The present subject matter relates to a gateway device and/or programming for such devices, wherein the gateway device is enabled with client programming for client-server communications using a presence and networking messaging protocol. The gateway device may be configured by a services subscriber and/or service provider to expose the presence and functionalities of one or more associated endpoint devices to local and/or remote presence and networking message servers or other devices via a wide area network. The subscriber and/or service provider may also configure the gateway to provide notices, status, or other messages in response to events, and may also configure the routing of such messages to particular parties and/or devices for display.
The digital home is now becoming more complex with the myriad of new and emerging digital devices and services intended to address many user and consumer needs such as communication, entertainment, privacy and security, etc. These digital devices can be connected with a gateway device in the user premises to form a home network. The digital devices can have a variety of functionalities, as well as proprietary interfaces and communication protocols to access such functionalities. Although an increasing number of emerging digital devices are enabled with programming for client-server communications using presence and networking message protocols, many digital devices rely on proprietary communications protocols and driver programs to allow them to interoperate with devices in a home network.
A home network user may desire to have the associated devices of the home network provide alerts, notifications, status, or other messages to the user in response to particular events, and have such messages directed to specific individuals and/or digital endpoint devices for display. Upon receipt of such messages, the user may desire to provide instructions to one or more of the digital devices of the home network. The user may also desire to determine the status of one or more of the devices of the home network in the absence of an event. The home network user may also desire to remotely handle and/or control various endpoint devices associated with a gateway device of the home network. However, the user may wish to limit the “visibility” of specific endpoint devices and their functions to local or remote servers providing applications services or server-side presence and networking communications for the home network.
Additionally, the user may wish to establish peer to peer communications between the gateway device in the user premises and another local or remote gateway device with associated endpoint devices. The peer to peer connection is desirable, as it may enable a user to access the functionalities and status of endpoint devices associated with another gateway. The peer to peer communication is also desirable, as it minimizes management of communications between two or more gateway devices.
In that regard, it would be desirable to provide a gateway device for a user premises that provides a presence and networking messaging client for client-server communications, wherein endpoint devices associated with the gateway device may not be enabled themselves with such clients. It may be further desirable to enable a gateway device to be configured by a services subscriber or a service provider to facilitate the handling of events by the gateway and provide notices, status, or other messages in response to events, and route such messages to particular parties and/or devices for display. Moreover, it may be desirable for associated endpoint devices to communicate with one another via the gateway device, without using presence and networking communications. It may be further desirable to enable peer to peer communications between two or more gateway devices.
The technology discussed herein may be embodied in gateway devices, typically for deployment at user premises, and/or to programming for devices that may function as such gateways. The gateway device is implemented in such a manner as to provide client programming to enable client-server communications using a presence and networking message protocol. The gateway device may be further configured to have application service logic that functions as an intermediary between associated digital endpoint devices and one or more driver programs. The driver program may communicate with the endpoint device using its own communication protocol. The driver may abstract the functionalities of the endpoint as a set of attributes for the endpoint device. The service subscriber (i.e., user) or a service provider may configure the gateway so as to control the exposure of the presence and functionalities of the one or more endpoint devices to presence and networking messaging communication servers or other external devices.
Hence, in one example, a gateway device for operation at a user premises is disclosed to provide and manage application services provided for endpoint devices associated with the gateway device. The gateway device has a first interface for enabling communications within the premises, with one or more associated endpoint devices within the premises. The gateway device also has a second interface for enabling bi-directional communications for the gateway device via a wide area network. The gateway device further includes a processor coupled to the interfaces and storage coupled to the processor. The gateway device further comprises programming in the storage including a communications client program for configuring the gateway to enable communications via the interfaces, and to further enable client-server communications between the gateway device and a remote communications server via the wide area network using a presence and networking message protocol. The programming in the storage also includes a driver program for at least one associated endpoint device, the driver program enabling communications between the gateway device and the least one associated endpoint device using at least one driver communications protocol, wherein the driver program enables the gateway device to control and manage the at least one associated endpoint device using the at least one driver communications protocol. The programming of the gateway device includes application service programming for the application services, wherein execution of the programming by the processor causes the gateway device to provide functions, via one or both of the interfaces, for each respective application service for one or more of the associated endpoint devices using the driver program and the at least one driver communications protocol.
Execution of the programming by the processor causes the gateway device to provide enforcement regarding authorization, authentication, configuration, or use of the respective application service via the associated endpoint devices. The execution of the programming by the processor also causes the gateway device to provide management of the application services based upon the communications with a service management center via the wide area network through the second interface.
The associated endpoint device is typically without communications programming for presence and networking communications. The communications client program of the gateway device may provide presence and networking communications for the driver program, wherein the driver program communicates with the associated endpoint device without programming for presence and networking communications via the at least one driver communications protocol. The presence and networking messaging communications may also be provided between the gateway device and the associated endpoint device, the endpoint device having communications programming for presence and networking communications via the respective driver program for the associated endpoint device. The presence and networking messaging communications of the gateway device may also be provided between the gateway device and the associated endpoint device where the endpoint device has presence and networking communications programming.
The presence and networking message protocol used by the communications client of the gateway device may comprise an instant messaging type protocol. Endpoint device having presence and networking communications programming may utilize an instant messaging type protocol for communications.
The programming of the gateway device may also enable the first or second interface of the gateway device to establish peer communications using presence and networking message communications of the client-server communications between the gateway device and the remote server via the wide area network.
Execution of the programming by the processor further causes the gateway device to support one or more application service interfaces via different endpoint devices using the associated driver program, with respect to one or more application services provided through the gateway device. One of the different application service interfaces is a user interface for implementation via a personal computer type endpoint device, a cell phone type endpoint device, a personal digital assistant endpoint device, a remote control type endpoint device, or a television, or any combination thereof. An alert message or status message may be transmitted from the gateway device using the driver communications protocol to the personal computer, cell phone, personal digital assistant, remote control, or the television for display in the user interface, or overlaid onto or inserted into a display of the television, cell phone, personal digital assistant, remote control, or personal computer. An alert message or status message also may be transmitted from the associated endpoint device via the gateway device using the driver communications protocol to the personal computer, cell phone, personal digital assistant, remote control, or the television for display in the user interface, or overlaid onto or inserted into a display of the television, cell phone, personal digital assistant, remote control, or personal computer. The user interface, enabled by the driver program and driver communications protocol, enables a user to determine status, change a configuration, view an event log, or any combination thereof for the associated endpoint device.
The exemplary gateway device may further include programming in the storage that has configuration data for management, responses, and interactions with an associated endpoint device in response to a client-server communication between the gateway and the remote communications server via the wide area network using the presence and networking message protocol. The configuration data may be received by the gateway device from a service management center via the wide area network through the second interface of the gateway device. The configuration data also may be received by the gateway device from a user via the first interface, second interface, or the first and second interfaces. The configuration data and the driver program may also provide a list of functionalities and status of the respective endpoint devices to the communications client program for use with client-server communications with the remote communications server via the wide area network.
The programming on the storage of the exemplary gateway device may include configuration data for parameters of access, control, presentation notification and service for each associated endpoint device.
The exemplary gateway device may be comprised of service logic, wherein the service logic processes communications received by the communications client for an associated endpoint device via the driver program.
In addition, the communications client of the exemplary gateway device may enable client-server communications with a public communications server or a private communications server via the first or second interfaces. The remote communications server may be a presence and networking message server or a service management center.
The driver program of the gateway device may enable communication between a first associated endpoint device and a second associated endpoint device via the at least one driver communications protocol. The first associated endpoint device may transmit an alert message or status message to the second associated endpoint device via the at least one driver communications protocol. The configuration data of the gateway device may provide a list of functionalities and status of the first associated endpoint device to the second associated endpoint device via the at least one driver communications protocol.
The communications client programming of the gateway device that enables client-server communications with a remote communications server via the wide area network may further enable communication with a second gateway device via the remote communications server. The communications client programming of the gateway device may receive wide area network address information via the remote communications server from the second gateway device, such that the received network address information enables the gateway device to establish peer to peer communication between the gateway device and the second gateway device. The gateway device may transmit a list of functionalities to the second gateway device via the peer to peer communications between the gateway device and the second gateway device. The list of functionalities transmitted may be based upon the associated endpoint devices of the gateway device. The list of functionalities of the associated endpoint device transmitted may also be based on configuration data for each associated endpoint device located in the programming in the storage of the gateway device.
In addition, a first endpoint device associated with the gateway device may be a remote control. The gateway device may be enabled to receive a signal from the remote control via the driver communications protocol of the driver program, wherein the gateway device may control and manage the second associated endpoint device via the driver program based on the received signal from the remote control.
The disclosure also encompasses program products for implementing gateways of the type outlined above. In such a product, the programming is embodied in or carried on a machine-readable medium. For example, the detailed description discloses an exemplary product comprising a machine-readable medium and programming embodied in the medium for gateway device for operation at a user premises to provide and manage application services provided for endpoint devices associated with the gateway device. The gateway device has a first interface for enabling communications within the premises, with one or more associated endpoint devices within the premises. The gateway device also has a second interface for enabling bi-directional communications for the gateway device via a wide area network. The gateway has a processor coupled to the interfaces, wherein the programming is executable by the processor. The programming includes a communications client program for configuring the gateway to enable communications via the interfaces, and to further enable client-server communications between the gateway device and a remote communications server via the wide area network using a presence and networking message protocol. The programming also includes a driver program for at least one associated endpoint device, the driver program enabling communications between the gateway device and the least one associated endpoint device using at least one driver communications protocol, wherein the driver program enables the gateway device to control and manage the at least one associated endpoint device using the at least one driver communications protocol. The programming also includes application service programming for the application services, wherein execution of the programming by the processor causes the gateway device to provide functions, via one or both of the interfaces, for each respective application service for one or more of the associated endpoint devices using the driver program and the at least one driver communications protocol.
The detailed description discloses an exemplary system to provide and manage application services for endpoint devices. The system includes a gateway device for operation at a user premises to provide and manage application services provided for endpoint devices associated with the gateway device. The gateway device has a first interface for enabling communications within the premises, with one or more associated endpoint devices within the premises. The gateway device also has a second interface for enabling bi-directional communications for the gateway device via a wide area network. In addition, the gateway device includes a processor coupled to the interfaces, storage coupled to the processor, and programming in the storage. The programming includes a communications client program for configuring the gateway to enable communications via the interfaces, and to further enable client-server communications between the gateway device and a remote communications server via the wide area network using a presence and networking message protocol. The programming also includes a driver program for at least one associated endpoint device, the driver program enabling communications between the gateway device and the least one associated endpoint device using at least one driver communications protocol, wherein the driver program enables the gateway device to control and manage the at least one associated endpoint device using the at least one driver communications protocol. The programming further includes application service programming for the application services, wherein execution of the programming by the processor causes the gateway device to provide functions, via one or both of the interfaces, for each respective application service for one or more of the associated endpoint devices using the driver program and the at least one driver communications protocol. The system also includes a service management system coupled to the wide area network for communication with the gateway device, for remotely managing the delivery of the application services via the gateway device.
The service management center of the system may include the remote communications server. Alternatively, the remote communications server may be separate from the service management center. In either aforementioned arrangement, the remote communications server may be a public communications server or a private communications server.
Additional advantages and novel features will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art upon examination of the following and the accompanying drawings or may be learned by production or operation of the examples. The advantages of the present teachings may be realized and attained by practice or use of various aspects of the methodologies, instrumentalities and combinations set forth in the detailed examples discussed below.
The drawing figures depict one or more implementations in accord with the present teachings, by way of example only, not by way of limitation. In the figures, like reference numerals refer to the same or similar elements.
In the following detailed description, numerous specific details are set forth by way of examples in order to provide a thorough understanding of the relevant teachings. However, it should be apparent to those skilled in the art that the present teachings may be practiced without such details. In other instances, well known methods, procedures, components, and circuitry have been described at a relatively high-level, without detail, in order to avoid unnecessarily obscuring aspects of the present teachings.
The various technologies disclosed herein provide application service logic in a gateway device in the customer premises. The gateway may be enabled with client programming to facilitate client-server communications using a presence and networking message protocol. The application service logic of the gateway device may have programming for providing application services and to facilitate communications with the client programming, as well as configuration data. The application service logic also serves as an intermediary between the client programming and associated endpoint devices coupled to the gateway device. One or more driver programs enable communications between the endpoint devices and the service logic. The driver program communicates with each device using a proprietary communication protocol.
The driver program may also enable associated endpoint devices to communicate with one another.
As directed by the configuration data of the service logic, which is established by a service subscriber (i.e., user) or service provider, the presence and/or various functions of an endpoint device may be provided to local or remote servers, or other devices. The configuration data of the service logic may also provide guidelines for an endpoint device providing status updates, notices, or other messages to particular users and/or particular display devices.
The gateway device is also implemented in such a manner as to offer its user many of the applications services from the user premises. As further described below, these application services comprise, by way of example, programming to simplify support services in the digital home including one or more of media delivery, content management, access control and use tracking, file sharing, and protection and back-up services of both Internet/Web-generated digital media content and user generated digital media content. The gateway device is programmed to simplify various aspects of managing the emerging home/business digital networks including the myriad of interconnected digital endpoint devices associated with the gateway device. It is important to note that the endpoint devices need not reside within, or be located at, the premises to maintain their association with the gateway device. The application services offered via the gateway device may be managed by the service management center.
The gateway device and the system architecture effectively place a set of application services on a tightly coupled (e.g. always-on or always-available basis), secure hardware platform that is externally managed by the service management center. The gateway device comprises application services programming, and associated hardware, that is positioned on the user premises side of the Network Service Provider Demarcation, which is configured to be managed by an external service management center.
Reference now is made in detail to the examples illustrated in the accompanying drawings and discussed below.
With reference to
The examples discussed herein also introduce a logical platform management layer to the user premises-side, which allows for inter-layer allocation of local resources. This function guarantees access between the Application Service Logic function on the user premises network and the applications service management function in the service management center by assuring that the local user premises hardware and software modules are functioning at a required state (CPU and memory usage, bandwidth usage, QoS settings, etc.) in order for the ASL to have the necessary resources to establish its required communications path to the ASM.
The platform manager is also responsible for implementing that part of the managed application services to be performed by the gateway device. In that regard, the platform manager secures and manages the overall hardware platform, given that in this scenario, the NF layer and the AS layer reside on one hardware platform. This secure hardware platform provides a robust and secure operating environment for the AS Layer. So, to establish a secure and robust hardware operating environment, the platform manager must interface with all the layers above it and allow for bi-directional management information flow among all of the functions. For example, if the Application Client is a telephony application and the desired application is call processing, the application must first connect to the LAN termination interface (1). Then a connection must be established to the AS Layer through the NF layer (2). At this point the platform manager determines if there are sufficient resources available for this to take place on the routing and switching modules and if there is not sufficient resources on either the LAN Termination interface or the NF layer functions, it would take the necessary corrective measure to free up the required resources so that the application can execute properly (e.g. prioritize packets, throttle bandwidth, attempt to reduce noise on an RF interface, or free up time slices on a TDMA interface such as MoCA). Once that is done, the connection is established to the AS Layer (3), where the ASE and ASL, having been updated by the ASM in the network, respond instantaneously to the Application Client, completing the service request.
Application services represent functionalities, implemented in the higher layer(s) of the protocol or logical stack above the network layer(s) that may extend up to the top application layer (layer 7of the OSI model). An application service, for example, provides application server communication with a client functionality of one or more endpoint devices, for the respective service, communicated on top of network layer communications through the interfaces. In the examples, the services are provided on a subscription service basis to users at the premises. Hence, the application service logic provides enforcement regarding authorization, authentication, configuration, and/or use of the respective service via the endpoint devices. The application service includes service and feature functions, implemented and controlled by the application service logic. Management of the application service is based on communications with the service management center via the wide area network.
The illustrated architecture of the gateway device-service management center network enables other features and capabilities that have not previously been available to the user. For instance, peer-to-peer application communication between or among gateways is possible without the need to go through, or utilize resources at, an external service management center or presence and networking message server. Communications through the service management center are also possible. In addition, given the considerable functionality present in the gateway device, and its ability to manage the various endpoint devices associated with it (as explained below), the user interface with the gateway can be presented and utilized on the home TV. Additionally, information from other endpoint devices, such as the PC, network sources (such as an RSS (Really Simple Syndication) service), may now be overlaid on the TV screen so that, for example, PC messages, or weather information, can be viewed on the TV screen, and the functionality of the PC (or other home-networked endpoint devices) can be accessed from the TV screen. As described below in connection with
Gateway Device, IM Server, and Service Management Center Architecture
As illustrated in
As shown in
IM client 610 of gateway device 10 may interact with the driver associated with the endpoint device through the implemented application service logic 500. Service logic 500 is configured to specify which devices, attributes, and operations are exposed to the IM server 99c via messages 670 with IM client 610. Through the service management center 50, the service provider 50b may also specify parameters of operation and presentation of application services provisioned by the service provider (e.g., using provisioning server 50a). The service logic 500, may include configuration data 520, which may be configured by user 590 or the service provider 50b to specify rules for handling incoming IM messages (e.g., IM messages 670, which may be any suitable messages using a presence and networking message protocol, such as Instant Messaging) to gateway device 10 and the routing of those messages to the appropriate managed endpoint device (e.g., endpoint devices 560, 570, 580, etc.) using one or more drivers (e.g., drivers 530, 540, 550, etc.) associated with the endpoint device.
The intermediary service logic 500 in gateway device 10 may be configured by user 590 of gateway device 10 to establish the management parameters of associated digital endpoint devices 560, 570, 580, etc. Configuration data 520 of service logic 500 may store the management parameters for the one or more associated endpoint devices. Thus, local or remote IM users via IM server 99c may interact with or manage endpoint devices associated with gateway device 10 that may not be not be enabled with a presence and networking message protocol client (e.g., IM client) protocol. Thus, service provider 50b and user 590 may configure the configuration data 520 of gateway device 10 so as to manage the response of gateway device 10 to an IM event (e.g., IM message 670) by providing customized notification from associated endpoint devices, as well as management and responses of, and interaction with, associated endpoint devices.
IM client 610 enables gateway 10 to communicate with other external entities through a local or remote IM server 99c using a presence and networking message protocol (e.g., IM protocol). Preferably, IM client 610 is the IM client presented to an external entity via IM server 99c. Alternatively, one or more endpoint devices may be enabled with an IM client and may be visible to IM server. IM client 610 of gateway device 10 presents endpoint devices (e.g., devices 560, 570, 580, etc.) and/or device functionalities to external endpoint clients communicatively coupled to IM server 99c based upon configuration data 520 in service logic 500. For example, gateway device 10 with IM client 610 may be visible to an external user, and the associated endpoint devices of gateway device 10 may not be visible. In a preferred embodiment, IM client 610 of gateway device 10 reveals associated endpoint devices it manages based upon configuration data 520, and such that the endpoint devices and their respective functionalities are revealed as attributes and operations of IM client 610.
Associated with gateway device 10 are one or more endpoint devices (e.g., device 560, device 570, device 580, etc.). These devices do not need to be enabled with presence and networking protocol clients (e.g., IM clients) or function as IM-intelligent devices. Although such devices may have IM clients or function as IM-intelligent devices, the individual devices and their associated functionalities are preferably not presented directly to external clients. Rather, the presence and functionalities of these devices are represented by IM client 610 of gateway device 10 as specified by configuration data 520. Alternatively, configuration data 520 may be configured by user 590 or service provider 50b so as to directly present the presence and/or functionality of an associated IM-intelligent device.
As described herein, endpoint devices may become associated with, and configured to, gateway device 10. Each endpoint device has an associated driver (e.g., driver 530, driver 540, driver 550, etc.) which accomplishes the association with, and configuration to, gateway device 10. The driver communicates with the device (e.g., device 560, device 570, device 580, etc.) directly using its own proprietary communication protocol. The driver abstracts the capabilities of the endpoint device with which it is associated to form a set of attributes and operations for that type of endpoint device. For example, digital photo frames may have the same kind of driver capabilities, but each digital photo frame may have its own particular driver implementation.
Intermediary service logic 500 of gateway device 10 uses the one or more drivers (e.g., driver 530, driver 540, driver 550, etc.) to communicate with the endpoint devices. The intermediary service logic 500 interacts with one or more drivers through, for example, a an applications program interface (API). Thus, specific communication protocols either supported by or utilized by each endpoint device need not reside in intermediary service logic 500, and may reside in the drivers. As discussed above and as illustrated in
Intermediary service logic 500 may enable user 590 of gateway device 10 to define the notices and/or alerts provided by gateway device 10 in response to an IM event. User may specify various notification protocols, which may be stored as configuration data 520, that may be used to determine how gateway device 10 responds to an IM event. For example, user 590 may have the ability to establish, with configuration data 520, whether notices may be displayed on certain associated endpoint devices (e.g., a television, PC, personal digital assistant, cell phone, remote control, etc.) advising of an IM event or inviting a response to an IM event. User 590 may also specify in configuration data 520 whether IM notices may be sent to an external entity with an IM client in response to an IM event, whether the notice is informational in nature and that actions in respect to an endpoint device are automatically taken by gateway device 10, or whether a response to the notice is required before any action will be taken. For example, notices may be displayed on the TV a particular room when a phone call is received providing the caller's identification and other related information. The notification protocol, as defined in configuration data 520, may be programmed to display the notice for a predefined period of time (e.g., ten seconds, one minute, etc.) on a television or other display device (e.g., cell phone, personal digital assistant, remote control, PC, etc.). The notification protocol may require a response by which the call may be answered and the TV programming paused, or the call is routed to a voice mail or other messaging storage. Thus, configuration data 520, as set by user 590 or service provider 50b, may enable gateway device 10 to have an plurality of different options for response to an IM event, depending on the nature of the event and the endpoint device indirectly involved. This differs from previous approaches in which notification and messaging protocols are provided through a central IM service.
In an illustrative example, a TV, digital picture frame, and garage door may be devices associated with and configured to gateway device 10. Application service logic 500 of gateway device 10 may be utilized by user 590 to present to an external IM entity the following as the identified resource:
In the above example, user 590 has made configuration selections, which may be represented by configuration data 520 such that intermediary service logic 500 may present the garage door, but not the TV or digital picture frame to external IM clients (i.e., IM clients other than IM client 610). Instead, IM client 610 of gateway device 10 offered to the home user environment by the TV or digital picture frame has been presented. Even though the Garage Door is listed as an endpoint and may be IM-enabled, the external entity does not communicate with the Garage Door directly. Rather, IM client 610 may control and communicate with the Garage Door through the intermediary service logic 500.
The resources presented to an external IM entity may be dependent on the identity of the IM entity. For example, a father and mother may be presented with the Garage Door resource, but not their children or those on the roster or buddy list for the registered IM community. Other restrictions that user 590 may implement through the intermediary service logic 500 may allow IM external entities to view identity and state of the endpoint device, but in a read-only attribute on the IM Client 610. Therefore, the configuration of configuration data 520 may determine the external entities that may directly interact with any endpoint device, and the extent of that interaction. The interaction with endpoint devices is governed and managed by the intermediary service logic 500 and associated configuration data 520.
Along with the resources presented, IM client 610 may present corresponding or associated capabilities and states. For example:
Intermediary service logic 500 may further enable user 590 to determine the manner in which an event is handled by gateway device 10 and the associated endpoints. In the preceding example, if an external entity sends a digital picture, gateway device 10 may be programmed to notify the subscriber (e.g., user 590), through messages displayed, for example, on the TV, the picture frame, or a cell phone, that a digital picture has been offered. The subscriber may elect which associated end point device to display the digital picture, e.g., the TV, the digital picture frame. Alternatively, gateway device 10 may be programmed to display the offered digital picture on a pre-selected endpoint device, such as the TV, upon receipt. The response to each event may be programmed (e.g., as part of configuration data 520) to be dependent on the source of the event and/or request or the nature of it.
In another example, user 590 may decide not to present resources (e.g., to IM server 99c) via IM Client 610, but may configure the service logic to consider the type of incoming IM message (e.g., message 670) for routing to a particular device. For example, incoming file shares could be routed to the digital picture frame without an IM external entity being aware that the IM Client 610 has an associated picture frame.
Gateway device 10 may have further programming (e.g., the API and drivers as described above) that communicates with the endpoint devices (e.g., device 560, device 570, device 580, etc.). If the endpoint device is IM-enabled, the communication may be based on an IM protocol from gateway device 10. Or, it may be based on an alternative communication protocol based on the capabilities of the endpoint device or the programming in service logic 500. Preferably, for IM-enabled end-point devices, the endpoint device does not communicate directly with the external entity, but does so through service logic 500 of gateway device 10.
If the endpoint device is not IM-enabled, the communication may be facilitated by any appropriate communication protocol. In particular, the endpoint device may communicate its state through the associated driver (e.g., driver 530, driver 540, driver 550, etc.) to the intermediary service logic 500. Intermediary service logic 500 may exposes the state condition to, e.g., as an attribute of IM Client 610, if so configured to do so by user 590. The endpoint device is thus able to communicate events to gateway device 10.
As described above, the notification protocol as selected or predefined in configuration data 520 may enable IM client 610 of gateway device 10 to determine the recipient (e.g., an IM external entity or another associated endpoint device) of messages or notification. The messages and/or notifications may be endpoint device state notices and messages generated by IM Client 610 in response to IM events. This determination can be made by reference to a “roster” created by user in accordance with programming selections available by the intermediary service logic 500 (wherein the selections may be stored as configuration data 520). The roster may particularized based on event or endpoint device, and may vary depending on the type of event associated with designated end-point devices. IM client 610 may automatically inform particular end-point devices and/or IM external entities of state changes of other end-point devices or of IM events or messages received from IM external entities. Because IM external entities may include other gateway devices, which in turn have their own associated end-point devices, it is possible that the programming choices may, in response to state changes in one endpoint device associated with gateway device 10, automatically trigger or effect state changes in other gateway device and/or endpoint devices associated with other gateway devices.
The gateway device 10, IM server 99c, and service management center 50 illustrated in
An event (e.g., message 670 as an incoming file, instruction, state notice, etc.) arriving at the IM client 610 of the gateway device 10, whether received from an associated endpoint device or from an external entity (e.g., IM server 99c), is handled and processed by intermediary application service logic 500 of gateway device 10 according to the configuration and programming choices made by user 590 (stored in configuration data 520). User 590 may determine which of the entities are notified of the event, how they are notified of the event, and the range of responses available to the entity and the endpoint device.
Thus, in the arrangement illustrated in
Gateway device 10 may also be managed by service management center 50. Thus, IM client 610 of gateway device 10 and associated application service logic 500 may be provisioned and governed by the service provider 50b through service management center 50. This arrangement may enable service provider 50b to set the parameters for access, control, presentation, and level of service which may be stored in configuration data 520, with user 590 able to make programming and service choices within the parameters set by the service provider 50b. The various services available through the gateway device 10 (e.g., home automation, file sharing, video download), and the features or capabilities within each of those services, may be provisioned, configured, managed, initiated, or terminated through service management center 50. Thus, IM Client 610 may be managed externally to provide different levels and types of services and capabilities.
Note that the external IM Server 99c illustrated in
Communication Amongst Endpoint Devices Via the Gateway Device
Gateway device 10 may facilitate communication between various digital endpoint devices (e.g., devices 560, 570, 580, etc.) associated with gateway device 10 using drivers (e.g., drivers 530, 540, 550, etc.) and service logic 500.
For example, device 560 may be a remote control, device 570 may be a television, and device 580 may be a garage door. A user may use the remote control to make selections of video content for display on the television. A remote control receiver may be communicatively connected to gateway device 10, wherein the receiver has an associated driver program (e.g., driver 530). The driver may process the received signal from the remote, as the communication between the device and the driver may utilize a driver communications protocol. The driver may transmit the processed remote signal to programming 510 of service logic 500 to enable the remote to communicate with the television. Programming 510 may determine which endpoint device may receive the processed remote signal, as well as determine the application or service that the signal is requesting from the determined endpoint device. For example, the signal from the remote may be to direct the television to change the channel. Service logic 500 provides the request from the remote to the driver for the associated television. The driver for the television communicates the request from service logic 500 (which was originally from the remote) to the television using a driver communication protocol that may be specific for communications between the driver and the television. Upon receipt of the request as facilitated by the driver, the television may change the channel as the user had indicated.
Similarly, the garage door (e.g., device 580 as in the example above) may send a notification that the door is open. The notification may be transmitted to the driver (e.g., driver 550 of gateway device 10) using a driver communication protocol. The driver may transmit the notification to programming 510 of service logic 500. Using configuration data 520, programming 510 may determine which endpoint device to direct notification messages from the garage. For example, the configuration data may provide instructions that notification messages should be directed to the television (e.g., device 570). Programming 510 directs the notification message to the driver program (e.g., driver 540) associated with the television (e.g., device 570). The driver program uses a driver communication protocol to transmit the notification message to the television for display. The television receives the communication from the driver program and presents the notification message for display.
Using the remote control, a user may respond to the notification message by selecting a option to change the status of the garage door (e.g., either from a selection offered by the notification message displayed or by selecting a menu option with the remote). Thus, the remote may provide a signal to the remote control receiver that is communicatively connected to gateway device 10, wherein the receiver has an associated driver program (e.g., driver 530). The driver may process the received signal from the remote, as the communication between the device and the driver may utilize a driver communications protocol. The driver may transmit the processed remote signal to programming 510 of service logic 500 to enable the remote to communicate with the garage door via, e.g., driver 550. Driver 550 may utilize a driver communications protocol to communicate to the garage door the command to close the door. Upon receipt of the command via the driver communications protocol, the garage door (e.g., device 580) may close.
A notification message may be sent from the garage door to driver 550 via the driver communications protocol that the door has been closed. Driver 550 may provide the message to programming 510, which, in turn, may provide the message to driver 540. This routing of the message may be, for example, based at least in part on configuration data 520. Driver 540 may transmit the message to the television (e.g., device 570) via the driver communication protocol for display. Thus, the user may be updated as to the change in status of the garage door (i.e., status has been changed from open to closed).
In addition, the remote control (e.g., device 560) may be enabled to facilitate two-way communication between the remote control and gateway device 10 via a driver communication protocol and a driver (e.g., driver 530). To enable this communication, the remote control may be configured with a display that presents alarm, status, and/or notification messages, or any other information to a user. The remote and its associated display may be configured to present a menu to the user for selecting options to display the status of endpoint devices associated with gateway device 10, and enable the user to change the status of the associated devices by providing selections.
A user may determine which messages are to be routed to the remote control by gateway device 10, as well as determine which endpoint devices associated with gateway device 10 may be controlled by the remote by setting various device and messaging parameters in configuration data 520 of gateway device 10.
Turning to the example above, the remote control may provide a signal to gateway device 10 to close the associated garage door endpoint device, and may also receive a notification message from the garage door via gateway device 10 that the door has been closed. This notification message may be, for example, presented on the display of the remote. In another example, a user may be notified of the phone number of an incoming phone call, which may be displayed on the remote control's display.
Gateway device 10, in conjunction with service management center 50, may deliver application services to associated endpoint devices, as described further in connection with
Managed Application Services Delivery Platform
If configured as a standalone device, the NSP-TA device is required to have its own CPU, Memory, physical interfaces and logic control. In order for Network Service Providers to deliver managed services, they typically require a management element controlled by the CPU on the NSP-TA. To depict these logical elements residing on the hardware components,
The User Network and Application Delivery Apparatus (UNA-DA), shown on the right hand side of
Programming elements of the UNA-DA are depicted at the Application/Services Layer of the UNA-DA. Certain logical elements, depicted as the Application Service Provider Managed Applications and Platform in
To identify the separation of, and distinguish between, the programming and hardware components subject to control by the managed service provider and those subject to control by the user premises,
There is no hard requirement for cross management between the UNDA-DA and the NSP-TA. Under this first scenario the user is responsible for making the configuration changes in the specific user controlled logic modules in order to get the two devices to communicate with each other. Optionally the two sub-systems can be combined together, either physically in one hardware device, or logically as two separate hardware devices, but having one user managed interface.
The two hardware regimes described above (NSP-TA and the UNA-DA) may be combined into one managed hardware platform and, thereby, replace the need for the user to have access to the User Premises Network Interface with the logic residing in the Platform Management logic module of the Application Service Provider Managed Applications and Platform. This would in effect replace the “user” access with a managed “machine” access, for aspects of the NSP-TA, as well as aspects of the application services offered through the UNA-DA. Thus, the combination creates an integral gateway device providing both network service and application services, under centralized management. Although integrated, network interconnect functions of the NSP-TA may still be managed by the network service provider, as in the example of
It may be helpful now to consider more detailed examples of the gateway device-service management center network.
Gateway Device and Service Management Center Elements
Those skilled in the art will recognize that functions of the service management center, which reside in the Application Service Management node on the Service Provider Network, as depicted in
As shown in
As will be described in greater detail herein below, the service management center 50 generally provides a communications and processing infrastructure for supporting the variety of application services and related communications residing at the gateway devices 10, 101 . . . 10n. In an exemplary embodiment, this infrastructure may be configured to provide a secure environment and may be IP-based. Preferably, this support architecture is designed for high availability, redundancy, and cost-effective scaling.
The secure platform for building and providing multiple application services for digital endpoints associated with a gateway device requires connectivity between the gateway device 10 and each of a user's devices (referred interchangeably herein as “endpoint devices” or “digital endpoint devices”). This connectivity may be provided by implementation of one or more USB ports (interfaces) 13, a wired Local Area Network connection such as provided by an Ethernet local area network (LAN) interface 16, or, a wireless network interface via a WiFi LAN access point 62 provided, for example, in accordance with the I.E.E.E. 802.11 b/g/n wireless or wireless network communications standard. These physical interfaces provide the required network interconnectivity for the endpoint devices to connect to the multiple application services. Although not shown in
That is, the gateway device 10 interfaces with digital endpoint devices including, but not limited to: a home automation networking device 20 (e.g. X10, Z-Wave or ZigBee) for wired or wireless home network automation and control of networked home devices such as a switch controller 22, sensor devices 23, automatically controlled window blinds 24, a controlled lighting or lamp unit 25 etc, individual or wired or wireless network of personal computing (PC) and laptop/mobile devices 30a, . . . , 30c that serve as file sources, control points and hosts for various other client endpoints, one or more television display devices 32 including associated set top boxes (STB) 35a or digital media adapters (DMA) 35b, one or more VoIP phone devices (e.g. SIP phones) 40, or other devices (not shown) that convert IP interfaces to PSTN FXO and FXS interfaces.
As noted earlier, the gateway device 10 may provide an interface 35b to the Digital Media Adapter (DMA) for television (TV) 32, which enables bidirectional wireline or wireless communication. This interface supports several functions for multiple services including, but not limited to: media (e.g., video and music) by enabling the transfer of media (e.g., video and music) to the TV; voice services, by providing for Called Line ID and for voice mail control; and provide Home Automation Services including status and control of networked home automation devices. The DMA element 35b converts audio and video (optionally) to a format suitable for a TV. In addition, the Digital Media Adapter 35b may be capable of receiving context-sensitive commands from a remote control device (not shown) and forwarding those commands to the gateway device 10. This enables the use of menus on the TV 32 for controlling application services and various features functions thereof, as offered by the gateway device 10. For example, the Media Adapter/TV combination is able to provide the following features including, but not limited to: display of media; media control functions, when enabled (FF, REW, STOP, PAUSE, etc); display of Calling Line Identification (CLID); control of voicemail; picture viewing; control of home automation; and user functions for the gateway device 10.
A Set Top Box 35a as shown in
Whether provided by the DMA interface 35b and the TV 32 or by the set-top-box 35a and the TV 32, the communications to and from the TV provide a user interface for interaction with the gateway device 10. The programming of the gateway device supports, among other things, a graphical user interface (GUI) via the TV, sometimes referred to as the “ten-foot” interface.
With respect to PCs interfacing with the gateway device 10, PCs may serve as, among other things, file sources, control points and hosts for various software clients. Thus, the PC programming may work in conjunction with the ASL and ASE programming of the gateway device. Together, the PC programming and the ASL and ASE programming provide a more comprehensive and robust user experience. The gateway device 10 may further provide a bidirectional wireline or wireless interface 35c to a PC device 306 for supporting the transfer of media (e.g., video and music) to the computer for storage and viewing; for supporting voice services, e.g., by providing for calls from SIP soft clients; for file sharing, file back-up and home storage and home automation control functions. The access point 62 offers wireless data communications with a PC 30c. The gateway device interface through any PC may provide for the bidirectional moving of files, and status and control for the endpoint devices, including for example, status and control of networked home automation devices. In addition, using the PC interface, users may, for example, share files on the gateway devices, back-up or transfer files to the gateway devices or other storage; access personal page for notifications, RSS, shared photos, voicemail, etc. In addition to the IM and SIP capabilities of the gateway device, as described more below, PCs may also serve as a host for IM and SIP soft phone clients and other client devices. The client-server interaction of the PC with the application service logic of the gateway device 10 offers an alternative GUI for at least some of the services. The PC based GUI is sometimes referred to as the “two-foot” interface.
Although not shown in
As described in greater detail herein, the gateway device 10 includes both a hardware and software infrastructure that enables a bridging of the WAN and LAN networks, e.g. a proxy function, such that control of any digital endpoint device at the premises from the same or remote location is possible via the gateway device 10 using, optionally, a secure peer and presence type messaging infrastructure or other communications protocols, e.g. HTTPS. For example, via any IM—capable device or client 80a, 80b respectively connected with an Instant Messaging (IM) or XMPP (Extensible Messaging and Presence Protocol) network messaging infrastructure, e.g. IM networks 99a, 99b such as provided by Yahoo, Microsoft (MSN), Skype, America Online, ICQ, and the like, shown for purposes of illustration in
As noted above, the novel system architecture allocates the logical functionality of the ASD Platform (
For example, with the robust capabilities of the Application Service Provider Managed Applications and Platform (
Gateway Device Software and Hardware Architecture
The composition of the premises gateway device 10, earlier described with reference to
Particular logical elements comprising the ASL and ASE functionalities of the AS Layer represented in
As shown in more detail in
Additional hardware components include one or more Ethernet LAN and WAN interface cards 155, 156 (e.g. 802.11, T1, T3, 56 kb, X.25, DSL or xDSL) which may include broadband connections (e.g. ISDN, Frame Relay, ATM, Gigabit Ethernet, Ethernet over SONET, etc.), wireless connections, or some combination of any or all of the above. The card 155 referred to as the LAN interface card provides data communication connectivity within the user premises, essentially, for communication via a user premises network 60 with any endpoint devices operating within the premises. The card 156 referred to as the WAN interface card provides data communication connectivity for the gateway device 10 and endpoint devices communicating through the device 10, with the wide area IP network 99. For additional or alternative customer premises communications, the hardware components 102 may also include one or more USB interfaces 158; and for additional or alternative communications with the wide area network, the hardware components may also include the PCMCIA EvDO interface card 160.
A data encryption/decryption unit 162 is additionally provided as part of the architecture for providing data security features. A watchdog timer element or like timer reset element 164 is provided as is one or more LED devices 166 for indicating status and other usable information to users of the gateway device 10.
As mentioned above, the gateway device provides an in-premises footprint enabling the service connectivity and local management to client(s). The implementation of functions and the related control such as a router (with quality of service (QoS)), firewall, VoIP gateway, voice services and voice mail may be embodied and performed within the CPU 152.
The discussion of the gateway hardware layer above and the illustration thereof in the drawings provides a high-level functional disclosure of an example of the hardware that may be used in the gateway device. Those skilled in the art will recognize that the gateway device may utilize other hardware platforms or configurations.
Continuing, as shown in
Built upon the system operating system 106 is a system services support layer 108 providing both client-like and server-like functions that enable a wide range of functionality for the types of services capable of being managed by the gateway device 10. For instance, there is provided a Dynamic Host Configuration Protocol (DHCP) client and server software modules. The DHCP client particularly requests via a UDP/IP (User Datagram Protocol/Internet Protocol (e.g. Ipv4, Ipv6, etc.) configured connection information such as the IP address that the gateway device 10 has been dynamically assigned by a DHCP service (not shown), and/or any the subnet mask information, the gateway device should be using. The DHCP server dynamically assigns or allocates network IP addresses to subordinate client endpoints on a leased, e.g. timed basis. A Virtual Private Network (VPN) client may communicate via a proxy server in the service control network 50, according to a VPN protocol or some other tunneling or encapsulation protocol. An SMPT client handles incoming/outgoing email over TCP, in accordance with the Simple Mail Transfer protocol. A Network Time Protocol (NTP) (RFC 1305) generates and correlates timestamps for network events and generally provides time synchronization and distribution for the Internet. A Domain Name Server (DNS) client and server combination are used by the IP stack to resolve fully-qualified host or symbolic names, i.e. mapping host names to IP addresses.
An HTTP(S) server handles secure Hypertext Transfer Protocol (HTTP) (Secure Sockets Layer) communications and provides a set of rules for exchanges between a browser client and a server over TCP. It provides for the transfer of information such as hypertext and hypermedia, and for the recognition of file types. HTTP provides stateless transactions between the client and server.
A Secure File Transfer Protocol (SFTP) client and server combination govern the ability for file transfer over TCP. A SAMBA server is an open source program providing Common Internet Files Services (CIFS) including, but not limited to file and print services, authentication and authorization, name resolution, and service announcement (browsing). An EvDO/PPP driver includes a Point-to-Point Protocol (PPP) daemon configuration for wireless broadband services. A PPPoE (Point-to-Point Protocol over Ethernet) client combines the Point-to-Point Protocol (PPP), commonly used in dialup connections, with the Ethernet protocol; and it supports and provides authentication and management of multiple broadband subscribers in a local area network without any special support required from either the telephone company or an Internet service provider (ISP). The gateway device 10 is thus adapted for connecting multiple computer users on an Ethernet local area network to a remote site through the gateway and can be used to enable all users of an office or home to share a common Digital Subscriber Line (DSL), cable modem, or wireless connection to the Internet. A Secure Shell or SSH server implemented with HTTP protocol provides network protocol functionality adapted for establishing a secure channel between a local and a remote computer and encrypts traffic between secure devices by using public-key cryptography to authenticate the remote computer and (optionally) to allow the remote computer to authenticate the user.
Additionally provided as part of the system services layer 108 is intelligent routing capability provided by an intelligent router device 185 that provides Quality of Service (QoS, guaranteed bandwidth) intelligent routing services, for example, by enforcing routing protocol rules and supporting unlimited multiple input sources and unlimited multiple destinations and, particularly, for routing communications to networked digital endpoint devices subordinate to the gateway. A central database server 183 handles all of the database aspects of the system. For example, the database server 183 maintains and updates registries and status of connected digital endpoint devices, maintains and updates service configuration data, services specific data (e.g. indexes of backed-up files, other service specific indexes, metadata related to media services, etc.) and firmware configurations for the devices. The database server 183 may also store billing and transaction detail records and performance diagnostics. The database server logic 183 also satisfies all other database storage needs as will be described in greater detail herein.
Referring back to
The features/functions in the layer 110 include a platform manager module which will implement unique rules based notification services. On operational failure, for example, when one of the components or services fails, the platform manager would detect this failure and take appropriate action such as implement a sequence of rules to provide notification to a user. A scheduler module manages scheduled device maintenance, managing scheduled services, e.g. back-up services, etc. The layer 110 also includes a diagnostics module and a firmware upgrades management module for managing firmware upgrades. A resource management module manages system resources and digital contention amongst the various resources, e.g. CPU/Bandwidth utilization, etc. A display management module and a logger management module store and track gateway log-in activity of users and applications, e.g. voice call logs, at the user premises. The platform management layer 110 in concert with resource and service management components enforces the separation of network side managed service control and user side delegations depending upon service subscriptions and configurations. For example, the platform and resource management encompass rules and guidelines provided according to subscribed services that act to enforce, manage and control input/output operations, and use of hard drives space etc. A demarcation point, logically depicted as the Application Service Provider Demarcation in
The logical platform management layer 110 allows for inter-layer allocation of local resources. This function guarantees access between the application service/management logic implemented at the higher layers in the gateway device 10 and the applications service management function in the service management center 50, by assuring that the local user premises hardware and software modules are functioning at a required state (CPU and memory usage, bandwidth usage, QoS settings, etc.). The platform manager is also responsible for implementing that part of the managed application services to be performed by the gateway device. In that regard, the platform manager secures and manages the overall hardware platform, given that in this scenario, the network function layer and the application service layer reside on one hardware platform. This secure hardware platform provides a robust and secure operating environment for the application services layer. So, to establish a secure and robust hardware operating environment, the platform management layer must interface with all the layers above it and allow for bi-directional management information flow among all of the functions.
Referring back to
Built on top of the Services Framework layer 120 is the Application Services layer 130 providing library of user application services and application support threads including, but not limited to: file sharing functionality; backup services functionality; home storage functionality; network device management functionality; photo editing functionality; home automation functionality; media services functionality; call processing functionality; voice mail and interactive voice response functionality; presence and networking functionality; parental control functionality; and intelligent ads management functionality. The multi-services applications gateway 10 further provides application service interfaces 140 that are used to enable a variety of user applications and communications modalities.
For instance, the SIP Interface 141 is an interface to the generic transactional model defined by the Session Initiation Protocol (SIP) that provides a standard for initiating, modifying or terminating interactive user sessions that involve one or more multimedia elements that can include voice, video, instant messaging, online games, etc., by providing access to dialog functionality from the transaction interface. For instance a SIP signaling interface enables connection to a SIP network that is served by a SIP directory server via a Session Border Controller element in the service management center 50 (
The Web Interface 142 enables HTTP interactions (requests and responses) between two applications. The Web services interface 149 provides the access interface and manages authentication as multi-services gateway devices access the service management center 50 (
The XMPP interface 145 is provided to implement the protocol for streaming (XML) elements via the gateway device 10, in order to exchange messages and presence information in close to real time, e.g. between two gateway devices. The core features of XMPP provide the building blocks for many types of near-real-time applications, which may be layered as application services on top of the base TCP/IP transport protocol layers by sending application-specific data qualified by particular XML namespaces. In the example, the XMPP interface 145 provides the basic functionality expected of an instant messaging (IM) and presence application that enable users to perform the following functions including, but not limited to: 1) Exchange messages with other users; 2) Exchange presence information with other devices; 3) Manage subscriptions to and from other users; 4) Manage items in a contact list (in XMPP this is called a “roster”); and 5) Block communications to or from specific other users by assigning and enforcing privileges to communicate and send or share content amongst users (buddies) and other devices.
As noted,
In the example of
The hardware layer 102 may also include an option module. The UNA-DA hardware components at layer 102 have multiple interfaces for connection to such an option module. These interfaces, by way of example, could be a data bus (e.g. PCI, etc), network interface (e.g. Ethernet (RJ45), MoCA/HPNA (Coax)) and Power feeds. The option module allows additional functionality to be added to the base UNA-DA functionality of the gateway device. For example, this additional functionality could be everything from support for a variety of extra Wide Area Network Interfaces (e.g. xDSL, DOCSIS, Fiber (PON), Cellular Packet, WIMAX, etc.), Media Processing (e.g. Cable TV termination, Digital Video Recording, Satellite TV Termination, etc), to Voice Processing (FXS, FXO, Speech Detection, Voice to Text, etc). The option module may have its own standalone CPU, Memory, I/O, Storage, or provide additional functionality by its use of the CPU, Memory, I/O, and storage facilities off of the main hardware board. The option module may or may not be managed directly by the Platform Management of the UNA-DA.
Gateway Processing
For the in-home services, the multi-services gateway device 10 connects the various service delivery elements together for enabling the user to experience a connected digital home, where information from one source (for example, voicemail) can be viewed and acted on at another endpoint (for example, the TV 32). The multi-services gateway device 10 thus hosts the various in-home device interfaces, and facilitates the moving of information from one point to another. Some of the in-home endpoint device processing duties performed by the gateway device 10 include, but are not limited to: 1) detecting new devices and provide IP addresses dynamically or statically; 2) functioning as a (Network Address Translator) NAT, Router and Firewall; 3providing a centralized disk storage in the home; 4) obtaining configuration files from the service management center and configuring all in-home devices; 5) acting as a Registrar for SIP-based devices; 6) receiving calls from and delivering calls to voice devices; providing voicemail services; 7) decrypting and securely streaming media having digital rights management (DRM) encoding; 8) distributing media to an appropriate in-home device; 9) compressing and encrypting files for network back-up; 10) backing-up files to the network directly from gateway device; 11) handling home automation schedules and changes in status; 12) providing in-home personal web-based portals for each user; 13) providing Parental Control Services (e.g. URL filtering, etc.); 14) creating and transmitting billing records of in-home devices including, recording and uploading multi-service billing event records; 15) distributing a PC client to PCs in the home, used in support of the various services such as monitoring events or diagnostic agents; 16) storing and presenting games that users and buddies can play; 17) delivering context-sensitive advertising to the endpoint device; and, 18) delivering notifications to the endpoint device; and, 19) enabling remote access through the web, IM client, etc. Other duties the gateway device 10 may perform include: service maintenance features such as setting and reporting of alarms and statistics for aggregation; perform accessibility testing; notify a registration server (and Location server) of the ports it is “listening” on; utilize IM or like peer and presence communications protocol information for call processing and file sharing services; receive provisioning information via the registration server; utilize a SIP directory server to make/receive calls via the SBC network element to/from the PSTN and other gateway device devices; and download DRM and non-DRM based content and facilitating the DRM key exchanges with media endpoints.
Logical Architecture and Service Management Center Network
While the gateway devices 10 as described above are each equipped with various logic and intelligence for service features that enable the gateway devices to provide various integrated digital services to the premises, as described herein with respect to
Examples of various ASM functionalities performed at the service management center 50, from the Service Provider Network regime, include but are not limited to: service initialization of the gateway devices, providing security for the gateway devices and the network support infrastructure, enabling real time secure access and control to and from the gateway devices, distributing updates and new service options to the gateway devices, providing service access to and from the gateway devices and remote access to the gateway devices, but not limited to such. In support of these services, the service management center 50 provides the following additional services and features: authentication; multi-service registration; subscription control; service authorization; alarm management; remote diagnostic support; billing collection and management; web services access; remote access to gateway devices (e.g. via SIP or Internet/web based communications); reachability to access challenged gateway devices; software updates; service data distribution; location service for all services; SIP VoIP service; media services; backup services; sharing services; provisioning; gateway interfaces to other service providers (Northbound and peering); load balancing; privacy; security; and network protection.
The logical network architecture for the service management center network delivering these capabilities is illustrated in
The one or more network elements of center 50 illustrated in
The service management center network 50 may provide SIP-based directory services for voice and other multimedia services, for example, via its SIP Directory Server 66. In addition, location service functionality, for example, provided by the Location Server 68, may include IP and Port level services for all inbound services. As discussed more later, the location server 68 maintains information as to accessibility of authenticated gateway devices 10, for enabling peer to peer communications among gateway devices 10 via the wide area IP network 99. DNS services functionality may be provided by a DNS server 69 for all inbound services.
The service management center network 50 may also provide virtual private network (VPN) functionalities, for example, handled by its VPN server/subsystem 70, and provide VPN connection services for certain inbound services on multi-services gateway devices 10. VPN connection services may be provided on those multi-services gateway devices that have accessibility challenges, for example, those that are behind external firewalls and NATs. The service management center network 50 may also include functionality for determining the nature of the accessibility configuration for the multi-services gateway devices 10. In one embodiment accessibility service may be performed by an accessibility test server 72 that functions in cooperation with the multi-services gateway device 10 to determine the nature of the accessibility. For example, the accessibility test determines whether the gateway devices are behind a firewall, whether NATs is required, etc.
The service management center network 50 also functions to provide provisioning services to all elements of service management center network 50 and to multi-services gateway devices 10. Such functionality of the network 50, for example, may be implemented by the provisioning server 74 in one embodiment.
Authentication functionality of the service management center network 50, for example, provided by an authentication manager 71, provides authentication services to all service management center network elements and to multi-services gateway devices 10. As discussed more later, upon successful authentication of a gateway device 10, the authentication manager 71 controls the connection manager 60 to establish a signaling communication link through the wide area IP network 99 with the authenticated gateway device 10. The authentication manager 71 confirms authentication of the respective gateway device 10 from time to time, and the authentication manager 71 controls the connection manager 60 to maintain a session for the signaling communication link through the wide area IP network 99 with the respective gateway device 10 as long as the authentication manager 71 continues to confirm the authentication of the respective gateway device. The signaling connection may be torn-down, when the device 10 no longer passes authentication, either because it becomes inaccessible to the authentication manager 71 or its service status changes.
The gateway devices 10 and service manager center 50 implement several methodologies that allow the service provider to manage various subscription application services provided for endpoint devices associated with the gateway devices 10. In general, one subscription management methodology involves sending information indicating configuration data or software currently needed for the one gateway device to implement server functionality for an application service or a feature of an application service, based on a service subscription of a customer associated with that gateway device. Several different ways of sending this information are discussed by way of example below. A request from a particular gateway device 10 is received in the service management center 50, indicating that the device 10 needs the configuration data or software to implement the application service or feature thereof. In response, the service management center 50 sends the necessary configuration data or software through the wide area network 99 to the gateway device 10. The gateway device 10 can install the configuration data or software, to enable that device 10 to deliver the server functionality for the application service or the feature to its associated one or more endpoint device(s) that implement the client functions regarding the particular application service.
Subscription functionality of the service management center network 50, for example, provided by a subscription manager 73, is one mechanism used to provide management of subscription services to all multi-services gateway devices 10. The subscription manager 73 manages applications services and/or features of the server functionality of the gateway device 10, to be enabled on each respective authenticated gateway device, based on a service subscription associated with the respective device 10.
The service management center network 50 may include functionality for providing management services for each of the services provided in the gateway device 10. For example, respective service managers 75 store and serve to distribute service specific configuration data to the multi-services gateway devices 10, typically via the signaling communication links established through the wide area IP network 10 upon successful device authentication. The configuration data downloads by the service managers 75 are based on the service subscription of the user or premises associated with the particular gateway device 10, that is to say, as indicated by the subscription manager 73.
The service management center network 50 also includes elements to provide necessary software to the gateway devices 10 through the wide area network, as needed to implement customers' subscription services. In the example, the service management center network 50 includes an updater 51 for transmitting software to the gateway devices. The software resident in the gateway device is sometimes referred to as firmware. Software can be distributed upon request from an individual gateway device 10 or as part of a publication procedure to distribute upgrades to any number of the gateway devices. For this approach, the publication/subscription (Pub/Sub) server or like functionality 65 provides notifications of available software updates. For example, upon detecting an update regarding an application service, gateway devices 10 subscribing to an update notification service with regard to the relevant application service are identified. The Pub/Sub server 65 sends notification messages through the wide area network 99 to the identified gateway devices 10. Assuming that a notified gateway device does not yet have the software update installed as part of its resident firmware, it sends a request indicating that the gateway device needs the available update. In response to the received request, the updater 51 sends the update of the software through the wide area network 99 to the one gateway device 10. The update enables the gateway device 10 to deliver the subscription application service or feature thereof, based on the updated software, to one or more endpoint devices implementing client functions related to the subscription application service.
Service access test functionality of the service management center network 50 performs tests to multi-services gateway devices to verify the accessibility for each subscribed service. Such functionality may be provided by service access test managers 77. The service management center network 50, for example, in an alarm aggregator subsystem 82 may aggregate alarms received from the multi-services gateway devices. The service management center network 50 also may include functionalities to support, for instance, by alarms, diagnostics and network management (NWM) server 85, network management and network management services. The service management center network 50 enables web interface communication mechanism, for example, via a web services interface server 90, to for example provide access interface and manage authentication as multi-services gateway devices access the service management center for various services, including access to configuration data in the service managers 75.
Additional service management center network functionalities shown in
The service management center network 50 further may provide off-site backup services for the service management center network to a Wholesale Back-up Provider 96. The service management center network 50 further interoperates with Wholesale VoIP Provider 97, which may provide VoIP call origination/termination services for off-net voice calls. For instance, the service management center network 50 may provide VoIP/PSTN gateway that enables a translation between protocols inherent to the Internet (e.g. voice over Internet protocol) and protocols inherent to the PSTN. Other entities that may be partnered with the service management center network 50 as shown in
In the illustrated example, a server or servers of the service management center network 50 are intended to represent a general class of data processing device commonly used to run “server” programming. Such a device typically utilizes general purpose computer hardware to perform its respective server processing functions and to control the attendant communications via the network(s). Each such server, for example, includes a data communication interface for packet data communication. The server hardware also includes a central processing unit (CPU), in the form of one or more processors, for executing program instructions. The server platform typically includes program storage and data storage for various data files to be processed and/or communicated by the server, although the server often receives programming and data via network communications. The hardware elements, operating systems and programming languages of such servers are conventional in nature, and it is presumed that those skilled in the art are adequately familiar therewith.
In one embodiment, the connection manager 60 may aggregate a plurality of connection channels 150 and multiplex these signaling channels to the message router device 62. The connection manager 60 works with the message router 62 and the authentication manager 71 to authenticate the multi-services gateway device 10 and allow its access to the network 50 by enabling the establishment of a control channel 150 providing an “always on” control channel between the multi-services gateway device and the services service management center 50 once the gateway device is authenticated. The connection managers 60 also provide network security and protection services, e.g. for preventing flooding, denial of service (DOS) attacks, etc. In one embodiment, there may be interfaces such as APIs for interfacing the connection managers 60 or the like to the message routers 62 and the multi-services gateway devices 10. As the network of multi-services gateway devices grow, the number of connection managers 60 may grow to meet the demand for concurrent signaling control channel connections.
In one embodiment, a message router device(s) 62 provides control signal message routing services and session management services to the multi-services gateway device 10 and the other network elements of the service management center 50. In one embodiment, the message router device 62 has control channel signaling access, via the control channel to the firmware upgrade manager server or gateway firmware updater 51, VOD server(s) 52, a billing system 58, content managers 98, pub/subs 65, service accessibility test manager 77, authentication manager 71, service manager 75, subscription manager 73, alarms aggregator 82, network management (NWM) server 85 and public web proxy redirect 91, and the multi-services gateway devices 10. The message router 62 may also include a session manager subsystem that maintains control channel state information about every multi-services gateway device client in the gateway-service center network. The message router 62, and session manager enable sessions to be established to each multi-services gateway device 10 and each element of the service management center 50 and provide robust routing services between all the components. The message routers 62 may additionally connect to other message routers for geographic based scaling, creating a single domain-based control channel routing infrastructure. The message routers 62 may additionally connect to IM gateways and other message routers that provide user based IM services, which may enable users to interact directly with their multi-services gateway device via IM user clients. Thus, besides providing routing and session management for all the multi-services gateway devices and the network elements, the message router element 62 enables control signaling between all the network elements and the multi-services gateway devices and, connects to IM gateways to provide connectivity to other IM federations.
Web Services Interface
In an example, the service management center network 50 may also provide web services interface functionality (for example, shown at 90 in
In one example, an authentication key is used or embedded in the message in order to validate the communication between one or more gateway devices 10 and the web services interface functionality 90 in the service management center network 50. In one embodiment, the gateway device 10 may request from the service management center network 50, for instance, from its authentication manager functionality 71, a temporary key, which is to be used when the gateway device 10 requests services via the web services interface 90. Preferably, this key is not a service specific key, but rather identifies a particular gateway device 10 to enter the service management center 50 through the web services interface 90. Every time the gateway device 10 requests a key, the authentication manager 71 functionality may store the key and the expiry time of the key. A response message provided from the authentication manager 71 has the key and expiry time. In one example, gateway devices 10 are responsible to determine a status of the key compared to the expiry and to request a new key before the expiry time. In another embodiment, the web services interface authentication key may be assigned during initial registration and may be renewable as described above with reference to dynamic renewable authentication and service keys.
The web services interface 90 subsequently directs message requests to the appropriate functionality in the service management center network 50. The incoming requests may be load balanced in one embodiment by the DNS server 69, and loading and performance information may be fed back to the DNS in support of this function. The web services interface 90 may have interfaces (e.g. APIs) to the gateway device 10, the authentication manager functionality 71 of the service management center network 50, DNS 69, the service managers 75 of the service management center network 50, etc.
In an exemplary embodiment, a gateway device 10 may utilize the web services interface to pull data, software or information from the service management center network 50, while the service management center network may utilize the signaling control channel to push data such as various notification data to the gateway devices. In an example discussed more below, the subscription manager 73 notifies the gateway device 10 of configuration data applicable to a service subscribed to by the customer associated with the particular gateway device. If the gateway device 10 determines that it needs the configuration data (not yet resident or not up-to-date), then the gateway device 10 sends a request to the web services interface 90, which is forwarded to the appropriate service manager 75. The service manager 75 in turn sends the configuration data to the gateway device 10 for loading and future use. A similar procedure can be used to download software, e.g. from a gateway updater or other firmware server based on a descriptor from the subscription manager or a published notification from a Pub/Sub server.
Automatic Discovery and Configuration of Endpoint Devices
In one embodiment, a customer or user self-provisions endpoint devices on a particular multi-services gateway device 10. The provisioning system or like functionality 74 may provision how many endpoints and the types of devices that can be self-provisioned by the user. In one embodiment, the gateway devices are capable of automatically discovering and configuring the gateway device compatible devices belonging to enabled services in the premises such as the home or business, for instance, with minimal human intervention (e.g. for security purposes some devices may need administrator level prompting to proceed with configuration actions). For instance, the gateway device compatible endpoint devices are devices that the gateway device can communicate with and thus become the center of management for the services offered through these endpoint devices. One or more of these endpoint devices may have automatic configuration capabilities such as universal plug and play (e.g. uPNP devices). These endpoint devices may include but are not limited to, media adaptors, SIP phones, home automation controllers, adaptors that convert IP interfaces to PSTN FXO and FXS interfaces, etc. In one example, the method of configuration, e.g. automatic discovery and configuration may be based on the specific device's current firmware or software or like version. The gateway device 10 in one embodiment also may keep a record or table of configuration information, for example, for those devices configured automatically. Such information may include, for example, for media adaptor, supported formats and bit rates, for home automation controller, information pertaining to the type of controller such as Insteon, Awave, etc.
As another example, if the phone service is enabled and if the gateway device detects a new SIP device, the gateway device 10 may prompt a user to determine if the detected endpoint device needs to be configured for association with the gateway device. If it does, then the gateway device 10 may configure the detected device on its network (home network or other premises network). Yet as another example, when new drives are added to the gateway device for storage expansion, the gateway device 10 may automate initialization of the expanded device storage.
Gateway to Gateway Device Communications
As mentioned earlier, the gateway devices and service management center support a communication capability between the appliances. This feature, for example, may be utilized for enabling secure peer-to-peer sharing of data between or among the gateway appliances.
Additional aspects of the peering capabilities enabled by the gateway device-service management architecture include the ability to store a roster or contact list of distant gateways on either the gateway 10 or within the service management center 50 and utilizing these addresses to maintain the presence and routing information of selected other gateways. This roster information is used to establish and manage access and message routing, via XMPP messaging, to gateways, to locate and address other gateways, and set up peering relationships between the gateways.
A gateway may also expose other details about resources or endpoints within the home to other gateways by communicating resource information along with presence information. As an example, a gateway may send presence information to selected “buddies” via the signaling channel and also include information about the resources available to the distant buddy. Examples of resources include digital picture frames that the distant gateway user may direct photos to, web cams, or other resources, enabling direct interaction between an end user connected to one gateway, or in automated scenarios, the gateway itself, and a distant device connected to the local area network of another gateway.
When a user interacts with the resource sharing functions of their gateway 10, the user may select a specific gateway 101 from their roster, represented as a “buddy” list. When the user selects a “buddy”, additional resource details are displayed to the user, providing information about any resources that the end user may utilize via that selected peer gateway device 101.
The XMPP messaging protocol, combined with the roster and XMPP addressing mechanisms may be utilized for either end user interactions or automated interactions between gateways. Automated use of the peering capabilities include directing utility data for usage and network management information to designated collectors within peering groups and then having the designated collector forward the combined information to the service management center. This distributes the collection processing to the gateways and decreases the overall processing and bandwidth utilization in the service management center. Of course, the XMPP protocol is discussed here merely by way of example, and those skilled in the art will recognize that the gateway to gateway device communications may use other protocols.
Upon gateway device 10 establishing initial communication with selected remote gateways (e.g., gateway device 101, 10n, etc as shown in
An Application and Network Gateway (ANG) (e.g., gateway device 10, 101, 10n, etc.) may be located, for example, in a user premises. The ANG may have associated endpoint devices, and be managed by an Application Services Provider (e.g., the application service may be delivered via the application services layer by application service management center 50, or may be IM networks 99a or 99b, or IM server 99c). An application network gateway management connection server (MCS) may be used to establish a connection with one or more ANGs, wherein the established connection may be secure or unsecure. The MCS may be a component of application service management center 50, IM networks 99a or 99b, or IM server 99c. This connection between the MCS and the ANGs allows each ANG to “register” its local information (e.g., Internet Protocol (IP) address, Application Ports, Availability, and other attributes) with the MCS. Additionally, when ANGs desire to locate each other (e.g., to establish peer to peer connections for communication), they may retrieve the distant-end ANG information from the MCS.
Location updates may be performed at ANG Startup, or when IP or Port changes occur at the AGN. There may be no predefined time of the validity of the addresses. For example, the last update may be considered valid for an indefinite period of time. Thus, in this example, the AGN does not need to update location information on a periodic basis.
A Location Server may maintain the location information for all the ANGs in the network. A Session Redirect Server (SRS) and SRS database may store service-specific authentication and routing information. The SRS and SRS database may be part of the Applications Services Provider.
At step 700 shown in
At step 710 shown in
As shown at step 720 of
As shown in
At step 740 illustrated in
In providing peer to peer communications between gateway devices, a user of a first gateway device may control associated endpoint devices of a second gateway device, provided such endpoint devices and/or their functionalities are provided to the first gateway device. This may be based, for example, on the second gateway device being present in the buddy list of the first gateway device. For example, a user of the first gateway may control an endpoint device that is a garage door associated with a second gateway device. The user may determine the status of the garage door (e.g., open, closed, etc.), and may provide instructions to the garage door to open or close (e.g., based upon the received status information).
The gateway device 10 and its interactions with various endpoint devices and with the service management center 50 have been described with reference to diagrams of methods, apparatus (systems) and computer program products. It will be understood that elements and functions illustrated in the diagrams, can be implemented by computer program instructions running on one or more appropriately configured hardware platforms, e.g. to operate as a gateway device 10 or as one or more of the enumerated elements of the service management center 50. Hence, operations described above may be carried out by execution of software, firmware, or microcode operating on a computer other programmable device of any type. Additionally, code for implementing such operations may comprise computer instruction in any form (e.g. source code, object code, interpreted code, etc.) stored in or carried by any computer or machine readable medium.
IM Server and Gateway Device for Home Automation Control
As described above in connection with
In
In the context of home automation in
In the context of home automation services, the appliance supports multiple types of home automation controllers and multiple protocol standards including a variety of non-IP protocol standards and vendor specific proprietary protocols such as Insteon, Zwave etc. This enables the user to integrate multiple vendor devices in the home. It is further understood that the controller device itself may support more than one automation protocol such as Insteon or (legacy) ×10 devices and these protocols will be transported via RF or other suitable communication path. The gateway appliance 10 may communicate with controllers via vendor-specific protocols.
Via the IM client functionality 610 and IM server 99c, the local or remote IM client 650 may be provided with IM-based state notification messages, e.g., messages of any alarm generated. Although such messages may not be initially transmitted using a presence and networking message protocol (e.g., IM protocol), gateway 10 may be configured such that IM client 610 may transmit the messages (e.g., alert messages, etc.) received from messages to, for example, IM client device 650 using a presence and networking message protocol. The IM client device 650 may receive device state notification messages 672 via the appliance's e-mail application, a phone call, or at a PC directly. Thus, when events are detected, for example, a change in the device's status or parameter(s) the gateway appliance 10 generates alert notifications 670, via the notification manager which is part of the presence and networking module shown in
Moreover, as shown in
Additionally, gateway device 10, through its device registry which is part of the presence and networking module (e.g., IM client 610, etc.), provides a list of the device state/parameters (status) 162 of many devices that are connected to the gateway for additional control services, e.g., via a local PC client notification message 161. One example of such a notification is shown in
As described herein, gateway device 10 may have a configuration data file (e.g., similar to configuration data 520 shown in
For example, as shown in
Thus, in using the exemplary interface, a user may check on the status of each of these devices and send commands to change the status information. Any change in status of these devices will come as notifications or alerts. For example, an assisted living device 665, e.g., a sensor, monitors user behavior or biological function and checks behavioral patterns against stored patterns. If there is determined a break in the pattern, when detected by the system, an automatic notification may be generated and provided to a user endpoint device, e.g., the PC or TV, etc.
As described herein with respect to file and content sharing, the gateway appliances are able to communicate with each other to share information through using IM clients at each gateway device, wherein presence and networking messages are sent via an IM server to one more gateway devices IM server functionality provided at the appliance. The messages and commands may be communicated through a secure network connection.
IM Access and Control Display
As described above in connection with
Once a user selects the gateway appliance buddy from the buddy list, a number of events may occur. The user may enter into an IM “chat” mode. A menu option such as “home automation” may be presented to the user. Upon selection of the “home automation” option, the user may be prompted for a password. Once password authenticated, the user is capable of requesting status of one or more of the endpoint devices of the home automation network that are configured to be visible during an IM session and report status information. The user may also change the status of a selected device, and may elect to receive notifications from a device (e.g., a user may update a configuration of the gateway device such that associated endpoint devices may provide notifications). An exemplary IM interface dialog may be presented to the user that displays one or more of the following: whether any events have occurred in which may require user input, such that the user is prompted to enter an instruction; request a Status Check; Change a device status; and Review an event log. In one example, upon selection of change device status request, the user is prompted to select from options such as device type, (e.g., light switch, garage door, outlet, sprinkler system, etc.), a Main Menu option, or any other suitable option. Furthermore, in one example, upon selection of a device, (e.g., a garage door, etc.) the user is prompted with additional selection options related to the first selection (e.g., select a first garage door, a second garage door, etc.). Thus, the user interaction with gateway appliance 10 and associated endpoint devices may text based and/or menu driven.
Program aspects of the technology may be thought of a “products,” typically in the form of executable code and/or associated data for implementing desired functionality, which is carried on or embodied in a type of machine readable medium. In this way, computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, so as to implement functions described above.
Terms regarding computer or machine “readable medium” (or media) as used herein therefore relate to any storage medium and any physical or carrier wave transmission medium, which participates in providing instructions or code or data to a processor for execution or processing. Storage media include any or all of the memory of the gateway device or associated modules thereof or any of the hardware platforms as may be used in the service management center, such as various semiconductor memories, tape drives, disk drives and the like, which may provide storage at any time for the software programming. All or portions of the software may at times be communicated through the Internet or various other telecommunication networks. Such communications, for example, may enable loading of the software from one computer into another computer, for example, from the updater 51 a hardware platform for a gateway device 10 or from another source into an element of the service management center 50. Thus, another type of media that may bear the software elements includes optical, electrical and electromagnetic waves, such as used across physical interfaces between local devices, through wired and optical landline networks and over various air-links. The physical elements that carry such waves, such as wired or wireless links, optical links or the like, also may be considered as media bearing the software. Hence, the broad class of media that may bear the instructions or data encompass many forms, including but not limited to, non-volatile storage media, volatile storage media as well as carrier wave and physical forms of transmission media.
Those skilled in the art will recognize that the teachings of this disclosure may be modified, extended and/or applied in a variety of ways. An extension of the system architecture, for example, provides the ability of various and disparate third-party application service providers to provide multiple application services independently. Application services are managed by the “managed” service provider through the service management center 50, meaning, generally, authorizing, provisioning, and monitoring the usage of a particular application service. This can be accomplished in a variety of ways with varying degrees of involvement of, or coordination with, the service management center. The service management center 50 could manage these items “soup-to-nuts” or have minimal involvement. For example, the service management center 50 could deal directly with the third-party service provider to acquire application services at the request of a user and manage the delivery, authorization, usage-monitoring and upgrading of the application service. At the other end of the spectrum, the managed service provider may have arrangements with the third-party application service provider by which orders or requests from the users may come directly to the third-party application service provider, and services are delivered to the user by the third-party service provider who in turn coordinates with the managed service provider to register and monitor the particular application service placed in the gateway device 10. It should be noted that this ability to manage application services extends through the gateway device into the endpoint devices registered or associated with the gateway or network.
While the foregoing has described what are considered to be the best mode and/or other examples, it is understood that various modifications may be made therein and that the subject matter disclosed herein may be implemented in various forms and examples, and that the teachings may be applied in numerous applications, only some of which have been described herein. It is intended by the following claims to claim any and all applications, modifications and variations that fall within the true scope of the present teachings.
This application is a continuation of U.S. application Ser. No. 12/521,746, filed Nov 24, 2009, entitled “PRESENCE STATUS NOTIFICATION FROM DIGITAL ENDPO LN IT DEVICES THROUGH A MULTI-SERVICES GATEWAY DEVICE AT THE USER PREMISES” which is a U.S. National Application of PCT/US2007/1019534, filed Sep 7, 2007, which claims the benefit of U.S. Provisional Application No. 60/882,862, filed Dec. 29, 2006, and claims the benefit of U.S. Provisional Application No. 60/882,865, filed Dec. 29, 2006, all of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2273733 | Paddock | Feb 1942 | A |
2316993 | Sherwood | Apr 1943 | A |
4297607 | Lynnworth et al. | Oct 1981 | A |
4467586 | Long et al. | Aug 1984 | A |
4814552 | Stefik et al. | Mar 1989 | A |
4835130 | Box | May 1989 | A |
4991148 | Gilchrist | Feb 1991 | A |
5339259 | Puma et al. | Aug 1994 | A |
5372138 | Crowley et al. | Dec 1994 | A |
5421338 | Crowley et al. | Jun 1995 | A |
5515853 | Smith et al. | May 1996 | A |
5517579 | Baron et al. | May 1996 | A |
5524630 | Crowley | Jun 1996 | A |
5588432 | Crowley | Dec 1996 | A |
5673252 | Johnson et al. | Sep 1997 | A |
5715825 | Crowley | Feb 1998 | A |
5750941 | Ishikawa et al. | May 1998 | A |
5840031 | Crowley | Nov 1998 | A |
5867146 | Kim et al. | Feb 1999 | A |
5867666 | Harvey | Feb 1999 | A |
5878223 | Becker et al. | Mar 1999 | A |
5943478 | Aggarwal et al. | Aug 1999 | A |
5977958 | Baron et al. | Nov 1999 | A |
5991739 | Cupps et al. | Nov 1999 | A |
5995272 | Patz | Nov 1999 | A |
6004269 | Crowley et al. | Dec 1999 | A |
6016520 | Facq et al. | Jan 2000 | A |
6029045 | Picco et al. | Feb 2000 | A |
6033150 | Culen | Mar 2000 | A |
6055569 | O'Brien et al. | Apr 2000 | A |
6092114 | Shaffer et al. | Jul 2000 | A |
6118205 | Wood et al. | Sep 2000 | A |
6158483 | Trpkovski | Dec 2000 | A |
6228290 | Reames et al. | May 2001 | B1 |
6301609 | Aravamudan et al. | Oct 2001 | B1 |
6330599 | Harvey | Dec 2001 | B1 |
6377571 | Tai | Apr 2002 | B1 |
6426955 | Gossett Dalton, Jr. et al. | Jul 2002 | B1 |
6434158 | Harris | Aug 2002 | B1 |
6434618 | Cohen | Aug 2002 | B1 |
6449344 | Goldfinger et al. | Sep 2002 | B1 |
6456597 | Bare | Sep 2002 | B1 |
6457294 | Virnelson et al. | Oct 2002 | B1 |
6487646 | Adams et al. | Nov 2002 | B1 |
6493128 | Agrawal et al. | Dec 2002 | B1 |
6526581 | Edson | Feb 2003 | B1 |
6542506 | Lee | Apr 2003 | B1 |
6549937 | Auerbach et al. | Apr 2003 | B1 |
6553345 | Kuhn | Apr 2003 | B1 |
6622168 | Datta | Sep 2003 | B1 |
6631412 | Glasser et al. | Oct 2003 | B1 |
6658091 | Naidoo | Dec 2003 | B1 |
6671730 | Akatsu | Dec 2003 | B1 |
6677976 | Parker et al. | Jan 2004 | B2 |
6681232 | Sistanizadeh et al. | Jan 2004 | B1 |
6694007 | Lang et al. | Feb 2004 | B2 |
6697474 | Hanson et al. | Feb 2004 | B1 |
6731992 | Ziegler | May 2004 | B1 |
6735619 | Sawada | May 2004 | B1 |
6745632 | Dryer et al. | Jun 2004 | B1 |
6771006 | Zioter et al. | Aug 2004 | B2 |
6798403 | Kitada et al. | Sep 2004 | B2 |
6850252 | Hoffberg | Feb 2005 | B1 |
6850901 | Hunter et al. | Feb 2005 | B1 |
6850979 | Saulpaugh et al. | Feb 2005 | B1 |
6851054 | Wheeler et al. | Feb 2005 | B2 |
6871193 | Campbell | Mar 2005 | B1 |
6889321 | Kung et al. | May 2005 | B1 |
6891838 | Petite et al. | May 2005 | B1 |
6898276 | Millet et al. | May 2005 | B1 |
6910074 | Amin | Jun 2005 | B1 |
6928576 | Sekiguchi | Aug 2005 | B2 |
6930598 | Weiss | Aug 2005 | B2 |
6931445 | Davis | Aug 2005 | B2 |
6957275 | Sekiguchi | Oct 2005 | B1 |
6961335 | Millet et al. | Nov 2005 | B1 |
6961857 | Floryanzia | Nov 2005 | B1 |
6965614 | Osterhout et al. | Nov 2005 | B1 |
6981025 | Frazier | Dec 2005 | B1 |
6988070 | Kawasaki | Jan 2006 | B2 |
7007070 | Hickman | Feb 2006 | B1 |
7035270 | Moore, Jr. et al. | Apr 2006 | B2 |
7054376 | Rubinstain et al. | May 2006 | B1 |
7058036 | Yu et al. | Jun 2006 | B1 |
7075919 | Wendt et al. | Jul 2006 | B1 |
7123700 | Weaver, III et al. | Oct 2006 | B1 |
7130719 | Ehlers et al. | Oct 2006 | B2 |
7139811 | Lev Ran et al. | Nov 2006 | B2 |
7167920 | Traversat et al. | Jan 2007 | B2 |
7203477 | Coppinger et al. | Apr 2007 | B2 |
7207048 | McQuillan et al. | Apr 2007 | B2 |
7222087 | Bezos et al. | May 2007 | B1 |
7235710 | Hatzfeld et al. | Jun 2007 | B2 |
7266589 | Brownhill | Sep 2007 | B2 |
7269162 | Turner | Sep 2007 | B1 |
7277384 | Chan | Oct 2007 | B1 |
7313120 | Ekberg et al. | Dec 2007 | B2 |
7336262 | Tsuji | Feb 2008 | B2 |
7349993 | Kawamoto et al. | Mar 2008 | B2 |
7397807 | Chen et al. | Jul 2008 | B2 |
7403838 | Deen | Jul 2008 | B2 |
7421483 | Kalra | Sep 2008 | B1 |
7444401 | Keyghobad | Oct 2008 | B1 |
7480724 | Zimler et al. | Jan 2009 | B2 |
7526539 | Hsu | Apr 2009 | B1 |
7551071 | Bennett, III et al. | Jun 2009 | B2 |
7574660 | Campbell et al. | Aug 2009 | B2 |
7584263 | Hicks | Sep 2009 | B1 |
7596692 | Fox et al. | Sep 2009 | B2 |
7627679 | Bowen et al. | Dec 2009 | B1 |
7650361 | Wong | Jan 2010 | B1 |
7673001 | Battle et al. | Mar 2010 | B1 |
7685629 | White et al. | Mar 2010 | B1 |
7706928 | Howell | Apr 2010 | B1 |
7707606 | Hofrichter et al. | Apr 2010 | B2 |
7761527 | Ferreira et al. | Jul 2010 | B2 |
7765294 | Edwards et al. | Jul 2010 | B2 |
7809605 | Tonse et al. | Oct 2010 | B2 |
7831748 | Dernis et al. | Nov 2010 | B2 |
7836044 | Kamvar et al. | Nov 2010 | B2 |
7895633 | Van Hoff et al. | Feb 2011 | B2 |
7913278 | Ellis et al. | Mar 2011 | B2 |
7933970 | Zimler et al. | Apr 2011 | B2 |
7948992 | Holmgren et al. | May 2011 | B1 |
7961712 | Rabenko et al. | Jun 2011 | B2 |
7970863 | Fontaine | Jun 2011 | B1 |
7970914 | Bowen et al. | Jun 2011 | B2 |
7987490 | Ansari et al. | Jul 2011 | B2 |
8020174 | Sedogbo | Sep 2011 | B2 |
8031726 | Ansari et al. | Oct 2011 | B2 |
8060589 | Kao | Nov 2011 | B1 |
8086495 | Ansari et al. | Dec 2011 | B2 |
8090856 | Bonefas | Jan 2012 | B1 |
8189608 | Duo et al. | May 2012 | B2 |
8315266 | Lam et al. | Nov 2012 | B1 |
8374586 | Bentkovski | Feb 2013 | B2 |
8375657 | Buchwald et al. | Feb 2013 | B2 |
8391299 | Schliserman et al. | Mar 2013 | B2 |
8459119 | Miyamoto | Jun 2013 | B2 |
8461413 | Frankard | Jun 2013 | B2 |
8577739 | Ansari et al. | Nov 2013 | B2 |
8583055 | Park | Nov 2013 | B2 |
8621588 | Yoshida | Dec 2013 | B2 |
8654936 | Eslambolchi | Feb 2014 | B1 |
8694523 | Lim | Apr 2014 | B2 |
8701166 | Courtney et al. | Apr 2014 | B2 |
8971341 | Ansari et al. | Mar 2015 | B2 |
8973056 | Ellis et al. | Mar 2015 | B2 |
9071606 | Braun et al. | Jun 2015 | B2 |
9167176 | Winter | Oct 2015 | B2 |
9203912 | Krishnaswamy et al. | Dec 2015 | B2 |
9253150 | Ansari et al. | Feb 2016 | B2 |
9270492 | Ansari et al. | Feb 2016 | B2 |
9325540 | Zhang | Apr 2016 | B2 |
9426151 | Richards et al. | Aug 2016 | B2 |
20010011284 | Humpleman | Aug 2001 | A1 |
20010025349 | Sharood | Sep 2001 | A1 |
20010041982 | Kawasaki | Nov 2001 | A1 |
20010048030 | Sharood | Dec 2001 | A1 |
20010051996 | Cooper et al. | Dec 2001 | A1 |
20020021465 | Moore | Feb 2002 | A1 |
20020023131 | Wu et al. | Feb 2002 | A1 |
20020027504 | David | Mar 2002 | A1 |
20020033416 | Gerszberg | Mar 2002 | A1 |
20020046279 | Chung | Apr 2002 | A1 |
20020052915 | Amin-Salehi | May 2002 | A1 |
20020059425 | Belfiore et al. | May 2002 | A1 |
20020059586 | Carney et al. | May 2002 | A1 |
20020060994 | Kovacs et al. | May 2002 | A1 |
20020065894 | Dalal et al. | May 2002 | A1 |
20020067376 | Martin | Jun 2002 | A1 |
20020069243 | Raverdy et al. | Jun 2002 | A1 |
20020071440 | Cerami et al. | Jun 2002 | A1 |
20020078150 | Thompson et al. | Jun 2002 | A1 |
20020103877 | Gagnon | Aug 2002 | A1 |
20020112047 | Kushwaha et al. | Aug 2002 | A1 |
20020122410 | Kulikov et al. | Sep 2002 | A1 |
20020124257 | Ismagilov | Sep 2002 | A1 |
20020128930 | Nakamoto et al. | Sep 2002 | A1 |
20020133613 | Teng | Sep 2002 | A1 |
20020136226 | Christoffel et al. | Sep 2002 | A1 |
20020156688 | Horn | Oct 2002 | A1 |
20020169858 | Bellinger | Nov 2002 | A1 |
20020176404 | Girard | Nov 2002 | A1 |
20020184358 | Traversat et al. | Dec 2002 | A1 |
20020184620 | Davies et al. | Dec 2002 | A1 |
20030005112 | Krautkremer | Jan 2003 | A1 |
20030012155 | Sayeedi | Jan 2003 | A1 |
20030023131 | Antaki | Jan 2003 | A1 |
20030023730 | Wengrovitz et al. | Jan 2003 | A1 |
20030083961 | Bezos et al. | May 2003 | A1 |
20030095569 | Wengrovitz et al. | May 2003 | A1 |
20030104010 | Raa et al. | Jun 2003 | A1 |
20030112755 | McDysan | Jun 2003 | A1 |
20030118726 | Nakayama et al. | Jun 2003 | A1 |
20030126207 | Creamer et al. | Jul 2003 | A1 |
20030135823 | Marejka | Jul 2003 | A1 |
20030140103 | Szeto et al. | Jul 2003 | A1 |
20030151621 | McEvilly | Aug 2003 | A1 |
20030169752 | Chen et al. | Sep 2003 | A1 |
20030171996 | Chen et al. | Sep 2003 | A1 |
20030185360 | Moore et al. | Oct 2003 | A1 |
20030210770 | Krejcarek | Nov 2003 | A1 |
20030217110 | Weiss | Nov 2003 | A1 |
20030229900 | Reisman | Dec 2003 | A1 |
20030231641 | Ryoo | Dec 2003 | A1 |
20030237004 | Okamura | Dec 2003 | A1 |
20040001480 | Tanigawa et al. | Jan 2004 | A1 |
20040003070 | Fernald et al. | Jan 2004 | A1 |
20040005859 | Ghercioiu et al. | Jan 2004 | A1 |
20040006477 | Craner | Jan 2004 | A1 |
20040006769 | Ansari et al. | Jan 2004 | A1 |
20040010327 | Terashima | Jan 2004 | A1 |
20040019489 | Funk et al. | Jan 2004 | A1 |
20040030750 | Moore et al. | Feb 2004 | A1 |
20040032399 | Sekiguchi et al. | Feb 2004 | A1 |
20040047310 | Chen et al. | Mar 2004 | A1 |
20040047358 | Chen et al. | Mar 2004 | A1 |
20040060079 | Tanaka et al. | Mar 2004 | A1 |
20040062230 | Taylor et al. | Apr 2004 | A1 |
20040073867 | Kausik et al. | Apr 2004 | A1 |
20040078573 | Matsuyama | Apr 2004 | A1 |
20040114608 | Rao et al. | Jun 2004 | A1 |
20040114610 | Featherston | Jun 2004 | A1 |
20040128310 | Zmudzinski et al. | Jul 2004 | A1 |
20040133657 | Smith et al. | Jul 2004 | A1 |
20040136373 | Bareis | Jul 2004 | A1 |
20040140989 | Papageorge | Jul 2004 | A1 |
20040148655 | Choe et al. | Jul 2004 | A1 |
20040160969 | Moon et al. | Aug 2004 | A1 |
20040174858 | Caspi et al. | Sep 2004 | A1 |
20040174863 | Caspi et al. | Sep 2004 | A1 |
20040177376 | Caspi et al. | Sep 2004 | A1 |
20040203942 | Dehlin | Oct 2004 | A1 |
20040213273 | Ma | Oct 2004 | A1 |
20040215750 | Stilp | Oct 2004 | A1 |
20040218609 | Foster et al. | Nov 2004 | A1 |
20040228324 | Alexiou et al. | Nov 2004 | A1 |
20040230695 | Anschutz et al. | Nov 2004 | A1 |
20040240389 | Bessis | Dec 2004 | A1 |
20040255048 | Lev Ran et al. | Dec 2004 | A1 |
20040255326 | Hicks, III et al. | Dec 2004 | A1 |
20050018612 | Fitzgerald | Jan 2005 | A1 |
20050027887 | Zimler | Feb 2005 | A1 |
20050038526 | Choi | Feb 2005 | A1 |
20050038875 | Park | Feb 2005 | A1 |
20050065855 | Geller | Mar 2005 | A1 |
20050068938 | Wang | Mar 2005 | A1 |
20050071663 | Medvinsky | Mar 2005 | A1 |
20050076198 | Skomra et al. | Apr 2005 | A1 |
20050089052 | Chen et al. | Apr 2005 | A1 |
20050094621 | Acharya et al. | May 2005 | A1 |
20050107086 | Tell | May 2005 | A1 |
20050108091 | Sotak et al. | May 2005 | A1 |
20050141492 | Chan et al. | Jun 2005 | A1 |
20050144616 | Hammond | Jun 2005 | A1 |
20050149922 | Vincent | Jul 2005 | A1 |
20050150697 | Altman et al. | Jul 2005 | A1 |
20050174950 | Ayyagari | Aug 2005 | A1 |
20050180396 | Lim | Aug 2005 | A1 |
20050190744 | Sun et al. | Sep 2005 | A1 |
20050190898 | Priest et al. | Sep 2005 | A1 |
20050195752 | Amin-Salehi | Sep 2005 | A1 |
20050195802 | Klein et al. | Sep 2005 | A1 |
20050198040 | Cohen | Sep 2005 | A1 |
20050208948 | Hori | Sep 2005 | A1 |
20050210064 | Caldini | Sep 2005 | A1 |
20050216302 | Raji | Sep 2005 | A1 |
20050216580 | Raji | Sep 2005 | A1 |
20050216949 | Candelora et al. | Sep 2005 | A1 |
20050220081 | Urquizo | Oct 2005 | A1 |
20050222933 | Wesby | Oct 2005 | A1 |
20050226158 | Takahashi | Oct 2005 | A1 |
20050232284 | Karaoguz et al. | Oct 2005 | A1 |
20050240680 | Costa-Requena et al. | Oct 2005 | A1 |
20050240943 | Smith et al. | Oct 2005 | A1 |
20050249196 | Ansari et al. | Nov 2005 | A1 |
20050257039 | Marshall | Nov 2005 | A1 |
20050260996 | Groenendaal | Nov 2005 | A1 |
20050286466 | Tagg et al. | Dec 2005 | A1 |
20060020589 | Wu et al. | Jan 2006 | A1 |
20060025132 | Karaoguz et al. | Feb 2006 | A1 |
20060029007 | Ayyagari | Feb 2006 | A1 |
20060029064 | Rao et al. | Feb 2006 | A1 |
20060031406 | Watson et al. | Feb 2006 | A1 |
20060031476 | Mathes et al. | Feb 2006 | A1 |
20060040667 | Coppinger et al. | Feb 2006 | A9 |
20060041926 | Istvan | Feb 2006 | A1 |
20060067344 | Sakurai | Mar 2006 | A1 |
20060075108 | Sylvain | Apr 2006 | A1 |
20060075276 | Kataria | Apr 2006 | A1 |
20060075429 | Istvan | Apr 2006 | A1 |
20060080352 | Boubez et al. | Apr 2006 | A1 |
20060104432 | Evslin | May 2006 | A1 |
20060122976 | Baluja et al. | Jun 2006 | A1 |
20060136246 | Tu | Jun 2006 | A1 |
20060146784 | Karpov et al. | Jul 2006 | A1 |
20060153214 | Moore et al. | Jul 2006 | A1 |
20060159116 | Gerszberg | Jul 2006 | A1 |
20060164205 | Buckingham | Jul 2006 | A1 |
20060167985 | Albanese | Jul 2006 | A1 |
20060174289 | Theberge | Aug 2006 | A1 |
20060178943 | Rollinson et al. | Aug 2006 | A1 |
20060209857 | Hicks, III et al. | Sep 2006 | A1 |
20060220830 | Bennett, III | Oct 2006 | A1 |
20060227724 | Thubert et al. | Oct 2006 | A1 |
20060236419 | La Rosa et al. | Oct 2006 | A1 |
20060239425 | Hurst et al. | Oct 2006 | A1 |
20060256759 | Sayeedi | Nov 2006 | A1 |
20060258396 | Matsuoka | Nov 2006 | A1 |
20060259584 | Watson et al. | Nov 2006 | A1 |
20060271695 | Lavian | Nov 2006 | A1 |
20060291506 | Cain | Dec 2006 | A1 |
20060293965 | Burton | Dec 2006 | A1 |
20070005766 | Singhal et al. | Jan 2007 | A1 |
20070021867 | Woo | Jan 2007 | A1 |
20070038637 | Taneja | Feb 2007 | A1 |
20070043476 | Richards et al. | Feb 2007 | A1 |
20070043478 | Ehlers et al. | Feb 2007 | A1 |
20070049342 | Mayer et al. | Mar 2007 | A1 |
20070050351 | Kasperski et al. | Mar 2007 | A1 |
20070055759 | McCoy | Mar 2007 | A1 |
20070058608 | Lin | Mar 2007 | A1 |
20070058644 | Brahmbhatt et al. | Mar 2007 | A1 |
20070061149 | Chang | Mar 2007 | A1 |
20070089183 | Poovaiah et al. | Apr 2007 | A1 |
20070100981 | Adamczyk et al. | May 2007 | A1 |
20070106570 | Hartman et al. | May 2007 | A1 |
20070109976 | Samanta et al. | May 2007 | A1 |
20070115922 | Schneider et al. | May 2007 | A1 |
20070143262 | Kasperski | Jun 2007 | A1 |
20070143831 | Pearson | Jun 2007 | A1 |
20070147420 | Dean | Jun 2007 | A1 |
20070150286 | Miller | Jun 2007 | A1 |
20070150345 | Tonse et al. | Jun 2007 | A1 |
20070156265 | McCoy | Jul 2007 | A1 |
20070165629 | Chaturvedi et al. | Jul 2007 | A1 |
20070169144 | Chen | Jul 2007 | A1 |
20070171895 | Oberle et al. | Jul 2007 | A1 |
20070192477 | Hicks et al. | Aug 2007 | A1 |
20070192486 | Wilson | Aug 2007 | A1 |
20070192735 | Lehto et al. | Aug 2007 | A1 |
20070198437 | Eisner et al. | Aug 2007 | A1 |
20070199022 | Moshiri | Aug 2007 | A1 |
20070253443 | Dean et al. | Nov 2007 | A1 |
20070286159 | Preiss et al. | Dec 2007 | A1 |
20070291650 | Ormazabal | Dec 2007 | A1 |
20070294721 | Haeuser | Dec 2007 | A1 |
20070297454 | Brothers | Dec 2007 | A1 |
20080005306 | Kushalnagar | Jan 2008 | A1 |
20080005565 | Shiga | Jan 2008 | A1 |
20080022391 | Sax | Jan 2008 | A1 |
20080043719 | Pok et al. | Feb 2008 | A1 |
20080052393 | McNaughton et al. | Feb 2008 | A1 |
20080066126 | Walter | Mar 2008 | A1 |
20080069121 | Adamson et al. | Mar 2008 | A1 |
20080084789 | Altman | Apr 2008 | A1 |
20080084888 | Yadav et al. | Apr 2008 | A1 |
20080098212 | Helms | Apr 2008 | A1 |
20080101320 | Krahn et al. | May 2008 | A1 |
20080123683 | Cheng et al. | May 2008 | A1 |
20080127880 | Dhellemmes et al. | Jun 2008 | A1 |
20080130666 | Kawamoto et al. | Jun 2008 | A1 |
20080134258 | Goose | Jun 2008 | A1 |
20080141315 | Ogilvie | Jun 2008 | A1 |
20080144642 | Song | Jun 2008 | A1 |
20080151778 | Venkitaraman et al. | Jun 2008 | A1 |
20080155613 | Benya | Jun 2008 | A1 |
20080163059 | Craner | Jul 2008 | A1 |
20080165789 | Ansari et al. | Jul 2008 | A1 |
20080166048 | Raif et al. | Jul 2008 | A1 |
20080189774 | Ansari et al. | Aug 2008 | A1 |
20080221715 | Krzyzanowski | Sep 2008 | A1 |
20080239957 | Tokura | Oct 2008 | A1 |
20080240125 | Purvis et al. | Oct 2008 | A1 |
20080304500 | Schliserman et al. | Dec 2008 | A1 |
20090034419 | Flammer, III et al. | Feb 2009 | A1 |
20090037382 | Ansari et al. | Feb 2009 | A1 |
20090067441 | Ansari et al. | Mar 2009 | A1 |
20090077207 | Karaoguz et al. | Mar 2009 | A1 |
20090100460 | Hicks | Apr 2009 | A1 |
20090168787 | Ansari et al. | Jul 2009 | A1 |
20090178079 | Derrenberger et al. | Jul 2009 | A1 |
20090180422 | Bohacek et al. | Jul 2009 | A1 |
20090189774 | Brundridge et al. | Jul 2009 | A1 |
20090216847 | Krishnaswamy et al. | Aug 2009 | A1 |
20100014444 | Ghanadan et al. | Jan 2010 | A1 |
20100030734 | Chunilal | Feb 2010 | A1 |
20100061309 | Buddhikot et al. | Mar 2010 | A1 |
20100071053 | Ansari et al. | Mar 2010 | A1 |
20100202450 | Ansari et al. | Aug 2010 | A1 |
20100205152 | Ansari et al. | Aug 2010 | A1 |
20100205301 | Ansari et al. | Aug 2010 | A1 |
20100211636 | Starkenburg | Aug 2010 | A1 |
20100217837 | Ansari et al. | Aug 2010 | A1 |
20100231790 | Ansari et al. | Sep 2010 | A1 |
20100235433 | Ansari et al. | Sep 2010 | A1 |
20100238810 | Ormazabal | Sep 2010 | A1 |
20100241711 | Ansari et al. | Sep 2010 | A1 |
20100241748 | Ansari et al. | Sep 2010 | A1 |
20100291940 | Koo | Nov 2010 | A1 |
20110019135 | Koganezawa | Jan 2011 | A1 |
20110092232 | Lee | Apr 2011 | A1 |
20110182205 | Gerdes et al. | Jul 2011 | A1 |
20110261654 | Miyamoto et al. | Oct 2011 | A1 |
20120060181 | Craner | Mar 2012 | A1 |
20120101881 | Taylor et al. | Apr 2012 | A1 |
20120110490 | Keller | May 2012 | A1 |
20120157043 | LaJoie | Jun 2012 | A1 |
20120311665 | Lim | Dec 2012 | A1 |
20130191871 | Gilboy | Jul 2013 | A1 |
20130329745 | Phillips et al. | Dec 2013 | A1 |
20140259074 | Ansari et al. | Sep 2014 | A1 |
20140362253 | Kim | Dec 2014 | A1 |
20150074259 | Ansari et al. | Mar 2015 | A1 |
20150208363 | Fu et al. | Jul 2015 | A1 |
20150347683 | Ansari et al. | Dec 2015 | A1 |
20160226920 | Ansari et al. | Aug 2016 | A1 |
20160254962 | Ansari et al. | Sep 2016 | A1 |
20160330200 | Ansari et al. | Nov 2016 | A1 |
20160344745 | Johnson et al. | Nov 2016 | A1 |
20170070395 | Ansari et al. | Mar 2017 | A1 |
20170078154 | Ansari et al. | Mar 2017 | A1 |
20170078732 | Ansari et al. | Mar 2017 | A1 |
20170111182 | Ansari et al. | Apr 2017 | A1 |
20170344703 | Ansari et al. | Nov 2017 | A1 |
20180123819 | Ansari et al. | May 2018 | A1 |
20180123905 | Ansari et al. | May 2018 | A1 |
20180124115 | Ansari et al. | May 2018 | A1 |
20180126414 | Ansari et al. | May 2018 | A1 |
20180131571 | Ansari et al. | May 2018 | A1 |
20180131572 | Ansari et al. | May 2018 | A1 |
20180152310 | Ansari et al. | May 2018 | A1 |
20180152311 | Ansari et al. | May 2018 | A1 |
20180333746 | Ansari et al. | Nov 2018 | A1 |
20180361426 | Ansari et al. | Dec 2018 | A1 |
20190020496 | Ansari et al. | Jan 2019 | A1 |
Number | Date | Country |
---|---|---|
102500747 | Jun 2012 | CN |
3002904 | Aug 1980 | DE |
3818631 | Dec 1989 | DE |
9116206 | Apr 1992 | DE |
19723596 | Oct 1998 | DE |
10024525 | Nov 2001 | DE |
20304806 | Jul 2003 | DE |
0805254 | Nov 1997 | EP |
0921260 | Jun 1999 | EP |
1113659 | Jul 2001 | EP |
1195497 | Apr 2002 | EP |
1377005 | Jan 2004 | EP |
1394986 | Mar 2004 | EP |
1657396 | May 2006 | EP |
03269387 | Nov 1991 | JP |
07104063 | Apr 1995 | JP |
11290082 | Oct 1999 | JP |
2002139565 | May 2002 | JP |
WO-0193533 | Dec 2001 | WO |
WO-2005111653 | Nov 2005 | WO |
WO-2007004921 | Jan 2007 | WO |
WO-2008021665 | Feb 2008 | WO |
2008082346 | Jul 2008 | WO |
2008082441 | Jul 2008 | WO |
2008083384 | Jul 2008 | WO |
2008083385 | Jul 2008 | WO |
2008083387 | Jul 2008 | WO |
2008083391 | Jul 2008 | WO |
2008085201 | Jul 2008 | WO |
2008085202 | Jul 2008 | WO |
2008085203 | Jul 2008 | WO |
2008085204 | Jul 2008 | WO |
2008085205 | Jul 2008 | WO |
2008085206 | Jul 2008 | WO |
2008085207 | Jul 2008 | WO |
WO-2008085205 | Sep 2008 | WO |
WO-2008085204 | Oct 2008 | WO |
WO-2008085207 | Oct 2008 | WO |
WO-2008085203 | Nov 2008 | WO |
WO-2008085206 | Nov 2008 | WO |
2009036088 | Mar 2009 | WO |
2009036185 | Mar 2009 | WO |
2009086134 | Jul 2009 | WO |
Entry |
---|
“FAD-binding, type 2,” SuperFamily Accession SSF56176, InterPro Accession IPR016166, downloaded May 24, 2012. |
“FAD-linked oxidase, N-terminal,” InterPro Accession IPR006094, downloaded May 24, 2012. |
Choe, S., et al., “Overexpression of DWARF4 in the Brassinosteroid Biosynthetic Pathway Results in Increased Vegetative Growth and Seed Yield in Arabidopsis,” The Plant Journal, vol. 26, No. 6, 2001, pp. 573-582. |
DLNA enables streaming of premium video in connected homes across Europe. (New Products) IPTV Newsletter, v 5, n 10, p. 4 Oct. 2011. |
Fraaije, M.W., et al., “A Novel Oxidoreductase Family Sharing a Conserved FAD-Binding Domain,” TIBS, vol. 23, 1998, pp. 206-207. |
H. Kashiwagi, “M-sequence and its application,” Shokodo, Mar. 25, 1996, pp. 1-5, 16-32. |
Haerick W et al., “Success in Home Service Deployment: Zero-Touch or Chaos?”, British Telecommunications, Jul. 1, 2007, pp. 36-43, vol. 5, No. 3, London, GB. |
Hong et al, “The Rice brassinosteroid-deficient dwarf2 Mutant, Defective in the Rice Homolog of Arabidopsis DIMINUTO/DWARD1, Is Rescued by the Endogenously Accumulated Alternative Bioactive Brassinosteroid, Dolichosterone,” The Plant Cell, 2006, col. 17, pp. 2243-2254. |
Il-Woo Lee, et al., A Proposed Platform & Performance Estimation of Digital-Home Service Delivery/Management Systems, Apr. 10, 2006, pp. 713-719, Information Technology: New Generations, 2006. |
International Application No. PCT/US2008/087724, filed Dec. 19, 2008, 7 Pages, 1211 Geneva 20, Switzerland. |
International Search Report and the Written Opinion of the International Searching Authority issued in International Application No. PCT/US2008/087724 dated Feb. 17, 2009. |
International Search Report and the Written Opinion of the International Searching Authority issued in International Patent Application No. PCT/US08/75889 dated Nov. 24, 2008. |
International Search Report and Written Opinion in International Application No. PCT/US05/15860, dated Jul. 17, 2006, 8 pages. |
International Search Report and Written Opinion in International Application No. PCT/US08/76036, dated Nov. 14, 2008. |
International Search Report in International Application No. PCT/JP2008/051225, dated Feb. 29, 2008. |
Klahre, U., et al., “The Arabidopsis DIMINUTO/DWARD1 Gene Encodes a Protein Involved in Steroid Synthesis,” The Plant Cell, vol. 10, 1998, pp. 1677-1690. |
Machine Translation of JP11290082-A, Oct. 1999. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Aug. 27, 2008, 24 pages, Application No. PCT/US2007/089232. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Aug. 8, 2008, 22 pages, Application No. PCT/US2007/089227. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Oct. 22, 2008, 12 pages, Application No. PCT/US2007/089232. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, dated Feb. 26, 2008, 11 pages, Application No. PCT/US07/19483. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, dated Mar. 14, 2008, 12 pages, Application No. PCT/US07/19533. |
PCT Invitation to Pay Additional Fees and, where Applicable, Protest Fee (PCT/ISA/206) and Communication Relating to the Results of the Partial International Search (Annex to PCT/ISA/206) dated May 19, 2008 for PCT Application No. PCT/US2007/089237, 7 pages. |
PCT Invitation to Pay Additional Fees and, where Applicable, Protest Fee (PCT/ISA/206) and Communication Relating to the Results of the Partial International Search (Annex to PCT/ISA/206) dated May 21, 2008 for PCT Application No. PCT/US2007/089227, 7 pages. |
Sakamoto, T., “Phytohormones and Rice Crop Yield: Strategies and Opportunities for Genetic Improvement,” Transgenic Research, vol. 15, 2006, pp. 399-404. |
Takahashi, T., et al., “The DIMINUTO Gene of Arabidopsis is Involved in Regulating Cell Elongation,” Genes and Development, vol. 9, 1995, pp. 97-107. |
Technology and challenges of virtual communities. International Journal of Business Research , v 7 , n 4, p. 69 Jul. 2007. |
Yokota, T., “The Structure, Biosynthesis and Function of Brassinosteroids,” Trends in Plan Science, vol. 2, No. 4, 1997, pp. 137-143. |
Young-Gab Kim et al., A Service Bundle Authentication Mechanism in the OSGI Service Platform, Advanced Information Networking and Applications, 2004, AINA 2004. 18th International Conference on Fukuoka, Japan, 29-31, Mar. 2004, Piscataway, NJ, USA, IEEE, vol. 1, Mar. 29, 2004, pp. 420-425. |
U.S. Appl. No. 15/686,044 of Ansari et al. filed Aug. 24, 2017. |
U.S. Appl. No. 15/944,620 of Ansari et al., filed Apr. 3, 2018. |
U.S. Appl. No. 16/002,945 of Ansari et al., filed Jun. 7, 2018. |
Wen-Shyang Hwang et al., “A QoS-aware Residential Gateway with Bandwidth Management,” Aug. 2005. |
U.S. Appl. No. 16/291,856 for Ansari et al., filed Mar. 4, 2019. |
U.S. Appl. No. 16/370,126 for Ansari et al., filed Mar. 29, 2019. |
U.S. Appl. No. 16/439,501 for Ansari et al., filed Jun. 12, 2019. |
U.S. Appl. No. 16/452,249 for Ansari et al., filed Jun. 25, 2019. |
U.S. Appl. No. 16/460,148 for Ansari et al., filed Jul. 2, 2019. |
U.S. Appl. No. 16/512,876 for Ansari et al., filed Jul. 16, 2019. |
U.S. Appl. No. 16/514,803 for Ansari et al., filed Jul. 17, 2019. |
Number | Date | Country | |
---|---|---|---|
20160226823 A1 | Aug 2016 | US |
Number | Date | Country | |
---|---|---|---|
60882862 | Dec 2006 | US | |
60882865 | Dec 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12521746 | US | |
Child | 14962165 | US |