Voice over internet protocol (VoIP) multi-user conferencing

Information

  • Patent Grant
  • 8467320
  • Patent Number
    8,467,320
  • Date Filed
    Wednesday, September 13, 2006
    18 years ago
  • Date Issued
    Tuesday, June 18, 2013
    11 years ago
Abstract
Voice Over Internet Protocol (VoIP) devices are invited to a conference bridge based on a pre-defined criteria for the conference bridge (e.g., passengers on a plane. The conference invite messages are transmitted using Internet Protocol, which they may or may not accept. The invited VoIP users may be determined based on their physical proximity to the initial caller and other pre-determined characteristics. A VoIP soft switch includes conference bridges that eliminate the conventional requirement that they dial the phone number of another specific VoIP communications device. Instead, location information relating to the initial VoIP user is passed to the VoIP conference bridge, either from the user's VoIP communication device or from their respective location server. Location and other information is then compared by the VoIP soft switch against other VoIP devices, to find potential VoIP conference participants.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


This invention relates generally to Voice Over Internet (VoIP) protocols and architectures. More particularly, it relates to conferencing services using VoIP.


2. Background of the Related Art


Voice-Over-Internet Protocol (VOIP) is a technology that emulates a phone call, but instead of using a circuit based system such as the telephone network, utilizes packetized data transmission techniques most notably implemented in the Internet.


The use of VoIP technology is growing quickly. Given VoIP technology, there are at least three VoIP scenarios:

    • 1. A VoIP UA that is physically connected to a static data cable at a “home” address. For instance, an Analog Telephone Adapter (ATA) that is connected to the “home” data cable and uses traditional telephone devices.
    • 2. A VoIP UA that is physically connected to a data cable at a location different than its “home” address. For instance, a laptop computer device utilized away from home as a VoIP software telephone would be a VoIP ‘visitor’ device as described by this scenario.
    • 3. A VoIP UA that is wireleless, physically disconnected from any data cable.


In this situation, the VoIP UA connects to the VoIP service provider via either a wide-are wireless technology (e.g., cellular, PCS, WiMAX) or via a local-area wireless technology (e.g., Wireless Fidelity (WiFi), UWB, etc.) using a laptop computer or handheld device.


VoIP phone calls are routed to a VoIP voice gateway, from which they are passed on to their destination. A VoIP voice gateway or soft switch is a programmable network switch that can process the signaling for all types of packet protocols. Also known as a ‘media gateway controller,’ ‘call agent,’ or ‘call server,’ such devices are used by carriers that support converged communications services by integrating SS7 telephone signaling with packet networks. Softswitches can support, e.g., IP, DSL, ATM and frame relay.


VoIP telephone technology is quickly replacing conventional switched telephone technology. A location of a given VoIP device may be provisioned to be at a given geographic location, or queried from a home location register (HLR) in a mobile system.


With given VoIP technologies, a VoIP user must know the specific phone number of an individual, business, or other entity that they wish to call. There is no conventional technique for allowing a conference call between two or more VoIP users. In the Internet venue, users can find each other using a “chat room”, but the burden nevertheless remains on the user to search for, identify, and use a specific phone number or Universal Resource Identifier (URI) information to reach specific entities. This creates inefficiency and lack of flexibility with respect to the desire to establish a conference call, preventing VoIP users from managing their own communication needs and preferences. Generally, voice communication using VoIP technologies is limited to only point-to-point direct links between familiar or previously identified parties.


There is a need for an architecture and methodology that simplifies the complexity of conferencing VoIP calls.


SUMMARY OF THE INVENTION

In accordance with the principles of the present invention, a Voice Over Internet Protocol (VoIP) conference bridge comprises a conference bridge application active in a location addressed using Internet Protocol. A module determines a plurality of potential VoIP participants to the conference bridge based on pre-defined criteria. An invite module issues invites to each of the plurality of potential VoIP participants to the conference bridge. The conference bridge application has access to a plurality of Internet interfaces, to accept a respective plurality of potential VoIP participants to the conference bridge. The given conference is established between the accepted plurality of VoIP participants, with each of the plurality of VoIP participants satisfying the pre-defined criteria.


A method of conferencing Voice Over Internet Protocol (VOIP) voice communications devices in accordance with another aspect of the present invention comprises establishing at least one conference bridge. At least one criteria for participation in given conference bridge is determined, and an Invite Session IP message is issued to each of a plurality of potential VoIP participants defined by the at least one criteria.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows an exemplary architecture of a VoIP conference bridge application operating in a soft switch of a VoIP provider to provide VoIP location based conferencing, in accordance with the principles of the present invention.



FIG. 2 shows an exemplary message flow diagram for establishing a VoIP location based conference, in accordance with the principles of the present invention.



FIG. 3 shows a VoIP user originating an invitation to join a conference bridge in a VoIP soft switch, in a business to business or business to consumer scenario, in accordance with the principles of the present invention.



FIG. 4 shows exemplary signal/call flow for a VoIP user originating an invitation to join a conference bridge sent to other VoIP users as shown in FIG. 3.



FIG. 5 shows a VoIP user originating the transmission of a series of Invitations to join a conference bridge in a VoIP soft switch, in a peer to peer or consumer to consumer scenario, in accordance with the principles of the present invention.



FIG. 6 shows exemplary signal/call flow for a VoIP user originating an invitation to join a conference bridge sent to other VoIP users as shown in FIG. 5.





DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

A VoIP user from time to time might wish to initiate a conversation with other (known or unknown) VoIP users based on location and other shared attributes/criteria. The need may be for a single point-to-point type connection, or it may extend to the desire for a multi-user conference with other VoIP users.


Existing conferencing systems for putting VoIP users in touch with one another relies upon prior knowledge and contact information existing between the specified users. The present invention provides a way for VoIP users to use VoIP technology to form temporary or permanent “VoIP Communities” or VoIP conferences by initiating an interaction based on location and other shared attributes, supply/demand relationships, or other criteria.


Currently, there is no existing mechanism to create a voice link between VoIP communication devices based on the location of each VoIP user (and potentially other preferences or attributes). Existing VoIP technology does not address this problem for VoIP voice calls nor does it for any conference established based on location. For instance, while Internet text chat rooms provide a means of communication between party's, Internet text chat rooms do not utilize the user's location to find and invite available individuals/businesses/entities.


The present invention provides the ability for a VoIP user to utilize their own geographic position to narrow down or pinpoint known and even unknown potential VoIP third parties meeting the user's criteria based on their physical location to join in on a phone conference.



FIG. 1 shows an exemplary architecture of a VoIP conference bridge application operating in a VoIP soft switch of a VoIP provider to provide VoIP location based conferencing, in accordance with the principles of the present invention.


In particular, as shown in FIG. 1, a VoIP communications device 104 is serviced by their service provider's soft switch 102. A positioning center 106 provides location data upon request from the soft switch 102. Other VoIP users 110,112, 114 etc. are potential members of any given conference.


Conference bridges 100 are implemented on the VoIP soft switch 102 located, e.g., at the VoIP service provider's VoIP network.


While the VoIP soft switch 102 is preferably capable of being provisioned with as many VoIP conference bridges 100 as are required in any particular application, only one conference bridge 100 is shown in FIG. 1 for simplicity of explanation.


Also, while the conference bridge 100 is shown implemented in the soft switch 102, it can be embodied within another suitable network element having an Internet Protocol (IP) type connection (e.g., TCP/IP) with the initial user 104 as well as with the potential conferees 110, 112, 114.


The use of a conference bridge 100 eliminates the otherwise conventional requirement that the VoIP user 104 dial digits for a direct link with another specific VoIP communications device 110, 112 or 114. Instead, in accordance with the principles of the present invention, location information relating to the initial VoIP user 104 is passed to the VoIP conference bridge 100, either from the user's VoIP communication device 104 or from their respective location server 106. The location information is then compared by the VoIP soft switch 102 against other VoIP devices 110, 112, 114 etc. to find matching predetermined location-based criteria, e.g., within a geographic vicinity of the user's VoIP communication device 104.


The VoIP soft switch 102 makes use of the location information and other existing data or user input (e.g., existing preferences on file on the Soft Switch 102, user entry through the keypad of the communications device 104, or voice response). Based on the location and user input, the VoIP conference bridge 100 identifies potential other participants to be asked to join the conference currently established by the initial VoIP user 104 on the conference bridge 100, and outputs invites or requests 204 to join that conference 100 to the specific URLs, phone numbers and/or other identifying address information relating to VoIP communications equipment 110, 112, 114 of the potential other participants.


The soft switch 102 also maintains the attributes and rules from other communication devices 110, 112, 114 etc. for receiving conference bridge calls, as well as the fixed location (e.g., a place of business) or the ability to query for a current location (e.g., for mobile communication devices such as mobile phones) for each device. Based on this information, with or without other user input (e.g., to select or prioritize among a list of available third parties), the soft switch 102 invites one or more other communication devices 110, 112, 114, etc. to join the conference bridge. This creates a voice link between the first user 104 and the other third parties 110, 112, 114 without requiring the first user 104 to know the contact information or name of the third parties 110, 112, 114.



FIG. 2 shows an exemplary message flow diagram for establishing a VoIP location based conference, in accordance with the principles of the present invention.


In particular, as shown in FIG. 2, the initial VoIP user 104 sends a request for conference bridge call to the soft switch 102. Preferably the initial VoIP user 104 includes location information with the conference request call 201. However, as depicted in FIG. 1, location information can be obtained from an appropriate positioning server 106 if not available from the initial VoIP user 104.


Subsequent to the incoming conference call 201, suitable potential conferees are determined, and those that are within the geographic boundary pre-set or pre-provisioned into the conference bridge are invited with respective invite messages 204, 206.


In operation, the user's VoIP communication device 104 dials a pre-determined phone number (or URL) to initiate a conference bridge 100 on the relevant VoIP soft switch 102. Various phone numbers (or URL's) may be made available at the VoIP conference bridge 100, each corresponding to a respective VoIP conference bridge 100 each with its own pre-established profile of who will be invited once the conference bridge 100 is first entered by the initiating VoIP user 104.


For instance, one VoIP conference bridge 100 may be profiled to invite all other VoIP users within a geographic boundary of, e.g., 1 mile radius from a center point formed by the location of the initiating VoIP user 104. A geographic boundary need not be merely a distance range. For instance, a geographic boundary may comprise, e.g., the grounds of a college or schoolyard, a workplace, etc., or be as specific as those VoIP users within a given room (e.g., gym) at the college or schoolyard. Another VoIP conference bridge 100 with its own phone number (or URL) may correspond to invites to all other VoIP users 110, 112, 114 etc. currently located in, e.g., a given sports stadium.


The profiles used to identify the potential other VoIP conference participants may provide additional filtering characteristics beyond the location based information, e.g., other VoIP users who are contained not only within the pre-established geographic boundaries set for a given conference bridge 100, but also listed within a ‘conference buddy’ list pre-listed by the user. Thus, as a result, ‘buddies’ that a user has pre-listed that are within the sports stadium at the time of the user's call will be invited to join a VoIP conference bridge.


While use of location information is ideal in a preferred embodiment, another embodiment of the invention relates to conference invite messages being sent to those VoIP users meeting a particular filtering function (e.g., use of a buddy list).



FIG. 1 shows use of a VoIP positioning center (VPC) 106. The VoIP soft switch 102 may receive the user's location information either from each of the VoIP communication devices 104, 110, 112, 114 etc., or from the VPC 106.


The VoIP soft switch 102 preferably uses both the location information of the initiating VoIP user 104, together with any profile criteria set for a given conference bridge 100, to determine a list of potential other conferees to be sent INVITE messages inviting them to join the established VoIP conference bridge 100. The profile information for the conference bridge 100 is preferably either pre-established by the VoIP service provider (e.g., to set a geographic boundary within a sports stadium), and/or may be input by the initiating user through keypad entry or voice response on the communications device. Alternatively, profile information for a particular conference bridge may be pre-established via an appropriate web page and transmitted via the Internet to the soft switch 102 or other host gateway.


The VoIP soft switch 102 preferably also maintains the attributes and rules from other VoIP communication devices 110, 112, 114 for receiving conference bridge calls, as well as the fixed location (e.g., a place of business) or the ability to query for a current location (e.g., for mobile communication devices such as mobile phones) for each device. Based on this information, with or without other user input (e.g., to select or prioritize among a list of available third parties), the VoIP soft switch 102 invites one or more other VoIP communication devices 110, 112, 114, etc. to join the VoIP conference bridge 100. This creates a voice link between the first VoIP user 104 that initially called into the VoIP conference bridge 100, and the other potential, third party conferees 110, 112, 114, etc., without requiring the first VoIP user 104 to know the name or even the contact information of the other potential, third party conferees 110, 112, 114, etc.


Upon receipt of an invite to a VoIP conference bridge 204, 206, the potential other VoIP users 110, 112, 114, etc. are preferably notified similar to an incoming telephone call, e.g. with a ring signal, though it may be customized to be distinguished from the sound of an otherwise ordinary incoming phone call. For instance, a given unique phone tone may be activated upon receipt of an invite 204, 206 to a conference bridge 100.


In accordance with the principles of the present invention, the VoIP user(s) 110, 112, 114 receiving invitations to join a VoIP conference 100 may be provided with a filter that automatically rejects any/all invite requests not meeting their own specific criteria (e.g., maintained on their VoIP devices 110, 112, 114 themselves, though such filtering may alternatively be performed at a network level, e.g., at the VoIP soft switch 102 or other centralized location.


Benefits of the invention include that there is no effective limit to the number of participants in the conference VoIP call, there are no cold transfers of a call as VoIP invitees enter or leave the conference bridge 100, and there is the ability to continue the conference call even after the initial VoIP user 104 disconnects.


The present invention has particular applicability with any/all VoIP users, VoIP service providers, and/or even Public Safety Access Points (PSAPs).



FIG. 3 shows a VoIP user 104 originating an invitation to join a conference bridge 100 in a VoIP soft switch 102, in a business to business or business to consumer scenario, in accordance with the principles of the present invention.


In particular, as shown in FIG. 3, a VoIP user 104 initiates an invitation or request 204 based on certain pre-defined criteria for a service provider or a peer attribute. The VoIP service provider acquires the user's location information, either directly from the VoIP communications device 104 or by request to the LIS 106, and initiates a conference on the conference bridge 100. The conference bridge 100 issues invitations or notifications to one or more potential VoIP conferee users 110, 112, 114 etc. based on the location of the original user 104 and the specified criteria, by comparison to attribute or provider data for the other VoIP users 110, 112, 114 etc. The conference bridge 100 enables participation by multiple parties and does not depend on the participants' knowledge of or current access to each other's contact information, profile/attributes/business type, or location. In addition, VoIP users can elect when to receive notifications based on their current status (away, available, business hours, etc.) For instance, the VoIP user 104 would initiate a call to the conference bridge 100, thus initiating the sending of invitations or requests to potential conferees 110, 112, 114 etc. based on certain criteria (e.g., “tow truck drivers currently in Seattle”). Upon receipt of the initial call from the initiating VoIP user 104, the VoIP service provider initiates a conference bridge 100 and issues an INVITE or other notification to one or more VoIP users 110, 112, 114 etc. who have selected or subscribed to receive such conference notifications for this particular conference topic (as defined by its criteria). Subscriptions may be semi-permanent criteria for that particular conference bridge 100 (e.g., occupations or interests of the registered user of the relevant VoIP device) or temporary criteria (e.g., passengers on a specific airline flight, ticket agents with extra tickets for a specific event, etc.) The conference bridge 100 enables participation by multiple parties and does not depend on the participants' knowledge of or current access to each other's contact information. In addition, VoIP users can elect when to receive notifications based on their current status (e.g., away, available).


More sophisticated implementations of the invention include adaptation of the criteria for a given conference bridge 100 to correspond to a particular live auction. For instance, in such application, the matchmaking database 300 functions as an automated auction tool by accepting as criteria for the auction data such as the proposed cost of service, and then connect the lowest bidder of those potential bidders 110, 112, 114 to the conference bridge 100.


Preferably, the initiating VoIP user 104 is allowed to pre-define given criteria for the conference bridge 100, e.g., a maximum number of participants (e.g., the first 4 providers or peers who accept the conference invitation), or other criteria for choosing among multiple users (e.g., to select the VoIP user(s) 110, 112, 114 etc. whose location is closest to the initiating VoIP user 104 who initiated the conference invitation in the first place).



FIG. 4 shows exemplary signal/call flow for an initiating VoIP user 104 calling to establish a conference bridge 100, causing invitations to be transmitted to each potential VoIP conferee using IP protocol (e.g., TCP/IP) to join the conference bridge 100 as shown in FIG. 3. In response, each invited VoIP user 110, 112, 114 may accept or reject the invitation with an Accept or Reject message transmitted via Internet Protocol back to the VoIP soft switch 102 that transmitted the initial invite messages 204, 206.


Offline activity also occurs, separate from the call flow, e.g., to update location data (be it permanent or temporary) and criteria or attributes for the conference bridge 200 itself. Availability data may also be maintained and updated offline, e.g., relating to pre-defined times for the conference bridge 100 to be established, and/or to the current status of the conference bridge 100.



FIG. 5 shows a VoIP user 104 originating the transmission of a series of Invitations 504 to join a conference bridge 100 in a VoIP soft switch 102, in a peer to peer or consumer to consumer scenario, in accordance with the principles of the present invention.


In particular, as shown in FIG. 5, the VoIP user 104 can call a conference bridge 100 and provide particular, customized criteria for the conference. In a peer-to-peer scenario as shown in FIG. 5, the VoIP user 104 issues a peer-to-peer request 550 such as a call searching for tickets to a specific public event (e.g., “Falcons Tickets”), searching for others with a similar hobby or interest (e.g., “Chess Players”), matchmaking services forming a personal add (e.g., “Male 30-35”), etc.


In the disclosed embodiment, the peer-to-peer conference is initiated by a call by an initiating VoIP user 104. The conference bridge 100 may be pre-established with pre-determined criteria, and the initiating VoIP user 104 merely calls the appropriate conference bridge 100. In such case, the VoIP service provider may establish network-wide criteria itself, or may allow customized conference bridges as a service to their subscribers. Alternatively, the criteria for the conference bridge may be established by the initiating VoIP user 104. The criteria may be transmitted to the soft switch to establish the relevant conference bridge 100 preferably with data contained within the call from the initiating VoIP user 104.


The peer attributes and desired geographical boundaries of the conference are maintained in a matchmaking database 500 in communication with the VoIP soft switch 102 or other gateway that hosts the conference bridge 100.


The VoIP soft switch 102 issues a Peer Request 504 with location data to any/all VoIP users 110, 112 and/or 114 fitting the criteria for the conference. In response, those VoIP users 110, 112 and/or 114 who accept entry into the conference (e.g., by activating an ‘Accept’ button on the VoIP communications device), return an Accept message 505 to the inviting VoIP soft switch 102. Those VoIP users 110, 112 and/or 114 that don't accept the Invite (either by activating a ‘Reject’ button on the VoIP communications device, or simply by not responding to the Invite message 204 within a given period of time) return a Reject message 505 to the inviting VoIP soft switch 102.


The invited VoIP users 110, 112, 114 may include a filter allowing through only acceptable Invite messages based on criteria established by or on the receiving VoIP users 110,112, 114.



FIG. 6 shows exemplary signal/call flow for a VoIP user originating an invitation to join a conference bridge sent to other VoIP users as shown in FIG. 5.


In particular, the peer-to-peer request 550 issued by the VoIP user 104 is depicted in FIG. 6, as are the respective Invite messages 504 and Accept or Reject messages 505 from each of the invited VoIP users 110, 112, 114.


The present invention allows VoIP users to find their most appropriate conferees, provider or peer match with minimal user interaction. This is particularly helpful for mobile VoIP users (e.g., while driving, walking, etc.) Moreover, there is no effective limit to the number of participants in the conference call (within network hardware limits of the conference bridge itself). There is also no risk of cold transfers of a VoIP telephone call as participants aren't handled in point-to-point connections that are transferred but rather join or exit an established conference at will. Furthermore, participants in the conference call can continue in the conference even after the initial user disconnects.


Potential markets for the present invention include VoIP service providers who may implement the inventive VoIP multi-user conferencing as a value added services for users. Other uses of the invention include consumer and business VoIP users with respect to commercial, government, educational activities, and Public Safety Access Points (PSAPs), to name a few.


VoIP location based conferencing in accordance with the principles of the present invention has particular applicability with any/all VoIP users and VoIP service providers.


While the invention has been described with reference to the exemplary embodiments thereof, those skilled in the art will be able to make various modifications to the described embodiments of the invention without departing from the true spirit and scope of the invention.

Claims
  • 1. A Voice Over Internet Protocol (VoIP) conference bridge, comprising: a conference bridge active in a location addressed using Internet Protocol;a configuration module to receive an initiating VoIP device's custom conference criteria from an initiating VoIP device, said initiating VoIP device's custom conference criteria being a plurality of text characters typed on an initiating VoIP device to initiate establishment of said conference bridge;a module to determine a plurality of potential VoIP devices to connect to said conference bridge based on said initiating VoIP device's custom conference criteria;an invite module to issue an invite to each of said plurality of potential VoIP devices to connect to said conference bridge, said invite based on said initiating VoIP device's custom conference criteria; anda plurality of Internet interfaces to said conference bridge, to accept a respective plurality of potential VoIP devices to connect to said conference bridge.
  • 2. The Voice Over Internet Protocol (VoIP) conference bridge according to claim 1, wherein: said issued invite is transmitted using Internet Protocol (IP).
  • 3. The Voice Over Internet Protocol (VoIP) conference bridge according to claim 2, wherein: said issued invite is transmitted over an Internet.
  • 4. A method of conferencing Voice Over Internet Protocol (VoIP) voice communications devices, comprising: establishing at least one conference bridge;receiving an initiating VoIP device's custom conference criteria from an initiating VoIP device, said initiating VoIP device's custom conference criteria being a plurality of text characters typed on an initiating VoIP device to initiate establishment of said conference bridge; andissuing an invite message to each of a plurality of potential VoIP devices, said invite based on said initiating VoIP device's custom conference criteria.
  • 5. The method of conferencing Voice Over Internet Protocol (VoIP) voice communications devices according to claim 4, wherein: said custom conference criteria includes location-based information relating to a location of each of said plurality of potential VoIP devices.
  • 6. The method of conferencing Voice Over Internet Protocol (VoIP) voice communications devices according to claim 4, wherein: a geographic boundary corresponding to said custom conference criteria is moveable during an active conference established on said at least one conference bridge.
  • 7. The method of conferencing Voice Over Internet Protocol (VoIP) voice communications devices according to claim 6, wherein: said geographic boundary corresponds to devices on a mass transit vehicle.
  • 8. The method of conferencing Voice Over Internet Protocol (VoIP) voice communications devices according to claim 7, wherein: said mass transit vehicle is an airplane.
  • 9. The method of conferencing Voice Over Internet Protocol (VoIP) voice communications devices according to claim 7, wherein: said mass transit vehicle is a train.
  • 10. The method of conferencing Voice Over Internet Protocol (VoIP) voice communications device according to claim 4, wherein: said conference bridge is established on a soft switch.
  • 11. The method of conferencing Voice Over Internet Protocol (VoIP) voice communications device according to claim 10, wherein: said soft switch is located in a VoIP service provider's network.
  • 12. Apparatus for conferencing Voice Over Internet Protocol (VoIP) voice communications devices, comprising: means for establishing at least one conference bridge;means for receiving an initiating VoIP device's custom conference criteria from an initiating VoIP device, said initiating VoIP device's custom conference criteria being a plurality of text characters typed on an initiating VoIP device to initiate establishment of said conference bridge; andmeans for issuing an invite message to each of a plurality of potential VoIP devices, said invite based on said initiating VoIP device's custom conference criteria.
  • 13. The apparatus for conferencing Voice Over Internet Protocol (VoIP) voice communications devices according to claim 12, wherein: said custom conference criteria includes location-based information relating to a location of each of said plurality of potential VoIP devices.
  • 14. The apparatus for conferencing Voice Over Internet Protocol (VoIP) voice communications devices according to claim 12, wherein: a geographic boundary corresponding to said custom conference criteria is moveable during an active conference established on said at least one conference bridge.
  • 15. The apparatus for conferencing Voice Over Internet Protocol (VoIP) voice communications devices according to claim 14, wherein: said geographic boundary corresponds to devices on a mass transit vehicle.
  • 16. The apparatus for conferencing Voice Over Internet Protocol (VoIP) voice communications devices according to claim 15, wherein: said mass transit vehicle is an airplane.
  • 17. The apparatus for conferencing Voice Over Internet Protocol (VoIP) voice communications devices according to claim 16, wherein: said mass transit vehicle is a train.
  • 18. The apparatus for conferencing Voice Over Internet Protocol (VoIP) voice communications device according to claim 12, wherein: said conference bridge is established on a soft switch.
  • 19. The apparatus for conferencing Voice Over Internet Protocol (VoIP) voice communications device according to claim 18, wherein; said soft switch is located in a VoIP service provider's network.
Parent Case Info

This application is related to and claims priority from a co-pending U.S. Provisional Application No. 60/733,789, entitled “Voice Over Internet Protocol (VoIP) Multi-User Conferencing”, filed on Nov. 7, 2005; the entirety of which is expressly incorporated herein by reference.

US Referenced Citations (690)
Number Name Date Kind
1103073 O'Connell Jul 1914 A
4445118 Taylor et al. Apr 1984 A
4494119 Wimbush Jan 1985 A
4625081 Lotito Nov 1986 A
4651156 Martinez Mar 1987 A
4706275 Kamil Nov 1987 A
4868570 Davis Sep 1989 A
4891638 Davis Jan 1990 A
4891650 Scheffer Jan 1990 A
4952928 Carroll Aug 1990 A
4972484 Theile Nov 1990 A
5014206 Scribner May 1991 A
5043736 Darnell Aug 1991 A
5055851 Scheffer Oct 1991 A
5068656 Sutherland Nov 1991 A
5068891 Marshall Nov 1991 A
5070329 Jasimaki Dec 1991 A
5081667 Drori Jan 1992 A
5119104 Heller Jun 1992 A
5126722 Kamis Jun 1992 A
5144283 Arens Sep 1992 A
5161180 Chavous Nov 1992 A
5166972 Smith Nov 1992 A
5177478 Wagai Jan 1993 A
5193215 Olmer Mar 1993 A
5208756 Song May 1993 A
5214789 George May 1993 A
5218367 Sheffer Jun 1993 A
5223844 Mansell Jun 1993 A
5239570 Koster Aug 1993 A
5265630 Hartmann Nov 1993 A
5266944 Carroll Nov 1993 A
5283570 DeLuca Feb 1994 A
5289527 Tiedemann Feb 1994 A
5293642 Lo Mar 1994 A
5299132 Wortham Mar 1994 A
5301354 Schwendeman Apr 1994 A
5311516 Kuznicki May 1994 A
5325302 Izidon Jun 1994 A
5327529 Fults Jul 1994 A
5334974 Simms Aug 1994 A
5335246 Yokev Aug 1994 A
5343493 Karimullah Aug 1994 A
5347568 Moody Sep 1994 A
5351235 Lahtinen Sep 1994 A
5361212 Class Nov 1994 A
5363425 Mufti Nov 1994 A
5365451 Wang Nov 1994 A
5374936 Feng Dec 1994 A
5379451 Nakagoshi Jan 1995 A
5381338 Wysocki Jan 1995 A
5387993 Heller Feb 1995 A
5388147 Grimes Feb 1995 A
5390339 Bruckery Feb 1995 A
5394158 Chia Feb 1995 A
5396227 Carroll Mar 1995 A
5398190 Wortham Mar 1995 A
5406614 Hara Apr 1995 A
5418537 Bird May 1995 A
5423076 Westergren Jun 1995 A
5432841 Rimer Jul 1995 A
5434789 Fraker Jul 1995 A
5454024 Lebowitz Sep 1995 A
5461390 Hoshen Oct 1995 A
5470233 Fruchterman Nov 1995 A
5479408 Will Dec 1995 A
5479482 Grimes Dec 1995 A
5485161 Vaughn Jan 1996 A
5485163 Singer Jan 1996 A
5488563 Chazelle Jan 1996 A
5494091 Freeman Feb 1996 A
5497149 Fast Mar 1996 A
5506886 Maine Apr 1996 A
5508931 Snider Apr 1996 A
5513243 Kage Apr 1996 A
5515287 Hakoyama May 1996 A
5517199 DiMattei May 1996 A
5519403 Bickley May 1996 A
5530655 Lokhoff Jun 1996 A
5530914 McPheters Jun 1996 A
5532690 Hertel Jul 1996 A
5535434 Siddoway Jul 1996 A
5539395 Buss Jul 1996 A
5539398 Hall Jul 1996 A
5539829 Lokhoff Jul 1996 A
5543776 L'Esperance Aug 1996 A
5546445 Dennison Aug 1996 A
5552772 Janky Sep 1996 A
5555286 Tendler Sep 1996 A
5568119 Schipper Oct 1996 A
5568153 Beliveau Oct 1996 A
5574648 Pilley Nov 1996 A
5579372 Angstrom Nov 1996 A
5588009 Will Dec 1996 A
5592535 Klotz Jan 1997 A
5594780 Wiedeman Jan 1997 A
5604486 Lauro Feb 1997 A
5606313 Allen Feb 1997 A
5606618 Lokhoff Feb 1997 A
5606850 Nakamura Mar 1997 A
5610815 Gudat Mar 1997 A
5614890 Fox Mar 1997 A
5615116 Gudat Mar 1997 A
5621793 Bednarek Apr 1997 A
5628051 Salin May 1997 A
5629693 Janky May 1997 A
5633912 Tsoi May 1997 A
5636276 Brugger Jun 1997 A
5661652 Sprague Aug 1997 A
5661755 Van De Kerkhof Aug 1997 A
5682600 Salin Oct 1997 A
5689245 Noreen Nov 1997 A
5699053 Jonsson Dec 1997 A
5704029 Wright, Jr. Dec 1997 A
5731785 Lemelson Mar 1998 A
5740534 Ayerst Apr 1998 A
5761618 Lynch Jun 1998 A
5765152 Erickson Jun 1998 A
5767795 Schaphorst Jun 1998 A
5768509 Gunluk Jun 1998 A
5771353 Eggleston Jun 1998 A
5774533 Patel Jun 1998 A
5774670 Montulli Jun 1998 A
5787357 Salin Jul 1998 A
5794142 Vanttila Aug 1998 A
5797094 Houde Aug 1998 A
5797096 Lupien Aug 1998 A
5802492 DeLorrme Sep 1998 A
5806000 Vo Sep 1998 A
5809415 Rossmann Sep 1998 A
5812086 Bertiger Sep 1998 A
5812087 Krasner Sep 1998 A
5822700 Hult Oct 1998 A
5828740 Khue Oct 1998 A
5835907 Newman Nov 1998 A
5841396 Krasner Nov 1998 A
5857201 Wright, Jr. Jan 1999 A
5864667 Barkan Jan 1999 A
5874914 Krasner Feb 1999 A
5896369 Warsta Apr 1999 A
5920821 Seazholtz Jul 1999 A
5922074 Richard Jul 1999 A
5930250 Klok Jul 1999 A
5930701 Skog Jul 1999 A
5943399 Bannister Aug 1999 A
5945944 Krasner Aug 1999 A
5946629 Sawyer Aug 1999 A
5946630 Willars Aug 1999 A
5950130 Coursey Sep 1999 A
5950137 Kim Sep 1999 A
5953398 Hill Sep 1999 A
5960362 Grob Sep 1999 A
5974054 Couts Oct 1999 A
5978685 Laiho Nov 1999 A
5983099 Yao Nov 1999 A
5987323 Huotari Nov 1999 A
5998111 Abe Dec 1999 A
5999124 Sheynblat Dec 1999 A
6014602 Kithil Jan 2000 A
6032051 Hall Feb 2000 A
6035025 Hanson Mar 2000 A
6049710 Nilsson Apr 2000 A
6052081 Krasner Apr 2000 A
6058300 Hanson May 2000 A
6058338 Agashe May 2000 A
6061018 Sheynblat May 2000 A
6061346 Nordman May 2000 A
6064336 Krasner May 2000 A
6064875 Morgan May 2000 A
6067045 Castelloe May 2000 A
6070067 Nguyen May 2000 A
6075982 Donovan Jun 2000 A
6081229 Soliman Jun 2000 A
6081508 West Jun 2000 A
6085320 Kaliski, Jr. Jul 2000 A
6101378 Barabash Aug 2000 A
6104931 Havinis Aug 2000 A
6108533 Brohoff Aug 2000 A
6122503 Daly Sep 2000 A
6122520 Want Sep 2000 A
6124810 Segal Sep 2000 A
6131067 Girerd Oct 2000 A
6133874 Krasner Oct 2000 A
6134316 Kallioniemi Oct 2000 A
6134483 Vayanos Oct 2000 A
6138003 Kingdon Oct 2000 A
6148197 Bridges Nov 2000 A
6148198 Anderson Nov 2000 A
6149353 Nilsson Nov 2000 A
6150980 Krasner Nov 2000 A
6154172 Piccionelli Nov 2000 A
6169891 Gorham Jan 2001 B1
6169901 Boucher Jan 2001 B1
6169902 Kawamoto Jan 2001 B1
6173181 Losh Jan 2001 B1
6178505 Schneider Jan 2001 B1
6178506 Quick, Jr. Jan 2001 B1
6181935 Gossman Jan 2001 B1
6181939 Ahvenainen Jan 2001 B1
6185427 Krasner Feb 2001 B1
6188354 Soliman Feb 2001 B1
6188752 Lesley Feb 2001 B1
6188909 Alanara Feb 2001 B1
6189098 Kaliski, Jr. Feb 2001 B1
6195557 Havinis Feb 2001 B1
6198431 Gibson Mar 2001 B1
6199045 Giniger Mar 2001 B1
6199113 Alegre Mar 2001 B1
6205330 Winbladh Mar 2001 B1
6208290 Krasner Mar 2001 B1
6208854 Roberts Mar 2001 B1
6215441 Moeglein Apr 2001 B1
6219557 Havinis Apr 2001 B1
6223046 Hamill-Keays Apr 2001 B1
6226529 Bruno May 2001 B1
6239742 Krasner May 2001 B1
6247135 Feague Jun 2001 B1
6249680 Wax Jun 2001 B1
6249744 Morita Jun 2001 B1
6249873 Richard Jun 2001 B1
6253074 Carlsson Jun 2001 B1
6253203 O'Flaherty Jun 2001 B1
6260147 Quick, Jr. Jul 2001 B1
6266614 Alumbaugh Jul 2001 B1
6275692 Skog Aug 2001 B1
6275849 Ludwig Aug 2001 B1
6278701 Ayyagari Aug 2001 B1
6289373 Dezonno Sep 2001 B1
6297768 Allen, Jr. Oct 2001 B1
6307504 Sheynblat Oct 2001 B1
6308269 Proidl Oct 2001 B2
6313786 Sheynblat Nov 2001 B1
6317594 Gossman Nov 2001 B1
6321091 Holland Nov 2001 B1
6321092 Fitch Nov 2001 B1
6321257 Kotola Nov 2001 B1
6324524 Lent Nov 2001 B1
6327473 Soliman Dec 2001 B1
6327479 Mikkola Dec 2001 B1
6330454 Verdonk Dec 2001 B1
6333919 Gaffney Dec 2001 B2
6360093 Ross Mar 2002 B1
6360102 Havinis Mar 2002 B1
6363254 Jones Mar 2002 B1
6367019 Ansell Apr 2002 B1
6370389 Isomursu Apr 2002 B1
6377209 Krasner Apr 2002 B1
6397208 Lee May 2002 B1
6400314 Krasner Jun 2002 B1
6400958 Isomursu Jun 2002 B1
6411254 Moeglein Jun 2002 B1
6421002 Krasner Jul 2002 B2
6427001 Contractor Jul 2002 B1
6433734 Krasner Aug 2002 B1
6434381 Moore Aug 2002 B1
6442391 Johansson Aug 2002 B1
6449473 Raivisto Sep 2002 B1
6449476 Hutchison, IV Sep 2002 B1
6456852 Bar Sep 2002 B2
6463272 Wallace Oct 2002 B1
6477150 Maggenti Nov 2002 B1
6504491 Christians Jan 2003 B1
6505049 Dorenbosch Jan 2003 B1
6510387 Fuchs Jan 2003 B2
6512922 Burg Jan 2003 B1
6512930 Sandegren Jan 2003 B2
6515623 Johnson Feb 2003 B2
6519466 Pande Feb 2003 B2
6522682 Kohli Feb 2003 B1
6526026 Menon Feb 2003 B1
6529500 Pandharipande Mar 2003 B1
6529829 Turetzky Mar 2003 B2
6531982 White Mar 2003 B1
6538757 Sansone Mar 2003 B1
6539200 Schiff Mar 2003 B1
6539232 Hendrey et al. Mar 2003 B2
6539304 Chansarkar Mar 2003 B1
6542464 Takeda Apr 2003 B1
6542734 Abrol Apr 2003 B1
6542743 Soliman Apr 2003 B1
6549776 Joong Apr 2003 B1
6549844 Egberts Apr 2003 B1
6553236 Dunko Apr 2003 B1
6556832 Soliman Apr 2003 B1
6560461 Fomukong May 2003 B1
6560534 Abraham May 2003 B2
6564261 Gudjonsson May 2003 B1
6570530 Gaal May 2003 B2
6571095 Koodli May 2003 B1
6574558 Kohli Jun 2003 B2
6580390 Hay Jun 2003 B1
6584552 Kuno et al. Jun 2003 B1
6587691 Granstam Jul 2003 B1
6594500 Bender Jul 2003 B2
6597311 Sheynblat Jul 2003 B2
6600927 Hamilton Jul 2003 B2
6603973 Foladare Aug 2003 B1
6606495 Korpi Aug 2003 B1
6606554 Edge Aug 2003 B2
6609004 Morse Aug 2003 B1
6611757 Brodie Aug 2003 B2
6618593 Drutman Sep 2003 B1
6618670 Chansarkar Sep 2003 B1
6621452 Knockeart Sep 2003 B2
6621810 Leung Sep 2003 B1
6628233 Knockeart Sep 2003 B2
6633255 Krasner Oct 2003 B2
6640184 Rabe Oct 2003 B1
6650288 Pitt Nov 2003 B1
6661372 Girerd Dec 2003 B1
6665539 Sih Dec 2003 B2
6665541 Krasner Dec 2003 B1
6671620 Garin Dec 2003 B1
6677894 Sheynblat Jan 2004 B2
6680694 Knockeart Jan 2004 B1
6680695 Turetzky Jan 2004 B2
6687504 Raith Feb 2004 B1
6691019 Seeley Feb 2004 B2
6694258 Johnson Feb 2004 B2
6694351 Shaffer Feb 2004 B1
6697629 Grilli Feb 2004 B1
6698195 Hellinger Mar 2004 B1
6701144 Kirbas Mar 2004 B2
6703971 Pande Mar 2004 B2
6703972 Van Diggelen Mar 2004 B2
6704651 Van Diggelen Mar 2004 B2
6707421 Drury Mar 2004 B1
6714793 Carey Mar 2004 B1
6718174 Vayanos Apr 2004 B2
6720915 Sheynblat Apr 2004 B2
6721578 Minear Apr 2004 B2
6721871 Piispanen Apr 2004 B2
6724342 Bloebaum Apr 2004 B2
6725159 Krasner Apr 2004 B2
6728701 Stoica Apr 2004 B1
6731940 Nagendran May 2004 B1
6734821 Van Diggelen May 2004 B2
6738013 Orler May 2004 B2
6738800 Aquilon May 2004 B1
6741842 Goldberg May 2004 B2
6744856 Karnik Jun 2004 B2
6744858 Ryan et al. Jun 2004 B1
6745038 Callaway, Jr. Jun 2004 B2
6747596 Orler Jun 2004 B2
6748195 Phillips Jun 2004 B1
6751464 Burg Jun 2004 B1
6756938 Zhao Jun 2004 B2
6757544 Rangarajan Jun 2004 B2
6757545 Nowak Jun 2004 B2
6771639 Holden Aug 2004 B1
6771742 McCalmont et al. Aug 2004 B2
6771971 Smith Aug 2004 B2
6772340 Peinado Aug 2004 B1
6775255 Roy Aug 2004 B1
6775267 Kung Aug 2004 B1
6775534 Lindgren Aug 2004 B2
6775655 Peinado Aug 2004 B1
6775802 Gaal Aug 2004 B2
6778136 Gronemeyer Aug 2004 B2
6778885 Agashe Aug 2004 B2
6781963 Crockett Aug 2004 B2
6788249 Farmer Sep 2004 B1
6795444 Vo Sep 2004 B1
6795699 McCraw Sep 2004 B1
6799049 Zellner Sep 2004 B1
6799050 Krasner Sep 2004 B1
6801159 Swope Oct 2004 B2
6804524 Vandermeijden Oct 2004 B1
6807534 Erickson Oct 2004 B1
6810323 Bullock Oct 2004 B1
6813264 Vassilovski Nov 2004 B2
6813560 Van Diggelen Nov 2004 B2
6816111 Krasner Nov 2004 B2
6816710 Krasner Nov 2004 B2
6816719 Heinonen et al. Nov 2004 B1
6816734 Wong Nov 2004 B2
6820069 Kogan Nov 2004 B1
6829475 Lee Dec 2004 B1
6832373 O'Neill Dec 2004 B2
6836476 Dunn Dec 2004 B1
6839020 Geier Jan 2005 B2
6839021 Sheynblat Jan 2005 B2
6839417 Weisman Jan 2005 B2
6842715 Gaal Jan 2005 B1
6847618 Laursen Jan 2005 B2
6847822 Dennison Jan 2005 B1
6853916 Fuchs Feb 2005 B2
6856282 Mauro Feb 2005 B2
6861980 Rowitch Mar 2005 B1
6865171 Nilsson Mar 2005 B1
6865395 Riley Mar 2005 B2
6867733 Sandhu Mar 2005 B2
6867734 Voor Mar 2005 B2
6873854 Crockett Mar 2005 B2
6876734 Summers Apr 2005 B1
6882850 McConnell et al. Apr 2005 B2
6885874 Grube Apr 2005 B2
6885940 Brodie Apr 2005 B2
6888497 King May 2005 B2
6888932 Snip May 2005 B2
6895238 Newell May 2005 B2
6895249 Gaal May 2005 B2
6900758 Mann May 2005 B1
6903684 Simic Jun 2005 B1
6904029 Fors Jun 2005 B2
6907224 Younis Jun 2005 B2
6907238 Leung Jun 2005 B2
6912230 Salkini Jun 2005 B1
6912395 Benes Jun 2005 B2
6912545 Lundy Jun 2005 B1
6915208 Garin Jul 2005 B2
6917331 Gronemeyer Jul 2005 B2
6930634 Peng Aug 2005 B2
6937187 Van Diggelen Aug 2005 B2
6937872 Krasner Aug 2005 B2
6940826 Simard Sep 2005 B1
6940950 Dickinson Sep 2005 B2
6941144 Stein Sep 2005 B2
6944540 King Sep 2005 B2
6947772 Minear Sep 2005 B2
6950058 Davis Sep 2005 B1
6957068 Hutchison Oct 2005 B2
6957073 Bye Oct 2005 B2
6961562 Ross Nov 2005 B2
6963557 Knox Nov 2005 B2
6965754 King Nov 2005 B2
6965767 Maggenti Nov 2005 B2
6968044 Beason Nov 2005 B2
6970917 Kushwaha Nov 2005 B1
6973320 Brown Dec 2005 B2
6975266 Abraham Dec 2005 B2
6978453 Rao Dec 2005 B2
6980816 Rohler Dec 2005 B2
6985747 Chithambaram Jan 2006 B2
6990081 Schaefer et al. Jan 2006 B2
6993355 Pershan Jan 2006 B1
6996720 DeMello Feb 2006 B1
6999782 Shaughnessy Feb 2006 B2
7024321 Deninger Apr 2006 B1
7024393 Peinado Apr 2006 B1
7047411 DeMello May 2006 B1
7065351 Carter Jun 2006 B2
7065507 Mohammed Jun 2006 B2
7072667 Olrik Jul 2006 B2
7079857 Maggenti Jul 2006 B2
7103018 Hansen Sep 2006 B1
7103574 Peinado Sep 2006 B1
7106717 Rousseau et al. Sep 2006 B2
7136466 Gao Nov 2006 B1
7136838 Peinado Nov 2006 B1
7151946 Maggenti Dec 2006 B2
7174153 Ehlers Feb 2007 B2
7177397 McCalmont Feb 2007 B2
7177398 Meer Feb 2007 B2
7177399 Dawson Feb 2007 B2
7194249 Phillips Mar 2007 B2
7200380 Havlark Apr 2007 B2
7209758 Moll Apr 2007 B1
7209969 Lahti Apr 2007 B2
7218940 Niemenna May 2007 B2
7221959 Lindqvist May 2007 B2
7245900 Lamb Jul 2007 B1
7246187 Ezra Jul 2007 B1
7260186 Zhu Aug 2007 B2
7260384 Bales et al. Aug 2007 B2
7269428 Wallenius Sep 2007 B1
7302582 Snapp Nov 2007 B2
7321773 Hines Jan 2008 B2
7330899 Wong Feb 2008 B2
7333480 Clarke Feb 2008 B1
7369508 Parantainen May 2008 B2
7369530 Keagy May 2008 B2
7382773 Schoeneberger Jun 2008 B2
7392240 Scriffignano Jun 2008 B2
7394896 Norton Jul 2008 B2
7403939 Virdy Jul 2008 B1
7412049 Koch Aug 2008 B1
7424293 Zhu Sep 2008 B2
7426380 Hines Sep 2008 B2
7428571 Ichimura Sep 2008 B2
7436785 McMullen et al. Oct 2008 B1
7440442 Grabelsky Oct 2008 B2
7450951 Vimpari Nov 2008 B2
7453990 Welenson Nov 2008 B2
7495608 Chen Feb 2009 B1
7519353 Stevens Apr 2009 B2
7573982 Breen Aug 2009 B2
7602886 Beech Oct 2009 B1
7617287 Vella Nov 2009 B2
7623447 Faccin Nov 2009 B1
7626951 Croy et al. Dec 2009 B2
7711094 Olshansky May 2010 B1
7747258 Farmer Jun 2010 B2
7764961 Zhu Jul 2010 B2
7783297 Ishii Aug 2010 B2
7787611 Kotelly Aug 2010 B1
7881233 Bieselin Feb 2011 B2
7937067 Maier May 2011 B2
8005683 Tessesl Aug 2011 B2
8027658 Suryanarayana Sep 2011 B2
RE42927 Want Nov 2011 E
8060389 Johnson Nov 2011 B2
8090341 Mitchell Jan 2012 B2
20010011247 O'Flaherty Aug 2001 A1
20010040886 Jimenez Nov 2001 A1
20020037735 Maggenti Mar 2002 A1
20020052214 Maggenti May 2002 A1
20020061760 Maggenti May 2002 A1
20020069529 Wieres Jun 2002 A1
20020077083 Zellner Jun 2002 A1
20020077084 Zellner Jun 2002 A1
20020077118 Zellner Jun 2002 A1
20020077897 Zellner Jun 2002 A1
20020085538 Leung Jul 2002 A1
20020086676 Hendry Jul 2002 A1
20020098832 Fleischer Jul 2002 A1
20020102996 Jenkins Aug 2002 A1
20020102999 Maggenti Aug 2002 A1
20020111172 DeWolf Aug 2002 A1
20020112047 Kushwaha Aug 2002 A1
20020118650 Jagadeesan Aug 2002 A1
20020123327 Vataja Sep 2002 A1
20020126656 Park Sep 2002 A1
20020138650 Yamamoto Sep 2002 A1
20020158777 Flick Oct 2002 A1
20020160766 Portman Oct 2002 A1
20020173317 Nykanen Nov 2002 A1
20020188680 McCormack et al. Dec 2002 A1
20020191595 Mar Dec 2002 A1
20030009277 Fan Jan 2003 A1
20030009602 Jacobs Jan 2003 A1
20030012148 Peters Jan 2003 A1
20030013449 Hose Jan 2003 A1
20030016804 Sheha Jan 2003 A1
20030026245 Ejzak Feb 2003 A1
20030037163 Kitada Feb 2003 A1
20030040272 Lelievre Feb 2003 A1
20030044654 Holt Mar 2003 A1
20030065788 Salomaki Apr 2003 A1
20030069002 Hunter Apr 2003 A1
20030072318 Lam Apr 2003 A1
20030078064 Chan Apr 2003 A1
20030081557 Mettala May 2003 A1
20030086539 McCalmont May 2003 A1
20030101329 Lahti May 2003 A1
20030101341 Kettler May 2003 A1
20030103484 Oommen Jun 2003 A1
20030108176 Kung Jun 2003 A1
20030109245 McCalmont Jun 2003 A1
20030114157 Spitz Jun 2003 A1
20030119521 Tipnis Jun 2003 A1
20030119528 Pew Jun 2003 A1
20030137961 Tsirtsis Jul 2003 A1
20030153340 Crockett Aug 2003 A1
20030153341 Crockett Aug 2003 A1
20030153342 Crockett Aug 2003 A1
20030153343 Crockett Aug 2003 A1
20030161298 Bergman Aug 2003 A1
20030181160 Hirsch Sep 2003 A1
20030186709 Rhodes Oct 2003 A1
20030196105 Fineberg Oct 2003 A1
20030204640 Sahineja Oct 2003 A1
20030223381 Schroderus Dec 2003 A1
20040002326 Maher Jan 2004 A1
20040032485 Stephens, Jr. Feb 2004 A1
20040043775 Kennedy Mar 2004 A1
20040044623 Wake Mar 2004 A1
20040047461 Weisman et al. Mar 2004 A1
20040068724 Gardner Apr 2004 A1
20040076277 Kuusinen Apr 2004 A1
20040098497 Banet May 2004 A1
20040132465 Mattila Jul 2004 A1
20040150518 Phillips Aug 2004 A1
20040152493 Phillips Aug 2004 A1
20040181689 Kiyoto Sep 2004 A1
20040184584 McCalmont Sep 2004 A1
20040185875 Diacakis Sep 2004 A1
20040190497 Know Sep 2004 A1
20040192271 Eisner Sep 2004 A1
20040198332 Lundsgaard Oct 2004 A1
20040198386 Dupray Oct 2004 A1
20040203568 Kirtland Oct 2004 A1
20040205151 Sprigg Oct 2004 A1
20040229632 Flynn Nov 2004 A1
20040242238 Wang Dec 2004 A1
20040247090 Nurmela Dec 2004 A1
20040258021 Kashimoto Dec 2004 A1
20040267445 De Luca Dec 2004 A1
20050003797 Baldwin Jan 2005 A1
20050028034 Gantman Feb 2005 A1
20050030977 Casey Feb 2005 A1
20050039178 Marolia Feb 2005 A1
20050041578 Huotari Feb 2005 A1
20050043037 Loppe Feb 2005 A1
20050053209 D'Evelyn Mar 2005 A1
20050063519 James Mar 2005 A1
20050074107 Renner Apr 2005 A1
20050078612 Lang Apr 2005 A1
20050083911 Grabelsky Apr 2005 A1
20050086467 Asokan Apr 2005 A1
20050090236 Schwinke Apr 2005 A1
20050101335 Kelly May 2005 A1
20050107673 Ball May 2005 A1
20050112030 Gaus May 2005 A1
20050119012 Merheb Jun 2005 A1
20050125376 Curtis Jun 2005 A1
20050134504 Harwood Jun 2005 A1
20050135569 Dickinson Jun 2005 A1
20050136885 Kaltsukis Jun 2005 A1
20050169248 Truesdale Aug 2005 A1
20050174991 Keagy Aug 2005 A1
20050192822 Hartenstein Sep 2005 A1
20050201529 Nelson Sep 2005 A1
20050209995 Aksu Sep 2005 A1
20050213716 Zhu Sep 2005 A1
20050222908 Altberg Oct 2005 A1
20050232252 Hoover Oct 2005 A1
20050238156 Turner Oct 2005 A1
20050255857 Kim Nov 2005 A1
20050259675 Tuohino Nov 2005 A1
20050265318 Khartabil Dec 2005 A1
20050271029 Iffland Dec 2005 A1
20050282518 D'Evelyn Dec 2005 A1
20050287979 Rollender Dec 2005 A1
20050289097 Trossen Dec 2005 A1
20060008065 Longman et al. Jan 2006 A1
20060010200 Mousseau Jan 2006 A1
20060023747 Koren et al. Feb 2006 A1
20060026288 Acharya Feb 2006 A1
20060053225 Poikselka Mar 2006 A1
20060068753 Karpen Mar 2006 A1
20060072729 Lee et al. Apr 2006 A1
20060077911 Shaffer Apr 2006 A1
20060078094 Breen Apr 2006 A1
20060088152 Green Apr 2006 A1
20060104306 Adamczyk May 2006 A1
20060120517 Moon Jun 2006 A1
20060128395 Muhonen Jun 2006 A1
20060135177 Winterbottom Jun 2006 A1
20060188083 Breen Aug 2006 A1
20060193447 Schwartz Aug 2006 A1
20060212558 Sahinoja Sep 2006 A1
20060212562 Kushwaha Sep 2006 A1
20060233338 Punaganti Venkata Oct 2006 A1
20060234639 Kushwaha Oct 2006 A1
20060234698 Fok Oct 2006 A1
20060239205 Warren Oct 2006 A1
20060250987 White Nov 2006 A1
20060258380 Liebowitz Nov 2006 A1
20060259365 Agarwal Nov 2006 A1
20060281437 Cook Dec 2006 A1
20060293024 Benco Dec 2006 A1
20060293066 Edge Dec 2006 A1
20070003024 Olivivier Jan 2007 A1
20070014282 Mitchell Jan 2007 A1
20070019614 Hoffman Jan 2007 A1
20070022011 Altberg et al. Jan 2007 A1
20070026854 Nath Feb 2007 A1
20070026871 Wager Feb 2007 A1
20070027997 Polk Feb 2007 A1
20070030539 Nath Feb 2007 A1
20070036139 Patel Feb 2007 A1
20070041513 Gende Feb 2007 A1
20070049288 Lamprecht Mar 2007 A1
20070060097 Edge Mar 2007 A1
20070081635 Croak Apr 2007 A1
20070115941 Patel May 2007 A1
20070121601 Kikinis May 2007 A1
20070149213 Lamba Jun 2007 A1
20070160036 Smith Jul 2007 A1
20070162228 Mitchell Jul 2007 A1
20070201623 Hines Aug 2007 A1
20070206568 Silver Sep 2007 A1
20070206613 Silver Sep 2007 A1
20070242660 Xu Oct 2007 A1
20070263610 Mitchell Nov 2007 A1
20070270164 Maier Nov 2007 A1
20080032703 Krumm Feb 2008 A1
20080037715 Prozeniuk Feb 2008 A1
20080063153 Krivorot Mar 2008 A1
20080065775 Polk Mar 2008 A1
20080117859 Shahidi May 2008 A1
20080186164 Emigh et al. Aug 2008 A1
20080214202 Toomey Sep 2008 A1
20080249967 Flinn Oct 2008 A1
20100119049 Clark May 2010 A1
20110113060 Martini May 2011 A1
20110273568 Lagassey Nov 2011 A1
20120001750 Monroe Jan 2012 A1
20120189107 Dickinson Jul 2012 A1
Foreign Referenced Citations (8)
Number Date Country
WO 9921380 Apr 1999 WO
PCTUS9928848 Jun 1999 WO
WO0145342 Jun 2001 WO
PCTUS0146666 Nov 2001 WO
WO2004025941 Mar 2004 WO
WO2005051033 Jun 2005 WO
WO2007011861 Jan 2007 WO
WO 2007027166 Mar 2007 WO
Non-Patent Literature Citations (18)
Entry
Le-Pond Chin, Jyh-Wen, Ting-Way Liu, The Study of the Interconnect of GSM Mobile Communication system Over IP based Network, May 6, 2001, IEEE, Vehicular Technology Conference, vol. 3, pp. 2219-2223.
Yilin Ahao, Efficient and reliable date transmission for cellular and GPS based mayday systems, Nov. 1997, IEEE, IEEE Conference on Intelligent Transportation System, 1997. ITSC 97, 555-559.
Supplementary European Search Report in European Patent Appl. No. 08713387.2-2414/2116029 dated Apr. 18, 2012.
International Search Report received in PCT/US2011/001990 dated Apr. 24, 2012.
International Preliminary Report on Patentability dated Apr. 4, 2011 in PCT/US2006/42469.
Location Based Services V2 Roaming Support (non proprietary), 80-V8470-2NP A, dated Jan. 27, 2005, pp. 1-56.
Intrado MSAG Prep for E911 Program and Documentation. Intrado Inc., Longmont, CO. Sep. 14, 2006. Accessed: Nov. 8, 2011. Idaho PSAP Standards Committee. Idaho Emergency Communications Commission,http://idahodispatch.com/index.php?option=com—documan&task=doc—download&gid=3&Itemid=7.
Extended European Search Report from EPO in European Appl. No. 06827172.5 dated Dec. 29, 2009.
Qualcomm CDMA Technologies, LBS Control Plane/User Plane Overview—80-VD378-1NP B, 2006, pp. 1-36.
Bhalla et al, TELUS, Technology Strategy—LBS Roaming Summit, Sep. 19, 2006.
Alfredo Aguirre, Ilusacell, First and Only Carrier in Mexico with a 3G CDMA Network, 2007.
Mike McMullen, Sprint, LBS Roaming Summit, Sep. 19, 2006.
Andrew Yeow, BCE, LBS Roaming Summit, Sep. 19, 2006, pp. 1-8.
Nars Haran, U.S. Cellular, Packet Data—Roaming and LBS Overview, Nov. 2, 2007, pp. 1-15.
Qualcomm CDMA Technologies, LBS Control Plane Roaming—80-VD377-1NP A, 2006, pp. 1-10.
QualComm CDMA Technologies, MS Resident User Plane LBS Roaming—80-VC718-1 E, 2006, pp. 1-37.
3rd Generation Partnership Project 2, Position Determination Service Standard for Dual Mode Spread Spectrum Systems, Feb. 16, 2001, pp. i-X, 1-1-1-5, 2-1-2-2, 3-1-3-51, 4-1-4-66, A-1-A2, B-1-B-2, C-1-C-2, D-1-D-2.
Intrado Inc., Qwest Detailed SR/ALI to MPC/GMLC Interface Specification for TCP/IP Implementation of TIA/EIA/J-STD-036 E2 with Phase I Location Description Addition, Intrado Informed Response; Apr. 2004; issue 1.11; pp. 1-57.
Related Publications (1)
Number Date Country
20070091831 A1 Apr 2007 US
Provisional Applications (1)
Number Date Country
60733789 Nov 2005 US