, disposing the first one-way clutch 160 about the first diameter of section 151 may disengage the first one-way clutch 160 from the second diameter of section 157 of tapered motor shaft 150.
Benefits, other advantages, and solutions to problems have been described herein with regard to specific embodiments. Furthermore, the connecting lines shown in the various figures contained herein are intended to represent exemplary functional relationships and/or physical couplings between the various elements. It should be noted that many alternative or additional functional relationships or physical connections may be present in a practical system. However, the benefits, advantages, solutions to problems, and any elements that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as critical, required, or essential features or elements of the disclosed embodiments. The scope of the claimed embodiments is accordingly to be limited by nothing other than the appended claims, in which reference to an element in the singular is not intended to mean “one and only one” unless explicitly so stated, but rather “one or more.” Moreover, where a phrase similar to “at least one of A, B, or C” is used in the claims, it is intended that the phrase be interpreted to mean that A alone may be present in an embodiment, B alone may be present in an embodiment, C alone may be present in an embodiment, or that any combination of the elements A, B and C may be present in a single embodiment; for example, A and B, A and C, B and C, or A and B and C. Different cross-hatching is used throughout the figures to denote different parts but not necessarily to denote the same or different materials.
Systems, methods and apparatus are provided herein. In the detailed description herein, references to “one embodiment”, “an embodiment”, “an example embodiment”, etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described. After reading the description, it will be apparent to one skilled in the relevant art(s) how to implement the disclosure in alternative embodiments.
Furthermore, no element, component, or method step in the present disclosure is intended to be dedicated to the public regardless of whether the element, component, or method step is explicitly recited in the claims. No claim element herein is to be construed under the provisions of 35 U.S.C. §112(f), unless the element is expressly recited using the phrase “means for.” As used herein, the terms “comprises”, “comprising”, or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
Number | Name | Date | Kind |
---|---|---|---|
2057876 | Berry | Oct 1936 | A |
2430174 | Hoover | Nov 1947 | A |
2675900 | Malick | Apr 1954 | A |
2717066 | Malick | Sep 1955 | A |
2727605 | Rabinow | Dec 1955 | A |
2988189 | Thomas | Jun 1961 | A |
4125790 | Stratienko | Nov 1978 | A |
4299315 | Ohtsuka | Nov 1981 | A |
4788463 | Layh | Nov 1988 | A |
4907464 | Isozumi | Mar 1990 | A |
5185542 | Lazorchak | Feb 1993 | A |
5254528 | Takahata | Oct 1993 | A |
5490583 | Anderson | Feb 1996 | A |
5685398 | Marshall | Nov 1997 | A |
5847478 | Usui | Dec 1998 | A |
5889348 | Muhlberger | Mar 1999 | A |
5988342 | Ito | Nov 1999 | A |
6132332 | Yasui | Oct 2000 | A |
6244403 | Ito et al. | Jun 2001 | B1 |
6471017 | Booz | Oct 2002 | B1 |
7510058 | Ether | Mar 2009 | B2 |
7714685 | Pescheck | May 2010 | B2 |
7717240 | Anderson | May 2010 | B2 |
8371423 | Hehl, Sr. | Feb 2013 | B2 |
8616343 | Wako | Dec 2013 | B2 |
9051981 | Gitnes | Jun 2015 | B2 |
20030042802 | Pierre et al. | Mar 2003 | A1 |
20040055835 | Klode et al. | Mar 2004 | A1 |
20050082908 | Klode et al. | Apr 2005 | A1 |
20050285473 | Kobayashi | Dec 2005 | A1 |
20080071455 | Shiraki | Mar 2008 | A1 |
20080097269 | Weinberg | Apr 2008 | A1 |
20090032354 | Marsh | Feb 2009 | A1 |
20130087427 | Kato | Apr 2013 | A1 |
20130209010 | Gruber | Aug 2013 | A1 |
20140345999 | Kitayama | Nov 2014 | A1 |
Number | Date | Country |
---|---|---|
2785656 | May 2000 | FR |
Entry |
---|
Extended European Search Report dated Jan. 4, 2016 in European Application No. 15168483.4. |
Number | Date | Country | |
---|---|---|---|
20150344130 A1 | Dec 2015 | US |