There are no previously filed, nor currently any co-pending applications, anywhere in the world.
The present application relates to a container that houses a self-contained heating element and more particularly, a container that has a voice control feature so a user can activate the heating element to heat the container and its contents on command.
Conventionally, a container with thermal properties may passively keep liquid or other contents stored within hot or warm. The reality is that such containers may not be capable of maintaining a certain temperature range and certainly not indefinitely, as the thermal properties of such containers are only mildly effective at keeping the heat from escaping into the surrounding environment and causing the contents to become room temperature.
Example embodiments of the present application include an apparatus that includes an inner vessel, a vacuum insulator vessel disposed around and bonded to the inner vessel, a bottom cover affixed to the inner vessel and the vacuum insulator, the bottom cover including a control circuit with a voice recognition module, a transistor switch and one or more sensors. A heater strip is disposed around at least a portion of the bottom cover and is in contact with the inner vessel, a charging interface is configured to receive a power charge from an external source, a battery pack with a number of conduits is configured to provide a power supply to the control circuit and the heater strip and to receive the power charge from the charging interface, and the voice recognition module is configured to identify audio commands received and activate the power supply of the battery pack to the heater strip to increase a temperature of the inner vessel and contents of the inner vessel.
It will be readily understood that the components of the present application, as generally described and illustrated in the figures herein, may be arranged and designed in a wide variety of different configurations. Thus, the following detailed description of the embodiments of a method, apparatus, and system, as represented in the attached figures, is not intended to limit the scope of the application as claimed, but is merely representative of selected embodiments of the application.
The features, structures, or characteristics of the application described throughout this specification may be combined in any suitable manner in one or more embodiments. For example, the usage of the phrases “example embodiments”, “some embodiments”, or other similar language, throughout this specification refers to the fact that a particular feature, structure, or characteristic described in connection with the embodiment may be included in at least one embodiment of the present application. Thus, appearances of the phrases “example embodiments”, “in some embodiments”, “in other embodiments”, or other similar language, throughout this specification do not necessarily all refer to the same group of embodiments, and the described features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
In operation, the heating element/strip 222 should not be engaged when the cup is empty, the battery operator heater does not rely on external power and cords while in operation. The container will heat fluids based on the fluid level to maintain a proper temperature without overheating or underheating. Ideally, the amount of heat (e.g., time) applied is based on a beverage level within the container. Spills, tip-over of the container, low levels of fluid should trigger the heating to turn off automatically if engaged. In one example, the heater strip may be disposed near a middle section of the container in direct contact with the inner vessel 104 so the heat can be applied directly to the liquids.
In one example embodiment, a voice command control feature may be applied to control the temperature of the liquids in the container. For example, a command may be spoken aloud (e.g., “hot”, “hotter”, “hottest”, “warm”, “lukewarm”, etc.) to heat to a certain temperature level, a hotter level, a hottest level, etc. The heater feature is based on the heater strip 156 being heated by an electric charge applied by the battery pack 124. The battery may be a lithium-polymer battery pack located in a bottom chamber of the container. The activation of the heat is applied by the microcontroller 210 also located in the bottom chamber/cover 110 of the container 100. In one example, a gyroscope sensor included on the circuit may sense movement of the container, which wakes-up the microcontroller and causes the system to power-on for command reception. The voice command may then be made and identified by the microphone 212 and authenticated by programmed commands stored in the voice recognition module 214. The commands are identified by an audio processor function and the heater strip 156 is controlled by pulse width modulation to the desired temperature which is monitored by the feedback sensory of the signal conditioner 218 and a sensor located in the inner vessel 104. Also, when the gyro component senses the container has tipped to over by a certain degree, the microcontroller 210 may go to an inactive mode after a certain amount of time.
References to the ‘controller’ or ‘controller module’ may indicate all or most of the components in
Temperature is sensed by a digital sensor 224, which is placed on the inner vessel's body and which is connected by a conduit to the circuit. The battery pack may supply a 5 VDC supply to the boost regulator 234. The battery is charged by a charging station that includes a 5 VDC supply from a micro USB connection or similar power supply interface. The interface may offer power to the circuit board via an ideal diode circuit, otherwise the power can be diverted to the battery.
In other example embodiment, a fluid sensor may be used to identify whether there is sufficient amount of fluid in the container to proceed with a heating operation. In other words, when the fluid drops below a threshold level in the container, the circuit may not be operable to engage the heating strip to heat the fluid as a safety measure. In another example, a pressure switch and actuator may be used to permit a user to press an actuator (button) to initiate a heating operation. This also permits the heater function to turn off after a certain period of time after the actuator is depressed. The accelerometer and/or gyroscope can identify when the container is in motion and may disengage the heat supply during such an event and/or an appreciable time after movement to ensure the container is resting on a secure surface prior to engaging the heat strip 156/222.
One example embodiment may include an apparatus that provides an inner vessel, a vacuum insulator vessel disposed around and bonded to the inner vessel, a bottom cover affixed to the inner vessel and the vacuum insulator, the bottom cover including a control circuit with a voice recognition module, a transistor switch and one or more sensors. The apparatus also includes a heater strip disposed around at least a portion of the bottom cover and in contact with the inner vessel, a charging interface configured to receive a power charge from an external source, a battery pack with a plurality of conduits configured to provide a power supply to the control circuit and the heater strip and to receive the power charge from the charging interface, and where the voice recognition module is configured to identify audio commands received and activate the power supply of the battery pack to the heater strip to increase a temperature of the inner vessel and contents of the inner vessel.
The inner vessel may be metal. The one or more sensors include a gyroscope, a temperature sensor, and a microphone. The gyroscope disables the power supply from heating the heater strip when movement is sensed. The gyroscope enables the power supply to heat the heater strip when no movement is detected for a defined period of time. The temperature sensor enables the power supply to heat the heater strip when a temperature of the inner vessel is below a predetermined temperature threshold and disables the power supply from heating the heater strip when the temperature of the inner vessel is equal to or above the predetermined temperature threshold. The predetermined temperature threshold is set based on an audio command received and processed by the voice recognition module. An outer shell is disposed around and bonded to the vacuum insulator and the bottom cover, the outer shell includes a ceramic or plastic material and a handle. The charging interface is a USB interface. An LED is included on an outer portion of the bottom cover. A face plate is disposed on the outer portion of the bottom cover and is configured to hold the LED and the USB interface.
Although an exemplary embodiment of the system, method, and device of the present invention has been illustrated in the accompanied drawings and described in the foregoing detailed description, it will be understood that the invention is not limited to the embodiments disclosed, but is capable of numerous rearrangements, modifications, and substitutions without departing from the spirit or scope of the invention as set forth and defined by the following claims. For example, the capabilities of the system can be performed by one or more of the modules or components described herein or in a distributed architecture and may include a transmitter, receiver or pair of both. For example, all or part of the functionality performed by the individual modules, may be performed by one or more of these modules. Further, the functionality described herein may be performed at various times and in relation to various events, internal or external to the modules or components. Also, the information sent between various modules can be sent between the modules. Also, the messages sent or received by any of the modules may be sent or received directly and/or via one or more of the other modules.
Presenting the above-described functions as being performed by a “system” is not intended to limit the scope of the present invention in any way, but is intended to provide one example of many embodiments of the present invention. Indeed, methods, systems and apparatuses disclosed herein may be implemented in localized and distributed forms consistent with computing technology.
It should be noted that some of the system features described in this specification have been presented as modules, in order to more particularly emphasize their implementation independence. For example, a module may be implemented as a hardware circuit comprising custom very large scale integration (VLSI) circuits or gate arrays, off-the-shelf semiconductors such as logic chips, transistors, or other discrete components. A module may also be implemented in programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices, graphics processing units, or the like.
A module may also be at least partially implemented in software for execution by various types of processors. An identified unit of executable code may, for instance, comprise one or more physical or logical blocks of computer instructions that may, for instance, be organized as an object, procedure, or function. Nevertheless, the executables of an identified module need not be physically located together, but may comprise disparate instructions stored in different locations which, when joined logically together, comprise the module and achieve the stated purpose for the module. Further, modules may be stored on a computer-readable medium, which may be, for instance, a hard disk drive, flash device, random access memory (RAM), tape, or any other such medium used to store data.
Indeed, a module of executable code could be a single instruction, or many instructions, and may even be distributed over several different code segments, among different programs, and across several memory devices. Similarly, operational data may be identified and illustrated herein within modules, and may be embodied in any suitable form and organized within any suitable type of data structure. The operational data may be collected as a single data set, or may be distributed over different locations including over different storage devices, and may exist, at least partially, as electronic signals.
It will be readily understood that the components of the invention, as generally described and illustrated in the figures herein, may be arranged and designed in a wide variety of different configurations. Thus, the detailed description of the embodiments is not intended to limit the scope of the invention as claimed, but is merely representative of selected embodiments of the invention.
One having ordinary skill in the art will readily understand that the invention as discussed above may be practiced with steps in a different order, and/or with hardware elements in configurations that are different than those which are disclosed. Therefore, although the invention has been described based upon these preferred embodiments, it would be apparent to those of skill in the art that certain modifications, variations, and alternative constructions would be apparent, while remaining within the spirit and scope of the invention. In order to determine the metes and bounds of the invention, therefore, reference should be made to the appended claims.
While preferred embodiments of the present application have been described, it is to be understood that the embodiments described are illustrative only and the scope of the application is to be defined solely by the appended claims when considered with a full range of equivalents and modifications thereto.