Voice over internet protocol (VoIP) telephone apparatus and communication system for carrying VoIP traffic

Abstract
A method of establishing Voice over Internet Protocol (VoIP) communications is provided. The method includes establishing a virtual circuit to carry VoIP traffic via a first Point to Point Protocol over Ethernet (PPPoE) session and to carry other data traffic via a second PPPoE session. The first PPPoE session and the second PPPoE session are supported by a digital subscriber line access multiplexer (DSLAM).
Description
FIELD OF THE DISCLOSURE

The present disclosure relates generally to a voice over internet protocol (VoIP) telephone apparatus and to communication systems for carrying VoIP traffic.


BACKGROUND

Point-to-Point Protocol over Ethernet (PPPoE), has been widely used as the Internet protocol for ADSL broadband deployment. As providers deploy ADSL service, they often prefer supporting PPP-style authentication and authorization over a large installed base of legacy bridging customer premises (CPE). PPPoE provides the ability to connect a network of hosts over a simple bridging access device to a remote access concentrator or aggregation concentrator. With this model, each host uses its own PPPoE stack, presenting the user with a familiar user interface. Access control, billing, and type of service can be handled on a per user basis, rather than a per site basis.


Internet Protocol (IP) phones have been used to provide Voice over Internet Protocol (VoIP) service to the business enterprise environment. Typically, a VoIP phone set connects to the corporate data network through Ethernet connection and to a voice enabled router in the corporation. Traditionally, the IP parameters for the VoIP phone are statically assigned by the network administrator, or dynamically assigned through DHCP within the corporate network. With increasing attraction of VoIP application in the telecommunication community, the deployment of VoIP phones at a consumer broadband subscriber's location to provide additional phone service has started getting much attention with broadband service providers.


Maintaining Toll Quality of a VoIP service requires detailed planning of the VoIP network. Network delay and network jitter affect voice quality greatly. Several existing consumer VoIP deployments, such as Net2Phone Voice Service and Vonage VoIP Service, utilize the existing broadband access as the transport channel for the VoIP service. The quality of these voice services can be degraded due to network congestion. In the existing deployment model, the device which enables VoIP service in the customer premises relies on other devices on the LAN to initiate a PPPoE session, usually a home gateway or a PC. The particular LAN configuration can also have great impact on the voice quality.


Accordingly, there is a need for an improved VoIP telephone and communication system for communicating VoIP traffic.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is general diagram that illustrates a first embodiment of a system for carrying voice over internet protocol (VoIP) traffic.



FIG. 2 is a general diagram that illustrates a second embodiment of a system for carrying voice over internet protocol (VoIP) traffic.



FIG. 3 is a general diagram that illustrates a third embodiment of a system for carrying voice over internet protocol (VoIP) traffic.



FIG. 4 is a block diagram that illustrates an embodiment of an internet protocol (IP) phone for use with the systems described with respect to FIGS. 1-3.



FIG. 5 is a flow chart that illustrates a method of communicating VoIP traffic between an IP phone and a managed VoIP service network.





DETAILED DESCRIPTION

The present disclosure is generally directed to a voice over internet protocol (VoIP) telephone apparatus and a communication system for carrying VoIP traffic. In a particular embodiment, a digital subscriber line access multiplexer (DSLAM) is adapted to route Voice over Internet Protocol (VoIP) traffic to an access router of a VoIP service provider network via a first virtual circuit and route data other than the VoIP traffic to a broadband remote access server (BRAS) via a second virtual circuit.


In another embodiment, an Internet Protocol (IP) telephone device includes a telephone keypad and a Point-to-Point Protocol over Ethernet (PPPoE) client module. The PPPoE client module is adapted to initiate a PPPoE session to communicate a VoIP telephone call, where the PPPoE session remains active until an input is received via the telephone keypad to disconnect the PPPoE session.


In another embodiment, a method of establishing Voice over Internet Protocol (VoIP) communications includes establishing a virtual circuit to carry VoIP traffic via a first Point-to-Point Protocol over Ethernet (PPPoE) session and to carry other data traffic via a second PPPoE session. The first PPPoE session and the second PPPoE session are supported by a digital subscriber line access multiplexer (DSLAM).


In another embodiment, a method of establishing Voice over Internet Protocol (VoIP) communications includes receiving a selection of a protocol at an Internet Protocol (IP) telephone device. The protocol is one of a plurality of protocols adapted to establish a VoIP telephone call session via the IP telephone device.


In another embodiment, a method of establishing Voice over Internet Protocol (VoIP) communications includes establishing a virtual circuit at an access router of a service provider network with an Internet Protocol (IP) telephone device. The virtual circuit is dedicated to carrying VoIP traffic between the IP telephone device and the service provider network and the virtual circuit does not include a network element that is coupled directly to a public IP network.


Referring to FIG. 1 a communication system for carrying data traffic including VoIP traffic is shown. The system includes a representative broadband data subscriber 102, a digital subscriber line access multiplexer (DSLAM) 104, a broadband remote access server (BRAS) 112 coupled to the public internet 120, and a VoIP service provider network 114 coupled to the public switched telephone network 118.


The broadband subscriber 102 includes customer premises equipment, such as a first illustrative computer 130, a second illustrative computer 132, an Ethernet switch 134, and an internet protocol (IP) telephone device 140. The IP telephone device 140 is coupled via a data connection 142 to the Ethernet switch 134. The Ethernet switch 134 and the IP phone 140 are each separately coupled to a modem 136, such as an asynchronous digital subscriber line (ADSL) modem that is supported by the DSLAM 104.


The managed VoIP service provider network 114 as shown includes an access router 150, a media gateway 152, a Session Initiation Protocol (SIP) proxy server 154, a software switch 156, and a physical class 5 telephone switch 158. The class 5 telephone switch 158 is tied to the PSI 118. In this particular illustrated embodiment, a virtual circuit 106 is connected to the BRAS 112. The virtual circuit 106 provides communications support for a first point to point protocol over Ethernet (PPPoE) session 108 and a second PPPoE session 110. The first PPPoE session is dedicated for carrying VoIP traffic, such as VoIP traffic that originates from or is destined for the IP telephone device 140. The second PPPoE session carries other types of data that is communicated with the Ethernet switch 134. Since both VoIP data and other types of data are carried over the same virtual circuit 106, the BRAS is used to direct the VoIP traffic to the access router 150 over the link 116.


The link 116 is configured using policy based routing to move the VoIP traffic to the access router 150 while other data is routed to the public IP network 120. Thus, the link 116 is a dedicated VoIP connection and can be configured with a higher degree of quality of service using the VoIP service provider network 114 to establish improved transmission for carrying voice data and voice calls. Also, while equipment for only a single representative broadband subscriber is shown in FIG. 1 it should be understood that the system shown can support VoIP traffic from many different users of IP telephone devices and that the VoIP service network can handle many different calls concurrently.


Referring to FIG. 2 another embodiment of a communication system for carrying data traffic including VoIP traffic is shown. The system includes a representative broadband data subscriber 202, a digital subscriber line access multiplexer (DSLAM) 204, a broadband remote access server (BRAS) 212 coupled to the public internet 220, and a VoIP service provider network 214 coupled to the public switched telephone network 218.


The broadband subscriber 202 includes customer premises equipment, such as a first illustrative computer 230, a second illustrative computer 232, an Ethernet switch 234, and an internet protocol (IP) telephone device 240. The IP telephone device 240 is coupled via a data connection 242 to the Ethernet switch 234. The Ethernet switch 234 and the IP phone 240 are each separately coupled to a modem 236, such as an asynchronous digital subscriber line (ADSL) modem that is supported by the DSLAM 204.


The managed VoIP service provider network 214 as shown includes an access router 250, a media gateway 252, a Session Initiation Protocol (SIP) proxy server 254, a software switch 256, and a physical class 5 telephone switch 258. The class 5 telephone switch 258 is tied to the PSTN 218. In this particular illustrated embodiment a virtual circuit 206 is connected to the BRAS 212. The virtual circuit 206 provides communications support for a first point to point protocol over Ethernet (PPPoE) session 208 and a second PPPoE session 210. The first PPPoE session is dedicated for carrying VoIP traffic, such as VoIP traffic that originates from or is destined for the IP telephone device 240. The second PPPoE session carries other types of data that is communicated with the Ethernet switch 234. In this particular embodiment, a dedicated layer two virtual tunnel is established between the BRAS 212 and the access router 250. The BRAS directs VoIP traffic to the access router 250 over the dedicated layer two virtual circuit tunnel 216.


Referring to FIG. 3, another embodiment of a communication system for carrying data traffic including VoIP traffic is shown. The system includes a representative broadband data subscriber 302, a digital subscriber line access multiplexer (DSLAM) 304, a broadband remote access server (BRAS) 312 coupled to the public internet 320, and a VoIP service provider network 314 coupled to the public switched telephone network 318.


The broadband subscriber 302 includes customer premises equipment, such as a first illustrative computer 330, a second illustrative computer 332, an Ethernet switch 334, and an internet protocol (IP) telephone device 340. The IP telephone device 340 is coupled via a data connection 342 to the Ethernet switch 334. The Ethernet switch 334 and the IP phone 340 are each separately coupled to a modem 336, such as an asynchronous digital subscriber line (ADSL) modem that is supported by the DSLAM 104.


The managed VoIP service provider network 314 as shown includes an access router 350, a media gateway 352, a Session Initiation Protocol (SIP) proxy server 354, a software switch 356, and a physical class 5 telephone switch 358. The class 5 telephone switch 358 is tied to the PSTN 318. In this particular illustrative embodiment, a first virtual circuit 306 is connected to the BRAS 312 and a second virtual circuit 308 is connected to the access router 350. The first virtual circuit 306 provides communications support for a first point to point protocol over Ethernet (PPPoE) session 310. The second virtual circuit 308 is dedicated for carrying VoIP traffic, such as VoIP traffic that originates from or is destined for the IP telephone device 340. The first virtual circuit 306 carries other types of data that is communicated with the Ethernet switch 334 and the public IP network 320.


Referring to FIG. 4, a particular embodiment of an internet protocol (IP) telephone device is illustrated. The IP telephone includes a base portion 400 and a telephone handset portion 405. The telephone handset 405 is coupled to a handset interface 404. The base portion 400 includes a point-to-point protocol over Ethernet (PPPoE) client module 401, a data processor 403, an encoder and decoder unit 402, and a digital IP telephone interface 411. The base component 400 of the IP telephone also includes an optional display 410, control processor 409, and telephone keypad 408. The encoder and decoder module 402 is coupled to the data processor 403 and is also coupled to the handset interface 404 for receiving signals from the telephone handset 405. The PPPoE client 401 is coupled to the digital IP telephone interface 411, to the data processor 403, and to the CODEC 402 via an intermediate bus. The telephone handset 405 includes a voice communication receiver 406, a microphone 407, and a special purpose PPPoE function key 410. The PPPoE function key 410 may be used by a user to either launch or disconnect a PPPoE session for communicating voice over IP (VoIP) data.


In the event that a user desires to initiate a VoIP session using PPPoE, the user may press function key 410 and a PPPoE initiation signal 420 is then communicated to the control processor 409 through the telephone keypad 408. The PPPoE client 401 then initiates a PPPoE session that communicates the appropriate protocol signals to the digital IP telephone interface 411 which communicates to an Ethernet switch via the switch interface 412.


Once a PPPoE session has been established and voice over IP information has been communicated between the IP telephone and a remote device, the display 410 includes an indicator to illustrate that a PPPoE session has been established. To place particular calls via the IP telephone, a telephone keypad 408 has been made available. A user may enter address information on the telephone keypad to direct a destination for a voice over IP call. Also, after termination of a PPPoE connection, the indicator on the display 410 shows that the PPPoE session has been terminated, such as when either the far end disconnects or when a user depresses the PPPoE function key 410 to initiate disconnect sequence. While VoIP communication has been described with respect to PPPoE, it should be understood that the IP phone is configurable as to selection of protocols and other protocols, such as IP over Ethernet, may be used.


Referring to FIG. 5, a flowchart of an illustrative method of operation of the systems described with respect to FIGS. 1 through 4 is shown. A request from a user is received at an internet protocol telephone device to establish a PPPoE session in order to launch a voice over IP (VoIP) telephone call, at step 502. PPPoE login information, such as user IDs and passwords are received, at 504. A PPPoE session is established from the IP telephone device to a remote access router of a remote VoIP service provider network in response to retrieving the login information from the user, as shown at step 506. After establishing the PPPoE session, VoIP traffic is then communicated over the PPPoE session, at 508. After the PPPoE session has been established, an indicator on a display of the IP telephone device shows that a PPPoE session has been established, at step 510.


The PPPoE session is controlled by the PPPoE function key to disconnect. In this case, the session can be on until a user initiates a disconnect command.


In a particular illustrative embodiment IP information may optionally be dynamically assigned to the IP telephone device from a remote VoIP service provider network during a PPPoE authentication stage prior to establishing the VoIP call. In this case, the PPPoE session is established in response to the dynamically assigned IP information received at the IP telephone device.


The above disclosed subject matter is to be considered illustrative, and not restrictive, and the appended claims are intended to cover all such modifications, enhancements, and other embodiments which fall within the true spirit and scope of the present invention. Thus, to the maximum extent allowed by law, the scope of the present invention is to be determined by the broadest permissible interpretation of the following claims and their equivalents, and shall not be restricted or limited by the foregoing detailed description.

Claims
  • 1. A method of establishing Voice over Internet Protocol (VoIP) communications, the method comprising: establishing a virtual circuit to carry VoIP traffic via a first Point-to-Point Protocol over Ethernet (PPPoE) session and to carry other data traffic via a second PPPoE session, wherein the first PPPoE session and the second PPPoE session are supported by a digital subscriber line access multiplexer (DSLAM).
  • 2. The method of claim 1, wherein the virtual circuit is established by an Internet Protocol (IP) telephone device.
  • 3. The method of claim 1, wherein the virtual circuit terminates at a broadband remote access server (BRAS).
  • 4. A method of establishing Voice over Internet Protocol (VoIP) communications, the method comprising: establishing a virtual circuit at an access router of a service provider network with an Internet Protocol (IP) telephone device, wherein the virtual circuit is dedicated to carrying VoIP traffic between the IP telephone device and the service provider network and wherein the virtual circuit does not include a network element that is coupled directly to a public IP network.
  • 5. The method of claim 4, wherein the service provider network is coupled to a broadband remote access server (BRAS) that is coupled to the public IP network.
  • 6. The method of claim 5, further comprising communicating additional VoIP traffic via a connection between the service provider network and the BRAS.
  • 7. The method of claim 6, wherein the additional VoIP traffic is associated with an additional IP telephone device.
  • 8. A digital subscriber line access multiplexer (DSLAM) adapted to: route Voice over Internet Protocol (VoIP) traffic to an access router of a VoIP service provider network via a first virtual circuit; androute data other than the VoIP traffic to a broadband remote access server (BRAS) via a second virtual circuit.
  • 9. The DSLAM of claim 8, further adapted to route additional VoIP traffic to the BRAS via a third virtual circuit, wherein the third virtual circuit is adapted to provide support for a first Point-to-Point Protocol over Ethernet (PPPoE) session dedicated to carrying the additional VoIP traffic and the third virtual circuit provides support for a second PPPoE session dedicated to carrying data other than the additional VoIP traffic.
  • 10. The DSLAM of claim 9, wherein the VoIP traffic is associated with an Ethernet switch coupled to the DSLAM and the additional VoIP traffic is associated with an additional Ethernet switch coupled to the DSLAM.
  • 11. The DSLAM of claim 8, wherein the first virtual circuit and the second virtual circuit are each adapted to support Point-to-Point Protocol over Ethernet sessions.
  • 12. An Internet Protocol (IP) telephone device comprising: a telephone keypad; anda Point-to-Point Protocol over Ethernet (PPPoE) client module adapted to initiate a PPPoE session to communicate a VoIP telephone call;wherein the PPPoE session remains active until an input is received via the telephone keypad to disconnect the PPPoE session.
  • 13. The IP telephone device of claim 12, further comprising a base portion and a telephone handset portion.
  • 14. The IP telephone device of claim 13, wherein the base portion includes a handset interface coupled to the telephone handset portion.
  • 15. The IP telephone device of claim 12, wherein the input is received via a PPPoE function key of the telephone keypad.
  • 16. The IP telephone device of claim 12, wherein the telephone keypad is located on the base portion.
CLAIM OF PRIORITY

The present application is a continuation application of and claims priority to U.S. patent application Ser. No. 10/766,534 filed on Jan. 28, 2004. The content of U.S. patent application Ser. No. 10/766,534 is expressly incorporated herein by reference in its entirety.

US Referenced Citations (61)
Number Name Date Kind
5751338 Ludwig, Jr. May 1998 A
5974139 McNamara et al. Oct 1999 A
5987061 Chen Nov 1999 A
6044107 Gatherer et al. Mar 2000 A
6055268 Timm et al. Apr 2000 A
6081291 Ludgwig, Jr. Jun 2000 A
6292559 Gaikwad et al. Sep 2001 B1
6317495 Gaikwad et al. Nov 2001 B1
6424657 Voit et al. Jul 2002 B1
6466088 Rezvani et al. Oct 2002 B1
6467092 Geile et al. Oct 2002 B1
6477238 Schneider et al. Nov 2002 B1
6498791 Pickett et al. Dec 2002 B2
6507606 Shenoi et al. Jan 2003 B2
6532277 Ulanskas et al. Mar 2003 B2
6538451 Galli et al. Mar 2003 B1
6549568 Bingel Apr 2003 B1
6570855 Kung et al. May 2003 B1
6597689 Chiu et al. Jul 2003 B1
6608835 Geile et al. Aug 2003 B2
6614781 Elliott et al. Sep 2003 B1
6625255 Green et al. Sep 2003 B1
6640239 Gidwani Oct 2003 B1
6643266 Pugaczewski Nov 2003 B1
6658052 Krinsky et al. Dec 2003 B2
6667971 Modarressi et al. Dec 2003 B1
6668041 Kamali et al. Dec 2003 B2
6674725 Nabkel et al. Jan 2004 B2
6674749 Mattathil Jan 2004 B1
6680940 Lewin et al. Jan 2004 B1
6697768 Jones et al. Feb 2004 B2
6700927 Esliger et al. Mar 2004 B1
6724859 Galli Apr 2004 B1
6728238 Long et al. Apr 2004 B1
6731678 White et al. May 2004 B1
6735601 Subrahmanyam May 2004 B1
6751218 Hagirahim et al. Jun 2004 B1
6751315 Liu et al. Jun 2004 B1
6751662 Natarajan et al. Jun 2004 B1
6754283 Li Jun 2004 B1
6762992 Lemieux Jul 2004 B1
6763025 Leatherbury et al. Jul 2004 B2
6765864 Natarajan et al. Jul 2004 B1
6765918 Dixon et al. Jul 2004 B1
6769000 Akhtar et al. Jul 2004 B1
6769024 Natarajan et al. Jul 2004 B1
6771673 Baum et al. Aug 2004 B1
6775232 Ah Sue et al. Aug 2004 B1
6775267 Kung et al. Aug 2004 B1
6775268 Wang et al. Aug 2004 B1
6775273 Kung et al. Aug 2004 B1
6778525 Baum et al. Aug 2004 B1
6782082 Rahamim Aug 2004 B2
6891825 O'Dell et al. May 2005 B1
7127049 Godse et al. Oct 2006 B2
7167923 Lo Jan 2007 B2
7263557 Lund et al. Aug 2007 B2
20030103492 Tanimoto Jun 2003 A1
20040095921 Kerpez May 2004 A1
20050002335 Adamczyk et al. Jan 2005 A1
20050152370 Meehan et al. Jul 2005 A1
Related Publications (1)
Number Date Country
20080130633 A1 Jun 2008 US
Continuations (1)
Number Date Country
Parent 10766534 Jan 2004 US
Child 12014865 US