The present technology relates to consumer goods and, more particularly, to methods, systems, products, features, services, and other elements directed to voice-controllable media playback systems or some aspect thereof.
Options for accessing and listening to digital audio in an out-loud setting were limited until in 2003, when SONOS, Inc. filed for one of its first patent applications, entitled “Method for Synchronizing Audio Playback between Multiple Networked Devices,” and began offering a media playback system for sale in 2005. The SONOS Wireless HiFi System enables people to experience music from many sources via one or more networked playback devices. Through a software control application installed on a smartphone, tablet, or computer, one can play what he or she wants in any room that has a networked playback device. Additionally, using a controller, for example, different songs can be streamed to each room that has a playback device, rooms can be grouped together for synchronous playback, or the same song can be heard in all rooms synchronously.
Given the ever-growing interest in digital media, there continues to be a need to develop consumer-accessible technologies to further enhance the listening experience.
Features, aspects, and advantages of the presently disclosed technology may be better understood with regard to the following description, appended claims, and accompanying drawings where:
The drawings are for purposes of illustrating example embodiments, but it should be understood that the inventions are not limited to the arrangements and instrumentality shown in the drawings. In the drawings, identical reference numbers identify at least generally similar elements. To facilitate the discussion of any particular element, the most significant digit or digits of any reference number refers to the Figure in which that element is first introduced. For example, element 103a is first introduced and discussed with reference to
I. Overview
Voice control can be beneficial in a “smart” home that includes smart appliances and devices that are connected to a communication network, such as wireless audio playback devices, illumination devices, and home-automation devices (e.g., thermostats, door locks, etc.). In some implementations, network microphone devices may be used to control smart home devices.
A network microphone device (“NMD”) is a networked computing device that typically includes an arrangement of microphones, such as a microphone array, that is configured to detect sounds present in the NMD's environment. The detected sound may include a person's speech mixed with background noise (e.g., music being output by a playback device or other ambient noise). In practice, an NMD typically filters detected sound to remove the background noise from the person's speech to facilitate identifying whether the speech contains a voice input indicative of voice control. If so, the NMD may take action based on such a voice input.
An NMD often employs a wake-word engine, which is typically onboard the NMD, to identify whether sound detected by the NMD contains a voice input that includes a particular wake word. The wake-word engine may be configured to identify (i.e., “spot”) a particular wake word using one or more identification algorithms. This wake-word identification process is commonly referred to as “keyword spotting.” In practice, to help facilitate keyword spotting, the NMD may buffer sound detected by a microphone of the NMD and then use the wake-word engine to process that buffered sound to determine whether a wake word is present.
When a wake-word engine spots a wake word in detected sound, the NMD may determine that a wake-word event (i.e., a “wake-word trigger”) has occurred, which indicates that the NMD has detected sound that includes a potential voice input. The occurrence of the wake-word event typically causes the NMD to perform additional processes involving the detected sound. In some implementations, these additional processes may include outputting an alert (e.g., an audible chime and/or a light indicator) indicating that a wake word has been identified and extracting detected-sound data from a buffer, among other possible additional processes. Extracting the detected sound may include reading out and packaging a stream of the detected-sound according to a particular format and transmitting the packaged sound-data to an appropriate VAS for interpretation.
In turn, the VAS corresponding to the wake word that was identified by the wake-word engine receives the transmitted sound data from the NMD over a communication network. A VAS traditionally takes the form of a remote service implemented using one or more cloud servers configured to process voice inputs (e.g., AMAZON's ALEXA, APPLE's SIRI, MICROSOFT's CORTANA, GOOGLE'S ASSISTANT, etc.). In some instances, certain components and functionality of the VAS may be distributed across local and remote devices. Additionally, or alternatively, a VAS may take the form of a local service implemented at an NMD or a media playback system comprising the NMD such that a voice input or certain types of voice input (e.g., rudimentary commands) are processed locally without intervention from a remote VAS.
In any case, when a VAS receives detected-sound data, the VAS will typically process this data, which involves identifying the voice input and determining an intent of words captured in the voice input. The VAS may then provide a response back to the NMD with some instruction according to the determined intent. Based on that instruction, the NMD may cause one or more smart devices to perform an action. For example, in accordance with an instruction from a VAS, an NMD may cause a playback device to play a particular song or an illumination device to turn on/off, among other examples. In some cases, an NMD, or a media system with NMDs (e.g., a media playback system with NMD-equipped playback devices) may be configured to interact with multiple VASes. In practice, the NMD may select one VAS over another based on the particular wake word identified in the sound detected by the NMD.
In some implementations, a playback device that is configured to be part of a networked media playback system may include components and functionality of an NMD (i.e., the playback device is “NMD-equipped”). In this respect, such a playback device may include a microphone that is configured to detect sounds present in the playback device's environment, such as people speaking, audio being output by the playback device itself or another playback device that is nearby, or other ambient noises, and may also include components for buffering detected sound to facilitate wake-word identification.
Some NMD-equipped playback devices may include an internal power source (e.g., a rechargeable battery) that allows the playback device to operate without being physically connected to a wall electrical outlet or the like. In this regard, such a playback device may be referred to herein as a “portable playback device.” On the other hand, playback devices that are configured to rely on power from a wall electrical outlet or the like may be referred to herein as “stationary playback devices,” although such devices may in fact be moved around a home or other environment. In practice, a person might often take a portable playback device to and from a home or other environment in which one or more stationary playback devices remain.
In some cases, multiple VASES are configured for the NMD, or a system of NMDs (e.g., a media playback system of playback devices). One or more services can be configured during a set-up procedure, and additional VASes can be configured for the system later on. As such, the NMD acts as an interface with multiple VASes, perhaps alleviating a need to have an NMD from each of the voice services to interact with the respective VASes. Yet further, the NMD can operate in concert with service-specific NMDs present in a household to process a given voice command.
Where two or more VASes are configured for the NMD, a particular VAS can be invoked by utterance of a wake word corresponding to the particular VAS. For instance, in querying AMAZON, a user might speak the wake word “Alexa” followed by a voice command. Other examples include “Ok, Google” for querying GOOGLE and “Hey, Siri” for querying APPLE.
In some cases, a generic wake word can be used to indicate a voice input to an NMD. In some cases, this is a manufacturer-specific wake word rather than a wake word tied to any particular VAS (e.g., “Hey, Sonos” where the NMD is a SONOS playback device). Given such a wake word, the NMD can identify a particular VAS to process the request. For instance, if the voice input following the wake word is related to a particular type of command (e.g., music playback), then the voice input is sent to a particular VAS associated with that type of command (e.g. a streaming music service having voice command capabilities).
An NMD can include an array of individual microphones. In operation, the NMD receives sound data from each of the individual microphones, which is then combined and processed to assess whether a wake word has been detected. As noted above, if the wake word has been detected, the NMD can pass subsequent audio input to a VAS for further processing. If one or more of the individual microphones suffers performance issues, the functionality of the network microphone device may be impaired. Individual microphones may be impaired due to hardware problems with the microphone itself (e.g., damage or defect to one or more of the components of the microphone) or due to obstructions blocking audio from reaching the microphone (e.g., dust blocking a microphone port in the NMD, a piece of furniture partially blocking one of the microphones, etc.). Problems with one or more of the individual microphones can lead to aberrant audio signals, for example audio signals exhibiting excess noise, distortion, bandwidth limitations, or other artifacts that can deleteriously affect downstream processing. This deterioration in audio quality may lead to poor performance at the VAS, for example, inability to accurately capture and respond to voice commands.
In addition to problems with microphone performance, environmental factors can deleteriously affect the downstream processing of sound data obtained by the NMD. For example, if a household appliance generates a high level of background noise, the false-positive or false-negative rate of wake-word detection can increase. As another example, if individual users in a household tend to be relatively quiet and speak in softer voices, the NMD may perform more sub-optimally in detecting and correctly analyzing voice input. In such instances, one or more parameters of the NMD can be adjusted to improve performance of the NMD. For example, the fixed gain may be adjusted for a household of soft speakers, or a particular frequency band corresponding to the identified white noise of a household appliance might be ignored or filtered from the detected sound data before downstream processing. Spatial processing could also be adjusted to suppress noise coming from a particular direction (for example, from a stationary household appliance). By modifying performance of the NMD based on detected characteristics of the audio data, voice detection and downstream processing can be improved.
In some embodiments, the NMD provides sound metadata (e.g., spectral data, signal levels, direction detection, etc.) to a remote computing device for evaluation. To protect user privacy, it can be useful to rely only on sound metadata that does not reveal the original audio content (e.g., the content of recorded speech input or other detected sound data). The NMD can derive the sound metadata from the detected sound data in a manner that renders the original audio signal indecipherable if one only has access to the sound metadata. For example, by limiting the sound metadata to frequency-domain information that is averaged over many sampling frames, rather than time-domain information, the NMD can render the original detected sound data indecipherable via the sound metadata. In operation, the NMD can gather sound metadata and send this metadata to one or more computing devices of a remote evaluator for evaluation and comparison. The remote evaluator can then evaluate the sound metadata to identify any features of the sound metadata indicative of problematic microphones, environmental factors, or other factors that may contribute to diminished NMD performance. As such, in some embodiments, the system can detect obstacles to NMD performance without infringing on user privacy by sending recorded audio content to the remote evaluator.
In some embodiments, the system takes corrective measures in response to detecting abnormalities in the sound metadata. For example, the NMD can modify its operation to accommodate a defective microphone or to compensate for detected environmental factors. This modification can include disregarding input from one or more microphones, modifying an acoustic echo cancellation processing algorithm, modifying a spatial processing algorithm, adjusting a fixed gain of one or more of the microphones, adjusting a wake-word sensitivity parameter, adjustment of noise-reduction parameters, or making other modifications to the operation of the NMD.
In addition, in some instances it can be advantageous to modify operation of the NMD based on the particular voice assistant service (VAS) selected. As noted previously, an NMD or a system of NMDs (e.g., a media playback system of playback devices) can be configured to communicate with a plurality of different VASes. In operation, voice input obtained via microphones of the NMD can be transmitted to one or more selected VASes for processing. Different VASes may process the received sound data differently, and accordingly operation of the NMD may be modified to optimize voice detection for the particular VAS. For example, different VASes may utilize sound data from different numbers of microphones, and/or may use different techniques for wake-word detection and other voice processing. In one example, a first VAS may use sound data from six microphones and a beamforming algorithm configured for a six-microphone architecture, while a second VAS may use sound data from only two microphones and employ a different spatial processing algorithm. In such cases, it can be useful to modify one or more operating parameters of the NMD based on which of these two VASes is selected.
While some embodiments described herein may refer to functions performed by given actors, such as “users” and/or other entities, it should be understood that this description is for purposes of explanation only. The claims should not be interpreted to require action by any such example actor unless explicitly required by the language of the claims themselves.
II. Example Operating Environment
Within these rooms and spaces, the MPS 100 includes one or more computing devices. Referring to
With reference still to
As further shown in
In some implementations, the various playback devices, NMDs, and/or controller devices 102-104 may be communicatively coupled to at least one remote computing device associated with a VAS and at least one remote computing device associated with a media content service (“MCS”). For instance, in the illustrated example of
As further shown in
In various implementations, one or more of the playback devices 102 may take the form of or include an on-board (e.g., integrated) network microphone device. For example, the playback devices 102a-e include or are otherwise equipped with corresponding NMDs 103a-e, respectively. A playback device that includes or is equipped with an NMD may be referred to herein interchangeably as a playback device or an NMD unless indicated otherwise in the description. In some cases, one or more of the NMDs 103 may be a stand-alone device. For example, the NMDs 103f and 103g may be stand-alone devices. A stand-alone NMD may omit components and/or functionality that is typically included in a playback device, such as a speaker or related electronics. For instance, in such cases, a stand-alone NMD may not produce audio output or may produce limited audio output (e.g., relatively low-quality audio output).
The various playback and network microphone devices 102 and 103 of the MPS 100 may each be associated with a unique name, which may be assigned to the respective devices by a user, such as during setup of one or more of these devices. For instance, as shown in the illustrated example of
As discussed above, an NMD may detect and process sound from its environment, such as sound that includes background noise mixed with speech spoken by a person in the NMD's vicinity. For example, as sounds are detected by the NMD in the environment, the NMD may process the detected sound to determine if the sound includes speech that contains voice input intended for the NMD and ultimately a particular VAS. For example, the NMD may identify whether speech includes a wake word associated with a particular VAS.
In the illustrated example of
Upon receiving the stream of sound data, the VAS 190 determines if there is voice input in the streamed data from the NMD, and if so the VAS 190 will also determine an underlying intent in the voice input. The VAS 190 may next transmit a response back to the MPS 100, which can include transmitting the response directly to the NMD that caused the wake-word event. The response is typically based on the intent that the VAS 190 determined was present in the voice input. As an example, in response to the VAS 190 receiving a voice input with an utterance to “Play Hey Jude by The Beatles,” the VAS 190 may determine that the underlying intent of the voice input is to initiate playback and further determine that intent of the voice input is to play the particular song “Hey Jude.” After these determinations, the VAS 190 may transmit a command to a particular MCS 192 to retrieve content (i.e., the song “Hey Jude”), and that MCS 192, in turn, provides (e.g., streams) this content directly to the MPS 100 or indirectly via the VAS 190. In some implementations, the VAS 190 may transmit to the MPS 100 a command that causes the MPS 100 itself to retrieve the content from the MCS 192.
In certain implementations, NMDs may facilitate arbitration amongst one another when voice input is identified in speech detected by two or more NMDs located within proximity of one another. For example, the NMD-equipped playback device 102d in the environment 101 (
In certain implementations, an NMD may be assigned to, or otherwise associated with, a designated or default playback device that may not include an NMD. For example, the Island NMD 103f in the Kitchen 101h (
Further aspects relating to the different components of the example MPS 100 and how the different components may interact to provide a user with a media experience may be found in the following sections. While discussions herein may generally refer to the example MPS 100, technologies described herein are not limited to applications within, among other things, the home environment described above. For instance, the technologies described herein may be useful in other home environment configurations comprising more or fewer of any of the playback, network microphone, and/or controller devices 102-104. For example, the technologies herein may be utilized within an environment having a single playback device 102 and/or a single NMD 103. In some examples of such cases, the LAN 111 (
a. Example Playback & Network Microphone Devices
As shown, the playback device 102 includes at least one processor 212, which may be a clock-driven computing component configured to process input data according to instructions stored in memory 213. The memory 213 may be a tangible, non-transitory, computer-readable medium configured to store instructions that are executable by the processor 212. For example, the memory 213 may be data storage that can be loaded with software code 214 that is executable by the processor 212 to achieve certain functions.
In one example, these functions may involve the playback device 102 retrieving audio data from an audio source, which may be another playback device. In another example, the functions may involve the playback device 102 sending audio data, detected-sound data (e.g., corresponding to a voice input), and/or other information to another device on a network via at least one network interface 224. In yet another example, the functions may involve the playback device 102 causing one or more other playback devices to synchronously playback audio with the playback device 102. In yet a further example, the functions may involve the playback device 102 facilitating being paired or otherwise bonded with one or more other playback devices to create a multi-channel audio environment. Numerous other example functions are possible, some of which are discussed below.
As just mentioned, certain functions may involve the playback device 102 synchronizing playback of audio content with one or more other playback devices. During synchronous playback, a listener may not perceive time-delay differences between playback of the audio content by the synchronized playback devices. U.S. Pat. No. 8,234,395 filed on Apr. 4, 2004, and titled “System and method for synchronizing operations among a plurality of independently clocked digital data processing devices,” which is hereby incorporated by reference in its entirety, provides in more detail some examples for audio playback synchronization among playback devices.
To facilitate audio playback, the playback device 102 includes audio processing components 216 that are generally configured to process audio prior to the playback device 102 rendering the audio. In this respect, the audio processing components 216 may include one or more digital-to-analog converters (“DAC”), one or more audio preprocessing components, one or more audio enhancement components, one or more digital signal processors (“DSPs”), and so on. In some implementations, one or more of the audio processing components 216 may be a subcomponent of the processor 212. In operation, the audio processing components 216 receive analog and/or digital audio and process and/or otherwise intentionally alter the audio to produce audio signals for playback.
The produced audio signals may then be provided to one or more audio amplifiers 217 for amplification and playback through one or more speakers 218 operably coupled to the amplifiers 217. The audio amplifiers 217 may include components configured to amplify audio signals to a level for driving one or more of the speakers 218.
Each of the speakers 218 may include an individual transducer (e.g., a “driver”) or the speakers 218 may include a complete speaker system involving an enclosure with one or more drivers. A particular driver of a speaker 218 may include, for example, a subwoofer (e.g., for low frequencies), a mid-range driver (e.g., for middle frequencies), and/or a tweeter (e.g., for high frequencies). In some cases, a transducer may be driven by an individual corresponding audio amplifier of the audio amplifiers 217. In some implementations, a playback device may not include the speakers 218, but instead may include a speaker interface for connecting the playback device to external speakers. In certain embodiments, a playback device may include neither the speakers 218 nor the audio amplifiers 217, but instead may include an audio interface (not shown) for connecting the playback device to an external audio amplifier or audio-visual receiver.
In addition to producing audio signals for playback by the playback device 102, the audio processing components 216 may be configured to process audio to be sent to one or more other playback devices, via the network interface 224, for playback. In example scenarios, audio content to be processed and/or played back by the playback device 102 may be received from an external source, such as via an audio line-in interface (e.g., an auto-detecting 3.5 mm audio line-in connection) of the playback device 102 (not shown) or via the network interface 224, as described below.
As shown, the at least one network interface 224, may take the form of one or more wireless interfaces 225 and/or one or more wired interfaces 226. A wireless interface may provide network interface functions for the playback device 102 to wirelessly communicate with other devices (e.g., other playback device(s), NMD(s), and/or controller device(s)) in accordance with a communication protocol (e.g., any wireless standard including IEEE 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, 802.15, 4G mobile communication standard, and so on). A wired interface may provide network interface functions for the playback device 102 to communicate over a wired connection with other devices in accordance with a communication protocol (e.g., IEEE 802.3). While the network interface 224 shown in
In general, the network interface 224 facilitates data flow between the playback device 102 and one or more other devices on a data network. For instance, the playback device 102 may be configured to receive audio content over the data network from one or more other playback devices, network devices within a LAN, and/or audio content sources over a WAN, such as the Internet. In one example, the audio content and other signals transmitted and received by the playback device 102 may be transmitted in the form of digital packet data comprising an Internet Protocol (IP)-based source address and IP-based destination addresses. In such a case, the network interface 224 may be configured to parse the digital packet data such that the data destined for the playback device 102 is properly received and processed by the playback device 102.
As shown in
In operation, the voice-processing components 220 are generally configured to detect and process sound received via the microphones 222, identify potential voice input in the detected sound, and extract detected-sound data to enable a VAS, such as the VAS 190 (
In some implementations, the voice-processing components 220 may detect and store a user's voice profile, which may be associated with a user account of the MPS 100. For example, voice profiles may be stored as and/or compared to variables stored in a set of command information or data table. The voice profile may include aspects of the tone or frequency of a user's voice and/or other unique aspects of the user's voice, such as those described in previously-referenced U.S. patent application Ser. No. 15/438,749.
As further shown in
In some implementations, the power components 227 of the playback device 102 may additionally include an internal power source 229 (e.g., one or more batteries) configured to power the playback device 102 without a physical connection to an external power source. When equipped with the internal power source 229, the playback device 102 may operate independent of an external power source. In some such implementations, the external power source interface 228 may be configured to facilitate charging the internal power source 229. As discussed before, a playback device comprising an internal power source may be referred to herein as a “portable playback device.” On the other hand, a playback device that operates using an external power source may be referred to herein as a “stationary playback device,” although such a device may in fact be moved around a home or other environment.
The playback device 102 further includes a user interface 240 that may facilitate user interactions independent of or in conjunction with user interactions facilitated by one or more of the controller devices 104. In various embodiments, the user interface 240 includes one or more physical buttons and/or supports graphical interfaces provided on touch sensitive screen(s) and/or surface(s), among other possibilities, for a user to directly provide input. The user interface 240 may further include one or more of lights (e.g., LEDs) and the speakers to provide visual and/or audio feedback to a user.
As an illustrative example,
As further shown in
By way of illustration, SONOS, Inc. presently offers (or has offered) for sale certain playback devices that may implement certain of the embodiments disclosed herein, including a “PLAY:1,” “PLAY:3,” “PLAY:5,” “PLAYBAR,” “CONNECT:AMP,” “PLAYBASE,” “BEAM,” “CONNECT,” and “SUB.” Any other past, present, and/or future playback devices may additionally or alternatively be used to implement the playback devices of example embodiments disclosed herein. Additionally, it should be understood that a playback device is not limited to the examples illustrated in
b. Example Playback Device Configurations
For purposes of control, each zone in the MPS 100 may be represented as a single user interface (“UI”) entity. For example, as displayed by the controller devices 104, Zone A may be provided as a single entity named “Portable,” Zone B may be provided as a single entity named “Stereo,” and Zone C may be provided as a single entity named “Living Room.”
In various embodiments, a zone may take on the name of one of the playback devices belonging to the zone. For example, Zone C may take on the name of the Living Room device 102m (as shown). In another example, Zone C may instead take on the name of the Bookcase device 102d. In a further example, Zone C may take on a name that is some combination of the Bookcase device 102d and Living Room device 102m. The name that is chosen may be selected by a user via inputs at a controller device 104. In some embodiments, a zone may be given a name that is different than the device(s) belonging to the zone. For example, Zone B in
As noted above, playback devices that are bonded may have different playback responsibilities, such as playback responsibilities for certain audio channels. For example, as shown in
Additionally, playback devices that are configured to be bonded may have additional and/or different respective speaker drivers. As shown in
In some implementations, playback devices may also be “merged.” In contrast to certain bonded playback devices, playback devices that are merged may not have assigned playback responsibilities, but may each render the full range of audio content that each respective playback device is capable of. Nevertheless, merged devices may be represented as a single UI entity (i.e., a zone, as discussed above). For instance,
In some embodiments, a stand-alone NMD may be in a zone by itself. For example, the NMD 103h from
Zones of individual, bonded, and/or merged devices may be arranged to form a set of playback devices that playback audio in synchrony. Such a set of playback devices may be referred to as a “group,” “zone group,” “synchrony group,” or “playback group.” In response to inputs provided via a controller device 104, playback devices may be dynamically grouped and ungrouped to form new or different groups that synchronously play back audio content. For example, referring to
In various implementations, the zones in an environment may be assigned a particular name, which may be the default name of a zone within a zone group or a combination of the names of the zones within a zone group, such as “Dining Room+Kitchen,” as shown in
Referring back to
In some embodiments, the memory 213 of the playback device 102 may store instances of various variable types associated with the states. Variables instances may be stored with identifiers (e.g., tags) corresponding to type. For example, certain identifiers may be a first type “a1” to identify playback device(s) of a zone, a second type “b1” to identify playback device(s) that may be bonded in the zone, and a third type “c1” to identify a zone group to which the zone may belong. As a related example, in
In yet another example, the MPS 100 may include variables or identifiers representing other associations of zones and zone groups, such as identifiers associated with Areas, as shown in
The memory 213 may be further configured to store other data. Such data may pertain to audio sources accessible by the playback device 102 or a playback queue that the playback device (or some other playback device(s)) may be associated with. In embodiments described below, the memory 213 is configured to store a set of command data for selecting a particular VAS when processing voice inputs.
During operation, one or more playback zones in the environment of
As suggested above, the zone configurations of the MPS 100 may be dynamically modified. As such, the MPS 100 may support numerous configurations. For example, if a user physically moves one or more playback devices to or from a zone, the MPS 100 may be reconfigured to accommodate the change(s). For instance, if the user physically moves the playback device 102c from the Patio zone to the Office zone, the Office zone may now include both the playback devices 102c and 102n. In some cases, the user may pair or group the moved playback device 102c with the Office zone and/or rename the players in the Office zone using, for example, one of the controller devices 104 and/or voice input. As another example, if one or more playback devices 102 are moved to a particular space in the home environment that is not already a playback zone, the moved playback device(s) may be renamed or associated with a playback zone for the particular space.
Further, different playback zones of the MPS 100 may be dynamically combined into zone groups or split up into individual playback zones. For example, the Dining Room zone and the Kitchen zone may be combined into a zone group for a dinner party such that playback devices 102i and 102l may render audio content in synchrony. As another example, bonded playback devices in the Den zone may be split into (i) a television zone and (ii) a separate listening zone. The television zone may include the Front playback device 102b. The listening zone may include the Right, Left, and SUB playback devices 102a, 102j, and 102k, which may be grouped, paired, or merged, as described above. Splitting the Den zone in such a manner may allow one user to listen to music in the listening zone in one area of the living room space, and another user to watch the television in another area of the living room space. In a related example, a user may utilize either of the NMD 103a or 103b (
c. Example Controller Devices
The memory 413 of the controller device 104 may be configured to store controller application software and other data associated with the MPS 100 and/or a user of the system 100. The memory 413 may be loaded with instructions in software 414 that are executable by the processor 412 to achieve certain functions, such as facilitating user access, control, and/or configuration of the MPS 100. The controller device 104 is configured to communicate with other network devices via the network interface 424, which may take the form of a wireless interface, as described above.
In one example, system information (e.g., such as a state variable) may be communicated between the controller device 104 and other devices via the network interface 424. For instance, the controller device 104 may receive playback zone and zone group configurations in the MPS 100 from a playback device, an NMD, or another network device. Likewise, the controller device 104 may transmit such system information to a playback device or another network device via the network interface 424. In some cases, the other network device may be another controller device.
The controller device 104 may also communicate playback device control commands, such as volume control and audio playback control, to a playback device via the network interface 424. As suggested above, changes to configurations of the MPS 100 may also be performed by a user using the controller device 104. The configuration changes may include adding/removing one or more playback devices to/from a zone, adding/removing one or more zones to/from a zone group, forming a bonded or merged player, separating one or more playback devices from a bonded or merged player, among others.
As shown in
The playback control region 442 (
The playback zone region 443 (
For example, as shown, a “group” icon may be provided within each of the graphical representations of playback zones. The “group” icon provided within a graphical representation of a particular zone may be selectable to bring up options to select one or more other zones in the MPS 100 to be grouped with the particular zone. Once grouped, playback devices in the zones that have been grouped with the particular zone will be configured to play audio content in synchrony with the playback device(s) in the particular zone. Analogously, a “group” icon may be provided within a graphical representation of a zone group. In this case, the “group” icon may be selectable to bring up options to deselect one or more zones in the zone group to be removed from the zone group. Other interactions and implementations for grouping and ungrouping zones via a user interface are also possible. The representations of playback zones in the playback zone region 443 (
The playback status region 444 (
The playback queue region 446 may include graphical representations of audio content in a playback queue associated with the selected playback zone or zone group. In some embodiments, each playback zone or zone group may be associated with a playback queue comprising information corresponding to zero or more audio items for playback by the playback zone or zone group. For instance, each audio item in the playback queue may comprise a uniform resource identifier (URI), a uniform resource locator (URL), or some other identifier that may be used by a playback device in the playback zone or zone group to find and/or retrieve the audio item from a local audio content source or a networked audio content source, which may then be played back by the playback device.
In one example, a playlist may be added to a playback queue, in which case information corresponding to each audio item in the playlist may be added to the playback queue. In another example, audio items in a playback queue may be saved as a playlist. In a further example, a playback queue may be empty, or populated but “not in use” when the playback zone or zone group is playing continuously streamed audio content, such as Internet radio that may continue to play until otherwise stopped, rather than discrete audio items that have playback durations. In an alternative embodiment, a playback queue can include Internet radio and/or other streaming audio content items and be “in use” when the playback zone or zone group is playing those items. Other examples are also possible.
When playback zones or zone groups are “grouped” or “ungrouped,” playback queues associated with the affected playback zones or zone groups may be cleared or re-associated. For example, if a first playback zone including a first playback queue is grouped with a second playback zone including a second playback queue, the established zone group may have an associated playback queue that is initially empty, that contains audio items from the first playback queue (such as if the second playback zone was added to the first playback zone), that contains audio items from the second playback queue (such as if the first playback zone was added to the second playback zone), or a combination of audio items from both the first and second playback queues. Subsequently, if the established zone group is ungrouped, the resulting first playback zone may be re-associated with the previous first playback queue or may be associated with a new playback queue that is empty or contains audio items from the playback queue associated with the established zone group before the established zone group was ungrouped. Similarly, the resulting second playback zone may be re-associated with the previous second playback queue or may be associated with a new playback queue that is empty or contains audio items from the playback queue associated with the established zone group before the established zone group was ungrouped. Other examples are also possible.
With reference still to
The sources region 448 may include graphical representations of selectable audio content sources and/or selectable voice assistants associated with a corresponding VAS. The VASes may be selectively assigned. In some examples, multiple VASes, such as AMAZON's Alexa, MICROSOFT's Cortana, etc., may be invokable by the same NMD. In some embodiments, a user may assign a VAS exclusively to one or more NMDs. For example, a user may assign a first VAS to one or both of the NMDs 102a and 102b in the Living Room shown in
d. Example Audio Content Sources
The audio sources in the sources region 448 may be audio content sources from which audio content may be retrieved and played by the selected playback zone or zone group. One or more playback devices in a zone or zone group may be configured to retrieve for playback audio content (e.g., according to a corresponding URI or URL for the audio content) from a variety of available audio content sources. In one example, audio content may be retrieved by a playback device directly from a corresponding audio content source (e.g., via a line-in connection). In another example, audio content may be provided to a playback device over a network via one or more other playback devices or network devices. As described in greater detail below, in some embodiments audio content may be provided by one or more media content services.
Example audio content sources may include a memory of one or more playback devices in a media playback system such as the MPS 100 of
In some embodiments, audio content sources may be added or removed from a media playback system such as the MPS 100 of
e. Example Network Microphone Devices
The microphones 222 of the NMD 503 are configured to provide detected sound, SD, from the environment of the NMD 503 to the VCC 560. The detected sound SD may take the form of one or more analog or digital signals. In example implementations, the detected sound SD may be composed of a plurality signals associated with respective channels 562 that are fed to the VCC 560.
Each channel 562 may correspond to a particular microphone 222. For example, an NMD having six microphones may have six corresponding channels. Each channel of the detected sound SD may bear certain similarities to the other channels but may differ in certain regards, which may be due to the position of the given channel's corresponding microphone relative to the microphones of other channels. For example, one or more of the channels of the detected sound SD may have a greater signal to noise ratio (“SNR”) of speech to background noise than other channels.
As further shown in
The spatial processor 566 is typically configured to analyze the detected sound SD and identify certain characteristics, such as a sound's amplitude (e.g., decibel level), frequency spectrum, directionality, etc. In one respect, the spatial processor 566 may help filter or suppress ambient noise in the detected sound SD from potential user speech based on similarities and differences in the constituent channels 562 of the detected sound SD, as discussed above. As one possibility, the spatial processor 566 may monitor metrics that distinguish speech from other sounds. Such metrics can include, for example, energy within the speech band relative to background noise and entropy within the speech band—a measure of spectral structure—which is typically lower in speech than in most common background noise. In some implementations, the spatial processor 566 may be configured to determine a speech presence probability, examples of such functionality are disclosed in U.S. patent application Ser. No. 15/984,073, filed May 18, 2018, titled “Linear Filtering for Noise-Suppressed Speech Detection,” which is incorporated herein by reference in its entirety.
In some embodiments, the spatial processor 566 is capable of assuming different configurations that perform differently. The different configurations can vary in the number of channels of sound data utilized, in the algorithms used to process the sound data, in the coefficients utilized for a particular algorithm, or in any other manner. In one example, the spatial processor 566 can utilize a beamforming algorithm in a first configuration and a linear filter algorithm in a second configuration.
As will be apparent to one of skill in the art, beamforming algorithms typically amplify sound coming from the direction where speech originated relative to the microphone array and attenuate sound coming from other relative directions. For example, utilizing beamforming, a microphone array can spatially localize sounds in two or three dimensions based on one or both of (i) delays in arrival times of a sound between the different microphones of the array, and (ii) vertical asymmetry of the relative response of each microphone in the array. In operation, some embodiments employ a polar response matrix including beamforming coefficients that represent differences in responses of each microphone of the array relative to every other microphone in the array.
In contrast to beamforming, a time-invariant linear filtering approach can enhance speech content from an acoustic signal by comparing estimated noise from different microphones of the NMD or of a microphone network. One example of such time-invariant linear filtering is multi-channel Weiner filtering and related techniques, as described in more detail in U.S. patent application Ser. No. 15/984,073, filed May 18, 2018, titled “Linear Filtering for Noise-Suppressed Speech Detection,” which is incorporated herein by reference in its entirety. Various other linear filtering approaches may be used in different embodiments.
The pipeline selector 569 can modify operation of the NMD based at least in part on the selected VAS. In some embodiments, the pipeline selector 569 toggles between different signal processing schemes depending on the particular VAS selected for communication with the NMD. For example, the pipeline selector 569 can modify operation of the spatial processor 566, such as selecting between a first configuration and a second configuration. The pipeline selector 569 may also determine which wake-word engine is selected from among the various different wake-word engines 570, 571. In some embodiments, the pipeline selector 569 can modify other aspects of the signal processing chain, for example the AEC 564 or any aspect of the processing sound data via the VCC 560 and/or downstream components.
The wake-word engine 570 is configured to monitor and analyze received audio to determine if any wake words are present in the audio. The wake-word engine 570 may analyze the received audio using a wake word detection algorithm. If the wake-word engine 570 detects a wake word, a network microphone device may process voice input contained in the received audio. Example wake word detection algorithms accept audio as input and provide an indication of whether a wake word is present in the audio. Many first- and third-party wake word detection algorithms are known and commercially available. For instance, operators of a voice service may make their algorithm available for use in third-party devices. Alternatively, an algorithm may be trained to detect certain wake-words.
In some embodiments, the wake-word engine 570 runs multiple wake word detections algorithms on the received audio simultaneously (or substantially simultaneously). As noted above, different voice services (e.g. AMAZON's Alexa®, APPLE's Siri MICROSOFT's Cortana®, GOOGLE'S Assistant, etc.) each use a different wake word for invoking their respective voice service. To support multiple services, the wake word detector 554 may run the received audio through the wake word detection algorithm for each supported voice service in parallel. In such embodiments, the network microphone device 103 may include VAS selector components 574 configured to pass voice input to the appropriate voice assistant service. In other embodiments, the VAS selector components 574 may be omitted. In some embodiments, individual NMDs 103 of the MPS 100 may be configured to run different wake word detection algorithms associated with particular VASes. For example, the NMDs of playback devices 102a and 102b of the Living Room may be associated with AMAZON's ALEXA®, and be configured to run a corresponding wake word detection algorithm (e.g., configured to detect the wake word “Alexa” or other associated wake word), while the NMD of playback device 102f in the Kitchen may be associated with GOOGLE's Assistant, and be configured to run a corresponding wake word detection algorithm (e.g., configured to detect the wake word “OK, Google” or other associated wake word).
In some embodiments, a network microphone device may include speech processing components configured to further facilitate voice processing, such as by performing voice recognition trained to recognize a particular user or a particular set of users associated with a household. Voice recognition software may implement voice-processing algorithms that are tuned to specific voice profile(s).
In operation, the one or more buffers 568—one or more of which may be part of or separate from the memory 213 (
In general, the detected-sound data form a digital representation (i.e., sound-data stream), SDS, of the sound detected by the microphones 222. In practice, the sound-data stream SDS may take a variety of forms. As one possibility, the sound-data stream SDS may be composed of frames, each of which may include one or more sound samples. The frames may be streamed (i.e., read out) from the one or more buffers 568 for further processing by downstream components, such as the wake-word engine 570 and the voice extractor 572 of the NMD 503.
In some implementations, at least one buffer 568 captures detected-sound data utilizing a sliding window approach in which a given amount (i.e., a given window) of the most recently captured detected-sound data is retained in the at least one buffer 568 while older detected-sound data are overwritten when they fall outside of the window. For example, at least one buffer 568 may temporarily retain 20 frames of a sound specimen at given time, discard the oldest frame after an expiration time, and then capture a new frame, which is added to the 19 prior frames of the sound specimen.
In practice, when the sound-data stream SDS is composed of frames, the frames may take a variety of forms having a variety of characteristics. As one possibility, the frames may take the form of audio frames that have a certain resolution (e.g., 16 bits of resolution), which may be based on a sampling rate (e.g., 44,100 Hz). Additionally, or alternatively, the frames may include information corresponding to a given sound specimen that the frames define, such as metadata that indicates frequency response, power input level, SNR, microphone channel identification, and/or other information of the given sound specimen, among other examples. Thus, in some embodiments, a frame may include a portion of sound (e.g., one or more samples of a given sound specimen) and metadata regarding the portion of sound. In other embodiments, a frame may only include a portion of sound (e.g., one or more samples of a given sound specimen) or metadata regarding a portion of sound.
The VCC 560 also includes a lookback buffer 568b as part of the pipeline selector 569. The lookback buffer 568b may be part of or separate from the memory 213 (
As described in more detail below with respect to
In any case, components of the NMD 503 downstream of the VCC 560 may process the sound-data stream SDS. For instance, the wake-word engine 570 can be configured to apply one or more identification algorithms to the sound-data stream SDS (e.g., streamed sound frames) to spot potential wake words in the detected-sound SD. When the wake-word engine 570 spots a potential wake word, the wake-word engine 570 can provide an indication of a “wake-word event” (also referred to as a “wake-word trigger”) to the voice extractor 572 in the form of signal SW.
In response to the wake-word event (e.g., in response to a signal SW from the wake-word engine 570 indicating the wake-word event), the voice extractor 572 is configured to receive and format (e.g., packetize) the sound-data stream SDS. For instance, the voice extractor 572 packetizes the frames of the sound-data stream SDS into messages. The voice extractor 572 transmits or streams these messages, MV, that may contain voice input in real time or near real time to a remote VAS, such as the VAS 190 (
The VAS is configured to process the sound-data stream SDS contained in the messages MV sent from the NMD 503. More specifically, the VAS is configured to identify voice input based on the sound-data stream SDS. Referring to
As an illustrative example,
Typically, the VAS may first process the wake-word portion 680a within the sound-data stream SDS to verify the presence of the wake word. In some instances, the VAS may determine that the wake-word portion 680a comprises a false wake word (e.g., the word “Election” when the word “Alexa” is the target wake word). In such an occurrence, the VAS may send a response to the NMD 503 (
In any case, the VAS processes the utterance portion 680b to identify the presence of any words in the detected-sound data and to determine an underlying intent from these words. The words may correspond to a certain command and certain keywords 684 (identified individually in
To determine the intent of the words, the VAS is typically in communication with one or more databases associated with the VAS (not shown) and/or one or more databases (not shown) of the MPS 100. Such databases may store various user data, analytics, catalogs, and other information for natural language processing and/or other processing. In some implementations, such databases may be updated for adaptive learning and feedback for a neural network based on voice-input processing. In some cases, the utterance portion 680b may include additional information, such as detected pauses (e.g., periods of non-speech) between words spoken by a user, as shown in
Based on certain command criteria, the VAS may take actions as a result of identifying one or more commands in the voice input, such as the command 682. Command criteria may be based on the inclusion of certain keywords within the voice input, among other possibilities. Additionally, or alternatively, command criteria for commands may involve identification of one or more control-state and/or zone-state variables in conjunction with identification of one or more particular commands. Control-state variables may include, for example, indicators identifying a level of volume, a queue associated with one or more devices, and playback state, such as whether devices are playing a queue, paused, etc. Zone-state variables may include, for example, indicators identifying which, if any, zone players are grouped.
After processing the voice input, the VAS may send a response to the MPS 100 with an instruction to perform one or more actions based on an intent it determined from the voice input. For example, based on the voice input, the VAS may direct the MPS 100 to initiate playback on one or more of the playback devices 102, control one or more of these devices (e.g., raise/lower volume, group/ungroup devices, etc.), turn on/off certain smart devices, among other actions. After receiving the response from the VAS, the wake-word engine 570 the NMD 503 may resume or continue to monitor the sound-data stream SDS until it spots another potential wake-word, as discussed above.
Referring back to
In additional or alternative implementations, one or more of the additional voice-input identification engines 571 enable the NMD 503 to operate without the assistance of a remote VAS. As an example, such an engine may identify in detected sound certain commands (e.g., “play,” “pause,” “turn on,” etc.) and/or certain keywords or phrases, such as the unique name assigned to a given playback device (e.g., “Bookcase,” “Patio,” “Office,” etc.). In response to identifying one or more of these commands, keywords, and/or phrases, the NMD 503 may communicate a signal (not shown in
III. Example Systems and Methods for Modifying NMD Operation
As noted above a network device such as an NMD 503 can have a variety of tunable parameters that affect identification and processing of voice input in detected sounds captured by one or more microphones of the NMD. For example, a particular microphone may be identified as defective or aberrant and that microphone may be ignored or filtered out of downstream processing. As another example, the gain applied to the sound data during processing can be adjusted up or down to improve voice detection. For example, a device used by unusually loud speakers may experience improved NMD performance if the fixed gain is adjusted downward, while conversely a device used by unusually soft speakers may experience improved NMD performance if the fixed gain is adjusted upward. Another tunable parameter is noise-reduction, for example modifying the extent to which the NMD processes the sound data or sound-data stream to reduce noise and/or improve the signal-to-noise ratio. The NMD may also modify an acoustic echo cancellation (AEC) parameter (e.g., by modifying operation of the AEC 564 in
Another tunable parameter is a wake-word-detection sensitivity parameter. For example, the wake-word engine 570 (or any of the additional wake-word engines 571) may have one or more parameters that adjust a sensitivity or threshold for identifying a wake word in the audio input. This parameter can be adjusted to improve NMD performance. Lowering the threshold (or increasing the sensitivity) may increase the rate of false-positives while reducing the rate of false-negatives, while conversely increasing the threshold (or decreasing the sensitivity) may decrease the rate of false-positives while increasing the rate of false-negatives. Adjusting the wake-word-detection sensitivity parameter can allow an NMD to achieve a suitable tradeoff between the false-negative and false-positive rates.
In addition or alternatively to those parameters listed above, in some embodiments the NMD can modify the spatial processing algorithm to improve performance in detecting and processing voice input (e.g., by modifying operation of the spatial processor 566 in
In various embodiments, the NMD performance parameters can be adjusted on an individual device level, on a home or environment level (e.g., all the NMDs within a customer's home can be adjusted together), or on a population level (e.g., all the NMDs in a given region can be adjusted together). As described in more detail below, one or more NMD performance parameters can be modified based on sound metadata. In some embodiments, one or more NMD performance parameters are adjusted based on the particular VAS selected for communication with the NMD, as described in more detail below.
a. Example Systems and Methods for Modifying NMD Operation Based on Sound Metadata
As noted above, a network device such as NMD 503 can include a variety of tunable parameters that affect performance in detecting and processing audio input. In some embodiments, one or more of these parameters can be modified based on sound metadata. For example, the NMD can modify one or more performance parameters to compensate for an identified microphone defect or environmental factor reducing performance of the NMD. Sound metadata can be derived from the sound data SD obtained via the individual microphones of the NMD and/or from the sound-data stream SDS provided by the VCC 560 (
Beginning with the NMD 503, an array of individual microphones 242a-242n detect sound and provide sound data to the voice-capture components (VCC) 560 over multiple channels (e.g., with each microphone having a corresponding channel). As described above with respect to
The VCC 560 can store the sound data from the individual microphones 242a-242n in one or more buffers for a predetermined time interval. For example, in some embodiments the VCC 560 stores the sound data for less than less than 5 seconds, less than 4 seconds, less than 3 seconds, less than 2 seconds, or less than 1 second, such as overwriting in a buffer. In some implementations, the VCC 560 includes a buffer (e.g., buffer 568a) that captures sound data utilizing a sliding window approach in which a given amount (i.e., a given window) of the most recently captured detected-sound data is retained in the at least one buffer 568a while older sound data are overwritten when they fall outside of the window. For example, at least one buffer 568a may temporarily retain 20 frames of a sound specimen at given time, discard the oldest frame after an expiration time, and then capture a new frame, which is added to the 19 prior frames of the sound specimen.
The VCC 560 can output a sound-data stream to block 705 for event triggering. Here, the NMD 503 can evaluate the sound-data stream to detect a predetermined trigger event. For example, the trigger event detected in block 705 can be detection of a wake word in the sound-data stream (e.g., using a wake-word engine 570 shown in
If the trigger event is detected in block 705, then the sound-data stream is passed to device function in block 707. For example, in block 707, one of multiple VASes can be selected, the processed audio can be transmitted to a VAS for further processing, audible output can be provided to a user, instructions can be transmitted to an associated playback device, or any other suitable operation can be carried out following the detection of the trigger event in block 705.
Once the trigger event is detected in block 705, an indication is provided to the VCC 560, which can in turn provide sound metadata in block 709 to a remote computing device 106c. The sound metadata 709 can be based on the sound data from the microphones 242a-242n. To protect user privacy, it can be useful to rely only on sound metadata that does not reveal the original audio content (e.g., the content of recorded speech input or other detected sound data). The NMD can derive the sound metadata from the detected sound data a manner that renders the original sound data indecipherable if one only has access to the sound metadata. As noted above, examples of sound metadata include: (1) frequency response data for individual microphones of the NMD, (2) an echo return loss enhancement measure (i.e., a measure of the effectiveness of the acoustic echo canceller (AEC) for each microphone), (3) a voice direction measure; (4) arbitration statistics (e.g., signal and noise estimates for the spatial processing streams associated with different microphones); and/or (5) speech spectral data (i.e., frequency response evaluated on processed audio output after acoustic echo cancellation and spatial processing have been performed). Other sound metadata may also be used to characterize performance of the NMD and/or the individual microphones.
From block 709, the sound metadata can be transmitted from the NMD 503 to the remote computing device 106c for cloud collection in block 711. For example, the remote computing device 106c can collect microphone performance data from one or more NMDs. In some embodiments, the remote computing device 106c can collect sound metadata from a large population of NMDs, and such population metadata can be used to derive averages, identify outliers, and guide modification of NMD performance parameters to improve operation of the NMD 503. Because the sound metadata is derived from the sound data but does not reveal the sound data, sending only the sound metadata to the remote computing device 106c allows for the evaluation of NMD performance without exposing the actual audio content from which the sound data is derived.
In block 713 the remote computing device 106c analyzes the sound metadata. In some embodiments, analyzing the sound metadata includes comparing one or more features of the sound metadata with reference values or sample population values. For example, any feature of the sound metadata (such as signal levels, frequency response data, etc.) can be compared with predetermined reference values or averaged values collected from a sample population. In some embodiments, the analysis of the sound metadata can be performed locally by the NMD 503 rather than or in addition to the evaluation performed by the remote computing device 106c.
Referring back to
In block 717, the remote computing device 106c determines whether the NMD performance needs to be modified based on the data analysis in block 713 and/or the predictive modeling in block 715. If no modification is needed, then the process returns to data analysis in block 713 for analysis of newly received sound metadata. If, in decision block 717, a modification is needed, then the process continues to block 719 to adjust the operation of the NMD.
With continued reference to block 719, modification of the NMD can take a number of forms depending on the identified features of the metadata. For example, adjustment of the device can include disregarding input from a defective microphone, adjusting a fixed gain, modifying a noise-reduction parameter, a wake-word-detection sensitivity parameter, or adjusting a spatial processing algorithm, etc.
In block 906, the NMD captures metadata associated with the sound data in at least a second buffer. For example, the sound metadata can be stored in the lookback buffer 560 (
Next, the method 900 continues in block 908 with analyzing the detected sound to detect a trigger event. In some embodiments, the trigger event is the detection of a wake word. The wake word can be detected, for example, via the wake-word engine 570 (
After detecting the trigger event, the method 900 continues in block 910 with extracting a voice input via the NMD. For example, a voice extractor 572 (
In block 912, the method 900 involves analyzing the sound metadata to evaluate performance of the NMD. This analysis can be performed either locally by the NMD or remotely by one or more remote computing devices 106c (
Referring to block 912, analyzing the sound metadata can include comparing one or more features of the sound metadata with reference values or a sample population. For example, any features of the sound metadata such as signal levels, frequency response data, etc. can be compared with reference values or values collected and averaged over a sample population. In some embodiments, the analysis of the sound metadata can be performed locally by the NMD 503 rather than or in addition to the evaluation performed by the remote computing device 106c.
The method 900 continues in block 914 with modifying performance of the NMD based on the evaluation in block 912. Modification of the NMD can take a number of forms depending on the identified features of the metadata. For example, adjustment of the device can include disregarding input from a defective microphone, adjusting a fixed gain, modifying a noise-reduction parameter, a wake-word-detection sensitivity parameter, or adjusting a spatial processing algorithm, etc.
b. Example Systems and Methods for Modifying NMD Operation Based on Selected VAS
As noted above, one or more performance parameters of a network device such as NMD 503 can be modified based at least in part on the particular VAS selected for communication with the NMD 503. Because different VASes may process the received audio input differently, operation of the NMD 503 may be modified to improve or optimize voice detection for the particular VAS. For example, different VASes may utilize sound data from different numbers of microphones, and/or may use different techniques for wake-word detection and other voice processing. In one embodiment, a first VAS may use sound data from six microphones and rely on a beamforming algorithm for noise reduction and improved voice processing, while a second VAS may use sound data from only two microphones and employ a different algorithm for voice detection and processing. In such cases, it can be useful to modify one or more operating parameters of the NMD based on which of these two VASes is selected.
As shown in
In block 1006, the method involves producing a first stream of sound data based on the detected sound using a spatial processor in a first configuration. As described above with respect to
In block 1008, the method determines that a second VAS is to be selected over the first VAS. For example, a user may elect to associate the NMD with the second VAS in place of the first VAS. Alternatively or in addition, a user may utter a wake word that is associated with the second VAS, and in response the NMD can select the second VAS in place of the first VAS. For example, if an NMD is associated with the AMAZON VAS (either due to user selection or due to detection of an associated wake word), a user may say “OK Google” to select the GOOGLE VAS in place of the AMAZON VAS.
In block 1010, the method involves producing a second stream of sound data based on the detected sound using the spatial processor in a second configuration different from the first configuration. The second configuration of the spatial processor can differ from the first configuration in any number of ways. For example, the second configuration may vary from the first configuration in the number of channels of sound data or number of microphones utilized, in the algorithms used to process the sound data, in the coefficients utilized for a particular algorithm, or in any other aspect. In one example, either the first or the second configuration of the spatial processor can utilize a beamforming algorithm, while in the other configuration, the spatial processor utilizes a linear filter algorithm. In some embodiments, the different configurations of the spatial processor utilize similar algorithms or filters but with differing coefficients. In some embodiments, the spatial processor can assume three, four, five, or more different configurations, each associated with a different VAS. Once that VAS is selected, the spatial processor can assume the corresponding configuration for producing a stream of sound data to be transmitted to the selected VAS.
In some embodiments, at least some aspects of the spatial processor are modified based on the selected VAS, while at least some other aspects of the spatial processor are modified based on other factors, such as sound metadata as described above with respect to
Returning to
As noted above, in some examples, the captured sound-data stream includes voice input 680, which in turn includes a first portion representing the wake word 680a and a second portion representing a voice utterance 680b, which can include one or more commands such as command 682. In some cases, the NMD may transmit only the portion of the sound-data stream representing at least the second portion of the voice input (e.g., the portion representing the voice utterance 680b). By excluding the first portion, the NMD may reduce bandwidth needed to transmit the voice input 680 and avoid possible misprocessing of the voice input 680 due to the wake word 680a, among other possible benefits. Alternatively, the NMD may transmit portions of the second sound-data stream representing both portions of the voice input 680, or some other portion of the voice input 680.
After the NMD transmits the second sound-data stream to the second VAS, and after the second VAS processes the second sound-data stream, the NMD can receive results of the processing. For instance, if the second sound-data stream represents a search query, the NMD may receive search results. As another example, if the second sound-data stream represents a command to a device (e.g., a media playback command to a playback device), the NMD may receive the command and perhaps additional data associated with the command (e.g., a source of media associated with the command). The NMD may output these results as appropriate based on the type of command and the received results. Alternatively, if the second sound-data stream includes a voice command directed to another device other than the NMD, the results might be directed to that device rather than to the NMD.
In at least some embodiments, the second VAS is able to more effectively or efficiently process the second sound-data stream at least in part because the spatial processor produced the second sound-data stream while in the second configuration rather than in the first configuration. For example, the second configuration of the spatial processor can be particularly suited to provide the second sound-data stream in such a manner as to facilitate, improve, or optimize performance of the second VAS in processing the second sound-data stream.
The description above discloses, among other things, various example systems, methods, apparatus, and articles of manufacture including, among other components, firmware and/or software executed on hardware. It is understood that such examples are merely illustrative and should not be considered as limiting. For example, it is contemplated that any or all of the firmware, hardware, and/or software aspects or components can be embodied exclusively in hardware, exclusively in software, exclusively in firmware, or in any combination of hardware, software, and/or firmware. Accordingly, the examples provided are not the only way(s) to implement such systems, methods, apparatus, and/or articles of manufacture.
In addition to the examples described herein with respect to grouping and bonding playback devices, in some implementations multiple playback devices may be merged together. For example, a first playback device may be merged with a second playback device to form a single merged “device.” The merged playback devices and may not be specifically assigned different playback responsibilities. That is, the merged playback devices and may, aside from playing audio content in synchrony, each play audio content as they would if they were not merged. However, the merged devices may present to the media playback system and/or to the user as a single user interface (UI) entity for control.
The specification is presented largely in terms of illustrative environments, systems, procedures, steps, logic blocks, processing, and other symbolic representations that directly or indirectly resemble the operations of data processing devices coupled to networks. These process descriptions and representations are typically used by those skilled in the art to most effectively convey the substance of their work to others skilled in the art. Numerous specific details are set forth to provide a thorough understanding of the present disclosure. However, it is understood to those skilled in the art that certain embodiments of the present disclosure can be practiced without certain, specific details. In other instances, well known methods, procedures, components, and circuitry have not been described in detail to avoid unnecessarily obscuring aspects of the embodiments. Accordingly, the scope of the present disclosure is defined by the appended claims rather than the forgoing description of embodiments.
When any of the appended claims are read to cover a purely software and/or firmware implementation, at least one of the elements in at least one example is hereby expressly defined to include a tangible, non-transitory medium such as a memory, DVD, CD, Blu-ray, and so on, storing the software and/or firmware.
Number | Name | Date | Kind |
---|---|---|---|
4741038 | Elko et al. | Apr 1988 | A |
4941187 | Slater | Jul 1990 | A |
4974213 | Siwecki | Nov 1990 | A |
5036538 | Oken et al. | Jul 1991 | A |
5440644 | Farinelli et al. | Aug 1995 | A |
5588065 | Tanaka et al. | Dec 1996 | A |
5740260 | Odom | Apr 1998 | A |
5761320 | Farinelli et al. | Jun 1998 | A |
5923902 | Inagaki | Jul 1999 | A |
5949414 | Namikata et al. | Sep 1999 | A |
6032202 | Lea et al. | Feb 2000 | A |
6088459 | Hobelsberger | Jul 2000 | A |
6256554 | DiLorenzo | Jul 2001 | B1 |
6301603 | Maher et al. | Oct 2001 | B1 |
6311157 | Strong | Oct 2001 | B1 |
6404811 | Cvetko et al. | Jun 2002 | B1 |
6408078 | Hobelsberger | Jun 2002 | B1 |
6469633 | Wachter | Oct 2002 | B1 |
6522886 | Youngs et al. | Feb 2003 | B1 |
6594347 | Calder et al. | Jul 2003 | B1 |
6594630 | Zlokarnik et al. | Jul 2003 | B1 |
6611537 | Edens et al. | Aug 2003 | B1 |
6611604 | Irby et al. | Aug 2003 | B1 |
6631410 | Kowalski et al. | Oct 2003 | B1 |
6757517 | Chang | Jun 2004 | B2 |
6778869 | Champion | Aug 2004 | B2 |
7130608 | Hollstrom et al. | Oct 2006 | B2 |
7130616 | Janik | Oct 2006 | B2 |
7143939 | Henzerling | Dec 2006 | B2 |
7236773 | Thomas | Jun 2007 | B2 |
7295548 | Blank et al. | Nov 2007 | B2 |
7356471 | Ito et al. | Apr 2008 | B2 |
7391791 | Balassanian et al. | Jun 2008 | B2 |
7483538 | McCarty et al. | Jan 2009 | B2 |
7571014 | Lambourne et al. | Aug 2009 | B1 |
7630501 | Blank et al. | Dec 2009 | B2 |
7643894 | Braithwaite et al. | Jan 2010 | B2 |
7657910 | McAulay et al. | Feb 2010 | B1 |
7661107 | Van Dyke et al. | Feb 2010 | B1 |
7702508 | Bennett | Apr 2010 | B2 |
7792311 | Holmgren et al. | Sep 2010 | B1 |
7853341 | McCarty et al. | Dec 2010 | B2 |
7961892 | Fedigan | Jun 2011 | B2 |
7987294 | Bryce et al. | Jul 2011 | B2 |
8014423 | Thaler et al. | Sep 2011 | B2 |
8032383 | Bhardwaj et al. | Oct 2011 | B1 |
8041565 | Bhardwaj et al. | Oct 2011 | B1 |
8045952 | Qureshey et al. | Oct 2011 | B2 |
8073125 | Zhang et al. | Dec 2011 | B2 |
8073681 | Baldwin et al. | Dec 2011 | B2 |
8103009 | McCarty et al. | Jan 2012 | B2 |
8136040 | Fleming | Mar 2012 | B2 |
8234395 | Millington et al. | Jul 2012 | B2 |
8239206 | Lebeau et al. | Aug 2012 | B1 |
8255224 | Singleton et al. | Aug 2012 | B2 |
8284982 | Bailey | Oct 2012 | B2 |
8290603 | Lambourne | Oct 2012 | B1 |
8340975 | Rosenberger | Dec 2012 | B1 |
8364481 | Strope et al. | Jan 2013 | B2 |
8385557 | Tashev et al. | Feb 2013 | B2 |
8386261 | Mellott et al. | Feb 2013 | B2 |
8423893 | Ramsay et al. | Apr 2013 | B2 |
8428758 | Naik et al. | Apr 2013 | B2 |
8453058 | Coccaro et al. | May 2013 | B1 |
8473618 | Spear et al. | Jun 2013 | B2 |
8483853 | Lambourne | Jul 2013 | B1 |
8484025 | Moreno Mengibar et al. | Jul 2013 | B1 |
8738925 | Park | May 2014 | B1 |
8831761 | Kemp et al. | Sep 2014 | B2 |
8831957 | Taubman et al. | Sep 2014 | B2 |
8848879 | Coughlan et al. | Sep 2014 | B1 |
8874448 | Kauffmann et al. | Oct 2014 | B1 |
8938394 | Faaborg et al. | Jan 2015 | B1 |
8942252 | Balassanian et al. | Jan 2015 | B2 |
8983383 | Haskin | Mar 2015 | B1 |
8983844 | Thomas et al. | Mar 2015 | B1 |
9015049 | Baldwin et al. | Apr 2015 | B2 |
9042556 | Kallai et al. | May 2015 | B2 |
9060224 | List | Jun 2015 | B1 |
9094539 | Noble | Jul 2015 | B1 |
9215545 | Dublin et al. | Dec 2015 | B2 |
9251793 | Lebeau et al. | Feb 2016 | B2 |
9253572 | Beddingfield, Sr. et al. | Feb 2016 | B2 |
9262612 | Cheyer | Feb 2016 | B2 |
9275637 | Salvador et al. | Mar 2016 | B1 |
9288597 | Carlsson et al. | Mar 2016 | B2 |
9300266 | Grokop | Mar 2016 | B2 |
9304736 | Whiteley et al. | Apr 2016 | B1 |
9307321 | Unruh | Apr 2016 | B1 |
9318107 | Sharifi | Apr 2016 | B1 |
9319816 | Narayanan | Apr 2016 | B1 |
9324322 | Torok et al. | Apr 2016 | B1 |
9335819 | Jaeger et al. | May 2016 | B1 |
9361878 | Boukadakis | Jun 2016 | B2 |
9368105 | Freed et al. | Jun 2016 | B1 |
9374634 | Macours | Jun 2016 | B2 |
9386154 | Baciu et al. | Jul 2016 | B2 |
9401058 | De La Fuente et al. | Jul 2016 | B2 |
9412392 | Lindahl et al. | Aug 2016 | B2 |
9426567 | Lee et al. | Aug 2016 | B2 |
9431021 | Scalise et al. | Aug 2016 | B1 |
9443527 | Watanabe et al. | Sep 2016 | B1 |
9472201 | Sleator | Oct 2016 | B1 |
9472203 | Ayrapetian et al. | Oct 2016 | B1 |
9484030 | Meaney et al. | Nov 2016 | B1 |
9489948 | Chu et al. | Nov 2016 | B1 |
9494683 | Sadek | Nov 2016 | B1 |
9509269 | Rosenberg | Nov 2016 | B1 |
9510101 | Polleros | Nov 2016 | B1 |
9514476 | Kay et al. | Dec 2016 | B2 |
9514752 | Sharifi | Dec 2016 | B2 |
9516081 | Tebbs et al. | Dec 2016 | B2 |
9536541 | Chen et al. | Jan 2017 | B2 |
9548053 | Basye et al. | Jan 2017 | B1 |
9548066 | Jain et al. | Jan 2017 | B2 |
9552816 | Vanlund et al. | Jan 2017 | B2 |
9554210 | Ayrapetian et al. | Jan 2017 | B1 |
9560441 | McDonough, Jr. et al. | Jan 2017 | B1 |
9576591 | Kim et al. | Feb 2017 | B2 |
9601116 | Casado et al. | Mar 2017 | B2 |
9615170 | Kirsch et al. | Apr 2017 | B2 |
9615171 | O'Neill et al. | Apr 2017 | B1 |
9626695 | Balasubramanian et al. | Apr 2017 | B2 |
9632748 | Faaborg et al. | Apr 2017 | B2 |
9633186 | Ingrassia, Jr. et al. | Apr 2017 | B2 |
9633368 | Greenzeiger et al. | Apr 2017 | B2 |
9633660 | Haughay et al. | Apr 2017 | B2 |
9633671 | Giacobello et al. | Apr 2017 | B2 |
9633674 | Sinha et al. | Apr 2017 | B2 |
9640179 | Hart et al. | May 2017 | B1 |
9640183 | Jung et al. | May 2017 | B2 |
9641919 | Poole et al. | May 2017 | B1 |
9646614 | Bellegarda et al. | May 2017 | B2 |
9653060 | Hilmes et al. | May 2017 | B1 |
9653075 | Chen et al. | May 2017 | B1 |
9659555 | Hilmes et al. | May 2017 | B1 |
9672821 | Krishnaswamy et al. | Jun 2017 | B2 |
9685171 | Yang | Jun 2017 | B1 |
9691378 | Meyers et al. | Jun 2017 | B1 |
9691379 | Mathias et al. | Jun 2017 | B1 |
9697826 | Sainath et al. | Jul 2017 | B2 |
9697828 | Prasad et al. | Jul 2017 | B1 |
9698999 | Mutagi et al. | Jul 2017 | B2 |
9704478 | Vitaladevuni et al. | Jul 2017 | B1 |
9721566 | Newendorp et al. | Aug 2017 | B2 |
9721568 | Polansky et al. | Aug 2017 | B1 |
9721570 | Beal et al. | Aug 2017 | B1 |
9728188 | Rosen et al. | Aug 2017 | B1 |
9734822 | Sundaram et al. | Aug 2017 | B1 |
9743204 | Welch et al. | Aug 2017 | B1 |
9747011 | Lewis et al. | Aug 2017 | B2 |
9747899 | Pogue et al. | Aug 2017 | B2 |
9747920 | Ayrapetian et al. | Aug 2017 | B2 |
9747926 | Sharifi et al. | Aug 2017 | B2 |
9754605 | Chhetri | Sep 2017 | B1 |
9762967 | Clarke et al. | Sep 2017 | B2 |
9769420 | Moses | Sep 2017 | B1 |
9811314 | Plagge et al. | Nov 2017 | B2 |
9813810 | Nongpiur | Nov 2017 | B1 |
9813812 | Berthelsen et al. | Nov 2017 | B2 |
9820036 | Tritschler et al. | Nov 2017 | B1 |
9820039 | Lang | Nov 2017 | B2 |
9826306 | Lang | Nov 2017 | B2 |
9865259 | Typrin et al. | Jan 2018 | B1 |
9865264 | Gelfenbeyn et al. | Jan 2018 | B2 |
9881616 | Beckley et al. | Jan 2018 | B2 |
9900723 | Choisel et al. | Feb 2018 | B1 |
9916839 | Scalise et al. | Mar 2018 | B1 |
9947316 | Millington et al. | Apr 2018 | B2 |
9947333 | David | Apr 2018 | B1 |
9972318 | Kelly et al. | May 2018 | B1 |
9973849 | Zhang et al. | May 2018 | B1 |
10013995 | Lashkari et al. | Jul 2018 | B1 |
10026401 | Mutagi et al. | Jul 2018 | B1 |
10048930 | Vega et al. | Aug 2018 | B1 |
10049675 | Haughay | Aug 2018 | B2 |
10051366 | Buoni et al. | Aug 2018 | B1 |
10051600 | Zhong et al. | Aug 2018 | B1 |
10068573 | Aykac et al. | Sep 2018 | B1 |
10074371 | Wang et al. | Sep 2018 | B1 |
10079015 | Lockhart et al. | Sep 2018 | B1 |
10116748 | Farmer et al. | Oct 2018 | B2 |
10134399 | Lang | Nov 2018 | B2 |
10136204 | Poole et al. | Nov 2018 | B1 |
10152969 | Reilly et al. | Dec 2018 | B2 |
10224056 | Torok et al. | Mar 2019 | B1 |
10276161 | Hughes et al. | Apr 2019 | B2 |
10297256 | Reilly et al. | May 2019 | B2 |
10339917 | Aleksic et al. | Jul 2019 | B2 |
10346122 | Morgan | Jul 2019 | B1 |
10354650 | Gruenstein et al. | Jul 2019 | B2 |
10366688 | Gunn et al. | Jul 2019 | B2 |
10374816 | Leblang et al. | Aug 2019 | B1 |
10381001 | Gunn et al. | Aug 2019 | B2 |
10381002 | Gunn et al. | Aug 2019 | B2 |
10381003 | Wakisaka et al. | Aug 2019 | B2 |
10445057 | Vega et al. | Oct 2019 | B2 |
10499146 | Lang | Dec 2019 | B2 |
10511904 | Buoni et al. | Dec 2019 | B2 |
10546583 | White et al. | Jan 2020 | B2 |
10602268 | Soto | Mar 2020 | B1 |
10624612 | Sumi et al. | Apr 2020 | B2 |
20010042107 | Palm | Nov 2001 | A1 |
20020022453 | Balog et al. | Feb 2002 | A1 |
20020026442 | Lipscomb et al. | Feb 2002 | A1 |
20020034280 | Infosino | Mar 2002 | A1 |
20020072816 | Shdema et al. | Jun 2002 | A1 |
20020116196 | Tran | Aug 2002 | A1 |
20020124097 | Isely et al. | Sep 2002 | A1 |
20030038848 | Lee et al. | Feb 2003 | A1 |
20030040908 | Yang et al. | Feb 2003 | A1 |
20030070869 | Hlibowicki | Apr 2003 | A1 |
20030072462 | Hlibowicki | Apr 2003 | A1 |
20030095672 | Hobelsberger | May 2003 | A1 |
20030157951 | Hasty | Aug 2003 | A1 |
20040024478 | Hans et al. | Feb 2004 | A1 |
20040093219 | Shin et al. | May 2004 | A1 |
20040127241 | Shostak | Jul 2004 | A1 |
20040128135 | Anastasakos et al. | Jul 2004 | A1 |
20040234088 | McCarty et al. | Nov 2004 | A1 |
20050031131 | Browning et al. | Feb 2005 | A1 |
20050031132 | Browning et al. | Feb 2005 | A1 |
20050031133 | Browning et al. | Feb 2005 | A1 |
20050031134 | Leske | Feb 2005 | A1 |
20050031137 | Browning et al. | Feb 2005 | A1 |
20050031138 | Browning et al. | Feb 2005 | A1 |
20050031139 | Browning et al. | Feb 2005 | A1 |
20050031140 | Browning | Feb 2005 | A1 |
20050047606 | Lee et al. | Mar 2005 | A1 |
20050077843 | Benditt | Apr 2005 | A1 |
20050164664 | DiFonzo et al. | Jul 2005 | A1 |
20050195988 | Tashev et al. | Sep 2005 | A1 |
20050201254 | Looney et al. | Sep 2005 | A1 |
20050207584 | Bright | Sep 2005 | A1 |
20050268234 | Rossi et al. | Dec 2005 | A1 |
20050283330 | Laraia et al. | Dec 2005 | A1 |
20060004834 | Pyhalammi | Jan 2006 | A1 |
20060023945 | King et al. | Feb 2006 | A1 |
20060104451 | Browning et al. | May 2006 | A1 |
20060147058 | Wang | Jul 2006 | A1 |
20060190269 | Tessel et al. | Aug 2006 | A1 |
20060190968 | Jung et al. | Aug 2006 | A1 |
20060247913 | Huerta et al. | Nov 2006 | A1 |
20060262943 | Oxford | Nov 2006 | A1 |
20070018844 | Sutardja | Jan 2007 | A1 |
20070019815 | Asada et al. | Jan 2007 | A1 |
20070033043 | Hyakumoto | Feb 2007 | A1 |
20070071255 | Schobben | Mar 2007 | A1 |
20070076131 | Li et al. | Apr 2007 | A1 |
20070076906 | Takagi et al. | Apr 2007 | A1 |
20070140058 | McIntosh et al. | Jun 2007 | A1 |
20070140521 | Mitobe et al. | Jun 2007 | A1 |
20070142944 | Goldberg et al. | Jun 2007 | A1 |
20070147651 | Mitobe et al. | Jun 2007 | A1 |
20080037814 | Shau | Feb 2008 | A1 |
20080090537 | Sutardja | Apr 2008 | A1 |
20080146289 | Korneluk et al. | Jun 2008 | A1 |
20080182518 | Lo | Jul 2008 | A1 |
20080208594 | Cross et al. | Aug 2008 | A1 |
20080221897 | Cerra et al. | Sep 2008 | A1 |
20080247530 | Barton et al. | Oct 2008 | A1 |
20080248797 | Freeman et al. | Oct 2008 | A1 |
20080291896 | Tuubel et al. | Nov 2008 | A1 |
20080301729 | Broos et al. | Dec 2008 | A1 |
20090003620 | McKillop et al. | Jan 2009 | A1 |
20090005893 | Sugii et al. | Jan 2009 | A1 |
20090010445 | Matsuo | Jan 2009 | A1 |
20090018828 | Nakadai et al. | Jan 2009 | A1 |
20090043206 | Towfiq et al. | Feb 2009 | A1 |
20090052688 | Ishibashi et al. | Feb 2009 | A1 |
20090076821 | Brenner et al. | Mar 2009 | A1 |
20090153289 | Hope et al. | Jun 2009 | A1 |
20090197524 | Haff et al. | Aug 2009 | A1 |
20090220107 | Every et al. | Sep 2009 | A1 |
20090228919 | Zott et al. | Sep 2009 | A1 |
20090238377 | Ramakrishnan et al. | Sep 2009 | A1 |
20090248397 | Garcia et al. | Oct 2009 | A1 |
20090264072 | Dai | Oct 2009 | A1 |
20090323907 | Gupta et al. | Dec 2009 | A1 |
20090326949 | Douthitt et al. | Dec 2009 | A1 |
20100014690 | Wolff et al. | Jan 2010 | A1 |
20100023638 | Bowman | Jan 2010 | A1 |
20100035593 | Franco et al. | Feb 2010 | A1 |
20100070922 | DeMaio | Mar 2010 | A1 |
20100075723 | Min et al. | Mar 2010 | A1 |
20100088100 | Lindahl | Apr 2010 | A1 |
20100092004 | Kuze | Apr 2010 | A1 |
20100172516 | Lastrucci | Jul 2010 | A1 |
20100178873 | Lee et al. | Jul 2010 | A1 |
20100179874 | Higgins et al. | Jul 2010 | A1 |
20100185448 | Meisel | Jul 2010 | A1 |
20100211199 | Naik et al. | Aug 2010 | A1 |
20110033059 | Bhaskar et al. | Feb 2011 | A1 |
20110035580 | Wang et al. | Feb 2011 | A1 |
20110044461 | Kuech et al. | Feb 2011 | A1 |
20110044489 | Saiki et al. | Feb 2011 | A1 |
20110066634 | Phillips et al. | Mar 2011 | A1 |
20110091055 | Leblanc | Apr 2011 | A1 |
20110103615 | Sun | May 2011 | A1 |
20110145581 | Malhotra et al. | Jun 2011 | A1 |
20110170707 | Yamada et al. | Jul 2011 | A1 |
20110182436 | Murgia et al. | Jul 2011 | A1 |
20110202924 | Banguero et al. | Aug 2011 | A1 |
20110267985 | Wilkinson et al. | Nov 2011 | A1 |
20110276333 | Wang et al. | Nov 2011 | A1 |
20110280422 | Neumeyer | Nov 2011 | A1 |
20110289506 | Trivi et al. | Nov 2011 | A1 |
20110299706 | Sakai | Dec 2011 | A1 |
20120020486 | Fried et al. | Jan 2012 | A1 |
20120022863 | Cho et al. | Jan 2012 | A1 |
20120022864 | Leman et al. | Jan 2012 | A1 |
20120078635 | Rothkopf et al. | Mar 2012 | A1 |
20120086568 | Scott et al. | Apr 2012 | A1 |
20120123268 | Tanaka et al. | May 2012 | A1 |
20120128160 | Kim et al. | May 2012 | A1 |
20120131125 | Seidel et al. | May 2012 | A1 |
20120148075 | Goh et al. | Jun 2012 | A1 |
20120163603 | Abe et al. | Jun 2012 | A1 |
20120177215 | Bose et al. | Jul 2012 | A1 |
20120183149 | Hiroe | Jul 2012 | A1 |
20120297284 | Matthews, III et al. | Nov 2012 | A1 |
20120308044 | Vander Mey et al. | Dec 2012 | A1 |
20120308046 | Muza | Dec 2012 | A1 |
20130006453 | Wang et al. | Jan 2013 | A1 |
20130024018 | Chang et al. | Jan 2013 | A1 |
20130034241 | Pandey et al. | Feb 2013 | A1 |
20130039527 | Jensen et al. | Feb 2013 | A1 |
20130058492 | Silzle et al. | Mar 2013 | A1 |
20130066453 | Seefeldt | Mar 2013 | A1 |
20130080146 | Kato et al. | Mar 2013 | A1 |
20130124211 | McDonough | May 2013 | A1 |
20130148821 | Sorensen | Jun 2013 | A1 |
20130179173 | Lee et al. | Jul 2013 | A1 |
20130183944 | Mozer et al. | Jul 2013 | A1 |
20130191119 | Sugiyama | Jul 2013 | A1 |
20130191122 | Mason | Jul 2013 | A1 |
20130198298 | Li et al. | Aug 2013 | A1 |
20130211826 | Mannby | Aug 2013 | A1 |
20130216056 | Thyssen | Aug 2013 | A1 |
20130262101 | Srinivasan | Oct 2013 | A1 |
20130315420 | You | Nov 2013 | A1 |
20130317635 | Bates et al. | Nov 2013 | A1 |
20130322665 | Bennett et al. | Dec 2013 | A1 |
20130324031 | Loureiro | Dec 2013 | A1 |
20130329896 | Krishnaswamy et al. | Dec 2013 | A1 |
20130331970 | Beckhardt et al. | Dec 2013 | A1 |
20130332165 | Beckley et al. | Dec 2013 | A1 |
20130339028 | Rosner et al. | Dec 2013 | A1 |
20130343567 | Triplett et al. | Dec 2013 | A1 |
20140003611 | Mohammad et al. | Jan 2014 | A1 |
20140003625 | Sheen et al. | Jan 2014 | A1 |
20140003635 | Mohammad et al. | Jan 2014 | A1 |
20140005813 | Reimann | Jan 2014 | A1 |
20140006026 | Lamb et al. | Jan 2014 | A1 |
20140034929 | Hamada et al. | Feb 2014 | A1 |
20140046464 | Reimann | Feb 2014 | A1 |
20140064501 | Olsen et al. | Mar 2014 | A1 |
20140075306 | Rega | Mar 2014 | A1 |
20140075311 | Boettcher et al. | Mar 2014 | A1 |
20140094151 | Klappert et al. | Apr 2014 | A1 |
20140100854 | Chen et al. | Apr 2014 | A1 |
20140122075 | Bak et al. | May 2014 | A1 |
20140136195 | Abdossalami et al. | May 2014 | A1 |
20140145168 | Ohsawa et al. | May 2014 | A1 |
20140146983 | Kim et al. | May 2014 | A1 |
20140163978 | Basye et al. | Jun 2014 | A1 |
20140164400 | Kruglick | Jun 2014 | A1 |
20140167931 | Lee et al. | Jun 2014 | A1 |
20140168344 | Shoemake et al. | Jun 2014 | A1 |
20140172953 | Blanksteen | Jun 2014 | A1 |
20140195252 | Gruber et al. | Jul 2014 | A1 |
20140219472 | Huang et al. | Aug 2014 | A1 |
20140222436 | Binder et al. | Aug 2014 | A1 |
20140244013 | Reilly | Aug 2014 | A1 |
20140244712 | Walters et al. | Aug 2014 | A1 |
20140249817 | Hart et al. | Sep 2014 | A1 |
20140252386 | Ito et al. | Sep 2014 | A1 |
20140254805 | Su et al. | Sep 2014 | A1 |
20140258292 | Thramann et al. | Sep 2014 | A1 |
20140259075 | Chang et al. | Sep 2014 | A1 |
20140270282 | Tammi et al. | Sep 2014 | A1 |
20140274185 | Luna et al. | Sep 2014 | A1 |
20140274203 | Ganong, III et al. | Sep 2014 | A1 |
20140274218 | Kadiwala et al. | Sep 2014 | A1 |
20140277650 | Zurek et al. | Sep 2014 | A1 |
20140291642 | Watabe et al. | Oct 2014 | A1 |
20140310002 | Nitz et al. | Oct 2014 | A1 |
20140310614 | Jones | Oct 2014 | A1 |
20140340888 | Ishisone et al. | Nov 2014 | A1 |
20140357248 | Tonshal et al. | Dec 2014 | A1 |
20140363022 | Dizon et al. | Dec 2014 | A1 |
20140363024 | Apodaca | Dec 2014 | A1 |
20140365227 | Cash et al. | Dec 2014 | A1 |
20140369491 | Kloberdans et al. | Dec 2014 | A1 |
20140372109 | Iyer et al. | Dec 2014 | A1 |
20150006176 | Pogue et al. | Jan 2015 | A1 |
20150006184 | Marti et al. | Jan 2015 | A1 |
20150010169 | Popova et al. | Jan 2015 | A1 |
20150014680 | Yamazaki et al. | Jan 2015 | A1 |
20150016642 | Walsh et al. | Jan 2015 | A1 |
20150019201 | Schoenbach | Jan 2015 | A1 |
20150019219 | Tzirkel-Hancock et al. | Jan 2015 | A1 |
20150036831 | Klippel | Feb 2015 | A1 |
20150063580 | Huang et al. | Mar 2015 | A1 |
20150086034 | Lombardi et al. | Mar 2015 | A1 |
20150091709 | Reichert et al. | Apr 2015 | A1 |
20150092947 | Gossain et al. | Apr 2015 | A1 |
20150104037 | Lee et al. | Apr 2015 | A1 |
20150106085 | Lindahl | Apr 2015 | A1 |
20150110294 | Chen et al. | Apr 2015 | A1 |
20150112672 | Giacobello et al. | Apr 2015 | A1 |
20150128065 | Torii | May 2015 | A1 |
20150134456 | Baldwin | May 2015 | A1 |
20150154976 | Mutagi | Jun 2015 | A1 |
20150161990 | Sharifi | Jun 2015 | A1 |
20150169279 | Duga | Jun 2015 | A1 |
20150170645 | Di Censo et al. | Jun 2015 | A1 |
20150172843 | Quan | Jun 2015 | A1 |
20150179181 | Morris et al. | Jun 2015 | A1 |
20150180432 | Gao et al. | Jun 2015 | A1 |
20150181318 | Gautama et al. | Jun 2015 | A1 |
20150189438 | Hampiholi et al. | Jul 2015 | A1 |
20150200454 | Heusdens et al. | Jul 2015 | A1 |
20150221678 | Yamazaki et al. | Aug 2015 | A1 |
20150222563 | Burns et al. | Aug 2015 | A1 |
20150222987 | Angel, Jr. et al. | Aug 2015 | A1 |
20150228274 | Leppänen et al. | Aug 2015 | A1 |
20150228803 | Koezuka et al. | Aug 2015 | A1 |
20150237406 | Ochoa | Aug 2015 | A1 |
20150245152 | Ding et al. | Aug 2015 | A1 |
20150249889 | Iyer et al. | Sep 2015 | A1 |
20150253292 | Larkin et al. | Sep 2015 | A1 |
20150253960 | Lin et al. | Sep 2015 | A1 |
20150263174 | Yamazaki et al. | Sep 2015 | A1 |
20150271593 | Sun et al. | Sep 2015 | A1 |
20150277846 | Yen et al. | Oct 2015 | A1 |
20150280676 | Holman et al. | Oct 2015 | A1 |
20150296299 | Klippel et al. | Oct 2015 | A1 |
20150302856 | Kim et al. | Oct 2015 | A1 |
20150319529 | Klippel | Nov 2015 | A1 |
20150325267 | Lee et al. | Nov 2015 | A1 |
20150334471 | Innes et al. | Nov 2015 | A1 |
20150338917 | Steiner et al. | Nov 2015 | A1 |
20150341406 | Rockefeller et al. | Nov 2015 | A1 |
20150346845 | Di Censo et al. | Dec 2015 | A1 |
20150348548 | Piernot et al. | Dec 2015 | A1 |
20150348551 | Gruber et al. | Dec 2015 | A1 |
20150355878 | Corbin | Dec 2015 | A1 |
20150363061 | De Nigris, III et al. | Dec 2015 | A1 |
20150363401 | Chen et al. | Dec 2015 | A1 |
20150371657 | Gao et al. | Dec 2015 | A1 |
20150371659 | Gao | Dec 2015 | A1 |
20150371664 | Bar-Or et al. | Dec 2015 | A1 |
20150380010 | Srinivasan et al. | Dec 2015 | A1 |
20150382047 | Van Os et al. | Dec 2015 | A1 |
20160007116 | Holman | Jan 2016 | A1 |
20160021458 | Johnson et al. | Jan 2016 | A1 |
20160026428 | Morganstern et al. | Jan 2016 | A1 |
20160029142 | Isaac et al. | Jan 2016 | A1 |
20160035321 | Cho et al. | Feb 2016 | A1 |
20160036962 | Rand et al. | Feb 2016 | A1 |
20160042748 | Jain et al. | Feb 2016 | A1 |
20160044151 | Shoemaker et al. | Feb 2016 | A1 |
20160050488 | Matheja et al. | Feb 2016 | A1 |
20160057522 | Choisel et al. | Feb 2016 | A1 |
20160077710 | Lewis et al. | Mar 2016 | A1 |
20160088036 | Corbin et al. | Mar 2016 | A1 |
20160088392 | Huttunen et al. | Mar 2016 | A1 |
20160093304 | Kim et al. | Mar 2016 | A1 |
20160094718 | Mani et al. | Mar 2016 | A1 |
20160094917 | Wilk et al. | Mar 2016 | A1 |
20160098393 | Hebert | Apr 2016 | A1 |
20160098992 | Renard et al. | Apr 2016 | A1 |
20160103653 | Jang | Apr 2016 | A1 |
20160104480 | Sharifi | Apr 2016 | A1 |
20160111110 | Gautama et al. | Apr 2016 | A1 |
20160125876 | Schroeter et al. | May 2016 | A1 |
20160127780 | Roberts | May 2016 | A1 |
20160133259 | Rubin et al. | May 2016 | A1 |
20160134982 | Iyer | May 2016 | A1 |
20160154089 | Altman | Jun 2016 | A1 |
20160155442 | Kannan et al. | Jun 2016 | A1 |
20160155443 | Khan et al. | Jun 2016 | A1 |
20160157035 | Russell et al. | Jun 2016 | A1 |
20160162469 | Santos | Jun 2016 | A1 |
20160173578 | Sharma et al. | Jun 2016 | A1 |
20160173983 | Berthelsen et al. | Jun 2016 | A1 |
20160180853 | Vanlund et al. | Jun 2016 | A1 |
20160189716 | Lindahl et al. | Jun 2016 | A1 |
20160196499 | Khan et al. | Jul 2016 | A1 |
20160203331 | Khan et al. | Jul 2016 | A1 |
20160212538 | Fullam et al. | Jul 2016 | A1 |
20160216938 | Millington | Jul 2016 | A1 |
20160225385 | Hammarqvist | Aug 2016 | A1 |
20160232451 | Scherzer | Aug 2016 | A1 |
20160234204 | Rishi et al. | Aug 2016 | A1 |
20160239255 | Chavez et al. | Aug 2016 | A1 |
20160241976 | Pearson | Aug 2016 | A1 |
20160253050 | Mishra et al. | Sep 2016 | A1 |
20160260431 | Newendorp et al. | Sep 2016 | A1 |
20160302018 | Russell et al. | Oct 2016 | A1 |
20160314782 | Klimanis | Oct 2016 | A1 |
20160316293 | Klimanis | Oct 2016 | A1 |
20160336519 | Seo et al. | Nov 2016 | A1 |
20160343866 | Koezuka et al. | Nov 2016 | A1 |
20160343949 | Seo et al. | Nov 2016 | A1 |
20160343954 | Seo et al. | Nov 2016 | A1 |
20160345114 | Hanna et al. | Nov 2016 | A1 |
20160352915 | Gautama | Dec 2016 | A1 |
20160353218 | Starobin et al. | Dec 2016 | A1 |
20160357503 | Triplett et al. | Dec 2016 | A1 |
20160366515 | Mendes et al. | Dec 2016 | A1 |
20160372688 | Seo et al. | Dec 2016 | A1 |
20160373269 | Okubo et al. | Dec 2016 | A1 |
20160373909 | Rasmussen et al. | Dec 2016 | A1 |
20160379634 | Yamamoto et al. | Dec 2016 | A1 |
20170003931 | Dvortsov et al. | Jan 2017 | A1 |
20170012207 | Seo et al. | Jan 2017 | A1 |
20170012232 | Kataishi et al. | Jan 2017 | A1 |
20170019732 | Mendes et al. | Jan 2017 | A1 |
20170025615 | Seo et al. | Jan 2017 | A1 |
20170025630 | Seo et al. | Jan 2017 | A1 |
20170026769 | Patel | Jan 2017 | A1 |
20170039025 | Kielak | Feb 2017 | A1 |
20170040018 | Tormey | Feb 2017 | A1 |
20170041724 | Master et al. | Feb 2017 | A1 |
20170060526 | Barton et al. | Mar 2017 | A1 |
20170062734 | Suzuki et al. | Mar 2017 | A1 |
20170070478 | Park et al. | Mar 2017 | A1 |
20170076720 | Gopalan et al. | Mar 2017 | A1 |
20170078824 | Heo | Mar 2017 | A1 |
20170083285 | Meyers et al. | Mar 2017 | A1 |
20170084277 | Sharifi | Mar 2017 | A1 |
20170084292 | Yoo | Mar 2017 | A1 |
20170084295 | Tsiartas et al. | Mar 2017 | A1 |
20170090864 | Jorgovanovic | Mar 2017 | A1 |
20170092278 | Evermann et al. | Mar 2017 | A1 |
20170092297 | Sainath et al. | Mar 2017 | A1 |
20170092299 | Matsuo | Mar 2017 | A1 |
20170092889 | Seo et al. | Mar 2017 | A1 |
20170092890 | Seo et al. | Mar 2017 | A1 |
20170094215 | Western | Mar 2017 | A1 |
20170103754 | Higbie et al. | Apr 2017 | A1 |
20170103755 | Jeon et al. | Apr 2017 | A1 |
20170110124 | Boesen et al. | Apr 2017 | A1 |
20170110144 | Sharifi et al. | Apr 2017 | A1 |
20170117497 | Seo et al. | Apr 2017 | A1 |
20170123251 | Nakada et al. | May 2017 | A1 |
20170125037 | Shin | May 2017 | A1 |
20170125456 | Kasahara | May 2017 | A1 |
20170134872 | Silva et al. | May 2017 | A1 |
20170139720 | Stein | May 2017 | A1 |
20170140748 | Roberts et al. | May 2017 | A1 |
20170140759 | Kumar et al. | May 2017 | A1 |
20170177585 | Rodger et al. | Jun 2017 | A1 |
20170178662 | Ayrapetian et al. | Jun 2017 | A1 |
20170180561 | Kadiwala et al. | Jun 2017 | A1 |
20170188150 | Brunet et al. | Jun 2017 | A1 |
20170193999 | Aleksic et al. | Jul 2017 | A1 |
20170206896 | Ko et al. | Jul 2017 | A1 |
20170206900 | Lee et al. | Jul 2017 | A1 |
20170214996 | Yeo | Jul 2017 | A1 |
20170236512 | Williams et al. | Aug 2017 | A1 |
20170236515 | Pinsky et al. | Aug 2017 | A1 |
20170242649 | Jarvis et al. | Aug 2017 | A1 |
20170242651 | Lang et al. | Aug 2017 | A1 |
20170242653 | Lang | Aug 2017 | A1 |
20170242657 | Jarvis et al. | Aug 2017 | A1 |
20170243576 | Millington et al. | Aug 2017 | A1 |
20170243587 | Plagge et al. | Aug 2017 | A1 |
20170245076 | Kusano et al. | Aug 2017 | A1 |
20170257686 | Gautama et al. | Sep 2017 | A1 |
20170270919 | Parthasarathi et al. | Sep 2017 | A1 |
20170287485 | Civelli et al. | Oct 2017 | A1 |
20170332168 | Moghimi et al. | Nov 2017 | A1 |
20170352357 | Fink | Dec 2017 | A1 |
20170353789 | Kim et al. | Dec 2017 | A1 |
20170357475 | Lee et al. | Dec 2017 | A1 |
20170357478 | Piersol | Dec 2017 | A1 |
20170366393 | Shaker et al. | Dec 2017 | A1 |
20170374454 | Bernardini et al. | Dec 2017 | A1 |
20180018967 | Lang | Jan 2018 | A1 |
20180025733 | Qian et al. | Jan 2018 | A1 |
20180033428 | Kim et al. | Feb 2018 | A1 |
20180040324 | Wilberding | Feb 2018 | A1 |
20180047394 | Tian et al. | Feb 2018 | A1 |
20180053504 | Wang et al. | Feb 2018 | A1 |
20180054506 | Hart et al. | Feb 2018 | A1 |
20180062871 | Jones et al. | Mar 2018 | A1 |
20180084367 | Greff et al. | Mar 2018 | A1 |
20180091898 | Yoon et al. | Mar 2018 | A1 |
20180091913 | Hartung et al. | Mar 2018 | A1 |
20180096683 | James et al. | Apr 2018 | A1 |
20180096696 | Mixter | Apr 2018 | A1 |
20180122378 | Mixter et al. | May 2018 | A1 |
20180130469 | Gruenstein et al. | May 2018 | A1 |
20180132217 | Stirling-Gallacher | May 2018 | A1 |
20180132298 | Birnam et al. | May 2018 | A1 |
20180137861 | Ogawa | May 2018 | A1 |
20180165055 | Yu et al. | Jun 2018 | A1 |
20180167981 | Jonna et al. | Jun 2018 | A1 |
20180190285 | Heckmann et al. | Jul 2018 | A1 |
20180199146 | Sheen | Jul 2018 | A1 |
20180210698 | Park et al. | Jul 2018 | A1 |
20180218747 | Moghimi et al. | Aug 2018 | A1 |
20180219976 | Decenzo et al. | Aug 2018 | A1 |
20180225933 | Park et al. | Aug 2018 | A1 |
20180228006 | Baker et al. | Aug 2018 | A1 |
20180233136 | Torok et al. | Aug 2018 | A1 |
20180233137 | Torok et al. | Aug 2018 | A1 |
20180233139 | Finkelstein et al. | Aug 2018 | A1 |
20180262793 | Lau et al. | Sep 2018 | A1 |
20180277107 | Kim | Sep 2018 | A1 |
20180277113 | Hartung et al. | Sep 2018 | A1 |
20180277133 | Deetz et al. | Sep 2018 | A1 |
20180293484 | Wang et al. | Oct 2018 | A1 |
20180308470 | Park et al. | Oct 2018 | A1 |
20180314552 | Kim et al. | Nov 2018 | A1 |
20180324756 | Ryu et al. | Nov 2018 | A1 |
20180335903 | Coffman et al. | Nov 2018 | A1 |
20180336274 | Choudhury et al. | Nov 2018 | A1 |
20180358009 | Daley et al. | Dec 2018 | A1 |
20180365567 | Kolavennu et al. | Dec 2018 | A1 |
20180367944 | Heo et al. | Dec 2018 | A1 |
20190013019 | Lawrence | Jan 2019 | A1 |
20190033446 | Bultan et al. | Jan 2019 | A1 |
20190043492 | Lang | Feb 2019 | A1 |
20190074025 | Lashkari et al. | Mar 2019 | A1 |
20190079724 | Feuz et al. | Mar 2019 | A1 |
20190081507 | Ide | Mar 2019 | A1 |
20190088261 | Lang | Mar 2019 | A1 |
20190090056 | Rexach et al. | Mar 2019 | A1 |
20190098400 | Buoni et al. | Mar 2019 | A1 |
20190104119 | Giorgi et al. | Apr 2019 | A1 |
20190104373 | Wodrich et al. | Apr 2019 | A1 |
20190108839 | Reilly et al. | Apr 2019 | A1 |
20190130906 | Kobayashi et al. | May 2019 | A1 |
20190163153 | Price et al. | May 2019 | A1 |
20190172452 | Smith et al. | Jun 2019 | A1 |
20190173687 | Mackay et al. | Jun 2019 | A1 |
20190179607 | Thangarathnam et al. | Jun 2019 | A1 |
20190220246 | Orr et al. | Jul 2019 | A1 |
20190237067 | Friedman et al. | Aug 2019 | A1 |
20190295563 | Kamdar et al. | Sep 2019 | A1 |
20190297388 | Panchaksharaiah et al. | Sep 2019 | A1 |
20190304443 | Bhagwan | Oct 2019 | A1 |
20190311710 | Eraslan et al. | Oct 2019 | A1 |
20200034492 | Verbeke et al. | Jan 2020 | A1 |
Number | Date | Country |
---|---|---|
2017100486 | Jun 2017 | AU |
2017100581 | Jun 2017 | AU |
101310558 | Nov 2008 | CN |
10161753 | Mar 2010 | CN |
102256098 | Nov 2011 | CN |
103181192 | Jun 2013 | CN |
103546616 | Jan 2014 | CN |
103811007 | May 2014 | CN |
104010251 | Aug 2014 | CN |
104035743 | Sep 2014 | CN |
104053088 | Sep 2014 | CN |
104092936 | Oct 2014 | CN |
104538030 | Apr 2015 | CN |
104865550 | Aug 2015 | CN |
105187907 | Dec 2015 | CN |
105284076 | Jan 2016 | CN |
107919123 | Apr 2018 | CN |
1349146 | Oct 2003 | EP |
1389853 | Feb 2004 | EP |
2683147 | Jan 2014 | EP |
2351021 | Sep 2017 | EP |
3285502 | Feb 2018 | EP |
2001236093 | Aug 2001 | JP |
2003223188 | Aug 2003 | JP |
2004347943 | Dec 2004 | JP |
2004354721 | Dec 2004 | JP |
2005284492 | Oct 2005 | JP |
2007013400 | Jan 2007 | JP |
2007142595 | Jun 2007 | JP |
2008079256 | Apr 2008 | JP |
2008158868 | Jul 2008 | JP |
2010141748 | Jun 2010 | JP |
2013037148 | Feb 2013 | JP |
2014071138 | Apr 2014 | JP |
2014137590 | Jul 2014 | JP |
2015161551 | Sep 2015 | JP |
20100111071 | Oct 2010 | KR |
20130050987 | May 2013 | KR |
20140035310 | Mar 2014 | KR |
200153994 | Jul 2001 | WO |
2003093950 | Nov 2003 | WO |
2014159581 | Oct 2014 | WO |
2015037396 | Mar 2015 | WO |
2015178950 | Nov 2015 | WO |
2016014142 | Jan 2016 | WO |
2016022926 | Feb 2016 | WO |
2016033364 | Mar 2016 | WO |
2016057268 | Apr 2016 | WO |
2016085775 | Jun 2016 | WO |
2016171956 | Oct 2016 | WO |
2017039632 | Mar 2017 | WO |
2017138934 | Aug 2017 | WO |
2018027142 | Feb 2018 | WO |
2018067404 | Apr 2018 | WO |
Entry |
---|
US 9,299,346 B1, 03/2016, Hart et al. (withdrawn) |
M. Johnson, “Implementing neural networks into modern technology,” IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No. 99CH36339), Washington, DC, USA, 1999, pp. 1028-1032 vol. 2, doi: 10.1109/IJCNN.1999.831096. (Year: 1999). |
Souden et al. “On Optimal Frequency-Domain Multichannel Linear Filtering for Noise Reduction.” IEEE Transactions on Audio, Speech, and Language Processing, vol. 18, No. 2, Feb. 2010, 17pages. |
Steven J. Nowlan and Geoffrey E. Hinton “Simplifying Neural Networks by Soft Weight-Sharing” Neural Computation 4, 1992, 21 pages. |
Tsiami et al. “Experiments in acoustic source localization using sparse arrays in adverse indoors environments”, 2014 22nd European Signal Processing Conference, Sep. 1, 2014, 5 pages. |
Ullrich et al. “Soft Weight-Sharing for Neural Network Compression.” ICLR 2017, 16 pages. |
U.S. Appl. No. 60/490,768, filed Jul. 28, 2003, entitled “Method for synchronizing audio playback between multiple networked devices,” 13 pages. |
U.S. Appl. No. 60/825,407, filed Sep. 12, 2006, entitled “Controlling and manipulating groupings in a multi-zone music or media system,” 82 pages. |
UPnP; “Universal Plug and Play Device Architecture,” Jun. 8, 2000; version 1.0; Microsoft Corporation; pp. 1-54. |
Vacher at al. “Recognition of voice commands by multisource ASR and noise cancellation in a smart home environment” Signal Processing Conference 2012 Proceedings of the 20th European, IEEE, Aug. 27, 2012, 5 pages. |
Xiao et al. “A Learning-Based Approach to Direction of Arrival Estimation in Noisy and Reverberant Environments,” 2015 IEEE International Conference on Acoustics, Speech and Signal Processing, Apr. 19, 2015, 5 pages. |
Yamaha DME 64 Owner's Manual; copyright 2004, 80 pages. |
Yamaha DME Designer 3.5 setup manual guide; copyright 2004, 16 pages. |
Yamaha DME Designer 3.5 User Manual; Copyright 2004, 507 pages. |
Advisory Action dated Jun. 28, 2018, issued in connection with U.S. Appl. No. 15/438,744, filed Feb. 21, 2017, 3 pages. |
AudioTron Quick Start Guide, Version 1.0, Mar. 2001, 24 pages. |
AudioTron Reference Manual, Version 3.0, May 2002, 70 pages. |
AudioTron Setup Guide, Version 3.0, May 2002, 38 pages. |
“Automatic Parameter Tying in Neural Networks” ICLR 2018, 14 pages. |
Bluetooth. “Specification of the Bluetooth System: The ad hoc SCATTERNET for affordable and highly functional wireless connectivity,” Core, Version 1.0 A, Jul. 26, 1999, 1068 pages. |
Bluetooth. “Specification of the Bluetooth System: Wireless connections made easy,” Core, Version 1.0 B, Dec. 1, 1999, 1076 pages. |
Corrected Notice of Allowability dated Mar. 8, 2017, issued in connection with U.S. Appl. No. 15/229,855, filed Aug. 5, 2016, 6 pages. |
Dell, Inc. “Dell Digital Audio Receiver: Reference Guide,” Jun. 2000, 70 pages. |
Dell, Inc. “Start Here,” Jun. 2000, 2 pages. |
“Denon 2003-2004 Product Catalog,” Denon, 2003-2004, 44 pages. |
European Patent Office, European Extended Search Report dated Oct. 30, 2017, issued in connection with EP Application No. 17174435.2, 11 pages. |
Final Office Action dated Oct. 6, 2017, issued in connection with U.S. Appl. No. 15/098,760, filed Apr. 14, 2016, 25 pages. |
Final Office Action dated Aug. 11, 2017, issued in connection with U.S. Appl. No. 15/131,776, filed Apr. 18, 2016, 7 pages. |
Final Office Action dated Apr. 13, 2018, issued in connection with U.S. Appl. No. 15/131,254, filed Apr. 18, 2016, 18 pages. |
Final Office Action dated Apr. 13, 2018, issued in connection with U.S. Appl. No. 15/438,744, filed Feb. 21, 2017, 20 pages. |
Final Office Action dated Jun. 15, 2017, issued in connection with U.S. Appl. No. 15/098,718, filed Apr. 14, 2016, 15 pages. |
Final Office Action dated Oct. 15, 2018, issued in connection with U.S. Appl. No. 15/804,776, filed Nov. 6, 2017, 18 pages. |
Final Office Action dated Oct. 16, 2018, issued in connection with U.S. Appl. No. 15/438,725, filed Feb. 21, 2017, 10 pages. |
Final Office Action dated Feb. 21, 2018, issued in connection with U.S. Appl. No. 15/297,627, filed Oct. 19, 2016, 12 pages. |
Fiorenza Arisio et al. “Deliverable 1.1 User Study, analysis of requirements and definition of the application task,” May 32, 2012, http://dirha.fbk.eu/sites/dirha.fbk.eu/files/docs/DIRHA_D1.1., 31 pages. |
Freiberger, Karl, “Development and Evaluation of Source Localization Algorithms for Coincident Microphone Arrays,” Diploma Thesis, Apr. 1, 2010, 106 pages. |
Han et al. “Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding.” ICLR 2016, Feb. 15, 2016, 14 pages. |
International Bureau, International Preliminary Report on Patentability, dated Sep. 7, 2018, issued in connection with International Application No. PCT/US2017/018728, filed on Feb. 21, 2017, 8 pages. |
International Bureau, International Preliminary Report on Patentability, dated Sep. 7, 2018, issued in connection with International Application No. PCT/US2017/018739, filed on Feb. 21, 2017, 7 pages. |
International Searching Authority, International Search Report and Written Opinion dated Nov. 22, 2017, issued in connection with International Application No. PCT/US2017/054063, filed on Sep. 28, 2017, 11 pages. |
International Searching Authority, International Search Report and Written Opinion dated Jan. 23, 2018, issued in connection with International Application No. PCT/US2017/57220, filed on Oct. 18, 2017, 8 pages. |
International Searching Authority, International Search Report and Written Opinion dated May 23, 2017, issued in connection with International Application No. PCT/US2017/018739, Filed on Feb. 21, 2017, 10 pages. |
International Searching Authority, International Search Report and Written Opinion dated Oct. 23, 2017, issued in connection with International Application No. PCT/US2017/042170, filed on Jul. 14, 2017, 15 pages. |
International Searching Authority, International Search Report and Written Opinion dated Oct. 24, 2017, issued in connection with International Application No. PCT/US2017/042227, filed on Jul. 14, 2017, 16 pages. |
International Searching Authority, International Search Report and Written Opinion dated May 30, 2017, issued in connection with International Application No. PCT/US2017/018728, Filed on Feb. 21, 2017, 11 pages. |
Jo et al., “Synchronized One-to-many Media Streaming with Adaptive Playout Control,” Proceedings of SPIE, 2002, pp. 71-82, vol. 4861. |
Jones, Stephen, “Dell Digital Audio Receiver: Digital upgrade for your analog stereo,” Analog Stereo, Jun. 24, 2000 retrieved Jun. 18, 2014, 2 pages. |
Jose Alvarez and Mathieu Salzmann “Compression-aware Training of Deep Networks” 31st Conference on Neural Information Processing Systems, Nov. 13, 2017, 12pages. |
Louderback, Jim, “Affordable Audio Receiver Furnishes Homes With MP3,” TechTV Vault. Jun. 28, 2000 retrieved Jul. 10, 2014, 2 pages. |
Maja Taseska and Emanual A.P. Habets, “MMSE-Based Blind Source Extraction in Diffuse Noise Fields Using a Complex Coherence-Based a Priori Sap Estimator.” International Workshop on Acoustic Signal Enhancement 2012, Sep. 4-6, 2012, 4pages. |
Morales-Cordovilla et al. “Room Localization for Distant Speech Recognition,” Proceedings of Interspeech 2014, Sep. 14, 2014, 4 pages. |
Ngo et al. “Incorporating the Conditional Speech Presence Probability in Multi-Channel Wiener Filter Based Noise Reduction in Hearing Aids.” EURASIP Journal on Advances in Signal Processing vol. 2009, Jun. 2, 2009, 11 pages. |
Non-Final Office Action dated Jun. 1, 2017, issued in connection with U.S. Appl. No. 15/223,218, filed Jul. 29, 2016, 7 pages. |
Non-Final Office Action dated Nov. 2, 2017, issued in connection with U.S. Appl. No. 15/584,782, filed May 2, 2017, 11 pages. |
Non-Final Office Action dated Nov. 3, 2017, issued in connection with U.S. Appl. No. 15/438,741, filed Feb. 21, 2017, 11 pages. |
Non-Final Office Action dated Feb. 7, 2017, issued in connection with U.S. Appl. No. 15/131,244, filed Apr. 18, 2016, 12 pages. |
Non-Final Office Action dated Feb. 8, 2017, issued in connection with U.S. Appl. No. 15/098,892, filed Apr. 14, 2016, 17 pages. |
Non-Final Office Action dated Mar. 9, 2017, issued in connection with U.S. Appl. No. 15/098,760, filed Apr. 14, 2016, 13 pages. |
Non-Final Office Action dated Jan. 10, 2018, issued in connection with U.S. Appl. No. 15/098,718, filed Apr. 14, 2016, 15 pages. |
Non-Final Office Action dated Jan. 10, 2018, issued in connection with U.S. Appl. No. 15/229,868, filed Aug. 5, 2016, 13 pages. |
Non-Final Office Action dated Jan. 10, 2018, issued in connection with U.S. Appl. No. 15/438,725, filed Feb. 21, 2017, 15 pages. |
Non-Final Office Action dated Sep. 10, 2018, issued in connection with U.S. Appl. No. 15/670,361, filed Aug. 7, 2017, 17 pages. |
Non-Final Office Action dated Dec. 12, 2016, issued in connection with U.S. Appl. No. 15/098,718, filed Apr. 14, 2016, 11 pages. |
Non-Final Office Action dated Jan. 13, 2017, issued in connection with U.S. Appl. No. 15/098,805, filed Apr. 14, 2016, 11 pages. |
Non-Final Office Action dated Sep. 14, 2017, issued in connection with U.S. Appl. No. 15/178,180, filed Jun. 9, 2016, 16 pages. |
Non-Final Office Action dated Sep. 14, 2018, issued in connection with U.S. Appl. No. 15/959,907, filed Apr. 23, 2018, 15 pages. |
Non-Final Office Action dated Mar. 16, 2018, issued in connection with U.S. Appl. No. 15/681,937, filed Aug. 21, 2017, 5 pages. |
Non-Final Office Action dated Oct. 16, 2018, issued in connection with U.S. Appl. No. 15/131,254, filed Apr. 18, 2016, 16 pages. |
Non-Final Office Action dated Apr. 18, 2018, issued in connection with U.S. Appl. No. 15/811,468, filed Nov. 13, 2017, 14 pages. |
Non-Final Office Action dated Apr. 19, 2017, issued in connection with U.S. Appl. No. 15/131,776, filed Apr. 18, 2016, 12 pages. |
Non-Final Office Action dated Feb. 20, 2018, issued in connection with U.S. Appl. No. 15/211,748, filed Jul. 15, 2016, 31 pages. |
Non-Final Office Action dated May 22, 2018, issued in connection with U.S. Appl. No. 15/946,599, filed Apr. 5, 2018, 19 pages. |
Non-Final Office Action dated Aug. 24, 2017, issued in connection with U.S. Appl. No. 15/297,627, filed Oct. 19, 2016, 13 pages. |
Non-Final Office Action dated Jul. 25, 2017, issued in connection with U.S. Appl. No. 15/273,679, filed Jul. 22, 2016, 11 pages. |
Non-Final Office Action dated Jan. 26, 2017, issued in connection with U.S. Appl. No. 15/098,867, filed Apr. 14, 2016, 16 pages. |
Non-Final Office Action dated Oct. 26, 2017, issued in connection with U.S. Appl. No. 15/438,744, filed Feb. 21, 2017, 12 pages. |
Non-Final Office Action dated Jun. 27, 2018, issued in connection with U.S. Appl. No. 15/438,749, filed Feb. 21, 2017, 16 pages. |
Non-Final Office Action dated Jun. 30, 2017, issued in connection with U.S. Appl. No. 15/277,810, filed Sep. 27, 2016, 13 pages. |
Non-Final Office Action dated Feb. 6, 2018, issued in connection with U.S. Appl. No. 15/211,689, filed Jul. 15, 2016, 32 pages. |
Non-Final Office Action dated Feb. 6, 2018, issued in connection with U.S. Appl. No. 15/237,133, filed Aug. 15, 2016, 6 pages. |
Non-Final Office Action dated Sep. 6, 2017, issued in connection with U.S. Appl. No. 15/131,254, filed Apr. 18, 2016, 13 pages. |
Non-Final Office Action dated Sep. 6, 2018, issued in connection with U.S. Appl. No. 15/098,760, filed Apr. 14, 2016, 29 pages. |
Non-Final Office Action dated Apr. 9, 2018, issued in connection with U.S. Appl. No. 15/804,776, filed Nov. 6, 2017, 18 pages. |
Non-Final Office Action dated May 9, 2018, issued in connection with U.S. Appl. No. 15/818,051, filed Nov. 20, 2017, 22 pages. |
Notice of Allowance dated Dec. 4, 2017, issued in connection with U.S. Appl. No. 15/277,810, filed Sep. 27, 2016, 5 pages. |
Notice of Allowance dated Jul. 5, 2018, issued in connection with U.S. Appl. No. 15/237,133, filed Aug. 15, 2016, 5 pages. |
Notice of Allowance dated Jul. 9, 2018, issued in connection with U.S. Appl. No. 15/438,741, filed Feb. 21, 2017, 5 pages. |
Notice of Allowance dated Aug. 1, 2018, issued in connection with U.S. Appl. No. 15/297,627, filed Oct. 19, 2016, 9 pages. |
Notice of Allowance dated Apr. 11, 2018, issued in connection with U.S. Appl. No. 15/719,454, filed Sep. 28, 2017, 15 pages. |
Notice of Allowance dated Jul. 12, 2017, issued in connection with U.S. Appl. No. 15/098,805, filed Apr. 14, 2016, 8 pages. |
Notice of Allowance dated Sep. 12, 2018, issued in connection with U.S. Appl. No. 15/438,744, filed Feb. 21, 2017, 15 pages. |
Notice of Allowance dated Dec. 13, 2017, issued in connection with U.S. Appl. No. 15/784,952, filed Oct. 16, 2017, 9 pages. |
Notice of Allowance dated Aug. 14, 2017, issued in connection with U.S. Appl. No. 15/098,867, filed Apr. 14, 2016, 10 pages. |
Notice of Allowance dated Feb. 14, 2017, issued in connection with U.S. Appl. No. 15/229,855, filed Aug. 5, 2016, 11 pages. |
Notice of Allowance dated Jun. 14, 2017, issued in connection with U.S. Appl. No. 15/282,554, filed Sep. 30, 2016, 11 pages. |
Notice of Allowance dated Dec. 15, 2017, issued in connection with U.S. Appl. No. 15/223,218, filed Jul. 29, 2016, 7 pages. |
Notice of Allowance dated Aug. 16, 2017, issued in connection with U.S. Appl. No. 15/098,892, filed Apr. 14, 2016, 9 pages. |
Notice of Allowance dated Aug. 17, 2017, issued in connection with U.S. Appl. No. 15/131,244, filed Apr. 18, 2016, 9 pages. |
Notice of Allowance dated Sep. 17, 2018, issued in connection with U.S. Appl. No. 15/211,689, filed Jul. 15, 2016, 6 pages. |
Notice of Allowance dated Jul. 19, 2018, issued in connection with U.S. Appl. No. 15/681,937, filed Aug. 21, 2017, 7 pages. |
Notice of Allowance dated Mar. 20, 2018, issued in connection with U.S. Appl. No. 15/784,952, filed Oct. 16, 2017, 7 pages. |
Notice of Allowance dated Sep. 20, 2018, issued in connection with U.S. Appl. No. 15/946,599, filed Apr. 5, 2018, 7 pages. |
Notice of Allowance dated Aug. 22, 2017, issued in connection with U.S. Appl. No. 15/273,679, filed Sep. 22, 2016, 5 pages. |
Notice of Allowance dated Jan. 22, 2018, issued in connection with U.S. Appl. No. 15/178,180, filed Jun. 9, 2016, 9 pages. |
Notice of Allowance dated Dec. 29, 2017, issued in connection with U.S. Appl. No. 15/131,776, filed Apr. 18, 2016, 13 pages. |
Notice of Allowance dated Jul. 30, 2018, issued in connection with U.S. Appl. No. 15/098,718, filed Apr. 14, 2016, 5 pages. |
Notice of Allowance dated Oct. 5, 2018, issued in connection with U.S. Appl. No. 15/211,748, filed Jul. 15, 2018, 10 pages. |
Notice of Allowance dated Aug. 9, 2018, issued in connection with U.S. Appl. No. 15/229,868, filed Aug. 5, 2016, 11 pages. |
Notice of Allowance dated Mar. 9, 2018, issued in connection with U.S. Appl. No. 15/584,782, filed May 2, 2017, 8 pages. |
Palm, Inc., “Handbook for the Palm VII Handheld,” May 2000, 311 pages. |
Presentations at WinHEC 2000, May 2000, 138 pages. |
Restriction Requirement dated Aug. 9, 2018, issued in connection with U.S. Appl. No. 15/717,621, filed Sep. 27, 2017, 8 pages. |
Souden et al. “An Integrated Solution for Online Multichannel Noise Tracking and Reduction.” IEEE Transactions on Audio, Speech, and Language Processing, vol. 19. No. 7, Sep. 7, 2011, 11 pages. |
Souden et al. “Gaussian Model-Based Multichannel Speech Presence Probability” IEEE Transactions on Audio, Speech, and Language Processing, vol. 18, No. 5, Jul. 5, 2010, 6pages. |
International Search Report and Written Opinion dated Dec. 20, 2019; International Application No. PCT/US2019/052654; 10 pages. |
Advisory Action dated Apr. 24, 2020, issued in connection with U.S. Appl. No. 15/948,541, filed Apr. 9, 2018, 4 pages. |
Advisory Action dated Dec. 31, 2018, issued in connection with U.S. Appl. No. 15/804,776, filed Nov. 6, 2017, 4 pages. |
Anonymous,. S Voice or Google Now—The Lowdown. Apr. 28, 2015, 9 pages. [online], [retrieved on Nov. 29, 2017]. Retrieved from the Internet (URL:http://web.archive.org/web/20160807040123/http://lowdown.carphonewarehouse.com/news/s-voice-or-google-now/29958/). |
Australian Patent Office, Australian Examination Report Action dated Apr. 14, 2020, issued in connection with Australian Application No. 2019202257, 3 pages. |
Australian Patent Office, Australian Examination Report Action dated Oct. 3, 2019, issued in connection with Australian Application No. 2018230932, 3 pages. |
Australian Patent Office, Examination Report dated Oct. 30, 2018, issued in connection with Australian Application No. 2017222436, 3 pages. |
Canadian Patent Office, Canadian Office Action dated Nov. 14, 2018, issued in connection with Canadian Application No. 3015491, 3 pages. |
Chinese Patent Office, First Office Action and Translation dated Mar. 20, 2019, issued in connection with Chinese Application No. 201780025028.2, 18 pages. |
Chinese Patent Office, First Office Action and Translation dated Mar. 27, 2019, issued in connection with Chinese Application No. 201780025029.7, 9 pages. |
Chinese Patent Office, First Office Action and Translation dated Nov. 5, 2019, issued in connection with Chinese Application No. 201780072651.3, 19 pages. |
Chinese Patent Office, First Office Action dated Feb. 28, 2020, issued in connection with Chinese Application No. 201780061543.6, 29 pages. |
Chinese Patent Office, Second Office Action and Translation dated May 11, 2020, issued in connection with Chinese Application No. 201780061543.6, 17 pages. |
Chinese Patent Office, Second Office Action and Translation dated Jul. 18, 2019, issued in connection with Chinese Application No. 201780025029.7, 14 pages. |
Chinese Patent Office, Second Office Action and Translation dated Sep. 23, 2019, issued in connection with Chinese Application No. 201780025028.2, 15 pages. |
Chinese Patent Office, Second Office Action and Translation dated Mar. 31, 2020, issued in connection with Chinese Application No. 201780072651.3, 17 pages. |
Chinese Patent Office, Third Office Action and Translation dated Sep. 16, 2019, issued in connection with Chinese Application No. 201780025029.7, 14 pages. |
Chinese Patent Office, Translation of Office Action dated Jul. 18, 2019, issued in connection with Chinese Application No. 201780025029.7, 8 pages. |
Cipriani,. The complete list of OK, Google commands—CNET. Jul. 1, 2016, 5 pages. [online], [retrieved on Jan. 15, 2020]. Retrieved from the Internet: (URL:https://web.archive.org/web/20160803230926/https://www.cnet.com/how-to/complete-list-of-ok-google—commands/). |
European Patent Office, European Extended Search Report dated Feb. 3, 2020, issued in connection with European Application No. 19197116.7, 9 pages. |
European Patent Office, European Extended Search Report dated Jan. 3, 2019, issued in connection with European Application No. 177570702, 8 pages. |
European Patent Office, European Extended Search Report dated Jan. 3, 2019, issued in connection with European Application No. 17757075.1, 9 pages. |
European Patent Office, European Office Action dated Jan. 14, 2020, issued in connection with European Application No. 17757070.2, 7 pages. |
European Patent Office, European Office Action dated Jan. 22, 2019, issued in connection with European Application No. 17174435.2, 9 pages. |
European Patent Office, European Office Action dated Aug. 30, 2019, issued in connection with European Application No. 17781608.9, 6 pages. |
European Patent Office, Summons to Attend Oral Proceedings dated Dec. 20, 2019, issued in connection with European Application No. 17174435.2, 13 pages. |
Fadilpasic,“Cortana can now be the default PDA on your Android”, IT Pro Portal: Accessed via WayBack Machine; http://web.archive.org/web/20171129124915/https://www.itproportal.com/2015/08/11/cortana-can-now-be- . . . , Aug. 11, 2015, 6 pages. |
Final Office Action dated Apr. 11, 2019, issued in connection with U.S. Appl. No. 15/131,254, filed Apr. 18, 2016, 17 pages. |
Final Office Action dated Dec. 11, 2019, issued in connection with U.S. Appl. No. 16/227,308, filed Dec. 20, 2018, 10 pages. |
Final Office Action dated Sep. 11, 2019, issued in connection with U.S. Appl. No. 16/178,122, filed Nov. 1, 2018, 13 pages. |
Final Office Action dated May 13, 2020, issued in connection with U.S. Appl. No. 16/153,530, filed Oct. 5, 2018, 20 pages. |
Final Office Action dated May 18, 2020, issued in connection with U.S. Appl. No. 16/177,185, filed Oct. 5, 2018, 16 pages. |
Final Office Action dated May 21, 2020, issued in connection with U.S. Appl. No. 15/989,715, filed May 25, 2018, 21 pages. |
Final Office Action dated Mar. 23, 2020, issued in connection with U.S. Appl. No. 16/145,275, filed Sep. 28, 2018, 11 pages. |
Final Office Action dated Feb. 24, 2020, issued in connection with U.S. Appl. No. 15/936,177, filed Mar. 26, 2018, 20 pages. |
Final Office Action dated Apr. 26, 2019, issued in connection with U.S. Appl. No. 15/721,141, filed Sep. 29, 2017, 20 pages. |
Final Office Action dated Apr. 30, 2019, issued in connection with U.S. Appl. No. 15/098,760, filed Apr. 14, 2016, 6 pages. |
Final Office Action dated Feb. 5, 2019, issued in connection with U.S. Appl. No. 15/438,749, filed Feb. 21, 2017, 17 pages. |
Final Office Action dated Feb. 7, 2020, issued in connection with U.S. Appl. No. 15/948,541, filed Apr. 9, 2018, 8 pages. |
First Action Interview Office Action dated Aug. 14, 2019, issued in connection with U.S. Appl. No. 16/227,308, filed Dec. 20, 2018, 4 pages. |
First Action Interview Office Action dated Jun. 2, 2020, issued in connection with U.S. Appl. No. 16/109,375, filed Aug. 22, 2018, 10 pages. |
First Action Interview Office Action dated Jan. 22, 2020, issued in connection with U.S. Appl. No. 15/989,715, filed May 25, 2018, 3 pages. |
First Action Interview Office Action dated Jul. 5, 2019, issued in connection with U.S. Appl. No. 16/227,308, filed Dec. 20, 2018, 4 pages. |
Giacobello et al. “A Sparse Nonuniformly Partitioned Multidelay Fitter for Acoustic Echo Cancellation,” 2013, IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, Oct. 2013, New Paltz, NY, 4 pages. |
Giacobello et al. “Tuning Methodology for Speech Enhancement Algorithms using a Simulated Conversational Database and Perceptual Objective Measures,” 2014, 4th Joint Workshop on Hands-free Speech Communication and Microphone Arrays HSCMA, 2014, 5 pages. |
Helwani et al “Source-domain adaptive filtering for MIMO systems with application to acoustic echo cancellation”, Acoustics Speech and Signal Processing, 2010 IEEE International Conference, Mar. 14, 2010, 4 pages. |
Hirano et al. “A Noise-Robust Stochastic Gradient Algorithm with an Adaptive Step-Size Suitable for Mobile Hands-Free Telephones,” 1995, International Conference on Acoustics, Speech, and Signal Processing, vol. 2, 4 pages. |
International Bureau, International Preliminary Report on Patentability, dated Apr. 11, 2019, issued in connection with International Application No. PCT/US2017/0054063, filed on Sep. 28, 2017, 9 pages. |
International Bureau, International Preliminary Report on Patentability, dated Feb. 20, 2020, issued in connection with International Application No. PCT/US2018/045397, filed on Aug. 6, 2018, 8 pages. |
International Bureau, International Preliminary Report on Patentability, dated Apr. 23, 2019, issued in connection with International Application No. PCT/US2017/057220, filed on Oct. 18, 2017, 7 pages. |
International Bureau, International Preliminary Report on Patentability, dated Mar. 31, 2020, issued in connection with International Application No. PCT/US2018053123, filed on Sep. 27, 2018, 12 pages. |
International Bureau, International Preliminary Report on Patentability, dated Mar. 31, 2020, issued in connection with International Application No. PCT/US2018053472, filed on Sep. 28, 2018, 8 pages. |
International Bureau, International Preliminary Report on Patentability, dated Mar. 31, 2020, issued in connection with International Application No. PCT/US2018053517, filed on Sep. 28, 2018, 10 pages. |
International Bureau, International Search Report and Written Opinion dated Nov. 18, 2019, issued in connection with International Application No. PCT/US2019052841, filed on Sep. 25, 2019, 12 pages. |
International Bureau, International Search Report and Written Opinion dated Mar. 2, 2020, issued in connection with International Application No. PCT/US2019064907, filed on Dec. 6, 2019, 11 pages. |
International Bureau, International Search Report and Written Opinion dated Dec. 6, 2019, issued in connection with International Application No. PCT/US2019050852, filed on Sep. 12, 2019, 10 pages. |
International Bureau, International Search Report and Written Opinion dated Apr. 8, 2020, issued in connection with International Application No. PCT/US2019/067576, filed on Dec. 19, 2019, 12 pages. |
International Searching Authority, International Search Report and Written Opinion dated Dec. 19, 2018, in connection with International Application No. PCT/US2018/053517, 13 pages. |
Japanese Patent Office, Non-Final Office Action and Translation dated Nov. 5, 2019, issued in connection with Japanese Patent Application No. 2019-517281, 6 pages. |
Japanese Patent Office, Office Action and Translation dated Oct. 8, 2019, issued in connection with Japanese Patent Application No. 2019-521032, 5 pages. |
Japanese Patent Office, Office Action Translation dated Nov. 5, 2019, issued in connection with Japanese Patent Application No. 2019-517281, 2 pages. |
Japanese Patent Office, Office Action Translation dated Oct. 8, 2019, issued in connection with Japanese Patent Application No. 2019-521032, 8 pages. |
Korean Patent Office, Korean Office Action and Translation dated Aug. 16, 2019, issued in connection with Korean Application No. 10-2018-7027452, 14 pages. |
Korean Patent Office, Korean Office Action and Translation dated Apr. 2, 2020, issued in connection with Korean Application No. 10-2020-7008486, 12 pages. |
Korean Patent Office, Korean Office Action and Translation dated Mar. 25, 2020, issued in connection with Korean Application No. 10-2019-7012192, 14 pages. |
Korean Patent Office, Korean Office Action and Translation dated Mar. 30, 2020, issued in connection with Korean Application No. 10-2020-7004425, 5 pages. |
Korean Patent Office, Korean Office Action and Translation dated Sep. 9, 2019, issued in connection with Korean Application No. 10-2018-7027451, 21 pages. |
Korean Patent Office, Korean Office Action dated May 8, 2019, issued in connection with Korean Application No. 10-2018-7027451, 7 pages. |
Korean Patent Office, Korean Office Action dated May 8, 2019, issued in connection with Korean Application No. 10-2018-7027452, 5 pages. |
Newman, Jared. “Chromecast Audio's multi-room support has arrived,” Dec. 11, 2015, https://www.pcworld.com/article/3014204/customer-electronic/chromcase-audio-s-multi-room-support-has . . . , 1 page. |
Non-Final Office Action dated Nov. 4, 2019, issued in connection with U.S. Appl. No. 16/022,662, filed Jun. 28, 2018, 16 pages. |
Non-Final Office Action dated Sep. 5, 2019, issued in connection with U.S. Appl. No. 16/416,752, filed May 20, 2019, 14 pages. |
Non-Final Office Action dated Oct. 9, 2019, issued in connection with U.S. Appl. No. 15/936,177, filed Mar. 26, 2018, 16 pages. |
Non-Final Office Action dated Oct. 11, 2019, issued in connection with U.S. Appl. No. 16/177,185, filed Oct. 31, 2018, 14 pages. |
Non-Final Office Action dated Feb. 12, 2019, issued in connection with U.S. Appl. No. 15/670,361, filed Aug. 7, 2017, 13 pages. |
Non-Final Office Action dated Nov. 13, 2018, issued in connection with U.S. Appl. No. 15/717,621, filed Sep. 27, 2017, 23 pages. |
Non-Final Office Action dated Nov. 13, 2018, issued in connection with U.S. Appl. No. 16/160,107, filed Oct. 15, 2018, 8 pages. |
Non-Final Office Action dated Nov. 13, 2019, issued in connection with U.S. Appl. No. 15/984,073, filed May 18, 2018, 18 pages. |
Non-Final Office Action dated May 14, 2020, issued in connection with U.S. Appl. No. 15/948,541, filed Apr. 9, 2018, 8 pages. |
Non-Final Office Action dated Apr. 15, 2020, issued in connection with U.S. Appl. No. 16/138,111, filed Sep. 21, 2018, 15 pages. |
Non-Final Office Action dated Jan. 15, 2019, issued in connection with U.S. Appl. No. 16/173,797, filed Oct. 29, 2018, 6 pages. |
Non-Final Office Action dated Nov. 15, 2019, issued in connection with U.S. Appl. No. 16/153,530, filed Oct. 5, 2018, 17 pages. |
Non-Final Office Action dated Jan. 18, 2019, issued in connection with U.S. Appl. No. 15/721,141, filed Sep. 29, 2017, 18 pages. |
Non-Final Office Action dated Oct. 18, 2019, issued in connection with U.S. Appl. No. 15/098,760, filed Apr. 14, 2016, 27 pages. |
Non-Final Office Action dated Sep. 18, 2019, issued in connection with U.S. Appl. No. 16/179,779, filed Nov. 2, 2018, 14 pages. |
Non-Final Office Action dated Dec. 2019, issued in connection with U.S. Appl. No. 16/147,710, filed Sep. 29, 2018, 10 pages. |
Non-Final Office Action dated Feb. 19, 2020, issued in connection with U.S. Appl. No. 16/148,879, filed Oct. 1, 2018, 15 pages. |
Non-Final Office Action dated Jun. 20, 2019, issued in connection with U.S. Appl. No. 15/946,585, filed Apr. 5, 2018, 10 pages. |
Non-Final Office Action dated Aug. 21, 2019, issued in connection with U.S. Appl. No. 16/192,126, filed Nov. 15, 2018, 8 pages. |
Non-Final Office Action dated Feb. 21, 2019, issued in connection with U.S. Appl. No. 16/214,666, filed Dec. 10, 2018, 12 pages. |
Non-Final Office Action dated Jan. 21, 2020, issued in connection with U.S. Appl. No. 16/214,711, filed Dec. 10, 2018, 9 pages. |
Non-Final Office Action dated Jan. 21, 2020, issued in connection with U.S. Appl. No. 16/598,125, filed Oct. 10, 2019, 25 pages. |
Non-Final Office Action dated Oct. 21, 2019, issued in connection with U.S. Appl. No. 15/973,413, filed May 7, 2018, 10 pages. |
Non-Final Office Action dated May 23, 2019, issued in connection with U.S. Appl. No. 16/154,071, filed Oct. 8, 2018, 36 pages. |
Non-Final Office Action dated Jul. 24, 2019, issued in connection with U.S. Appl. No. 16/439,009, filed Jun. 12, 2019, 26 pages. |
Non-Final Office Action dated Dec. 26, 2018, issued in connection with U.S. Appl. No. 16/154,469, filed Oct. 8, 2018, 7 pages. |
Non-Final Office Action dated Jun. 27, 2019, issued in connection with U.S. Appl. No. 16/437,437, filed Jun. 11, 2019, 8 pages. |
Non-Final Office Action dated Jun. 27, 2019, issued in connection with U.S. Appl. No. 16/437,476, filed Jun. 11, 2019, 8 pages. |
Non-Final Office Action dated Mar. 27, 2020, issued in connection with U.S. Appl. No. 16/790,621, filed Feb. 13, 2020, 8 pages. |
Non-Final Office Action dated May 27, 2020, issued in connection with U.S. Appl. No. 16/715,713, filed Dec. 16, 2019, 14 pages. |
Optimizing Siri on HomePod in Far-Field Settings. Audio Software Engineering and Siri Speech Team, Machine Learning Journal vol. 1, Issue 12. https://machinelearning.apple.com/2018/12/03/optimizing-siri-on-homepod-in-far-field-settings.html. Dec. 2018, 18 pages. |
Preinterview First Office Action dated Aug. 5, 2019, issued in connection with U.S. Appl. No. 16/434,426, filed Jun. 7, 2019, 4 pages. |
Preinterview First Office Action dated Mar. 25, 2020, issued in connection with U.S. Appl. No. 16/109,375, filed Aug. 22, 2018, 6 pages. |
Preinterview First Office Action dated Sep. 30, 2019, issued in connection with U.S. Appl. No. 15/989,715, filed May 25, 2018, 4 pages. |
Preinterview First Office Action dated May 7, 2020, issued in connection with U.S. Appl. No. 16/213,570, filed Dec. 7, 2018, 5 pages. |
Restriction Requirement dated Aug. 14, 2019, issued in connection with U.S. Appl. No. 16/214,711, filed Dec. 10, 2018, 5 pages. |
Tweet: “How to start using Google app voice commands to make your life easier Share This Story shop @Bullet”, Jan. 21, 2016, https://bgr.com/2016/01/21/best-ok-google-voice-commands/, 3 page. |
Vacher et al. “Speech Recognition in a Smart Home: Some Experiments for Telemonitoring,” 2009 Proceedings of the 5th Conference on Speech Technology and Human-Computer Dialogoue, Constant, 2009, 10 pages. |
“S Voice or Google Now?”; https://web.archive.org/web/20160807040123/lowdown.carphonewarehouse.com/news/s-voice-or-google-now/ . . . , Apr. 28, 2015; 4 pages. |
Wung et al. “Robust Acoustic Echo Cancellation in the Short-Time Fourier Transform Domain Using Adaptive Crossband Filters” IEEE International Conference on Acoustic, Speech and Signal Processing ICASSP, 2014, p. 1300-1304. |
Yamaha DME Designer 3.0 Owner's Manual; Copyright 2008, 501 pages. |
Non-Final Office Action dated Oct. 28, 2019, issued in connection with U.S. Appl. No. 16/145,275, filed Sep. 28, 2018, 11 pages. |
Non-Final Office Action dated Mar. 29, 2019, issued in connection with U.S. Appl. No. 16/102,650, filed Aug. 13, 2018, 11 pages. |
Non-Final Office Action dated Jul. 3, 2019, issued in connection with U.S. Appl. No. 15/948,541, filed Apr. 9, 2018, 7 pages. |
Non-Final Office Action dated May 3, 2019, issued in connection with U.S. Appl. No. 16/178,122, filed Nov. 1, 2018, 14 pages. |
Non-Final Office Action dated Oct. 3, 2018, issued in connection with U.S. Appl. No. 16/102,153, filed Aug. 13, 2018, 20 pages. |
Non-Final Office Action dated Apr. 30, 2019, issued in connection with U.S. Appl. No. 15/718,521, filed Sep. 28, 2017, 39 pages. |
Non-Final Office Action dated Apr. 4, 2019, issued in connection with U.S. Appl. No. 15/718,911, filed Sep. 28, 2017, 21 pages. |
Non-Final Office Action dated Jan. 4, 2019, issued in connection with U.S. Appl. No. 15/948,541, filed Apr. 9, 2018, 6 pages. |
Non-Final Office Action dated Apr. 6, 2020, issued in connection with U.S. Appl. No. 16/424,825, filed May 29, 2019, 22 pages. |
Notice of Allowance dated Dec. 2, 2019, issued in connection with U.S. Appl. No. 15/718,521, filed Sep. 28, 2017, 15 pages. |
Notice of Allowance dated Apr. 1, 2019, issued in connection with U.S. Appl. No. 15/935,966, filed Mar. 26, 2018, 5 pages. |
Notice of Allowance dated Oct. 11, 2019, issued in connection with U.S. Appl. No. 16/437,476, filed Jun. 11, 2019, 9 pages. |
Notice of Allowance dated Sep. 11, 2019, issued in connection with U.S. Appl. No. 16/154,071, filed Oct. 8, 2018, 5 pages. |
Notice of Allowance dated Dec. 12, 2018, issued in connection with U.S. Appl. No. 15/811,468, filed Nov. 13, 2017, 9 pages. |
Notice of Allowance dated Jun. 12, 2019, issued in connection with U.S. Appl. No. 15/670,361, filed Aug. 7, 2017, 7 pages. |
Notice of Allowance dated Feb. 13, 2019, issued in connection with U.S. Appl. No. 15/959,907, filed Apr. 23, 2018, 10 pages. |
Notice of Allowance dated Jan. 13, 2020, issued in connection with U.S. Appl. No. 16/192,126, filed Nov. 15, 2018, 6 pages. |
Notice of Allowance dated Nov. 14, 2018, issued in connection with U.S. Appl. No. 15/297,627, filed Oct. 19, 2016, 5 pages. |
Notice of Allowance dated Jan. 15, 2020, issued in connection with U.S. Appl. No. 16/439,009, filed Jun. 12, 2019, 9 pages. |
Notice of Allowance dated Mar. 15, 2019, issued in connection with U.S. Appl. No. 15/804,776, filed Nov. 6, 2017, 9 pages. |
Notice of Allowance dated Oct. 15, 2019, issued in connection with U.S. Appl. No. 16/437,437, filed Jun. 11, 2019, 9 pages. |
Notice of Allowance dated Jul. 17, 2019, issued in connection with U.S. Appl. No. 15/718,911, filed Sep. 28, 2017, 5 pages. |
Notice of Allowance dated Apr. 18, 2019, issued in connection with U.S. Appl. No. 16/173,797, filed Oct. 29, 2018, 9 pages. |
Notice of Allowance dated Dec. 18, 2019, issued in connection with U.S. Appl. No. 16/434,426, filed Jun. 7, 2019, 13 pages. |
Notice of Allowance dated Feb. 18, 2020, issued in connection with U.S. Appl. No. 16/022,662, filed Jun. 28, 2018, 8 pages. |
Notice of Allowance dated Jul. 18, 2019, issued in connection with U.S. Appl. No. 15/438,749, filed Feb. 21, 2017, 9 pages. |
Notice of Allowance dated Jul. 18, 2019, issued in connection with U.S. Appl. No. 15/721,141, filed Sep. 29, 2017, 8 pages. |
Notice of Allowance dated Dec. 19, 2018, issued in connection with U.S. Appl. No. 15/818,051, filed Nov. 20, 2017, 9 pages. |
Notice of Allowance dated Aug. 2, 2019, issued in connection with U.S. Appl. No. 16/102,650, filed Aug. 13, 2018, 5 pages. |
Notice of Allowance dated Feb. 21, 2020, issued in connection with U.S. Appl. No. 16/416,752, filed May 20, 2019, 6 pages. |
Notice of Allowance dated Jan. 21, 2020, issued in connection with U.S. Appl. No. 16/672,764, filed Nov. 4, 2019, 10 pages. |
Notice of Allowance dated Oct. 21, 2019, issued in connection with U.S. Appl. No. 15/946,585, filed Apr. 5, 2018, 5 pages. |
Notice of Allowance dated Apr. 24, 2019, issued in connection with U.S. Appl. No. 16/154,469 filed Oct. 8, 2018, 5 pages. |
Notice of Allowance dated Apr. 27, 2020, issued in connection with U.S. Appl. No. 16/700,607, filed Dec. 2, 2019, 10 pages. |
Notice of Allowance dated Mar. 27, 2019, issued in connection with U.S. Appl. No. 16/214,666, filed Dec. 10, 2018, 6 pages. |
Notice of Allowance dated Mar. 28, 2018, issued in connection with U.S. Appl. No. 15/699,982, filed Sep. 8, 2017, 17 pages. |
Notice of Allowance dated May 29, 2020, issued in connection with U.S. Appl. No. 16/148,879, filed Oct. 1, 2018, 6 pages. |
Notice of Allowance dated Apr. 3, 2019, issued in connection with U.S. Appl. No. 16/160,107, filed Oct. 15, 2018, 7 pages. |
Notice of Allowance dated Jul. 30, 2019, issued in connection with U.S. Appl. No. 15/131,254, filed Apr. 18, 2016, 9 pages. |
Notice of Allowance dated Mar. 30, 2020, issued in connection with U.S. Appl. No. 15/973,413, filed May 7, 2018, 5 pages. |
Notice of Allowance dated Nov. 30, 2018, issued in connection with U.S. Appl. No. 15/438,725, filed Feb. 21, 2017, 5 pages. |
Notice of Allowance dated Oct. 30, 2019, issued in connection with U.S. Appl. No. 16/131,392, filed Sep. 14, 2018, 9 pages. |
Notice of Allowance dated May 31, 2019, issued in connection with U.S. Appl. No. 15/717,621, filed Sep. 27, 2017, 9 pages. |
Notice of Allowance dated Mar. 4, 2020, issued in connection with U.S. Appl. No. 16/444,975, filed Jun. 18, 2019, 10 pages. |
Notice of Allowance dated Feb. 5, 2020, issued in connection with U.S. Appl. No. 16/178,122, filed Nov. 1, 2018, 9 pages. |
Notice of Allowance dated Feb. 6, 2019, issued in connection with U.S. Appl. No. 16/102,153, filed Aug. 13, 2018, 9 pages. |
Notice of Allowance dated Feb. 6, 2020, issued in connection with U.S. Appl. No. 16/227,308, filed Dec. 20, 2018, 7 pages. |
Notice of Allowance dated Apr. 7, 2020, issued in connection with U.S. Appl. No. 15/098,760, filed Apr. 14, 2016, 7 pages. |
Notice of Allowance dated Apr. 7, 2020, issued in connection with U.S. Appl. No. 16/147,710, filed Sep. 29, 2018, 15 pages. |
Notice of Allowance dated Jun. 7, 2019, issued in connection with U.S. Appl. No. 16/102,153, filed Aug. 13, 2018, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20200098372 A1 | Mar 2020 | US |