THIS APPLICATION IS A U.S. NATIONAL PHASE APPLICATION OF PCT INTERNATIONAL APPLICATION PCT/JP2009/006302.
The present invention relates to a sound output device for outputting sounds, such as simulated engine sounds, in a vehicle, such as an automobile.
In recent years, in order to enhance the operation sense of the driver and create driving amenity inside a vehicle, such as an automobile, mainly automobile manufacturers have been proposing various techniques. A known technique among these proposals is to output a simulated engine sound from the sound output part incorporated in the vehicle in response to the driving status of the vehicle.
By outputting the simulated engine sound, sound output device 501 emphasizes, to the driver of vehicle 106, the sound with which the number of rotations of the engine is changed by the operation of the accelerator, and enhances the operation sense of the driver of vehicle 106. Further, by mixing the simulated engine sound with an original engine sound, sound output device 501 creates an engine sound having comfortable frequency characteristics for the driver and improves the driving amenity of the driver.
In
In conventional sound output device 501, the simulated engine sound output from speakers 105A and 105B interferes with the sound reflected on an inside, such as wall surfaces, of vehicle 106, and produces a peak or a dip at a specific frequency of the output sound. As a result, passengers sitting at predetermined positions, such as a driver seat and a front passenger seat, may not hear a desirable simulated engine sound.
A sound output device is configured to be installed in a vehicle. The sound output device includes a driving-status detector for detecting a driving status of the vehicle, a sound signal generator for generating a reference signal in response to the detected driving status, first and second units for processing the generated reference signal, first and second sound output parts for outputting the reference signals processed by the first and second units. The first unit includes a phase shifter for shifting a phase of the reference signal such that the reference signals output from the first sound output part and the second sound output part have a phase difference between the respective reference signals.
This sound output device allows a passenger at a predetermined position to hear the sound in a preferable condition.
Speakers 6A and 6B are sound output parts each for outputting a simulated engine sound from sound output device 1001 to an inside of vehicle 7, and are disposed on a door of a front passenger seat and a door of a driver seat of vehicle 7, respectively. Speakers 6A and 6B output a sound signal output from units 5A and 5B, respectively, actually as a sound. Speakers 6A and 6B may be disposed on left and right doors of a rear seat of vehicle 7, respectively.
Driving-status detector 1 detects a driving status, i.e. a status in which vehicle 7 is driven. Specifically, driving-status detector 1 detects a running status of vehicle 7, such as the number of rotations of the engine, information on the degree of opening of the accelerator, and the acceleration of the vehicle. Further, based on the detected running status, the driving-status detector estimates a load on the actual engine and a response status, and detects the driving status of vehicle 7.
Based on the driving status of vehicle 7 detected by driving-status detector 1, sound signal generator 2 generates a reference waveform of a simulated engine sound most suitable for an operating status of the driver who is driving vehicle 7. Sound signal generator 2 has a table representing the correlation between the driving status of vehicle 7 and data of the simulated engine sound. The sound signal generator refers the table based on the detected driving status, to determine and generate the reference waveform of a simulated engine sound. The data of the simulated engine sound is stored in sound signal generator 2 as elements, such as the frequency characteristics of the level, the frequency characteristics of the phase, and the orders of higher harmonic waves included in the simulated engine sound. Sound signal generator 2 generates, as the reference waveform, sinusoidal waves that have frequencies of higher harmonic waves of the necessary orders. Alternatively, the sound signal generator generates non-sinusoidal waves, such as rectangular waves or triangular waves, including plural higher harmonic components.
Sound level adjusters 4A and 4B in units 5A and 5B adjust the level of the reference waveform of the simulated engine sound generated in sound signal generator 2. In unit 5A, phase shifter 3 is connected at the stage subsequent to sound signal generator 2.
Sound output device 1001 of the embodiment includes two units 5A and 5B and two speakers 6A and 6B. The sound output device may have more than two units and speakers connected to these units.
Phase shifter 3 shifts the phase of the reference waveform generated by sound signal generator 2, and causes unit 5A to output a sound signal that has a predetermined phase difference from the sound signal output from at least one unit, such as unit 5B, of the units other than unit 5A. The phase characteristic, i.e. the amount of phase to be shifted by phase shifter 3 at each frequency, is a phase characteristic in response to the driving status of vehicle 7 detected by driving-status detector 1 in order to provide a simulated engine sound most suitable for the driving status of the driver.
Sound level adjuster 4A adjusts a gain at each frequency such that the level of the sound signal output from phase shifter 3 has a predetermined frequency characteristic. Similarly, sound level adjuster 4B adjusts a gain at each frequency such that the level of the sound signal generated in sound signal generator 2 has a predetermined frequency characteristic. The predetermined frequency characteristic is a frequency characteristic in response to the driving status of vehicle 7 detected by driving-status detector 1, similar to the phase characteristic in phase shifter 3.
An operation of sound output device 1001 according to the embodiment will be described below.
When a driver drives vehicle 7, data, such as the degree of opening of the accelerator by the driver, the number of rotations of the engine of vehicle 7, and the acceleration, regarding the running of vehicle 7 is output as a signal to driving-status detector 1. Driving-status detector 1 detects a current driving status of vehicle 7 cased on this signal.
The driving status of the vehicle detected by driving-status detector 1 is output to sound signal generator 2 as a signal. Based on this signal, sound signal generator 2 generates a sound signal that causes speakers 6A and 6B to output a sound, such as a simulated engine sound.
In unit 5A, phase shifter 3 corrects the phase of the sound signal, and sound level adjuster 4A adjusts the level of the sound signal at each frequency.
In unit 5B, sound level adjuster 4B adjusts the level of the sound signal generated in sound signal generator 2, at each frequency. Unit 5B does not include phase shifter 3, and does not correct the phase of the sound signal.
The signals output from units 5A and 5B are output from speakers 6A and 6B, as a sound, respectively.
The comparative example of the sound output device, upon speakers 6A and 6B outputting sounds of sinusoidal waves in the same phase at 250 Hz, produces dips occur at positions of about 0.35 m from wall surfaces 7A and 7B as shown by properties P1. If the front passenger seat and the driver seat are apart from wall surfaces 7A and 7B by a distance of 0.35 m, respectively, the passengers sitting on the driver seat and the front passenger seat hardly hear the simulated engine sound, i.e. a sound at a frequency of 250 Hz, thus not being provided with a preferable simulated engine sound.
In sound output device 1001 of the embodiment, the phase is corrected by phase shifter 3 such that the sound output from speaker 6A is opposite to the phase of the sound output from speaker 6B. This operation suppresses the influence of the acoustic interference inside vehicle 7, and reduces the dips significantly as shown by properties P2. As a result, the passengers can hear the sound at a frequency of 250 Hz without any problem.
Thus, units 5A and 5B process the reference signal generated by sound signal generator 2. Speakers 6A and 6B as sound output parts output the reference signals processed in units 5A and 5B, respectively. Phase shifter 3 shifts the phase of the reference signal such that the reference signals output from speakers 6A and 6B have a phase difference between the signals.
Phase shifter 3 shifts the phase of the sound signal in the simulated engine sound, i.e. a sound including higher harmonic waves of plural orders, by the amounts corresponding to plural frequencies. This can suppress the dips and peaks in predetermined positions (apart by 0.35 m from wall surfaces 7A and 7B) inside vehicle 7. As a result, the passengers can hear the sound signal generated by sound signal generator 2, i.e. the simulated engine sound, in a preferable condition.
Sound signal generator 2 stores discrete data of one cycle of the waveform of the reference signal in a data table. In the case that the reference signal has a waveform, such as a sinusoidal wave, a triangular wave, or a square wave, having regularity, sound signal generator 2 can store data of at least ¼ of the cycle of the waveform to generate the reference signal. The data table stores points at which one cycle of the reference signal is sampled by output sampling periods at which sound signal generator 2 outputs the reference signal, and also stores plural sampling values of the level obtained by the sampling at these points.
Sound signal generator 2 generates the reference signal by outputting sampling values from the data table by output sampling periods at intervals in response to the driving status detected by driving-status detector 1. For example, the 3000 sampling values representing one cycle of the sinusoidal wave at output sampling periods of 0.333 ms (3000 Hz) are stored in the data table. In this case, 3000 sampling values are extracted at intervals of 50 sampling values at sampling periods from the data table to generate a sinusoidal wave of 50 Hz.
Phase shifter 3 of unit 5A extracts, from the sampling values stored in the data table, sampling values at points that are apart from the points at which unit 5B extracts sampling values from the data table by the amount of the phase to be shifted. Thereby, a phase difference corresponding to the amount can be provided. Phase shifter 3 of unit 5A extracts, from the data table, sampling values at the points apart from the points of the sampling value output from sound signal generator 2 to unit 5B by target number TS corresponding to the amount of phase to be shifted. Thereby, a sound signal having a phase shifted relative to the sound signal output to unit 5B can be output.
Phase shifter 3 may store the amount of phase to be shifted, i.e. the maximum value of increment DTS of target number TS, every time one sampling value is extracted. In this case, phase shifter 3 can shift the phase of the sound signal by a predetermined amount by increasing target number TS by the maximum value of increment DTS every time one sampling value is extracted from the data table. Instead of storing the maximum value of increment DTS by which target number TS is increased every time one sampling value is extracted, phase shifter 3 may store the maximum value of increment DTS by which target number TS is increased every time plural sampling values is extracted.
Thus, unit 5A generates the reference signal by extracting plural sampling values at output sampling periods from the data table at intervals in response to the detected driving status. Unit 5B generates the reference signal by extracting plural sampling values at the output sampling periods from the data table at the intervals. Phase shifter 3 sets a point out of the plural points to be extracted by unit 5A such that the point is apart from the point to be extracted by unit 5B by a number corresponding to the phase in response to the detected driving status. Further, phase shifter 3 sets the point to be extracted by unit 5A apart from the point to be extracted by unit 5B by a number obtained by accumulating predetermined increment DTS at the output sampling periods toward target number TS. That is, phase shifter 3 operates to accumulate predetermined increment DTS from the initial value until the number obtained by accumulating predetermined increment DTS from the initial value (0) at the output sampling periods reaches target number TS. Phase shifter 3 operates to set the point to be extracted by unit 5A apart from the point to be extracted by unit 5B by the number obtained by accumulating predetermined increment DTS from the initial value.
A sound output device according to the present invention allows the passenger at a predetermined position to hear a sound in a preferable condition, and thus, is useful for various types of vehicles, such as an automobile.
Number | Date | Country | Kind |
---|---|---|---|
2008-300498 | Nov 2008 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2009/006302 | 11/24/2009 | WO | 00 | 5/11/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/061569 | 6/3/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5083311 | Kasai et al. | Jan 1992 | A |
6038325 | Yoshida et al. | Mar 2000 | A |
6944303 | Akiho | Sep 2005 | B2 |
20040158470 | Kawahara et al. | Aug 2004 | A1 |
20060215846 | Kobayashi et al. | Sep 2006 | A1 |
Number | Date | Country |
---|---|---|
1443493 | Aug 2004 | EP |
1705644 | Apr 2008 | EP |
62-081197 | Apr 1987 | JP |
1-151399 | Jun 1989 | JP |
01-151399 | Jun 1989 | JP |
02-158296 | Jun 1990 | JP |
04-022295 | Jan 1992 | JP |
05-080790 | Apr 1993 | JP |
10-224887 | Aug 1998 | JP |
11-051399 | Feb 1999 | JP |
2004-233624 | Aug 2004 | JP |
2006-301598 | Nov 2006 | JP |
Entry |
---|
International Search Report for Application No. PCT/JP2009/006302. Dec. 28, 2009, Panasonic Corporation. |
Number | Date | Country | |
---|---|---|---|
20110211710 A1 | Sep 2011 | US |